¢

LAWRENCE
LIVERM ORE
NATIONAL
LABORATORY

LLNL-CONF-736726

Performance Modeling under
Resource Constraints Using
Deep Transfer Learning

A. Marathe, R. Anirudh, N. Jain, A. Bhatele, J.
Thiagarajan, B. Kailkhura, J. S. Yeom, B. Rountree, T.
Gamblin

August 10, 2017

Performance Modeling under Resource Constraints Using
Deep Transfer Learning

Denver, CO, United States

November 12, 2017 through November 17, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Performance Modeling under Resource Constraints
Using Deep Transfer Learning

Aniruddha Marathe Rushil Anirudh Nikhil Jain
Lawrence Livermore National Lawrence Livermore National Lawrence Livermore National
Laboratory Laboratory Laboratory

marathel@lInl.gov anirudh1@llnl.gov nikhil@lInl.gov
Abhinav Bhatele Jayaraman Thiagarajan Bhavya Kailkhura
Lawrence Livermore National Lawrence Livermore National Lawrence Livermore National
Laboratory Laboratory Laboratory
bhatele@llnl.gov jayaramanthil@llnl.gov kailkhural@llnl.gov
Jae-Seung Yeom Barry Rountree Todd Gamblin
Lawrence Livermore National Lawrence Livermore National Lawrence Livermore National
Laboratory Laboratory Laboratory
yeom2@lInl.gov rountree4@llnl.gov tgamblin@llnl.gov

ABSTRACT

Tuning application parameters for optimal performance is a chal-
lenging combinatorial problem. Hence, techniques for modeling
the functional relationships between various input features in the
parameter space and application performance are important. We
show that simple statistical inference techniques are inadequate to
capture these relationships. Even with more complex ensembles
of models, the minimum coverage of the parameter space required
via experimental observations is still quite large. We propose a
deep learning based approach that can combine information from
exhaustive observations collected at a smaller scale with limited
observations collected at a larger target scale. The proposed ap-
proach is able to accurately predict performance in the regimes of
interest to performance analysts while outperforming many tradi-
tional techniques. In particular, our approach can identify the best
performing configurations even when trained using as few as 1%
of observations at the target scale.

CCS CONCEPTS

» General and reference — Performance; - Computing method-
ologies — Transfer learning; Model development and analysis;
Hardware — Power estimation and optimization;

KEYWORDS

performance prediction, parameter selection, transfer learning,
deep learning

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only. Permission to make digital or hard copies for
personal or classroom use is granted. Copies must bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SC17, Denver, CO, USA

© 2017 ACM. 978-1-4503-5114-0/17/11...$15.00

DOI: 10.1145/3126908.3126969

ACM Reference format:

Aniruddha Marathe, Rushil Anirudh, Nikhil Jain, Abhinav Bhatele, Jayara-
man Thiagarajan, Bhavya Kailkhura, Jae-Seung Yeom, Barry Rountree,
and Todd Gamblin. 2017. Performance Modeling under Resource Constraints
Using Deep Transfer Learning. In Proceedings of SC17, Denver, CO, USA,
November 12-17, 2017, 12 pages.

DOI: 10.1145/3126908.3126969

1 INTRODUCTION

Most HPC applications and libraries are developed with the goal of
providing performance portability on a variety of hardware plat-
forms. In order to give end users the flexibility to try different
performance optimizations on different platforms, application de-
velopers typically create runtime options or knobs for selecting
among alternative options, e.g. different solvers, loop orderings,
etc. based on the specific requirements. As application character-
istics and target platforms become more sophisticated, there is a
growing trend towards providing users the flexibility to fine-tune
a variety of such application-level and platform-level parameters
in order to efficiently solve large-scale scientific problems [16, 21].
This has resulted in a significant increase in the number of runtime
options or knobs that affect performance.

Application-level parameters can be classified into two types: a)
algorithmic alternatives that affect the methods used in the execu-
tion, e.g. type of linear solver, and b) sub-algorithmic parameters
that affect the execution within a method, e.g. the data layout and
threshold for solution refinement. Platform-level parameters in-
clude settings that affect system power usage, number of processes,
cache management, etc. and must be tuned along with application
parameters for best results. Understanding the combined impact
of various application-level and platform-level parameters on the
eventual metrics of interest and finding the optimal configuration is
challenging. Further, analytical methods are inadequate in captur-
ing the collective impact of application parameters because these
parameters are often categorical, and their impact on performance
and power usage is opaque to such methods.

SC17, November 12-17, 2017, Denver, CO, USA

Supercomputing centers around the world are increasingly sub-
jected to various operating limits. For example, exascale super-
computers will be expected to operate under a 30 MW power en-
velop specified in the U.S. Department of Energy Exascale Initia-
tive requirements [13]. The resource scheduler can translate such
system-wide power constraints into job-level power constraints.
Subsequently, we can use a power-aware runtime system to steer
the allocation of power to various hardware components and to
execute the application with the configuration defined in the job
specification [14, 22]. This application configuration is typically
chosen by the end-user who is unaware of the decisions made by
the power-steering runtime system. This often leaves performance
on the table. Therefore, the runtime system must intelligently select
an application configuration that optimizes performance on the
behalf of the user, under the resource constraints defined by the
resource scheduler. This motivates us to study the effects of the
interaction between the application parameters and system con-
straints on dependent parameters such as performance and power
usage. We employ machine learning (ML) techniques to model these
interactions and relationships.

Identifying the set of input parameters that impact a dependent
variable in order to reduce the parameter space that needs to be
observed is extremely useful in practice. We find that effectively em-
ploying an off-the-shelf deep learning solution requires observing
a significantly large portion of the parameter space, which is not
practically viable due to resource constraints (e.g. limit on the num-
ber of jobs we can run on different node counts). To overcome this
challenge, we propose a novel deep neural network-based solution
that uses transfer learning to minimize the number of observations
required in the parameter space.

First, we leverage our insight that we can transfer relationships
between independent parameters and dependent variables from
one parameter space to another (e.g. small input problem to a large
problem or small node count to a large node count). The proposed
deep network learns to transfer this knowledge by training on a
combination of a fraction of the parameter space from the target
problem (one that is resource-constrained) and an exhaustively
observed parameter space of a related problem (one that can be
observed exhaustively under our resource constraints). We then
evaluate the effectiveness of our deep transfer learning technique
in selecting a performance-optimizing configuration when working
with a subset of the parameter space. Specifically, this paper makes
the following contributions:

e We introduce a novel deep learning approach that overcomes
the limitations of traditional approaches in capturing the rela-
tionship between application parameters and dependent met-
rics such as performance, especially when limited resources
are available for collecting data.

e We show that our approach results in a robust prediction
model that can reliably predict the best performing configu-
rations using data at only 1% of the parameter space for the
target problem.

e We present a user-relevant metric, recall performance, which,
unlike traditional metrics, focuses on the accuracy of predic-
tion models for high-performing configurations.

A. Marathe et al.

e We show that our deep transfer learning technique performs
significantly better than traditional methods when the param-
eter space is subjected to some constraints.

2 MOTIVATION

A typical scientific application or library provides several configu-
ration options to select the algorithm, intermediate data processing
methods, and the desired level of accuracy for an input problem
specification [16]. As compute components become increasingly
sophisticated, platform designers expose many system-level knobs
to a variety of users including administrators, system programmers,
application developers and application users [20]. Many parame-
ters exposed by the applications and the platforms are categorical
in nature, and thus, a set of choices may not result in a particu-
lar trend in application performance or other observed metrics of
the application. Consequently, the complex interaction between
application-level options and platform-level knobs and their com-
bined effect on application performance is difficult to predict as
highlighted in the following example.

Large-scale supercomputing installations around the world typi-
cally operate under practical resource constraints such as operating
cost, total power consumption and I/O bandwidth. Figure 1 shows
the execution time and aggregate power usage of several config-
urations of Kripke, a proxy application for 3D Sn deterministic
particle transport [21], for an example scenario with an operating
processor power limit of 65 W. Each grey line connects one unique
combination of configuration options in the plot. Different con-
figurations represent ways of running the same science on fixed
compute resources. The choice of algorithm, ‘option 1’ and ‘option
2’ impact the code path and the ordering of computation. Two axes
(with thick lines) show two observed metrics of interest: time and
application power usage for each configuration. The red curve rep-
resents the configuration a naive user would believe to be the best
at the 65 W power limit (e.g., running on all compute cores with
an intent to maximize power usage). The blue curve represents the
configuration an expert user would normally use in the absence
of a constraint on processor power. The green curve shows the
empirically-discovered best-performing configuration subject to
the 65 W power limit.

Figure 1 shows practical limitations of a simple power-aware
runtime system. First, a configuration that is believed by an expert
user to yield the best performance may not be the best performing
one subject to an operating constraint. We found that applying a
simple power-optimizing runtime system [14] did not improve the
performance of the expert’s configuration of Kripke.

Second, the combined impact of the choice of number of MPI
processes and OpenMP thread count is non-trivial as shown in
Figure 1. The power usage, active cores, operating frequency and
the processor thermal headroom are impacted by the distribution
of MPI processes and OpenMP threads on processor cores, which in
turn affects application performance. Also, as the number of cores
on the processors increases and as the power management features
of modern processors become more complex, the relationship be-
tween the power and thermal characteristics of the processor for an
application becomes combinatorially complex [10]. Thus, picking
the optimal distribution of MPI processes and OpenMP threads in

Performance Modeling under Resource Constraints Using Deep Transfer Learning

Potential speedup at an operating limit

MPI Processes 3x speedup vs. Naive user guess
1.7x speedup vs. Expert user guess

—e - Naive user guess
—m- Expert user guess
—e— Best (empirical)

\> . Observed Metric 1 (Time)
S

,/ Observed Metric 2 (Power)

/

Option 1 Option 2

Figure 1: The parameter space and dependent metrics of
Kripke at a 65 W operating limit on processor power. The
configuration connected with the green curve shows the best
configuration under the power limit. The red and blue lines
show the naive and expert user guesses respectively.

the presence of other application-level options and platform-level
knobs to extract the maximum performance becomes important.

Finally, the naive user’s configuration that consumes the most
processor power may not render the best performance as shown by
the red curve. In fact, based on the empirical information from our
test applications, this observation holds for several combinations
of applications and inputs, regardless of the operating constraint
(data not shown in Figure 1 due to space limitations). In general,
for a certain operating constraint and input problem, selecting the
best-performing configuration with limited prior knowledge of
the application characteristics is a non-trivial problem because of
the potentially complex interaction between the parameter space
and the resulting compute intensiveness. Hence, we need sophisti-
cated machine-learning techniques to assist an intelligent power-
optimizing runtime system.

3 EXPERIMENTAL SETUP

This section describes the applications used in our case studies,
their configurable parameters, clusters used for the experiments,
their platform-specific parameters, and the data-collection and post-
processing operations.

3.1 Applications

Kripke is a proxy application for ARDRA, a production transport
code for particle physics [21]. new_ij is distributed as a test driver
for the hypre library [16], which is used by many large-scale scien-
tific applications. For this work, we evaluate the 27-point Laplacian
problem implemented by new_ij as a representative test problem
and refer to the application as hypre. For both these applications, a
set of fixed options define the input problem which is being solved.
Additionally, there are parameters that configure the specific meth-
ods used and impact the performance obtained without affecting
the science and the correctness of the solution obtained.

Table 1 shows the set of application-level parameters available
in Kripke. Six different orderings are supported for executing com-
pute kernels in Kripke. This option, referred to as Nesting Order

SC17, November 12-17, 2017, Denver, CO, USA

Table 1: Kripke parameters

Nesting Order DGZ, DZG, ZDG, ZGD, GZD, GDZ
Energy Group Set 1, 2,4, 8, 16, 32, 64

Direction Set 8,16, 32

Parallel Method Sweep, Block Jacobi

Fixed options —groups, —quads —zones, —legendre —niter

Table 2: hypre solver parameters for new_i j

Solver ‘ Smoother

AMG Hybrid Gauss-Seidel
AMG-PCG Hybrid backward Gauss-Seidel
DS-PCG Forward L1-Gauss-Seidel
AMG-GMRES Chebyshev

DS-GMRES

AMG-CGNR Coarsening options
DS-CGNR hmis

PILUT-GMRES pmis
ParaSails-PCG
AMG-BiCGSTAB | Pmx
DS-BiCGSTAB 2

GSMG 4

GSMG-PCG 6
GSMG-GMRES

ParaSails-GMRES | Fixed options

DS-LGMRES -intertype 6
AMG-LGMRES -tol 1e-8
DS-FlexGMRES -agg nl1

AMG-FlexGMRES | -CF 0

in Table 1, is represented using three letters: Energy Groups (G),
Directions (D) and Spatial Zones (Z). Additionally, energy group
and direction sets can be configured by the user through the ‘Gset’
and ‘Dset’ parameters. Parallel solver method decides the solver
being used for the computation over a given nesting order and has
two options: Sweep (default) or Block Jacobi. All these options can
be configured by the user without affecting the correctness of the
solution computed by Kripke.

Fixed options that define the test problem in Kripke include
‘groups’, ‘quads’ and ‘zones’, which define the total number of
zones assigned to each compute core. The Legendre expansion
order defines the number of moments for the specified order, while
‘niter’ decides the number of solver iterations. Since the physics
represented by the application changes significantly over different
Legendre orders, we choose two values for it (0 and 9) to define two
input problems, denoted as Kripke-L0 and Kripke-L9, respectively
in our results.

new_ij is a test program that allows evaluation of different hypre
solver parameters, such as solver type, smoother type, coarsening
strategy, and interpolation scheme on a number of different test
problems. In our work, we vary the solver options summarized in
Table 2 for the 27-point Laplacian test problem. 27-point Laplacian
is a 3D Laplace problem discretized using a 27-point finite difference
stencil on a cube.

SC17, November 12-17, 2017, Denver, CO, USA

Table 3: MPI+OpenMP configuration on 64 nodes (up to 1536
cores)

No. of MPI processes No. of OpenMP threads/process

128 1,2, 4,6,8,10,12
256 4,6

384 4

512
768
1536

)2,
)2,
,3
,2

[Y

The new_ij options in Table 2 are allowed to vary over four
different areas: solver, smoother, coarsening scheme, and interpo-
lation operator. Additionally, there are four options that are kept
fixed as listed in Table 2. The solvers considered are stand-alone
algebraic multigrid (AMG), along with a number of different precon-
ditioned Krylov subspace methods. In the case of AMG or solvers
preconditioned with it (AMG-PCG, AMG-GMRES, AMG-CGNR,
AMG-BiCGSTAB, AMG-LGMRES, and AMG-FlexGMRES), the im-
plementation used is hypre’s BoomerAMG solver [19].

Krylov solvers used are: preconditioned conjugate gradient (PCG),
GMRES, CGNR, BiCGSTAB, LGMRES (the accelerated GMRES
method of Baker, et. al. [2]), and FlexGMRES (the inner-outer pre-
conditioned GMRES method of Saad [31]). Other preconditioners
used besides AMG are diagonal scaling (DS), PILUT [16], GSMG [9],
and ParaSails [8]. The smoothers used are all described in [1].

The coarsening options are two independent-set based coarsen-
ing algorithms (HMIS and PMIS) which were designed with low-
complexity in mind, to enable good performance on large problems
on massively parallel machines [11]. Most modern classical AMG
methods use one of these two coarsening schemes. The -Pmx option
controls the interpolation operator, bounding the number of entries
per row at the given number (2, 4, and 6 in our experiments). This
option is used to further reduce operator complexity and improve
parallel performance.

3.2 Cluster used and its configuration

We ran our experiments on a 324-node Ivy Bridge cluster with
InfiniBand QDR interconnect. Each node in the cluster has two 12-
core Intel Xeon E5-2695 v2 processors running at 2.4 GHz frequency
and 128 GB of DRAM. We used Intel RAPL over msr-safe to set
the processor power limit between 50W and 100W in steps of 5W
for each combination of parameters in the rest of the parameter
space. Intel Turbo was enabled so that the applications could extract
maximum performance under the power limit [20]. We excluded
nodes that were pre-characterized in the minimum and maximum
power efficiency spectrum to avoid the effects of manufacturing
variability on the distribution of performance and power usage [17].
We compiled both applications with —O2 flag. Table 3 lists the
MPI+OpenMP configurations used on 64 nodes.

3.3 Data collection

We used a light-weight sampling mechanism to record application
performance, and processor and memory power usage at 200 mil-
liseconds interval with less than 0.1% performance overhead [23].
We calculated the average processor and memory power draw over

A. Marathe et al.

L]
q
vi [v2 [V3 5
sampl | 0 | 100 | 1.8 % o
Samp2 75 | 29 Jo 29 Collect
)
samp3 100 | 0.9 ° ° Data
Samp4 25 |15 > © %%

Samp5 75 13

Parameter Space Sample Subset

rlo|k|r

v

Find Optimal
Parameters

Surrogate Model

Figure 2: Overview of our approach to find a performance-
optimizing configuration in the parameter space.

the entire application run based on the instantaneous power sam-
ples. We also recorded the execution time based on the end-to-end
wall clock time of the application. We ran all configurations for each
application three times and used the samples closest to the median
performance for our study. The total number of valid configurations
for Kripke and hypre are 17k and 50k, respectively.

4 APPROACH

Determining an optimal configuration of application-level and
platform-level parameters requires a qualitative understanding of
the parameter space. The inherent high-dimensionality of the pa-
rameter space and the sensitivities of the dependent variables/metrics
with respect to different parameters make this problem extremely
challenging. More specifically, we need a reasonable understanding
of the geometry of the response variable in the high-dimensional
parameter space, so that we can identify the configurations close
to the global optimum. However, this requires a combinatorially
large number of samples in high dimensions, which has a prohib-
itively high cost in terms of data collection, making it practically
impossible.

A natural approach to tackle this problem is to build a surrogate
model (see Figure 2) that can potentially replace the actual data
collection step by a mathematical model to predict the performance
metric based on a practically observable sample space. An attractive
feature of this approach is that the surrogate (e.g. regressor) can
be constructed using a small fraction of the samples required to
build an actual geometric description and the user can evaluate the
performance of all parameter choices without actually running the
application with all configurations. However, a drawback of this
approach is that the approximate model can introduce significant
uncertainties into the process and hence produce inaccurate pre-
dictions. The level of uncertainty depends on a number of factors:
(a) sample size, (b) complexity of the model, and (c) geometry of
the function that the surrogate model is approximating.

In this section, we describe the formulation for constructing the
surrogate models and study the impact of sample size and model
choice on recovering the underlying function that relates the param-
eter space to the response variable of application performance. To

Performance Modeling under Resource Constraints Using Deep Transfer Learning

optimize the surrogate model, we present a novel transfer-learning
technique based on deep neural networks.

4.1 Surrogate Model Design

4.1.1 Formulation. Supervised machine learning methods are
typically well-suited to exploit the dependencies between indepen-
dent variables in empirical application data, while modeling the
relationship between them and a response variable (e.g. execution
time or processor power usage).

Denoting the parameter space by # and its cardinality by d, each
run x € P can be represented as a d-dimensional vector. Let y
indicate the corresponding response variable. The goal of surrogate
modeling is to approximate the function f : $ + y. The problem
of selecting the subset of samples used to train the surrogate model,
referred to as experiment design, has been extensively studied in
the statistics literature. In this paper, we employ uniform random
sampling to construct the training set.

4.1.2 Pipeline. We now describe the analysis pipeline used for
optimal parameter search:

a) Sample design: Let £ be the empirical data set available for
an application. We construct a uniformly random sample £; ¢ £
to build the surrogate model. Note that, £ corresponds to the set
of tuples {x;, y;}, where y; denotes the actual performance metric
obtained by running the application.

b) Preprocessing: An important characteristic of # is that several
of the parameters are discrete-valued in nature, while the rest are
continuous. In order to handle them together, we transform each
discrete variable into multiple binary variables corresponding to
each of the discrete states. In addition, we perform centering and
scaling of the parameters independently, to be zero mean and unit
variance. Standardization of a dataset is a common requirement for
many machine learning estimators, since they might behave badly
if the individual features are not close to being normally distributed.

c) Model learning: For a given training sample size, the complexity
of the machine learning model directly controls the amount of
uncertainty in the prediction. Taking this behavior into account, we
choose an appropriate machine learning algorithm and build the
surrogate model f. Though execution time is a natural response
variable in these studies, we observed that the surrogate models, in
the quest to reduce the average modeling error were biased towards
runs with high execution times. To avoid this behavior, we use the
inverse of execution time as the response variable and we refer to
this as the efficiency measure. As expected, this measure is higher
for runs with lower execution time.

d) Evaluation: Using the surrogate model, we predict the perfor-
mance metric for each of the samples in the set £; = £ — L, ie.,
difference between the two sets. The quality of the surrogate model
f can be evaluated using a variety of metrics from the statistics
literature. Common examples include the mean squared error, mean
absolute error (MAE), mean absolute percentage error (MAPE) and
the R? statistic. We use MAPE for comparing the different surrogate
models:

Pactual (i) — Ppredicted(i)
Pactual(i)

100 &
MAPE = —
n

i=1

SC17, November 12-17, 2017, Denver, CO, USA

where Pycpya1(i) is the actual performance and Pprediced (i) is the

predicted performance of i sample. The goal of this evaluation
is to estimate the expected performance of the surrogate model
in describing the characteristics of the parameter space, thus en-
abling the user to determine an optimal parameter setting for the
application.

4.1.3 Analysis. As described earlier, both the training sample
size and the choice of the machine learning algorithm are critical
in determining the level of uncertainty in the resulting surrogate
model, which in turn controls the probability of choosing a param-
eter setting close to the optimum. Consequently, we analyze the

prediction performance by varying the size of L as %, where
f€{1,2,..,90} and L is the size of the parameter space. In each
of the cases, we use the remainder £ — L to evaluate the predic-
tion accuracy. Further, to obtain statistically meaningful results, we
repeat the random sampling process for 50 independent trials and
collect the summary statistics.

For the choice of the machine learning algorithm, we use a
suite of models from the scikit-learn package [27], character-
ized by various degrees of complexity — linear regression, ridge
(£2—regularized linear) regression, decision trees, and a set of en-
semble methods including random forests, extremely randomized
trees and gradient boosted machines. The results for these initial
experiments are shown in Figure 3 for Kripke-L0 and hypre. We
observe a few trends that are generally consistent across all three
applications (including Kripke-L9) — the prediction accuracy im-
proves and MAPE variance reduces as we incorporate more training
data. This is in line with what we expect — as we observe more of
the space, the surrogate models tend to get better at predicting the
performance.

When simple statistical inference models viz. linear regression
and ridge regression are used to build the surrogate model, the pre-
diction performance is highly unsatisfactory, indicating the need
for more sophisticated models. In particular, we observe that linear
models tend to overcompensate for larger values of the response
variable and are highly inadequate in modeling discrete valued
variables, resulting in large errors. In contrast, when sophisticated
models are used, we observe that the prediction accuracy improves
considerably in terms of MAPE. In particular, we notice that Ex-
tremely Randomized Trees (ExtraTrees) and Random Forests (Ran-
domForests) are the best performing models. Thus, in the rest of the
paper, we compare our results with ExtraTrees and RandomForests.

4.2 Limitations of Traditional Models

The pipeline discussed previously focused on modeling the perfor-
mance as a function of the input parameters, utilizing only a subset
of samples, L. Subsequently, insights from the surrogate were
used to generalize the predictions to the unobserved cases in L;.
While this approach produces high-quality predictions in terms of
MAPE over the entire training size, it has some key limitations.
First, a performance-oriented user is only interested in the model
which is accurate for the best performing configurations. Figure
4 shows the MAPE metric for the top 20% performing configura-
tions of Kripke-L0 and hypre using ExtraTrees and RandomForests.

SC17, November 12-17, 2017, Denver, CO, USA

A. Marathe et al.

120 160 200 240

80
L

Model:Linear Reg

Mean Abs. Percentage Error (%)
40

s

HT J------

o

0
I

80 120 160 200 240
L I i I I

Mean Abs. Percentage Error (%)
40

0
I

=

Model:Extra Trees

120 160 200 240

80
L

Model:Random Forest

120 160 200 240

80

40

Hoss

Mean Abs. Percentage Error (%)

0
I

Mean Abs. Percentage Error (%)
40

0

Model:Gradient Boost

HI J----4
HL -4

ILLE

120 160 200 240

80

Mean Abs. Percentage Error (%)
40

0
I

Model:Decision Trees

]

0t

T T T T T
1% 5% 7% 10% 20%

Training set

1

%

T T T T
5% 7% 10% 20%
Training set

H HB2<
Slyn 73/0 1(;% 20‘%
Training set

1%

(a) Kripke-L0 comparison

T T T
5% 7% 10% 20%
Training set

1%

T T T T
1% 5% 7% 10% 20%

Training set

Model:Linear Reg

40 80 120 160 200 240
L L I I I

H -+

Mean Abs. Percentage Error (%)
0
i

/

AH -+

:

80 120 160 200 240
L I I I

Mean Abs. Percentage Error (%)
40
|

Model:Extra Trees

Model:Random Forest

120 160 200 240

80
L

Mean Abs. Percentage Error (%)

120 160 200 240

Mean Abs. Percentage Error (%)
80

Model:Gradient Boost

120 160 200 240

Mean Abs. Percentage Error (%)
80
|

Model:Decision Trees

:

A -
H -

2]

Iy

:

24 [SE - - - - 24
R M R M . ' ' ' ' M
JEEaEasS|f HeEaess|i B2 8] ‘
T T T T T T T T T T T T T T T T T T
5% 7% 10% 20% 1% 5% 7% 10% 20% 1% 5% 7% 10% 20% 1% 5% 7% 10% 20% 7% 10% 20%
Training set Training set Training set Training set Training set

(b) hypre comparison

Figure 3: Comparison of Mean Absolute Percentage Error (MAPE) scores of different models for Kripke-L0 and hypre param-
eter space.

Best-performing 20% configurations

Best-performing 20% configurations

40 60 80
I I I

Mean Abs. Percentage Error (%)
20
Il

0
|

Kripke-LO

—5- Extra Trees
—&— Random Forest

60 80
I I

40

Mean Abs. Percentage Error (%)
20
Il

0
|

hypre

—5- Extra Trees
—H- Random Forest

T T T T T T
1% 2% 4% 6% 7% 10%
Training set

T T
7% 10%
Training set

Figure 4: Performance of ExtraTrees and RandomForests for
Kripke-L0 and hypre in terms of MAPE.

Compared to Figure 3, the performance of both ExtraTrees and
RandomPForests is consistently worse for the top 20% configurations
than over the entire parameter space. Both ExtraTrees and Ran-
domForests perform worse for the top 20% configurations because
both models optimize for the common-case average-performing
configurations and, in turn, introduce significant error towards the
high-performing region of the parameter space.

Second, the performance of both models at small sample sizes is
not particularly satisfactory. From a user’s point of view, a large
cardinality of the set £ implies that a large portion of the appli-
cation parameter space must be actually tested before selecting
the optimal configuration. This necessitates the design of machine
learning techniques that can potentially produce accurate surrogate
models with fewer initial samples.

4.3 Transfer Learning to Improve Surrogate
Models

For applications in HPC, our past experience suggests that execu-
tions using fewer resources (potentially for smaller input problems)
share runtime characteristics with executions using more resources
(potentially for large problems). Thus, data from low-resource ex-
periments can be applied towards the modeling process of the target
resource-constrained scenario to improve the fidelity of a surrogate
model. This approach is commonly referred to as transfer learning
in the machine-learning community.

Transfer learning imports hidden relationships between vari-
ables of a previously seen search space (source domain) to another
search space (target domain) with slightly different domain charac-
teristics. Specifically in our context, we aim to transfer our knowl-
edge about the surrogate model for data from a specific application
execution scenario (“source”) to another execution scenario (“tar-
get”). For example, in the context of MPI applications, we define the
source domain at fewer MPI processes, and the target domain at
more MPI processes in a weak-scaling fashion. Since this technique
depends on the parameters unique to an application, we apply it to
each application separately.

4.3.1
approach, referred to as PerfNet, to transfer learning. Let us denote

PerfNet Architecture. We propose to use a neural network

the parameter space for source and target domains as £579) and
£Trgt) respectively. Using the same notation as earlier, Lis”)
and Lﬁ”g 2 correspond to the sample subsets for building the
surrogate in the two domains. Note that, |L£Trgt)| << |.£§Src)|,
i.e., the size of the target parameter set used for training is much

smaller. Finally, L(tTrg ") and ‘EESrc) are the corresponding sets for

Performance Modeling under Resource Constraints Using Deep Transfer Learning

remaining samples in the parameter space, which our modeling
approach does not have access to during the training stage.

The PerfNet model consists of three fully-connected deep neural
networks, Nsource, Ntarget, and Nfinai- First, model Nsoyrce 1S

LESrC)

trained on the source dataset, , which is a surrogate model
for the source parameter space, much like the regression models
discussed earlier. Similarly, we train the second neural network
Ntarget as a surrogate for the target dataset. However, since we
have a very small number of samples in the target parameter space,
a neural network cannot be trained to work effectively. Instead,
we perform the first stage of transfer learning, where we take a
copy of the trained Nsource, to serve as the initialization for the

target network. Next, we train this network with LET’-" t), which
converges must faster to give a strong surrogate model for the
target set.

In our implementation, the fully connected networks are created
using the standard methods in Keras!. In all the networks, we use
fully connected layers with a rectified linear unit (ReLu) activation,
followed by batch-normalization in between each layer.

Networks Nsource and Nigrger can be used independently as
surrogates for their respective parameter spaces. However, we go
one step further in order to build a single model N;pq; that can
act as a unified surrogate across both the parameter spaces. We

achieve this by transforming .Egsrc) and Lﬁ”g " to a latent space,
using the networks Nsource and N¢arget. This transformation is
achieved by the output of the respective neural networks, when
only the first layer is used.

Use of output of the first layer works well in practice because
the hidden representations from each network are transformed
in such a way that they optimally predict the performance for
the respective domains. The hidden representations are also tuned
to capture many invariances in the original raw data. Finally, in
some cases, the same input settings (features) can give dramatically
different results based on the parameter space under consideration.
As a result, the latent features learn a mapping from the input
parameter space to a latent space where the latent features can be
easily distinguished. We then train the final neural network, Ny;,41,
on the latent features and treat them as a single large dataset. The
training procedure is depicted in Figure 5.

For a test case, we first map the test sample to the latent space
using the appropriate network, Nsoyurce OF Narger depending on
whether it is from the source or target parameter space. The latent
space representation is then passed through the prediction network,
Nfinal, to get an estimate of the performance.

4.4 Using the Proposed Methodology

This section lists the steps to practically deploy our proposed tech-
nique for selecting an optimal configuration of an HPC application
with a large performance-centric input parameter space. Typical ap-
proaches for such an exploration involve many resource-consuming
runs at large scales, denoted by .C(Tr gt), Instead, we reduce the
total resource consumption by conducting most of the experiments
at a smaller scale as following:

!https://github.com/fchollet/keras

SC17, November 12-17, 2017, Denver, CO, USA

Surrogate for source configuration space

Source Source
—| Fully Connected Network
Sample Performance

Latent Feature

t inal -
Representation of Hnallprediction

> Performance

Source & Target Nemis
Predicts well for both
Source and Target sets
Fully Connected Network,
4 Target
Target —>| initialized with weights of 8
Sample Performance
source network.

Surrogate for target configuration space

Figure 5: PerfNet consists of 3 neural networks internally,
such that a single model can make reliable predictions on
two parameter spaces.

(1) Identify a small-scale scenario, L(Src), that is related to the
large-scale scenario, L(T’ gt), and run experiments to collect
performance/power data for the exhaustive parameter space
for £(57¢)_ For example, in the context of MPI applications,
L6579 can be execution at fewer MPI processes when £(T79%)
signifies execution at more MPI processes. This should require
significantly fewer resources than running at £(T79%),

(2) Collect performance/power data at £(T79?) for a small set of
Sinir samples selected uniformly randomly (e.g. 1% of total
space).

(3) Use the proposed transfer learning technique to build a sur-
rogate model for predicting performance/power on £(I79%)
using data collected for £(Trgt) (Sinir samples) and L5790
(entire parameter space).

(4) Use the surrogate model to predict performance/power for the
entire configuration space and identify the best performing
Shyp (e.g. 100) configurations.

(5) Run the Sy, configurations to obtain performance/power
for £T79%) and select the best performing configuration.

(6) Obtain the importance of individual parameters from PerfNet
to make tuning decisions.

Section 5 shows that the proposed methodology is able to identify
the best configuration with high probability using very small values
of Sinir and Shyp’ and this makes finding a good configuration
significantly less expensive.

5 EVALUATION

This section compares the performance of PerfNet with existing
techniques using two case studies. In the first case study, we use
PerfNet to find the best performing configurations for Kripke and
hypre (described in Section 3). The second case study shows that
our approach is also effective under an operational limit defined in
terms of the maximum processor power usage.

In the results presented in Section 4.1, we compared different ML
techniques using a commonly used scoring metric, namely MAPE.
However, we also showed that MAPE computed over the entire

https://github.com/fchollet/keras

SC17, November 12-17, 2017, Denver, CO, USA

A. Marathe et al.

1.0 1.0 1.0 o—
0.8 038 0.8
Lo6 £o06 206
S e S S
0 @ o Py v w
3 T T
3 0.4 3 0.4 3 0.4
o o o
0.2 02 0.2
@-@ RandomForest @-@ RandomForest @-@ RandomForest
@@ ExtraTrees @@ ExtraTrees @-@ ExtraTrees
0.0}|@-@ Perfnet 0.0{|@-® Perfnet 0.0{|@-® perfnet
0.05(2) 012 0.15 (18) 02 (18 0.05 2) 01(2) 0.15 (18) 02 (18) 0.05 2) 01(2) 0.15 (18) 0.2 (18)

Error Threshold (Number of Good Cases)

. . . Trgt
(a) Kripke-L0 with 1% samples in Li. rgt)

Error Threshold (Number of Good Cases)

. . . T
(b) Kripke-L0 with 5% samples in .C(s rgt)

Error Threshold (Number of Good Cases)

. . . Trgt
(c) Kripke-L0 with 10% samples in .E(s rgt)

Figure 6: Comparison of recall metric scores of different models for Kripke-L0. PerfNet consistently shows better score than

other ML methods.

parameter space does not accurately characterize the prediction
accuracy for configurations with high performance (top 20%). Fur-
thermore, we find that even when MAPE is computed over the top
20% configurations, it does not indicate the model’s effectiveness
in recovering the best performing configurations. This motivates
the need to develop a new scoring function that satisfies this need.

Note that the prediction accuracy of PerfNet in terms of MAPE
over the entire parameter space is similar to both ExtraTrees and
RandomForests. Moreover, for the top 20% configurations, PerfNet
typically leads to a better median value for MAPE than ExtraTrees
and RandomForests if a small training set is used. With larger train-
ing sets, the worst-case value of MAPE for PerfNet is significantly
lower than ExtraTrees and RandomForests.

5.1 Recall: A New Metric to Evaluate Surrogate
Models

Broadly speaking, the two primary considerations for a perfor-
mance analyst are to: (a) understand the usefulness of a surrogate
model in identifying the optimal configurations for an application,
and (b) use a small number of samples to train the surrogate, since
the analyst has to actually run the application to generate the train-
ing set. Thus, the usefulness of a surrogate model can be quantified
based on the effective number of test runs that the analyst has
to run, Sef, before arriving at a final solution in the parameter
space. In our pipeline, the analyst first generates the training set
by running S;;; cases. Using the surrogate model, we predict the
execution time for the rest of the parameter space LgTrg 2 Next,
we choose Sp,,, hypothesis samples from LgTrg ") that have the
best predicted value for the dependent metric. Following this, we
obtain empirical results for the hypothesis samples by running the
application for those samples and pick the best configuration, thus
making Sejf = Sinit + Shyp~

The quality of a surrogate model depends directly on its fidelity
to include the globally optimal and near optimal cases in the ef-

fective sample set Lgfrg Y In order to quantify this, we compute
the ratio of the number of “good” configurations that are included
in Li;rg ") and the actual number of good configurations in the

entire parameter space. Here, good samples refer to those whose

performance is within a% of the absolute best performance (global
maximum). The metric can be computed as:

i li € LU P) = (1 = @)Phegt}|

[{i | Vi, P(i) 2 (1 = @)Ppest }|

where, |.| represents the cardinality of a set, L(eTg rt) is the set of

R(a) =

configurations for which the user has empirical results (includes the
training set and the predicted best Sy, configurations), « is the per-
formance threshold, P(i) is the actual performance of configuration
i, and Py is the actual best performance.

This metric is similar to the Recall score used in detection, and
retrieval applications. The best model is the one that consistently
has a Recall score close to 1.0, implying that it is able to consistently
identify nearly all of the best performing configurations. In our
experiments we fixed values of Sy, = 100 and a = 5,10, 15, 20%
respectively. It is important to note that this metric is stricter than
MAPE since it is only sensitive to the regime of the parametric
space where the performance is obtained. This regime is of most
interest to the performance analyst as their ultimate goal is to pick
the best performing configuration.

5.2 Case Study I: Finding the Best Performing
Configuration

5.2.1 Kripke. Figure 6 shows comparisons of PerfNet, Extra-
Trees and RandomForests for Kripke-LO0 using the recall metric.
Figures (a), (b), and (c) correspond to Kripke-LO0 for different sizes
of training sets — 1%, 5% and 10%, respectively. The X-axis shows
the error tolerance () that determines what qualifies as a good
sample. Along with the error, we also show the number of actual
good samples in parentheses, according to the current threshold.
This number indirectly indicates the complexity of the inherent
function.

It is immediately evident that even though ExtraTrees and Ran-
domPForests are nearly as good as PerfNet in terms of MAPE, the
models show a large disparity in terms of recall score. In particu-
lar, PerfNet is able to identify the best performing configurations
accurately even when Sjp;; is just 1% of the total samples in the
parameter space. Specifically, PerfNet is better than ExtraTrees and

Performance Modeling under Resource Constraints Using Deep Transfer Learning

RandomPForests by up to 0.5 recall score across different training
sizes. For the same training set size, the scores of ExtraTrees and
RandomPForests change over increasing threshold as more samples
qualify as good samples, but the number of samples we observe is
fixed at Spy,. We find that the scores of ExtraTrees and Random-
Forests decrease with increasing error threshold whereas PerfNet’s
score remains constant at 1.0. We observe similar performance of
PerfNet vs. ExtraTrees for Kripke-L9.

5.2.2 hypre. Figure 7 shows the comparison of PerfNet, Extra-
Trees and RandomForests for hypre using the recall metric. Similar
to Figure 6, PerfNet performs consistently better than ExtraTrees
and RandomForests across different error thresholds and training
sizes. Specifically, PerfNet performs better than ExtraTrees and
RandomPForests by up to 1.0 recall score. The scores of all three
models drop consistently with increasing thresholds at all training
sizes due to the reason noted previously, i.e. more samples qualify
as good samples (higher denominator in the computation of recall
metric) but Sy, is fixed at 100. This sensitivity to threshold for
hypre is unusual and indicates a highly complex relationship be-
tween its parameter space and performance than Kripke-L0 and
Kripke-L9. Nonetheless, PerfNet is able to identify several good
configurations, and the recall score is lower only because a large
number of configurations (relative to Sy, ,,) are good configurations
with higher threshold.

5.3 Case Study II: Best Configuration Under
Operational Power Limit

This section evaluates the effectiveness of PerfNet in enabling selec-
tion of power-optimizing configurations of Kripke and hypre under
a hardware-enforced processor power limit. Figure 8 compares the
recall metric of PerfNet, ExtraTrees and RandomForests with 1%
training samples at 70W, 80W and 90W processor power limits
for Kripke-L0. In all three plots, PerfNet is able to predict the best
configurations (5% threshold) and consistently remains above a
strong 0.75 recall score even as the number of samples increases
with increasing power limit. ExtraTrees improves in terms of recall
score with the smallest error threshold at 70W but consistently
underperforms toward larger deviation from the best performance.
RandomForests performs equally poorly with all three power limits.

Figure 9 compares recall score for PerfNet with ExtraTrees and
RandomPForests at processor power limits of 70W, 80W and 90W
with 4% training samples in £(779%) for hypre. Similar to Figure 8,
PerfNet shows a strong recall score of above 0.8 for up to 10% of
performance deviation threshold. The other two models perform
worse than PerfNet at 70W power limit. With increase in power
limit from 70W to 90W, and therefore at a larger training set, the
rate of degradation in recall metric of PerfNet at higher threshold
is much slower than other models. This observation highlights that
PerfNet’s response to the increase in the size of training set is much
better than the other models.

In summary, the results for both Kripke-L0 and hypre show
that the proposed surrogate modeling approach enables accurate
configuration search in high-dimensional parameter spaces, and in
particular PerfNet demonstrates higher tolerance to samples with
large deviations from the best performing configuration, when
compared to other surrogate models.

SC17, November 12-17, 2017, Denver, CO, USA

6 RELATED WORK

A large body of literature exists on the broad topic of tuning the
application and platform parameters for performance optimization.
We categorize the existing work in several ways and show the
novelty of our proposed technique in each category.

Active learning-based approaches: Online tuning of applica-
tion parameters with active-learning methods has been a widely
researched topic. Balaprakash et al. present an iterative parallel
algorithm that builds surrogate performance models for scientific
applications on several architectures [3]. Ogilvie et al. present a
low-cost, online predictive algorithm to select training samples by
building heuristics and reduce training overhead [25]. Chen et al.
present a similar online approach to improve the selection of on-
line samples in the parameter space for non-HPC applications [7].
Bergstra et al. [5] build regression models that map tuning parame-
ters to run times to aid a search. While these are potentially useful
approaches for a class of HPC applications, the parameter space
available for online tuning is typically limited for common HPC
applications (e.g., MPI processes, data pre-processing step, etc.), and
therefore cannot be applied easily.

Analytical models for parameter tuning: Analytical models
have been proposed to predict application performance based on
online and offline measurements of intrinsic application character-
istics. Previous work on platform tuning for performance optimiza-
tion includes fine-tuning the operating system and programmable
platform parameters subject to power constraint. Towards the
power-aware performance optimization problem, Curtis-Mowry et
al. present a prediction-based approach on modeling application
performance based on hardware counters, concurrency throttling
and DVFS [10]. Zhang et al. present a hybrid hardware/software
system with better reaction times by maximizing the utilization of
certain platform features such as hyperthreading, clock modula-
tion and memory controllers [33]. Such approaches are limited to
a single task or at processor level, and their scope does not take
into account the application context and algorithm-level options
beyond these levels.

ML techniques for performance tuning on target paradigms:
Developing models on one application or platform and applying
them to target application or platforms has been a highly researched
topic in the domain of performance optimization. Roy et al.[30]
present techniques for auto-tuning search algorithms by exploit-
ing performance models on one architecture and applying them
on other architectures. Price et al.[28] present a hybrid approach
to auto-tuning that combines empirical sampling and a predictive
performance model with the goal of optimizing configuration space
search on progressively larger sets of target platforms. Falch et
al.[15] use machine learning to fine-tune the parallelizing runtime
system for target applications on GPU platforms. Muralidharan
et al. [24] and Ding et al. [12] use machine learning models for
code-variant tuning. Although these approaches have some overlap
with certain aspects of our work, they differ in their objectives and
application of the ML techniques significantly from our approach.

ML techniques for application parameter tuning: Previous
work most closely related to our approach is as follows. Grebhahn
et al. [18] use performance-influence model to combine heuristics

SC17, November 12-17, 2017, Denver, CO, USA A. Marathe et al.

1.0 1.0 @-@ RandomForest 1.0
©-@ ExtraTrees
— ©-@ Perfnet
0.8 0.8 0.8
Lo6 £o06 206
S o o
(%] w v
2 a \ <
3 0.4 0.4 $0.4
-4 o o<
-
0.2 0.2 A— 0.2
0.0 0.0 0.0
0.05 (8) 0.1(19) 0.15 (83) 0.2 (190) 0.05 (8) 0.1(19) 0.15 (83) 0.2 (190) 0.05 (8) 0.1(19) 0.15 (83) 0.2 (190)
Error Threshold (Number of Good Cases)

Error Threshold (Number of Good Cases) Error Threshold (Number of Good Cases)

(a) hypre with 1% samples in Lf’g’) (b) hypre with 5% samples in L(sTrgt) (c) hypre with 10% samples in L(sTrgt)

Figure 7: Comparison of recall metric of different models. PerfNet consistently shows better score than other ML methods for

hypre.
Power Limit = 70W Power Limit = 80W Power Limit = 90W
1.0f- 1.0F - @] 1.0f-
0.8 0.8 g] 0.8
o N So6f- R
o ©®-@® RandomForest O O @@ RandomForest
2 ®-@ ExtraTrees 2 d @-@ ExtraTrees
i ®-@ Perfret T i
0 0.4 L e e RS EEEES Q0.4 -4 - - e
o o o
0.2 02O 0.2
©-@ RandomForest
®-@ ExtraTrees
0.0} - e 0.0f - @@ Perfnet H 0.0} -
.05(1) 0.1(3) 0.15(3) 0.2(8) 0.05(14) 0.1(41) 0.15(41) 0.2(76) 0.05(2) 0.1(2) 0.15(11) 0.2(28)
Error Threshold (Number of Good Cases) Error Threshold (Number of Good Cases) Error Threshold (Number of Good Cases)
. . . Trgt . . . Trgt . . . Trgt
(a) Kripke-L0 with 1% samples in Li rgt) (b) Kripke-L0 with 1% samples in Li rgt) (c) Kripke-L0 with 1% samples in Li rgt)

Figure 8: Comparison of recall metric scores of PerfNet with ExtraTrees and RandomForests for Kripke-L0 at power limits
of 70W, 80W and 90W. The plots compare the recall prediction accuracy of the models with 1% of sample space for training
(within the power limits). The X-axis corresponds to a user-relevant threshold of tolerable deviation from the absolute best

configuration
Power Limit = 70W Power Limit = 80W Power Limit = 90W
1.0t o ®-® RandomForest [{ 10f-@ - - H
©-@ ExtraTrees
©-@ Perfnet
0.8 - NG] 08N
. s £
S S S
(2] 2 w
E E E
L e e | O Q
o o o
02f 4] 0.2}
0.0F - 0.0f - ! ! ! 0.0 o
.05(4) 0.1(5) 0.15(25) 0.2(36) 0.05(11) 0.1(24) 0.15(62) 0.2(107) 0.05(2) 0.1(4) 0.15(31) 0.2(80)
Error Threshold (Number of Good Cases)

Error Threshold (Number of Good Cases) Error Threshold (Number of Good Cases)

(a) hypre with 4% samples in L(STrgt) (b) hypre with 4% samples in .C(STrgt) (c) hypre with 4% samples in .C(STrgt)

Figure 9: Comparison of recall metric scores of PerfNet with ExtraTrees and RandomForests for hypre at power limits of 70W,

80W and 90W with 4% of sample space for training (within the power limits).

Performance Modeling under Resource Constraints Using Deep Transfer Learning

for sample selection with incorporating domain knowledge specifi-
cally for Algebraic Multi-Grid solver configurations. Balaprakash et
al. [4] present an automatic multi-objective modeling approach on
predicting application performance and power usage based on hard-
ware performance counters using traditional methods. Bergstra et
al. [6] apply machine learning techniques for optimal parameter
selection specifically for applications in the computer vision do-
main. We have shown that our approach of incorporating domain
knowledge with deep neural networks is superior to traditional
models for predicting the best performing configurations.

Power-constrained optimization: Previous work on power-
aware and power-constrained performance optimization focuses on
platform-centric power management features and scaling applica-
tion configurations around the platform-centric features. Existing
runtime systems use empirical and on-line knowledge of platform
configuration space and its correlation with the performance and
power usage of the application. Conductor [22] by Marathe et al.
and the Global Extensible Open Power Manager (GEOPM) [14] by
Eastep et al. deploy forms of power reallocation strategy presented
by Rountree et al. [29] to slow down non-critical parts of the appli-
cation and reuse the excess power to speed up the critical parts of
the application under a power budget. Both these approaches are
limited in the scope of the parameter space than our framework
and are therefore not directly comparable. Patki et al. [26] and Sa-
rood et al. [32] explore the performance characteristics of a power-
constrained job on a cluster with hardware over-provisioning from
the perspective of resource scheduler by including the number of
compute resources in the configuration space. Such (and other)
approaches at the level of the resource scheduler are beyond the
scope of our proposed approach which operates within the context
of a job with fixed scheduler-defined resources constraints.

7 CONCLUSION

In this work, we have presented an effective method to identify high-
performing application configurations when limited resources are
available for collecting training performance data. Building upon
the intuition that in HPC, executions at a smaller scale (in input
problem size or node count) can be used to characterize executions
at a larger scale, we demonstrated the general effectiveness of
PerfNet for parameter space tuning. We showed that PerfNet, a
deep learning technique augmented with domain transfer learning,
is capable of predicting complex relationships between application-
level and platform-level parameters, and dependent metrics such
as execution time.

We also showed that traditional scoring metrics such as MAPE
are not suitable for evaluating machine learning methods when
the goal is to find the best-performing configurations. To overcome
the limitations of traditional metrics, we formulated a new metric
called recall that is directly related to the task of finding the best-
performing configurations. Using the recall metric, we showed
that PerfNet outperforms other machine learning methods such as
Extremely Randomized Trees and Random Forests, especially when
the amount of data available at large scale is extremely limited.

SC17, November 12-17, 2017, Denver, CO, USA

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-736726).

REFERENCES

[1] Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev, and Ulrike Meier Yang. 2011.
Multigrid Smoothers for Ultraparallel Computing. SIAM Journal on Scientific
Computing 33 (2011), 2864-2887. Issue 5.

[2] Allison H. Baker, Elizabeth R. Jessup, and Thomas Manteuffel. 2006. A Technique
for Accelerating the Convergence of Restarted GMRES. SIAM F. Matrix Anal.
Appl. 26 (2006), 962-984. Issue 4.

[3] Prasanna Balaprakash, Robert B Gramacy, and Stefan M Wild. 2013. Active-
learning-based surrogate models for empirical performance tuning. In Cluster
Computing (CLUSTER), 2013 IEEE International Conference on. IEEE, 1-8.

[4] Prasanna Balaprakash, Ananta Tiwari, Stefan M Wild, Laura Carrington, and

Paul D Hovland. 2016. AutoMOMML: Automatic Multi-objective Modeling with

Machine Learning. In International Conference on High Performance Computing.

Springer, 219-239.

J Bergstra, N Pinto, and D Cox. 2012. Machine learning for predictive auto-tuning

with boosted regression trees. In Proceedings of Innovative Parallel Computing.

1-9.

James Bergstra, Daniel Yamins, and David Cox. 2013. Making a science of model

search: Hyperparameter optimization in hundreds of dimensions for vision

architectures. In International Conference on Machine Learning. 115-123.

Jiahong K Chen, Ray-Bing Chen, Akihiro Fujii, Reiji Suda, and Weichung Wang.

2017. Surrogate-Assisted Tuning for Computer Experiments with Qualitative

and Quantitative Parameters. (2017).

Edmond Chow. 2001. Parallel Implementation and Practical Use of Sparse Ap-

proximate Inverse Preconditioners with a Priori Sparsity Patterns. International

Journal of High Performance Computing Applications 15 (2001), 56-74. Issue 1.

Edmond Chow. 2003. An unstructured multigrid method based on geometric

smoothness. Numerical Linear Algebra With Applications 10 (2003), 401-421.

[10] M. Curtis-Maury, A. Shah, F. Blagojevic, D.S. Nikolopoulos, B.R. de Supinski, and
M. Schulz. 2008. Prediction models for multi-dimensional power-performance
optimization on many cores. In International Conference on Parallel Architectures
and Compilation Techniques.

[11] Hans De Sterck, Ulrike Meier Yang, and Jeffrey J. Heys. 2006. Reducing Complex-
ity in Parallel Algebraic Multigrid Preconditioners. SIAM J. Matrix Anal. Appl.
27 (2006), 1019-1039. Issue 4.

[12] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May
O’Reilly, and Saman Amarasinghe. 2015. Autotuning algorithmic choice for
input sensitivity. In Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI'15). 379-390.

[13] U.S.D.O.E. 2016. Exascale Initiative. http://www.exascaleinitiative.org/pathforward.

(2016).

Jonathan Eastep, Steve Sylvester, Christopher Cantalupo, Federico Ardanaz, Brad

Geltz, Asma Al-Rawi, Fuat Keceli, and Kelly and Livingston. 2016. Global Ex-

tensible Open Power Manager: A Vehicle for HPC Community Collaboration

Toward Co-Designed Energy Management Solutions. In 7th International Work-

shop on Performance Modeling, Benchmarking and Simulation of High Performance

Computer Systems, 2016. 43-53.

[15] Thomas L Falch and Anne C Elster. 2017. Machine learning-based auto-tuning

for enhanced performance portability of OpenCL applications. Concurrency and

Computation: Practice and Experience 29, 8 (2017).

Robert D. Falgout and Ulrike Meier Yang. 2002. HYPRE: A Library of High

Performance Preconditioners. In Computational Science-ICCS 2002. Springer,

632-641.

Neha Gholkar, Frank Mueller, and Barry Rountree. 2016. Power Tuning HPC

Jobs on Power-Constrained Systems. In Proceedings of the 2016 International

Conference on Parallel Architectures and Compilation (PACT ’16). ACM, 179-191.

Alexander Grebhahn, Norbert Siegmund, Harald Késtler, and Sven Apel. 2016.

Performance prediction of multigrid-solver configurations. In Software for Exas-

cale Computing. Springer, 69-88.

[19] Van Emden Henson and Ulrike Meier Yang. 2002. BoomerAMG: A parallel

algebraic multigrid solver and preconditioner. Applied Numerical Mathematics

41 (2002), 155-177. Issue 1.

Intel. 2011. Intel-64 and IA-32 Architectures Software Developer’s Manual,

Volumes 3A and 3B: System Programming Guide. (December 2011).

AJ Kunen, TS Bailey, and PN Brown. 2015. KRIPKE-A massively parallel transport

mini-app. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, Tech.

Rep (2015).

Aniruddha Marathe, Peter E Bailey, David K Lowenthal, Barry Rountree, Mar-

tin Schulz, and Bronis R de Supinski. 2015. A Run-Time System for Power-

Constrained HPC Applications. In International Supercomputing Conference.

[5

G

[7

[8

[9

[14

[16

[17

[18

™
=

[21

[22

SC17, November 12-17, 2017, Denver, CO, USA A. Marathe et al.

[23] Aniruddha Marathe, Hormozd Gahvari, Jae-Seung Yeom, and Abhinav Bhatele.
2016. LibPowerMon: A Lightweight Profiling Framework to Profile Program Con-
text and System-Level Metrics. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops. 1132-1141.

[24] Saurav Muralidharan, Manu Shantharam, Mary Hall, Michael Garland, and
Bryan Catanzaro. 2014. Nitro: A Framework for Adaptive Code Variant Tuning.
In Proceedings of the IEEE International Symposium on Parallel & Distributed
Processing. 501-512.

[25] William F Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2014.
Fast automatic heuristic construction using active learning. In International
Workshop on Languages and Compilers for Parallel Computing. Springer, 146—
160.

[26] Tapasya Patki, David K Lowenthal, Barry Rountree, Martin Schulz, and Bronis R

de Supinski. 2013. Exploring hardware overprovisioning in power-constrained,
high performance computing. In Proceedings of the 27th international ACM con-
ference on International conference on supercomputing. ACM, 173-182.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.

[28] James Price and Simon McIntosh-Smith. 2015. Improving Auto-Tuning Conver-
gence Times with Dynamically Generated Predictive Performance Models. In
Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2015 IEEE 9th Interna-
tional Symposium on. IEEE, 211-218.

[29] Barry Rountree, David K. Lowenthal, Bronis de Supinski, Martin Schulz, and
Vincent W. Freeh. 2009. Adagio: Making DVS Practical for Complex HPC Appli-
cations. In International Conference on Supercomputing. Yorktown Heights, NY.,
USA.

[30] Amit Roy, Prasanna Balaprakash, Paul D Hovland, and Stefan M Wild. 2016. Ex-
ploiting performance portability in search algorithms for autotuning. In Parallel
and Distributed Processing Symposium Workshops, 2016 IEEE International. IEEE,
1535-1544.

[31] Yousef Saad. 1993. A Flexible Inner-Outer Preconditioned GMRES Algorithm.

SIAM Journal on Scientific Computing 14 (1993), 461-469. Issue 2.

[32] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kale. 2014. Maxi-
mizing throughput of overprovisioned HPC data centers under a strict power
budget. In Supercomputing.

Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance Under a
Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques. In
Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’16). ACM, 545-559.

[33

