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Abstract—In many organizations, intrusion detection and other
related systems are tuned to generate security alerts, which
are then manually inspected by cyber-security analysts. These
analysts often devote a large portion of time to inspecting these
alerts, most of which are innocuous. Thus, it would be a greatly
beneficial to reduce the number of innocuous alerts, allowing
analysts to utilize their time and skills for other aspects of cyber
defense. In this work, we devise several simple, fast, and easily
understood models to cut back this manual inspection workload,
while maintaining high true positive and true negative rates.
These methods can be introduced with nearly no overhead,
and can be fine-tuned to desired true positive, true negative,
and manual inspection workload requirements. In addition,
due to their simplicity, these models’ predictions can be easily
understood and are therefore easier to trust. We demonstrate
their effectiveness on real data, and discuss their potential utility
in application by others.

I. INTRODUCTION

Many organizations, especially those that handle sensitive
information, have a cyber-security team that is responsible
for monitoring and assessing threats on their network. These
security analysts are highly skilled experts, trained specifically
for this job. However, there are only a finite number of
analysts who can perform this task adequately, and often their
workload is vast. These individuals must, among other tasks,
remain on the forefront of new known attacks, develop new
methods for detecting yet-unseen threats, and attend to current
potential threats. These teams often face an overwhelming
volume of alerts, most of which are innocuous, but must still
be addressed. Due to this enormous volume, analysts may
experience “alert desensitization” [[1]]; due to the number of
false positives encountered, analysts may miss true positive
alerts, which lead to, e.g., compromised internal systems. In
fact, alert desensitization has been used to describe the failure
of Target to recognize an attack that led to the leak of millions
of credit card numbers [2]. Thus, analysts would greatly
benefit from a system that can filter (or triage) innocuous
alerts and bring attention to those which may be real attacks.
In addition, organizations would likely prefer their skilled
security experts to use their knowledge to its fullest potential,
performing the most difficult of tasks (e.g., mentioned above,
developing methods for detecting unknown attacks), rather
than spending valuable time and resources attending to an alert
queue.

Prior research has made headway into performing this alert
triage task [3]. However, their methods require building ma-

chine learning models based on prior detected threats, which
may take a long time to construct and use. Security threats
rapidly evolve and change, which necessitates continuous
updating of these models. This can be done, but often with
a heavy cost of time and computing resources. In addition,
due to the way these models are built, the task of classifying
a previously unseen attack is difficult.

Machine learning models are also notoriously difficult to
infer from ie., how or why does this model work, and
can its predictions be trusted [4]? Such questions are vitally
important in cyber-security, as the ability to understand and
trust a model’s predictions can be the difference between a
critical failure and a large reduction in mundane workload
and increase in quality-of-life for your analyst team.

In this work, we present a number of simple, fast, and easily
understood models to classify alerts and perform alert triage
with high accuracy. These methods require no explicit prior
knowledge of attacks on the system, and exploit attack time-
and subject-locality. They can be tuned to an organization’s
specific needs depending on the acceptable amount of false
positives and negatives, while reducing the number of alerts
that require manual inspection. We test these models on real
cyber-security data from our organization, and find:

1) The simplest model, which reduces the number of
alerts an analyst must manually inspect by 50%, yields
97.18% true positive and 99.84% true negative rates.
Minor augmentations can increase the true positive and
true negative rates to 98.38% and 99.90%, respectively,
reducing manual inspection workload by 48.40%.

2) More advanced (but still simple) models provide up to
99.15% true positive and 99.96% true negative rates,
with a 99.32% workload reduction. Depending on how
much one wishes to reduce manual inspection workload,
true positive and true negative rates can be increased. We
provide a few trade-off curves that allow management of
true positive and true negative rates, balanced by manual
inspection workload reduction, that can be tuned to an
organization’s specific needs.

3) Our methods work because our data contains alerts that
are grouped by subject and time (i.e., locality), and the
groups generally have homogeneous labels (i.e., alerts
within a group are often labeled the same). We discuss
the applicability of our work to other data that may be
more heterogeneous within subject- and time-localities.
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Fig. 1. Alert generation process. Raw data is sent through structuring filters
written by security analysts. These structuring filters turn the raw data into
an easier-to-read form for later labeling. Alerts generated by the same filter
within the same time-batched run are combined into alert groups.

The rest of the paper is organized as follows: Section
covers data and methodological goals; Section discusses
related work; Section presents results; Section E provides
a discussion; Section [VI] covers threats to validity and future
work; and Section provides a conclusion.

II. DATA AND METHODOLOGICAL GOALS

illustrates the alert generation process for our data.
In general, alert data that is analyzed by an organization’s
security team is generated through multiple sensors, which
may have different data formats. This raw data is then trans-
formed into some unified format, and structured based on
various meta-attributes to a human-digestible form. Here, our
“structuring filters” are written by analysts to group raw data
by subject. Raw data is collected in time-batches; the period
of the time-batch depends on the subject.

For example, say we have a filter which looks for all HTTP
requests from a particular IP block, and runs twice a day.
If there are 5 instances of this event in the first run, and 3
instances in the second, we will generate two alert groups:
the first comprising of 5 alerts (corresponding to instances),
and the second comprising of 3 alerts. In this way, we have
subject- and time-locality; each alert group contains only alerts
of a given subject (in this example, HTTP requests from a
particular IP block), which are grouped in time. These alert
groups also contain meta-data; this meta-data is not analyzed
in this work.

After these alerts have been generated and grouped, analysts
manually inspect each alert individually and mark them as
“closed” (i.e., innocuous) or “promoted” (i.e., a potential threat
that requires additional attentionﬂ Our goal is to build a clas-
sifier which accurately labels alerts as “closed” or “promoted”
without requiring extensive manual inspection. Note that we
assume all analysts label alerts correctly. This may not be
true in practice, but it is an implicit assumption as we use
their labels as the “true” labels. It would be very difficult

! Analysts may also leave alerts “open”. We remove these from our data set
as there are a myriad of reasons by which an alert will remain open.

to construct a classification model of any type without this
assumption.

In this work, we focus on exploiting only time- and subject-
locality of alerts. As mentioned above, these alert groups do
contain additional meta-data. The natural question then is: why
not use meta-data as well? A primary point of consideration
in this work is to construct understandable models. We could
very well extract every feature we can imagine and use those
in addition to time and subject features. However, we believe
this would severely hamper the ease of understanding our
models, and potentially violate the principle of parsimony [5]],
commonly observed in statistical modeling [6 It is critically
important that we are able to understand and trust our models’
predictions. Using a large number of features can easily make
this task unwieldy. In addition, increasing the number of
features also increases the time it takes to build a model.
In essence, we have four main methodological goals for our
classification models; they must:

1) Have a high true positive rate; secondarily, have a high
true negative rate. Missing an alert that should have been
promoted (i.e., false negatives) can be extremely costly,
and should be avoided with priority.

2) Be fast to build, and fast to apply for prediction.

3) Be simple to understand, and thus easier to trust.

4) Save analysts’ time and resources (i.e., reduce the num-
ber of alerts an analyst must manually inspect).

In addition, we must make sure that there are no problems
of data leaking [7], e.g., future data being used to predict data
in the past. Our models are explicitly made and evaluated such
that this time ordering must be respected and maintained.

We evaluate our models using true positive rate (sensitivity)
and true negative rate (specificity) for a number of reasons.
AUC (area under the receiver operating characteristic curve)
— a standard evaluation metric for classification models [8]
— does not translate well for the models presented here. In
essence, AUC measures the area under the curve between true
positive rate and false positive rate, for varying probability
thresholds of a classifier [9]. Our models do not provide
a prediction probability; they output predictions with 100%
confidence. Thus, AUC cannot be directly used for our models.
Another potential evaluation metric is the overall accuracy
(number of correct predictions divided by total number of
points). The issue with overall accuracy is that our data is
heavily unbalanced. In fact, if we build a poor classifier that
predicts all alerts should be closed, we would have a 94.87%
overall accuracy on our data; clearly, this is misleading. In
contrast, for this case the sensitivity would be 0% and the
specificity would be 100%. Thus, sensitivity and specificity
have better discriminatory power than overall accuracy. A third
possible metric would be balanced accuracy. However, this is
merely the arithmetic mean of sensitivity and 1—specificity;
thus, reporting both sensitivity and specificity provides at least
as much information as balanced accuracy.

2j.e., Occam’s razor.



III. RELATED WORK

The application of data analysis to cyber security alert clas-
sification has been well studied. Intrusion detection systems
have been augmented by a variety of techniques including
Bayesian networks [10], PCA [11] and decision trees [12]]
in order to reduce the manual efforts of human analysts and
improve threat detection. While these techniques have shown
promising results [[13]], even for the detection of previously-
unseen malware [[14]], these techniques are much more com-
putationally expensive than our approach and the models may
need to be re-built frequently in order to keep up with the
changing threat landscape. Additionally, it is often difficult to
interpret and trust the behavior of these models, as is the case
with many machine learning methods [4]. This is especially
important when quantifying the future effectiveness of the
models, and understanding their areas of weakness.

Although recent work has made improvements in the in-
terpretability and performance analysis of machine learning
models [4]], they only provide locally interpretable results that
must still be processed by an analyst. Locally interpretable
results and model debuggers [15]] are useful when building
models and analyzing their output, but they will not reduce
the number of alerts that the analyst must process. Our simple
models reduce analysts’ workload, are easily understood, and
do not need additional tools to help interpret their behavior.

Temporal locality of security events has been studied in
order to detect network [|16] and host [[17] based anomalies
and to differentiate spam from non-spam email [[18]]. Although
these works show that temporal locality can be used as
a feature to segment benign and malicious behavior, both
the network and host based approaches require a training
period and models significantly more complex than ours. The
segmentation of spam from non-spam emails is more closely
related to our work, as the temporal stability of IP addresses
was shown to be a good indicator of spam. The use of two
features (IP address and timestamp) is similar to our use of
alert subject and timestamp.

IV. RESULTS
A. Exploratory Analysis

In constructing any sort of classification model, exploratory
analysis is an important initial step. In addition to other
benefits, exploratory analysis allows us to understand our data
more in-depth, discovering potential points of focus which
may help improve model performance.

Initially, we set out to discover which attributes of alerts
may be most predictive of their final classifications. Generally
speaking, as threats evolve and change in time, we sought to
discover whether or not there is clear time-based behavior in
alert classifications. In addition, as skilled analysts are the ones
who create the subject filters, we thought it best to examine
alerts stratified by subject.

shows the number of promoted alerts for 16
subjects over a period of 3 consecutive months. We see that
oftentimes alerts are not promoted. However, when alerts are
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Fig. 2. Number of promotions over time. Large bursts often correspond to
most or all alerts within an alert group being promoted.

promoted, they are commonly done so in large “bursts”. For
example, for Subject 3, there exists a very large burst of 23
promotions all at once. Recall that alerts are generated in
groups at certain times, corresponding to alert groups. It turns
out that this burst of promotions in Subject 3 is a single alert
group that is all promote We call this phenomenon one of
time- and subject-locality; an alert group is built for a par-
ticular subject, at a particular point in time (corresponding to
when the raw data was first encountered and processed). This
discovery provides motivation. As promotions are relatively
rare compared to closed alerts, if we can somehow leverage
these large bursts in time, we will capture a large amount (in
fact, majority) of the promoted alerts.

B. Constructing a Naive Baseline

When developing or applying a new method to existing
data, it’s important to establish a naive baseline to serve as
a basis of comparison, or a goal to strive for. In our data,
as mentioned above, we see clear evidence of burst behavior.
Thus, an extremely naive approach would be to always use
the previously observed label in time as a prediction for the
next label, per subject. This method is very fast and simple;
it can be done trivially in near-constant time. The confusion
matrix for our naive baseline model can be seen in [Table 1l
As shown, this naive model performs surprisingly well; we
see a true negative rate (specificity) of 99.57% and a true
positive rate (sensitivity) of 94.27%. However, this method
has one major flaw which violates one of our aforementioned
goals: it does not reduce analysts’ workload. For a past label

3This is a common occurrence and will be utilized in some of our models.



TABLE I
NAIVE MODEL CONFUSION MATRIX
Observed
Predicted Closed Promoted
Closed 576907 1795
Promoted 2501 29554
Specificity: 0.9957 | Sensitivity: 0.9427

TABLE II
ALTERNATING MODEL CONFUSION MATRIX
Observed
Predicted Closed Promoted
Closed 578459 883
Promoted 949 30466
Specificity: 0.9984 | Sensitivity: 0.9718

TABLE III
ALTERNATING MODEL (AUGMENTED) CONFUSION MATRIX
Observed
Predicted Closed Promoted
Closed 578856 509
Promoted 552 30840
Specificity: 0.9990 | Sensitivity: 0.9838
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Fig. 3. The process of alternating labeling. Low circles are closed labels;
high circles are promoted labels. Solid circles indicate observed labels. Every
other label is manually provided by an analyst and automatically carried over
to the next alert in time for each subject.

to exist, an analyst must provide one. Thus, to implement this
model in practice would still require an analyst to label every
point, as every future point’s prediction relies on the immediate
prior label. If the prior label never changes (as would be the
case here without an analyst to provide a label), we have no
chance of predicting points correctly. However, the fact that
this exploratory model works so well illustrates that time- and
subject-locality is important, and exploiting this fact may prove
fruitful in more developed models.

C. Alternating Analyst Labels

We see that our naive model performs well in terms of our
measures of accuracy. However, it does not reduce analysts’
workload, as an analyst is still required to label every prior
point. A small augmentation can be made which results in

a sizable workload reduction: have analysts manually label
every-other point in time, for each subject. depicts
this process. Analysts manually label alerts in the analyst label
state. These labels are then carried over for the next alert in
subject-time (carried label state) as an automatic alert label
(i.e., a prediction). It can be easily seen that this reduces the
number of manually labeled points by 50%, as analysts only
manually inspect every-other alerﬂ The results of this process
applied on our data can be seen in These results are
initially surprising; one would think that this model should be
less accurate than our naive baseline, as analysts perform less
manual labeling. However, this phenomenon can be simply
explained.

Recall that promotions often occur in bursts (Figure 2).
In this corresponds to a long “chain” of promoted
points. In the fourth label state, we see that the first promotion

in the chain is misclassified — it should be predicted as
promoted, but is predicted closed. In the ninth label state, we
see a one-off i.e., a promotion that does not occur as part
of a chain. The naive model would never predict this point
correctly, as the prior label (eighth label state) is closed, and
the naive method would carry the closed label, resulting in
an incorrect prediction; however, the alternating label method
classifies this alert correctly. In fact, this situation is analogous
to the fourth label state; the naive model would never predict
this label correctly, as the prior label is closed. In addition, the
naive model would never correctly predict the label in state
seven, as its prior label is different. In summary, the naive
model will never properly predict one-offs, the first label in a
promotion chain, or the label immediately after the end of a
promotion chain. The method presented in this section has a
chance to properly predict both of these labels.

To see this, consider the following. Our method labels only
50% of the points manually, using predictions to fill in the
rest. If we assume that promotion chains and the number of
labels between consecutive chains are independent, we have
a 50% probability of landing on the first label (or after-last
label) in a promotion sequence during a manual label state.
This leads to an expected value of 50% of these labels being
correctly classified by this modeﬂ Compare this to the naive
model, which never guesses these two label types correctly.
Thus, interestingly, by introducing a level of uncertainty (i.e.,
only manually labeling half of the alerts), we gain increased
accuracy and reduced workload — two of our primary goals.
In addition, this method is still very simple and thus easy to
understand, and can also be implemented with trivial overhead.

1) A Small Augmentation: Though one-offs are a special
case of the first promotion in a chain as described above,
they are interesting in their own right. Why do these points
exist, when chains are empirically more common? Recall that
alerts are put into alert groups based on subject and time. Our
data shows that one-offs in their own alert group (992) are

4This only holds if there are no subjects with only one alert. This is true
for the vast majority (> 99%) of our data.

50ne-offs can be seen as a special case of identifying the first label in a
promotion sequence, and are thus covered by this analysis.
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Fig. 4. Process diagram for the fractional sampling model. For each alert
group, a fractional subset of alerts are randomly sampled and manually labeled
by an analyst. The manual labeling is then used to fill the rest of the group
through one of our described strategies.

more common than one-offs within a larger alert group (160)
(i.e., alert groups with both promoted and closed alerts). If we
enforce by process that all alert groups of size 1 be manually
inspected, we increase our true positive and true negative rates
with a small loss in workload reduction (50% to 48.40%).
The results of this augmentation on our data can be found in
This small augmentation to the above process meets
all our aforementioned goals, and is likely worthwhile as a
small loss in workload reduction is negligible compared to
the gain in true positive rate.

D. Alert Group Fractional Sampling

Recall that alerts are grouped into alert groups based on
subject and the time at which the raw data was scanned. In
the models presented so far, we consider time as continuous
and ignore the structure imposed by alert groups themselves
i.e., the fact that all alerts within an alert group are considered
as occurring at the exact same time. In the following models,
we utilize this fact.

In all models that follow, we perform a sampling of a
fraction of alerts within each alert group, manually labeling
only the sample. Based on a particular fill strategy, we label
the rest of the alerts in the alert group automatically, using the
manually determined label as a guide. This process is depicted
in

The theory behind this method is based on a few observa-
tions. As noted briefly above (Section [TV-A)), most alert groups
contain alerts which all have the same label, e.g., if one alert is
promoted, it is likely all others are promoted. In other words,
the conditional probability of some alert within an alert group
being promoted, given another alert in the group is promoted,
is very high. As we sample more alerts within an alert group,
the sampling distribution of alert labels will approach the true
distribution. Given our knowledge of the nature of our data,
we believe this sampling distribution will approach the true
distribution rapidly. This means that we can potentially sample
and manually inspect a very small number of alerts from an
alert group and have a good guess as to how the rest of the
alerts should be labeled.

1) Fill Strategy: Random Within Sample: The simplest fill
strategy is to take a random alert from our sampled fraction
of alerts, and apply this label to all other currently unlabeled
alerts within the group. For example, if an alert group has
10 alerts, and our fractional sample is set to 50%, we will
manually label 5 of these alerts. We then randomly select one
label from these 5 alerts and apply its label automatically
to the remaining unlabeled alerts within the group. This
second random selection step may seem superfluous, but is
necessary to deal with heterogeneous groups i.e., alert groups
that contain both promoted and closed alerts. If an alert group
is heterogeneous, then randomly selecting one label from our
initial fractional sample should capture this heterogeneity on
average. The results of this strategy are shown in Figure [5a]

2) Fill Strategy: Any Promoted: Another simple fill strategy
is to look at our manually labeled sample and see if any alerts
are promoted. If so, we automatically say the rest of the alerts
in the group should be promoted. This strategy heavily biases
our predictions towards increasing true positives — one of our
primary goals. In addition, this somewhat follows the cognitive
bias that may exist when performing labeling. If one alert
within a group is promoted, it is not far-fetched to believe
that extra attention should be paid to the rest of the alerts in
the group. This method, however, will inevitably increase false
positives. The results of this strategy are shown in Figure [5b]

3) Fill Strategy: Heterogeneous Group Detection: The final
fill strategy presented is one of heterogeneous group detection.
As explained above, a heterogeneous alert group is one in
which some alerts are promoted and some are closed. In
this strategy, if we see heterogeneous labels in our manual
labeling of the fractional sample, we manually label the rest
of the alerts in the group. The theory behind this method is:
if most groups are homogeneous, this strategy works just as
well as random sampling in terms of workload reduction; we
do not waste time manually labeling alerts that have the same
label as others in the group. However, for groups that are
heterogeneous, we gain the benefits of increased true positives
similarly to the “any promoted” strategy, as we manually label
the entire group. The results of this strategy are shown in
Figure

Figure [5 shows the results of the fractional sampling ap-
proach. The x-axis is the number of alerts that are automati-
cally labeled (i.e., 1—fractional sample size). The first row of
each plot shows specificity, mean sensitivity, and their average.
Vertical bars are standard deviations over 1000 run{®l The
second row depicts workload reduction. Note that the slope
of this line for each plot is not exactly 1; there are many alert
groups of size 1, and since we cannot sample a fraction of
an alert, these alerts are always manually labeled regardless
of fractional sample size. In addition, we take the ceiling
of the fractional sample size, e.g., if the alert group is size
101 and our fractional sample size is 1%, we will manually
label 2 alerts. The bottom row shows workload reduction per
false positive, which is meant to illustrate a trade-off between

6As this method is probabilistic, we plot the average across all runs.
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increased false positives and decreased workload. A further
description of this trade-off plot follows.

Our primary goal is to maximize true positive rate. When
reducing the number of manually inspected alerts, this be-
comes difficult and generally comes at a cost of increased
false positives. False positives increase overall effort required,
as alerts that are marked as promoted (whether or not they
truly should be) must be reviewed, discussed, and handled
beyond the initial effort of performing the labeling. Thus, if
we introduce too many false positives, we may completely
nullify the workload reduction we gain in terms of manual
inspection time. For example, in an extreme case, say we mark
everything automatically as promoted. This yields a workload
reduction in initial manual inspection (as is discussed here)
of 100%; however, this is practically meaningless as all these
alerts now incur an additional overhead in analyst time and
resources spent, as they must be handled more in-depth than
if they were manually labeled as closed. Thus, we wish to
strike a balance between the increase in false positives and
labeling workload reduction.

The bottom row of each subplot in Figure [ then, can
be interpreted as: for each false positive we introduce due
to decreasing labeling workload, we incur some additional
overhead. In the case of Figure at an automatic labeling
level of 99%, if this overhead time is > 4354 times the amount
of time it takes to initially label an alert on average, then the
initial labeling workload reduction is completely nullified by
the increase in overhead due to false positives.

Another trade-off analysis can be seen in [Figure 6| Here, we
see workload reduction (x-axis) and sensitivity and specificity.
The idea is that there comes some point at which we rapidly
decrease sensitivity and specificity with a small decrease in
workload (i.e., diminishing returns). Using these plots, we can
determine this point for each fill strategy. For the any promoted
(green) and heterogeneous group detection (red) strategies, we
generally see sudden rapid loss with respect to sensitivity
at 70% workload reduction. We see something similar for
specificity for heterogeneous group detection, but a rapid gain
for any promoted. Interestingly, we don’t see this sudden rapid
loss for the random within sample method; the loss is linear
across workload reduction levels, but also consistently lower
than the heterogeneous group detection method.

V. DISCUSSION

All models above achieve high specificity and sensitivity.
This fact may be surprising given their simplicity. Here, we
discuss our reasoning as to why these models work.

The primary reason the fractional sampling models (Sec-
tion work is that alert groups are generally labeled
homogeneously; only 0.0319% of our alert groups have het-
erogeneous labels. Thus, even when we sample only 1% of
alerts in a group, we obtain high sensitivity and specificity.
The reason behind the alternating label state models’ (Sec-
tion performance is similar. It turns out that promotion
chains and one-offs predominately correspond to singular alert
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alerts. Note differing y-scales.

groups. The root cause of these models’ performance, then, is
the reason behind the prevalence of label homogeneity.

The process that generates homogeneous alert group labels
is difficult to grasp, and could be due to a number of
factors. It could be that our data is the result of analysts
who write structuring filters favoring homogeneity, i.e., they
write filters such that when a potential attack is detected, the
associated alert group is fully promoted or closed. This does
not necessarily have to be active; analysts could be doing this
without realizing. Testing whether or not this is true is difficult,
as we would require alert data from multiple sources and
multiple analysts who are trained in different ways. Another,
possibly more likely, explanation adheres to the principle of
“attack surges” [11[], [16], [17]; malicious actors generally
perform their attacks in time-local surges. Thus, a system
which prioritizes sorting data by subject-time (as ours does)
would likely contain homogeneous alert groups.

Another point of discussion is the comparison of the hetero-
geneous group detection fill method to others in Section



Specifically, why does this method work so much better than
the others? As noted in Section if most groups are
homogeneous, this strategy works as well as the random within
sample method in terms of workload reduction; additionally,
we have a comparable specificity. However, for groups that
are heterogeneous, we essentially perform a slightly smarter
version of the any promoted method, adopting its sensitivity
and increasing specificity. Thus, the heterogeneous group
detection method has an average sensitivity that is better than
the any promoted method, with an average specificity that is
better than the random within sample method.

Finally, we note that the heterogeneous group detection
model seems to “take the cake” across all categories of
accuracy and workload reduction for our data. We present the
preceding models as they may be more applicable for other
forms of alert data. The heterogeneous detection model works
in large part due to the prevalence of homogeneity in labels,
while other models may work better for other organizations’
data. As the models are simple to understand, testing whether
or not they should be implemented should not be a laborious
task.

VI. THREATS TO VALIDITY AND FUTURE WORK

Though we have done our best to evaluate and construct our
models in a statistically sound manner, we note a few threats
to validity.

We acknowledge that our models work in large part due to
homogeneity in labels within alert groups. For other sources
of alert data, heterogeneity may be more common, and our
models may not work as well. However, if one uses the
heterogeneous group detection model and the heterogeneous
groups are heavily skewed towards one label type, then the
number of correctly classified instances for that label type
will still be high. Thus, if heterogeneous groups are skewed
towards the promoted class, then true positives will still be
high, and the primary goal will be met.

Note that a “classical” machine learning approach (e.g.
SVM or decision trees) would generally attempt to automati-
cally classify all points. Our models can never classify every
point automatically; we require a certain percentage of manual
labels per alert group, always at least 1. Thus, we provide
an alert triage solution to a problem that is ‘“easier” than
the problem a classical approach attempts to solve. However,
we do not believe that this is a severe limitation of our
work, as we can attain a high workload reduction (92.322%)
with high specificity (99.958%) and sensitivity (99.145%)
(Section T[V-D3). In addition, this approach is very similar in
spirit to active learning, where a learning algorithm can query
an information source for a label when, e.g., it is unsure about
a prediction [19]. Here, we analogously ask the analyst to
perform a manual labeling for each alert group, and extend
that labeling automatically.

In the future, we hope to obtain alert data from different
sources to test the applicability of our methods here. In
addition, we hope to perform some type of sensitivity analysis
with respect to heterogeneity of alert groups — this would be

accomplished if we can obtain other data sources with varying
levels of heterogeneity.

We also hope to increase our specificity and, more impor-
tantly, our sensitivity. Although we can obtain a relatively high
sensitivity in terms of percentage, every missed promotion
incurs a potential cost; it’s possible that we will misclassify
“the alert”. However, if the average cost of a missed promotion
is negatively related to the amount of heterogeneity in an alert
group, the promotions our models miss will likely not be too
costly. In other words, if the cost of a missed promotion is
less with more heterogeneity, our models’ misses will be less
costly.

Finally, we hope to improve our models by adding a likeli-
hood component. Though heterogeneous groups are rare, they
are the only source of error in our models. If we had more data,
we could fit an estimator (e.g., using maximum likelihood) to
the proportion of promoted alerts in heterogeneous groups, and
use that to provide an estimate on how many alerts should be
sampled from an alert group before we reach a predefined
level of certainty that we will not obtain false negatives. We
attempted to do this in this work (not shown), but the results
were inconclusive due to the rarity of heterogeneous groups,
i.e., we did not have an acceptable standard deviation of the
maximum likelihood estimate to provide a reasonable level of
certainty. Having more data would alleviate this issue.

VII. CONCLUSION

The models presented in this work (barring the naive model,
provided as a baseline and motivator) all meet our mentioned
goals; they have high true positive and true negative rates;
they are fast to build and fast to apply for prediction; they
are easy to understand; and they all save analysts time and
resources. We show that, on real data, our best performing
model (heterogeneous group detection) can attain 99.958%
specificity and 99.145% sensitivity, while automatically la-
beling 99% of alerts within an alert group, translating to
a 92.322% reduction in initial labeling workload. To offset
the overhead incurred by introducing false positives in this
case, it must take > 4354 times as long to further act on a
promoted alert, on average, than to perform the initial labeling.
Even higher sensitivity and specificity can be attained by
decreasing the amount of automatic labeling (increasing the
amount of manual labeling). We provide multiple trade-off
curves with respect to sensitivity, specificity, and workload
reduction, allowing potential implementors of our models to
weigh these trade-offs and align with their specific goals.
Our models are simple to understand and implement, which
facilitates trust in their predictions. As our models primarily
work due to the nature of attacks themselves (i.e., attacks come
in surges and thus generate homogeneous alert groups), we
believe that our models will be applicable outside of our data.
We believe that alert triage is very important practically, but
is under-researched in the academic community. We hope that
this work will act as a catalyst to drive this domain of research
forward.
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