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Introduction

Cradle-to-grave model for foaming, vitrification, cure, aging
Focus on moderate density PMDI foams
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Foam Filling is Complex
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Foam front moving past camera, with bubble sizes at
transparent wall determined with image processing.

3 views of foam filling a mock AFS with several plates
spaced unevenly. Vent location is critical to keep from

trapping air.

« PMDI is used as an encapsulant for electronic components and lightweight structural
parts, to mitigate against shock and vibration.

« We would like to develop a computational model to help us understand foam
expansion for manufacturing applications and how inhomogeneities effect the
structural response of the final part, including long term shape stability.

» (Gas generation drives the foam expansion, changing the material from a viscous liquid
to a multiphase material.

« Continuous phase is time- and temperature-dependent and eventually vitrifies to a solid.



Foam Filling Simulation of Complex
Part with Plates

Coupled Finite Element Method/Level Set

to Solve Foam Dynamics

* Gas and liquid are homogenized to a
continuum

* Density evolves based on kinetics of gas
expansion

Time =5.0

Rao et al., “Polyurethane kinetics for foaming and
polymerization” in review, AICHE Journal., November 2016

Rao et al., “ A Kinetic Approach to Modeling the
Manufacture of High Density Polyurethane
Structural Foam: Foaming and Polymerization,”
SAND2015-8282
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Rao et al, “A Level Set Method to Study Foam Processing ,” .
IJINMF, 2012




Computational Modeling of Foam Expansion
Can Help Desigh a Mold Filling Process
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Density Study for Structural Foam PMDI-10
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boundaries cause

bubble sizes
Shear near
elongated
ellipsoidal
bubbles

Foam microstructure
Polydisperse
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Study of the Evolution of Bubble Size

Channel mold * Three cameras record bubbles at transparent wall (top, middle, and
' - == bottom of a column) as foam fills the column
" ff ) * Light area in pictures below are where the wall is wetted by the bubble
3 1 Q’ S5 e — edges are dark lines dashed with bright spots (makes difficult to

. automatically analyze)

* Image processing developed to analyze — checks by hand shows
software good until late times when the bubbles distort severely

* Bubbles nominally about 200-300 microns in diameter

* Size and shape evolve in time, depend on temperature, foam density

* Over packing the foam helps keep the bubbles small and round

* Under packed foam often ends up with highly distorted bubbles near
leading front

Foam
injection

Water bath
line

Y Reticle for calibration
(notin use as shown)

Encap-470 C Bubble Size Data
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= lap Camera 13ata
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Results of image processing. Solid lines
are mean value. Dotted lines indicate
top and bottom 10% of values to
indicate spread.

Time=79.5s Time=1582s Time=266 s since end of mixing



~ Bubble Expansion in a Polymerizing Fluid

* Bubble grows as CO, enters the bubble (VLE model)

e Growth is halted abruptly once the polymer reaches the gel [#& r
point and the viscosity diverges ‘

* Post-gelation, bubble pressurization is observed

* ALE mesh is robust over shape change

* Data shows the correct trends when compared to
experiment
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Model Foam Viscosity as f(<, (2)

Start with continuous phase viscosity only
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Newer Foam Expansion: Two-phase Carbon
Dioxide Models

Water balance in the liquid phase (mol H,0/volume total):

Cy o

+v.\7CHZO = DHZOVZCHZO - (1_§0)kH20C|r4]20

Carbon dioxide balance in the liquid phase(mol CO,/volume total):

OCeo,

+V'6Ccoz = Dcozvzcco2 + (1_¢)kHzoC|:20 -3

Bubble conservation equation: it advects

at pg

Carbon dioxide balance in the gas phase (mol CO,/volume total?):
3

. 1 2
oC? S,=—R~ ((Pgas = Prg) =)
ot 1
Carbon dioxide balance in the gas phase (mass CO,/volume bubbles):

_ R 4 R
€Oz +V'VC202 _ S 17 polymer av
S =
alogjas

Pg 20
v ((pgaSSRT I'M co, pliq) - _)
477polymer Rav
ot

This term couples to the subscale. It is
— the added volume from the bubble size
increase during a time step. S, has unit of

continuity. S, is the added mass from
reactions.

+ V-Vpgas = 104as S, +M co, SIog




Newer Foam Expansion: Two-phase Carbon
Dioxide models

Continuity equation is foam density balance (g total/volume foam):

op; - -
F‘FV'VP]: +,0fV’V:O

Gas Volume Fraction (volume foam/volume total):

¢(t) _ pfoang _ M CO, Cgoz
P gas P gas

Foam Density relationship is the same as before:

Pi = (Pgas — Lig )P + oy



Influence Volume Approach (IVA)

Interchange between bubbles and liquid phase occurs at interface
% oC 3 Qs 3 1.
S :3—D— _ R =|—— , Sav:__
pg R g aR r=R av [472_ n] [472. n]
IVA approach assumes a linear profile of CO, in the fluid (blue):
oC, Ce, —C(R)

R = Ar

4 4 3 3
S =3 @ D C002 o KH pgasiRT / MCO2 AT = (Sav B Rav) B Rav (Sav B Rav)
TR R,

av

y C(R) = KH pgas pgas = pgasERT / I\/ICO2

Advection of Number Density Equation:

* We can either solve an advection equation (more accurate and expensive) or
on _
— =Ve(Vn)
ot

Nomenclature
* n = nucleation sites/total volume (the number, N, is constant but the density changes over time (#/cc)
* m,, = initial mass injected (g)
* K, =Henry’s law coefficient



Equations of Motion Include Evolving
Material Models

Momentum equation and continuity have variable density, shear viscosity, and bulk viscosity

p%z—pvon—VerVo(yf(Vv+Vv‘))—Vo/1(Vov)l + 0

Doy
Dt

+p;Vev=0

Energy equation has variable heat capacity and thermal conductivity including a
source term for heat of reaction for foaming and curing reactions

PC 68—-[+pCpr0VT =V e (kVT)+ pp,AH %

rxn at NMR imaging shows coarse
microstructure (Altobelli,
Extent of reaction equation for polymerization: condensation chemistry with T, evolution 2006)

9 (1 = mq_ £ -c(r-1,) Toll—&)+ ACT,,
a ((1+wa)ﬂj(k°exp( RTB(MZ -9 Wt T, T A

New molar concentration equations for water and carbon dioxide on the next page:
kinetics stay the same

kHZO = AI—|20 eXp(_EHzo /RT)



Including Bubble-Scale Effects

oCuo
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Existing equation with minor mods

Existing equation with mods including source

New equation similar to liquid

New equation for bubble gas density

New equation for bubble number density
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Lower Density Gradients from New Model

* Over many repeats, temperature, pressure, and flow profile are remarkably repeatable

* Imperfectly symmetric fill common

* Pressure rises as foam expands, relaxes at lower corner and stays positive at P2.
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Evol

Bubble Depressurization
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Micromechanics Validation of the
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LAMMPS/Sierra Aria with CDFEM

0.60 vol fraction Bubbles

* Mesh of bubbles and polymers

Polydisperse bubble « Will allow for diffusion calculations including discontinuous
microstructure generated ) . .

with LAMMPS and Sierra/Aria concentration jump at the interface

using CDFEM * Will be interesting to try foam drainage and bubble blowing




Conclusions and Future Work

SEM of foam
showing

* Current model is adequate for production calculation polydispersity
0 Determining metering, initial placement, voids, gate, and :
vent location, manufacturing stresses and initial foam
shape
O Current model is “first order.” We are working to make the
model more predictive
* Next generation model needs to include
O Equation of state for density approach for gas phase
O Two-phase CO, generation model: solubilized CO, in the
polymer and CO, gas in the bubbles
0 Foam depressurization and its linkage to shape change
* Include local bubble size and bubble-scale interactions
O Predict bubble size with Rayleigh-Plesset equation
O From the bubble size and number density, predict foam
density
O Bubble-scale modeling to include gelation and gas pressure
in density model to make it more predictive for both
foaming and aging

Bubble at walls are
elongated and show
coarsening




