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1. Introduction

3. Atomic Layer Deposition
Gas phase deposition with reactants 
alternately introduced to surface.

2. Pyroelectricity and 
Ferroelectricity

All ferroelectrics are also pyroelectric.

4. Experimental Procedure
TaN/Hf1-xZrxO2/TaN stack

5. Polarization Response
Remanent Polarization increases with 

Zr content up to 0.64 ZrO2 fraction.

6. Crystal Phase
Orthorhombic/tetragonal phase 

fraction increases with ZrO2 content.

7. Pyroelectric Response
Pyroelectric response correlated with 

polarization.

8. Summary

• In 2011 Böscke et al. controversially 
recorded a ferroelectric like response 
in 2 to 5% Si:HfO2 with TiN top and 
bottom electrodes.

• Similar results have since been 
reported for other HfO2 based 
systems including (Hf,Zr)O2

• Community skeptical
• To settle the debate: if ferroelectric 

then also pyroelectric.
• Two groups proposed pyroelectric 

coefficients but both used methods 
which can be influenced by extrinsic 
artifacts such as leakage current.

• Here we present rigorous 
pyroelectric measurements to 
establish ferroelectricity.

Böscke et al. Polarization (black) and 
dielectric constant (red) vs Electric field for 
2 Si doping levels.

Böscke et al. Capacitance vs Electric field 
showing peak associated with polarization.

Schematic of ALD process.
R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)

• Variant of chemical vapor 
deposition.

• Alternate doses of 
precursors separated by 
inert gas purge.

• Reaction limited to 
chemisorbed surface layer. 

• Pinhole free films

• Precise thickness and 
composition control.

• Sub monolayer growth 
per cycle.

• Multicomponent can be 
done by layering  two or 
more systems.

Piezoelectrics: Polarization 
changes under stress

Pyroelectric: Spontaneous 
polarization

polarization

Ferroelectric: Switchable 
spontaneous 
polarization
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Electric field

• Uniform change in temperature 
creates a change in polarization.

• Must have spontaneous 
polarization.

• With electrodes change in 
polarization can be measured 
as a voltage or current.

Electrometer
• Keithley 6512
• Measures current 
• ± 2 pA rangeFunction Generator

• Keysight 33500B
• 15 mHz
• 10 Vpp

SampleThermocouple
• Omega CO1-K

LCR meter
• HP 4192 LF impedance analyzer
• Pole sample 4 V
• Check capacitance and loss tangent at 1 kHz

Labview
• Collects current and 

temperature 
measurement

Peltier cooler 
• TE Technology
• VT-127-1.0-1.3-71
• ± 2.3 K range
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200 µm • Orthorhombic phase associated 
with ferroelectricity response 
indistinguishable from 
tetragonal ZrO2 phase.

• Decrease in monoclinic phase, 
corresponds with increase in Zr
content and polarization. 

Material
p

(μCm-2K-1)

Dielectric 
properties

FI 10-10 

(mV-1)
FV

(m2C-1)
FD 10-6

(Pa-1/2)
Reference

εr tan δ
Hf0.32Zr0.64O2 48 25 0.014 0.22 0.10* 13* This work

5.6 mol% 
Si:HfO2

52 38 0.025 0.20 0.06 7
Hoffmann 2015 Nano 

Energy

Mod. PZ 400 290 0.003 0.02 0.06 58 Whatmore 2004 J 
ElectroceramicsMod. PT 350 220 0.01 0.01 0.07 32

Mn -PZT thin 
film

352 257 0.007 - - 39
Sebald 2008 IEEE 

Trans.

PVDF 25 9 0.03 0.11 0.14 7
Ploss 1991 Sensors and 

Actuators A
LiTaO3 180 47 0.005 0.56 0.14 39

TGS 280 38 0.01 1.2 0.36 66

• Observed pyroelectric response in Hf1-xZrxO2.

• Consistent with permanent polarization.

• (Hf,Zr)O2 is likely a ferroelectric material.

• Pyroelectric response, polarization magnitude, 
orthorhombic/tetragonal phase intensity, are all correlated with 
composition.

• Hf0.36Zr0.64O2 pyroelectric coefficient and IR detector figures of 
merit similar to PVDF and LiTaO3.

• (Hf,Zr)O2 is a promising material for large area IR detectors or 
low frequency detection.

Pyroelectric Coefficient for (Hf,Zr)O2, Si:HfO2 and 
several common pyroelectrics.

Pyroelectric Coefficients for 
(Hf,Zr)O2 composition array.

• Pyroelectric coefficients 
increases with ZrO2 fraction 
up to 0.64.

• Correlated with polarization 
response.

• p lower than many 
ferroelectrics but lower 
dielectric constant makes 
infrared detector figures of 
merit comparable.

Pyroelectric Coefficient, dielectric properties and infrared detector 
figures of merit for (Hf,Zr)O2, Si:HfO2 and several common pyroelectrics.

Polarization electric field data for composition array. XPS determined 
composition and ALD cycle ratio are listed.  
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Temperature TC

dP/dT= pyroelectric 
coefficient

Device stack schematic
p – pyroelectric coefficient
ω – angular frequency of temperature
A – area of device
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