

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-707920

Large-eddy simulation of shallow cumulus over land: A composite case based on ARM long-term observations at its Southern Great Plains site

Y. Zhang, S. A. Klein, S. Xie, S. Tang, J. Fan, A. S. Chandra, P. Kollas

November 2, 2016

Journal of Atmospheric Sciences

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **Large-eddy simulation of shallow cumulus over land: A composite case**
2 **based on ARM long-term observations at its Southern Great Plains site**

3 Yunyan Zhang* and Stephen A. Klein

4 *Lawrence Livermore National Laboratory, Livermore, California*

5 Jiwen Fan

6 *Pacific Northwest National Laboratory, Richland, Washington*

7 Arunchandra S. Chandra

8 *Division of Meteorology and Physical Oceanography, University of Miami, Miami, Florida*

9 Pavlos Kollias

10 *School of Marine and Atmospheric Sciences, Stony Brook University, New York*

11 Shaocheng Xie and Shuaiqi Tang

12 *Lawrence Livermore National Laboratory, Livermore, California*

13 *Corresponding author address: Yunyan Zhang, Atmospheric, Earth & Energy Division, Lawrence
14 Livermore National Laboratory, Mail Code L-103, P.O. Box 808, Livermore, CA 94551
15 E-mail: zhang25@llnl.gov

ABSTRACT

16 Based on long-term observations by the Atmospheric Radiation Measure-
17 ment program at its Southern Great Plains site, a new composite case of conti-
18 nental shallow cumulus (ShCu) convection is constructed for large-eddy sim-
19 ulations (LES) and single-column models. The case represents a typical day-
20 time non-precipitating ShCu whose formation and dissipation are driven by
21 the local atmospheric conditions and land-surface forcing, and are not influ-
22 enced by synoptic weather events. The case includes: early-morning initial
23 profiles of temperature and moisture with a residual layer; diurnally-varying
24 sensible and latent heat fluxes which represent a domain average over differ-
25 ent land-surface types; simplified large-scale horizontal advective tendencies
26 and subsidence; and horizontal winds with prevailing direction and average
27 speed. Observed composite cloud statistics are provided for model evalua-
28 tion.

29 The observed diurnal cycle is well-reproduced by LES, however the cloud
30 amount, liquid water path, and shortwave radiative effect are generally un-
31 derestimated. LES are compared between simulations with an all-or-nothing
32 bulk microphysics and a spectral bin microphysics. The latter shows improved
33 agreement with observations in the total cloud cover and the amount of clouds
34 with depths greater than 300 meters. When compared with radar retrievals of
35 in-cloud air motion, LES produce comparable downdraft vertical velocities,
36 but a larger updraft area, velocity and updraft mass flux. Both observation
37 and LES show a significantly larger in-cloud downdraft fraction and down-
38 draft mass flux than marine ShCu.

39 **1. Introduction**

40 Correctly simulating the diurnal cycle of convection over land has always been a challenge for
41 conventional global climate models (GCMs) and other large-scale models such as those used for
42 numerical weather prediction. The incorrect diurnal variation of clouds and precipitation is often
43 attributed to the lack of a gradual development of shallow cumulus (ShCu) clouds (?). As ShCu's
44 intrinsic horizontal scale is around 1 km or less, conventional GCMs which have horizontal reso-
45 lutions of 10 to 100 km or greater must parameterize the physical processes associated with ShCu.
46 During GCMs' development and improvement, it has become routine to test new parameteriza-
47 tions through a single-column model simulation of well-developed observationally-based "golden
48 day" large-eddy simulation (LES) cases. These golden day cases are supposed to be represen-
49 tative of stereotypical convection regimes. For almost two decades, the Atmospheric Radiation
50 Measurement (ARM) Southern Great Plains (SGP) non-stationary shallow cumulus case on June
51 21, 1997 (hereafter ARM97) has been widely used as one of these golden days and as a bench-
52 mark for continental shallow convection (??). Almost every newly developed convection scheme
53 related to shallow cumulus has been tested using the ARM97 case (?????????????????). But with
54 such a heavily reliance on this one "golden day" case, one must ask: does it really represent the
55 classic convective ShCu regime as we expect it to be? (?)

56 Figure 1a-b shows that on the day used for ARM97, the primary cloud fraction peak was around
57 0800 local standard time (LST) and large-scale cloud systems were approaching SGP from north
58 around 1100 LST. Although the clouds did show a secondary peak in early afternoon with cloud
59 base rising from morning to afternoon, the ARM97 case may not be a good representation of purely
60 local surface-forced continental shallow convection as the ShCu development later in the day was
61 subject to large-scale influence and the morning peak of cloud fraction also hints at a disturbance

62 in early-morning initial conditions. Indeed, the initial sounding used in ARM97 was substantially
63 modified from the observed sounding (?). Thus the ARM97 case does not represent a day free
64 of synoptic influence nor is it conceptually simple enough to permit improved understanding of
65 cloud processes for the purpose of convectional parameterizations.

66 Therefore it would be desirable to have a new case for shallow convection over land. One pos-
67 sibility is the 3-day case study from a recent ARM field campaign that utilizes the updated ARM
68 instrumentation supplemented by aircraft (RACORO, ???). However, in addition to the "golden
69 day" approach, we think it worthwhile to develop a new composite case that takes advantage of
70 the long-term continuous ground-based observational data, such as has been collected at ARM (?)
71 or European sites (??). In particular, we wish to use a case library of locally-generated surface-
72 forced ShCu that has been established based on summertime observations of 13 yr at the ARM
73 SGP site (??). Figure 1c shows the satellite image for one of the days in our case library and
74 Figure 1d shows the cloud fraction vertical profile for the composite mean of this case library.
75 From these figures, it is apparent that the ARM97 case does not have the typical diurnal evolution
76 of ShCu. In this study, a new composite case called Continental Active Surface-forced Shallow
77 cumulus (CASS), is built upon these long-term observations for LES and single-column models.

78 There are three benefits of building a composite modeling case with a strong link to observa-
79 tions. First, it allows us to use the advanced ARM cloud retrieval data that have been developed
80 since 1997. These retrievals provide valuable information about the cloud size distribution, cloud
81 vertical extent, cloud vertical velocity and mass fluxes. Such availability of observational data was
82 almost completely lacking for the ARM97 case.

83 Second, a composite case allows us to create reliable statistics for the observations that come
84 from vertically pointing instruments such as cloud radar, lidar, and ceilometer. This is a particu-
85 larly acute issue for shallow cumulus due to the intermittent nature and limited sample of clouds

86 on an individual day (??). For instance, with the vertically pointing millimeter wavelength cloud
87 radar at the ARM SGP site, and a usual ShCu cloud fraction of 30% at the diurnal maximum,
88 there are only about 100 10-second cloudy profiles per hour on a single day. Furthermore, with
89 an average cloud size of 1 km (?) and wind speed of 7 m s^{-1} , there might be less than 10 in-
90 dividual clouds observed in an hour. This results in noisy data and large uncertainties for cloud
91 statistics on an individual day. With a composite case, the uncertainty due to sample size will be
92 greatly reduced by the accumulation of these statistics over many days with ShCu. The reduction
93 of such uncertainty is very important to generate reliable observations of cloud statistics for model
94 validation.

95 Third, by constructing a composite case (consisting of multiple "golden days"), one can iden-
96 tify the dominant environmental forcing of shallow cumulus. No matter how carefully we select
97 our cases, a single-day observation, especially by instruments mostly vertically staring at point
98 locations, is subject to random noises due to synoptic or shorter temporal variabilities or spatial
99 heterogeneities. From the perspective of model input, compositing helps reduce uncertainties in
100 initial and boundary conditions and large-scale advective tendencies and is superior to a single
101 golden day case in representing the most typical conditions of atmospheric and surface environ-
102 mental factors driving ShCu development.

103 The composite case represents the evolution of ShCu responding to the average diurnal-varying
104 forcing based on an ensemble of individual ShCu days. Indeed we view this composite case as
105 a viable addition to the ensemble approach in which LES is integrated for every day in our case
106 library. We find that the composite case well represents the mean behavior of the ensemble of LES
107 runs although there is spread due to day-to-day variability (see Appendix). This demonstrates the
108 ability of the composite case to represent the average behavior of many shallow cumulus days and

109 endorses the aforementioned benefits. In addition, ensemble runs of many ShCu days require large
110 computational resources; the composite approach is economic and relatively easy to be realized.

111 In this paper, we describe the construction of the new composite case CASS, the results of LES
112 performed for CASS, and the comparison to ARM observations including cloud-scale vertical
113 velocity and mass flux. Specifically, details of the LES model and observation data are presented
114 in section 2; the CASS composite case is described in section 3; the comparison of LES to general
115 ARM observations is shown in section 4; the comparison with observed vertical velocity data is
116 shown in section 5; and conclusions are drawn in section 6.

117 **2. Model description and observational data**

118 *a. System for Atmospheric Modeling (SAM)*

119 The System for Atmospheric Modeling (SAM, ?) is widely used in cloud studies. SAM has
120 a non-hydrostatic anelastic dynamical core and is configured for large-eddy simulation with pe-
121 riodic boundary conditions. In this study, sub-grid scale mixing is represented with a 1.5-order
122 turbulence closure based on a prognostic equation for the sub-grid scale turbulent kinetic energy.
123 Advection of all scalar prognostic variables is done using a monotonic and positive-definite ad-
124 vection scheme in flux form. A Newtonian damping layer is implemented in the upper third of
125 the domain to reduce gravity wave reflection and buildup. Longwave and shortwave radiation are
126 calculated using the Rapid Radiative Transfer Model (RRTMG, ??). Two cloud and precipitation
127 microphysical packages are used: one is the default one-moment diagnostic bulk microphysics
128 of precipitation and cloud water (?); the other is a size-resolved spectrum bin microphysics (??).
129 With the bin microphysics, cloud droplet concentration is prognostic, and droplet nucleation is cal-
130 culated from the predicted supersaturation and specified aerosol size distribution according to the

₁₃₁ Köhler theory. Aerosol number concentration is set to 600 cm^{-3} representing a typical continental
₁₃₂ clean aerosol condition such as SGP (?).

₁₃₃ Our simulations start at 0530 LST and end at 1730 LST and have a domain 28.8 km by 28.8
₁₃₄ km in the horizontal and 16 km in vertical. Horizontal resolution is 50 m and vertical resolution
₁₃₅ is 20 meters under 5 km with a stretched grid above. This resolution is similar to the cloud radar
₁₃₆ observed volume. Radar retrievals are provided for each vertical range gate of 45 m, and with a
₁₃₇ wind speed around 7 m s^{-1} , the horizontal distance sampled by the radar is about 70 m for each
₁₃₈ 10-second retrieval.

₁₃₉ SAM is run with a 1-second time step with RRTMG being called every minute. For the calcula-
₁₄₀ tion of solar radiation, the day is set up to be July 24th (the 205th day in a year) at the central
₁₄₁ facility of the ARM SGP site, 36.5^0 N , 97.5^0 W . This represents the average solar insolation of the
₁₄₂ active shallow cumulus days from May to August in our case library. For radiation calculations
₁₄₃ above 16 km, the vertical profiles of radiatively important trace gases, water vapor, CO_2 , O_3 and
₁₄₄ temperature are assumed to be those of a mid-latitude summertime climatology. The LES is
₁₄₅ forced with the large-scale horizontal advective tendencies for temperature and water vapor and a
₁₄₆ subsidence rate derived from long-term continuous forcing data. Temperature and humidity above
₁₄₇ 5 km are nudged towards the composite profile for the purpose of radiation calculations with a
₁₄₈ nudging time-scale of 1 hour. Horizontal winds are nudged towards the composite winds derived
₁₄₉ from the continuous forcing with a nudging time-scale of 1 hour. The surface roughness length
₁₅₀ was set to 0.035 m, a characteristic value for the ARM SGP site suggested by ARM97. Turbulence
₁₅₁ was initiated by imposing random temperature perturbations at each grid point in the lowest 200 m
₁₅₂ with a maximum amplitude at any model level decreasing linearly from 0.1 K at the surface to zero
₁₅₃ at 200 m following ARM97. The surface fluxes are specified from observations as discussed later.

154 *b. ARM data*

155 The major observational data streams used in this study are all from the ARM data archives:

- 156 • Active Remotely-Sensed Cloud Locations (ARSCL, <http://www.arm.gov/data/vaps/arscl>,
157 DOI: 10.5439/1027282) 10-second data for calculations of cloud boundaries, cloud chord
158 length (overpass time multiplied by the wind speed at the cloud base height), total surface-
159 projected cloud fraction, and an area fraction covered by clouds whose vertical extent is
160 greater than 300 meters (hereafter "cloud fraction 300m+"). ARSCL is derived from obser-
161 vations of the cloud radar, micropulse lidar and laser ceilometer (?).
- 162 • Continuous forcing (<http://www.arm.gov/data/eval/29>, DOI: 10.5439/1273323) for large-
163 scale advective tendencies and subsidence rate (??).
- 164 • Microwave radiometer-scaled radio sondes (LSSONDE,
165 <http://www.arm.gov/data/vaps/lssonde>, DOI: 10.5439/1027294) for the vertical profiles
166 of temperature, humidity and horizontal winds.
- 167 • Best-estimate fluxes of sensible and latent heat from Energy Balance Bowen
168 Ratio (EBBR) stations (BAEBBR, <http://www.arm.gov/data/vaps/baebbr>, DOI:
169 10.5439/1027268) and Quality Controlled Eddy Correlation Flux Measurements (QCECOR,
170 <http://www.arm.gov/data/vaps/qcecor>, DOI: 10.5439/1097546) over different land types,
171 such as grassland and cropland.

- 172 • Column-integrated liquid water path (LWP) from MicroWave Radiometer Retrievals (MWR-
173 RET, <http://www.arm.gov/data/vaps/mwrret>, DOI: 10.5439/1027369; ?).

- 174 • Horizontal winds from the 915-MHz Radar Wind Profiler (RWP,
175 <http://www.arm.gov/data/datasets/915rwpwindcon>, DOI: 10.5439/1025135)

176 • Surface radiative fluxes (QCRAD, <https://www.arm.gov/capabilities/vaps/qcrad>,
177 DOI:10.5439/1227214; ?)

178 For details on these observations and the calculation of cloud statistics, please refer to the data
179 section in ??.

180 Separately observations of cloud-scale vertical velocity, updraft and downdraft fractions and
181 mass fluxes are derived from the multi-year retrieval of in-cloud vertical air motion developed
182 by ? using observed 10-second profiles from the vertically pointing MilliMeter wavelength Cloud
183 Radar (MMCR). Retrievals assume that the terminal velocity of cloud droplets is considerably
184 smaller than the vertical air motion, such that the observed Doppler velocity of cloud droplets is
185 representative of vertical air motion. This assumption holds well for fair-weather non-precipitating
186 shallow cumulus. Prior to the estimation of the in-cloud mass flux, MMCR insect echoes are
187 removed using a fuzzy logic algorithm that uses member functions based on liquid water path,
188 cloud physical thickness, radar reflectivity and spectrum width (?). The retrieved vertical velocity
189 data are available since 1997 and overlap well with our case library of observed active shallow
190 cumulus days. At each hour when data is available, we vertically align the 10-second profiles to
191 the hourly-averaged cloud base, and compute the average vertical velocity, area fraction, and mass
192 flux (equal to the product of velocity and area fraction), separately for updrafts and downdrafts.
193 More details on the use of this data in comparison with LES is given in Section 5.

194 *c. Active shallow cumulus days*

195 The new shallow cumulus case is based on the composite of days observed to have "thick" (or
196 active) shallow cumulus at SGP (refer to Fig.1 in ?). During May to August in the years 1997
197 to 2009, we identify 76 thick shallow cumulus days according to selection criteria described in ?.
198 On these days, shallow cumulus clouds develop locally at SGP and show a strong diurnal cycle

199 closely tied to surface flux forcing and boundary layer processes. Starting with clear-skies at sun-
200 rise, clouds usually appear in the late morning, peak in early afternoon and dissipate before sunset.
201 On each day, there is usually at least 3 hours of clouds observed by radar to compute cloud statis-
202 tics. Cloud tops are under 4 km and cloud bases gradually rise with time over the day. A rising
203 cloud base is consistent with an entraining boundary layer driven by surface fluxes, as entrainment
204 gradually lowers the value of RH at the surface and thus increases the lifting condensation level
205 (LCL) of surface air (?). Note that the observed cloud base is strongly correlated with the calcu-
206 lated LCL from the surface measurements (Fig.14 in ?). These criteria assure that clouds develop
207 locally and are tied to boundary layer processes.

208 On active ShCu days, some clouds reach the level of free convection, however further verti-
209 cal cloud development is limited by low tropospheric relative humidity or an inversion further
210 aloft (??). The daily average of active shallow cumulus cloud's vertical extent and horizontal
211 chord length is about 0.7 and 1.0 km respectively. The first cloud onset time varies day to day,
212 ranging from 0800 LST to 1400 LST with an average around 1045 LST. Satellite images are used
213 to confirm that clouds usually develop rather homogeneously in a vast area around SGP and that
214 there is no obvious influence of large-scale weather systems and other cloud types (deep convec-
215 tive hot-tower clouds, cloud anvils or stratiform clouds) in the vicinity of SGP. Although cloud
216 base height differs from day to day, the general progression of cloud development is very similar
217 across the days. It is such simplicity of this observed diurnal behavior that makes these clouds
218 an attractive simulation target for LES or single-column models, and allows us understand their
219 cloud-controlling factors.

220 **3. The CASS composite case**

221 The composite case input data consists of initial profiles, surface boundary conditions and large-
222 scale advective tendencies. All of these quantities are based upon the arithmetic mean of their
223 values on each individual day in our case library with surface-forced active shallow convection.

224 *a. Early morning initial condition*

225 We use sounding data at 0530 LST to composite an initial temperature and humidity profile.
226 Figure 2 shows the original sounding composite which has a smooth transition from the surface
227 stable layer to lower free troposphere boundary layer. However, inspection of individual sounding
228 profiles seldom exhibits such smooth behavior. Instead, almost everyday there is a residual layer or
229 several piece-wise mixed layers between the top of the surface stable layer and an inversion which
230 is around 3 to 3.5 km above ground. The residual layer results from the well-mixed boundary
231 layer of the preceding afternoon before the identified active ShCu day. During nighttime, when
232 the surface cools, the stable boundary layer grows but often only erodes the lower part of this
233 mixed layer. From careful inspection of individual soundings we find that the average depth of
234 stable layer is around 400 meters, while the top of the residual layer is about 1 km. With these
235 characteristics, we reconstruct a residual layer for potential temperature and water vapor mixing
236 ratio conserving specific heat and water vapor in order to avoid extra work for surface-forced
237 daytime boundary layer development. With a residual layer, LES show an onset time that is
238 one hour earlier (not shown); cloud onset time is particularly sensitive to the residual layer in the
239 temperature profile but less sensitive to that in the moisture profile. This is consistent with previous
240 studies showing that the existence of a residual layer enhances boundary-layer-top entrainment due
241 to the lack of temperature stratification in such a layer; as a result, clouds appear earlier (??).

242 Compared with ARM97, our initial sounding is cooler and drier; specifically, it is 2 K colder
243 and 2.5 g kg^{-1} drier in the average below 1 km. In the prescribed initial θ profile of ARM97,
244 the potential temperature vertical gradient ($d\theta/dz$) in the lowest 400 meters, in the lowest 1 km
245 and the layer between 1 and 3 km are 10 K km^{-1} , 6.5 K km^{-1} , and 7 K km^{-1} respectively;
246 while the lapse rates for the same layers in our case are 20 K km^{-1} , 8.5 K km^{-1} , and 4.5 K km^{-1}
247 respectively. The lapse rate in the lower free troposphere is a particular critical parameter affecting
248 the growth of the boundary layer and shallow cumulus development (?).

249 *b. Domain mean surface fluxes*

250 The SGP site consists of grassland, cropland and forests. Surface fluxes are separately measured
251 by the older Energy Balance Bowen Ratio (EBBR) Stations, which are typically over grassland,
252 and the newer Eddy Correlation (ECOR) Flux Measurement Systems which are typically over
253 cropland. EBBR data are available at 15 stations for all years covered by our case library. EBBR
254 surface fluxes are constrained by the energy budget based on concurrent radiation and soil heat flux
255 measurements. In contrast, ECOR data are available at 9 stations only since 2004 and thus many
256 of the days in our case library do not have ECOR data. Furthermore, energy budget closure with
257 ECOR data was not achieved until the recent installment of the Surface Energy Balance System
258 (SEBS) in late 2010. Because EBBR and ECOR typically sample different land surface types, it
259 is essential to consider both ECOR and EBBR data to derive domain mean surface fluxes. We
260 construct new surface fluxes shown in Figure 3, in which the total surface flux (sum of latent
261 and sensible heat) is taken from the EBBR composite because of EBBR's longer and more robust
262 energy constraint. The new evaporative fraction (EF, defined as the fraction of surface flux in the
263 form of latent heat) is based on an averaged EF with different weights according to the number
264 of stations from both EBBR and ECOR data. Relative to simulations using only EBBR fluxes,

265 these new surface fluxes lead to improved agreement with observations for the LES cloud base
266 (see Section A.2).

267 Compared with ARM97, the daily maximum of the total surface fluxes is 540 W m^{-2} at noon
268 in our case, while the maximum of ARM97 is 650 W m^{-2} . In our case, the latent heat flux peaks
269 at 1300 LST, an hour later than the sensible heat flux; this also happens in ARM97. However,
270 a major difference is that the evaporative fraction of ARM97 is about 0.77, while the EF of our
271 composite case is around 0.63, with a lower value of 0.59 in the morning and a higher value of
272 0.67 in the afternoon. Across all active shallow cumulus days in our case library, the observed
273 daytime-averaged EF ranges from 0.31 to 0.83 based on the combined EBBR and ECOR data.

274 *c. Large-scale forcing*

275 The composite forcing for our case is calculated from the ARM variational analysis with energy
276 and water budget constraints from both the surface and the top of atmosphere (??). While the
277 continuous forcing from variational analysis was generated for a large area of 300^2 km^2 centered
278 at the SGP central facility, this forcing is still applicable to our LES domain 28.8^2 km^2 due to our
279 case selection criteria that shallow cumulus clouds develop homogeneously in a vast area around
280 SGP without the influence of synoptic-scale weather patterns in the area. In this study, we use
281 the analysis fields of horizontal advective tendency of temperature and specific humidity together
282 with its large-scale subsidence rate to determine the total advective tendency that forces the LES.
283 This allows temperature and moisture vertical advection to depend on the profiles of temperature
284 and moisture simulated by the LES (?).

285 Figure 4 shows the large-scale horizontal advective tendencies, subsidence rate and wind fields
286 of the CASS composite case. Because the forcing contains random error which persists even in
287 the average, we simplify the forcing in order to retain the most important structures of the large

288 scale advective tendencies while discarding features not statistically significant. First, we perform
289 significance tests to identify whether the composite average data is statistically different from zero
290 at a confidence level of 99%; we then only retain the significant features and smooth the remaining
291 data. For instance, the slight warming in the early morning hours near the surface is found to be
292 no different from zero; from this, we conclude that it is not important and we eliminate it. The
293 constructed horizontal temperature advection (top right panel in Figure 4) generally weakly cools
294 the middle troposphere in the morning and the boundary layer in the late afternoon. The magnitude
295 of this afternoon cooling (1.5 to 3 K day $^{-1}$) is comparable with the case of ARM97 (?), which
296 was 2 – 4 K day $^{-1}$. Horizontal moisture advection is only significant before 0800 LST in the
297 boundary layer. The magnitude of morning moistening is consistent with ARM97, which was 2
298 g kg $^{-1}$ day $^{-1}$ from 0530 to 0830 LST.

299 Surface fluxes can have a major influence in the calculated forcing because on fair-weather days
300 they are the major component in the column heat budget. However, in the current version of
301 continuous forcing data, the surface energy constraint does not include ECOR data. Since ECOR
302 fluxes have a systematically lower evaporative fraction relative to the EBBR fluxes, the resulting
303 large scale subsidence rate is overestimated. An offline preliminary test shows that the inclusion
304 of ECOR data into the variational analysis will reduce the subsidence rate by 30 to 50 % compared
305 to the original continuous forcing without ECOR data (not shown). With this consideration, we
306 systematically lowered the subsidence rate from the continuous forcing value by 30%. When new
307 continuous forcing data utilizing the combined EBBR and ECOR data becomes available, we will
308 update our CASS composite case avoiding the need for this ad-hoc adjustment.

309 Figure 4 shows that the large scale subsidence dominates the lower troposphere on our selected
310 days and maximizes around 800 hPa at 1500 LST. The large scale subsidence affects the vertical
311 advection of temperature and moisture. In our case, the strong subsidence induces warming with

312 a maximum of 3.5 K day^{-1} around 700 hPa. The peak subsidence drying is $3.5 \text{ g kg}^{-1} \text{ day}^{-1}$
313 just above 850 hPa from 1400 to 1800 LST. In ARM97 there is no specified subsidence. The total
314 advection tendency of moisture in ARM97 shows the drying of about $2 \text{ to } 4 \text{ g kg}^{-1} \text{ day}^{-1}$ in the
315 lowest 1 km from 1430 to 1730 LST.

316 In the lower troposphere below 700 hPa, horizontal winds blow from the southwest and turn to
317 the southeast in the afternoon. The composite wind field used for LES is not the simple multi-day
318 average of zonal and meridional winds as the wind direction change and the wind shear might
319 not be represented adequately. Rather the direction is determined from the average zonal and
320 meridional wind, but the wind magnitude is adjusted to reproduce the average wind speed. By
321 doing so, we preserve wind energy and wind shear, and thus reduce the impact on turbulence from
322 composite averaging.

323 **4. Evaluation of LES with observed thermodynamics and cloud statistics**

324 *a. General comparison*

325 Figure 5 shows the vertical profiles of LES domain mean potential temperature and water vapor
326 mixing ratio compared with composite soundings at 1130 and 1730 LST. In order to preserve
327 the inversion structure, composite soundings are averaged on a vertical axis of height relative to
328 mixed-layer top and then rescaled by the average mixed-layer height over all days. In general,
329 the LES mixed layer depth agrees well with the observations, e.g. 1.3 km at 1130 LST and 1.8 km
330 at 1730. However, the LES simulated thermodynamics from bin and bulk microphysics is cooler
331 in both the mixed layer and the free troposphere, drier in the mixed layer and moister just above
332 the mixed layer. At 1130 LST, the potential temperature difference is about 0.5 K below 4 km
333 and the mixing ratio difference is 0.25 g kg^{-1} in the mixed layer. At 1730 LST, the LES potential

334 temperature is almost the same as the observed in the mixed layer but is about 2 K cooler in the
335 free troposphere. Below 1 km, the LES is about 0.5 g kg^{-1} drier than the observed, however
336 between 2 to 3 km, the LES is about 1 g kg^{-1} moister than the observed.

337 Figure 6 shows the vertical profiles from LES at 1330 LST, the time of maximum cloud frac-
338 tion. LES cloud fraction is defined as the fraction of grids with a nonzero liquid water content and
339 cloud-averaged fields are just averages over these cloudy grids (?). Although the domain mean
340 thermodynamic field is almost the same, the maximum cloud fraction near cloud base from bin
341 microphysics is about 14% compared to 8% from bulk microphysics. Both simulations under-
342 estimate the observed cloud fraction at the cloud base level. The in-cloud liquid water content
343 increases almost linearly with cloud vertical extent and reaches 1.2 g m^{-3} at the cloud top in bulk
344 microphysics, while in bin microphysics, it increases only near the cloud base and has an almost
345 constant value of 0.3 g m^{-3} in the whole cloud layer above.

346 Figure 7 shows a comparison of cloud macrophysical properties from LES with long-term ob-
347 served statistics. In general, the LES captures the diurnal variation of shallow cumulus exhibited
348 by the observations, especially for the rising cloud base altitude (Figure 7c). However, the LES
349 underestimates the total projected cloud fraction for all clouds (Figure 7a) and clouds with depth
350 greater than 300 meters (Figure 7b), and the cloud chord length (Figure 7d). The LES shows sen-
351 sitivity to the choice of microphysics. The LES maximum total cloud fraction increases from 22%
352 to 29% when switching from the bulk to bin microphysics (Figure 7a). The total cloud fraction
353 from LES with bin microphysics increases faster than observed in the morning, reaches its maxi-
354 mum value between 1130 LST and 1300 LST and then decreases, whereas the observation shows
355 continuous increases until 1330 LST and then decreases. The area fraction covered by clouds
356 greater than 300 meters in depth almost doubles when bin microphysics is used – 15% versus 7%
357 – however even so, the diurnal maximum is still lower than the observed value of 25% (Figure 7b).

358 The cloud chord length also increases significantly with bin microphysics scheme; for example,
359 at 1330 LST the cloud chord length increases from 500 m to 850 m, although this is still less
360 than the observed cloud chord length of 1 km (Figure 7d). Overall we can say that while some
361 improvement comes from using bin microphysics, LES clouds tend to be smaller in horizontal and
362 vertical extent than observed.

363 The lack of cloud is further verified with lower than observed liquid water path and weaker than
364 observed surface shortwave cloud radiative effect (downward shortwave difference between clear
365 sky and the whole sky, Figure 7e, h). Here it is interesting that the effect on radiation is almost
366 the same between the two LES despite the improved cloud macrophysics of the simulation with
367 bin microphysics. This results from the compensation in the bin LES of taller and wider clouds
368 with clouds of lower liquid water content (Fig. 6), such that the domain mean liquid water paths
369 are nearly identical. On the other hand, when comparing the area where cloud liquid water path is
370 greater than 80 g m^{-2} , LES has doubled the observed value (Figure 7f). It is hard to reconcile this
371 result with those of the other comparisons; but it appears to suggest that the in-cloud liquid water
372 content is too large on average.

373 Further differences between bulk and bin LES are revealed in Figure 8. With bin microphysics,
374 the LES produces more clouds with larger vertical extent, however the condensate in the clouds is
375 smaller compared with bulk microphysics simulation at the same height level. In Fig. 6 the liquid
376 water content from Bin scheme is close to 0.3 g m^{-3} . Furthermore, the in-cloud updraft is weaker.
377 From a scatter plot of 10-second ARSCL cloud depth versus 30-second MWRRET LWP data,
378 we find that for cloud depths up to 800 m, the in-cloud LWP increases almost linearly with cloud
379 depth consistent with an average in-cloud liquid water content of approximately 0.1 g m^{-3} (?). The
380 cloud water content from the ARM Cloud Retrieval Ensemble Dataset (ACRED, ?) also shows
381 the retrieved in-cloud liquid water content to range from 0.03 to 0.15 g m^{-3} (???). Overall, these

382 retrieved values hint at a better simulated but still overestimated cloud condensate from the LES
383 with bin microphysics.

384 The differences from microphysics are considerable but were often not emphasized in previous
385 LES studies of shallow cumulus. The bulk microphysics is an "all-or-nothing" scheme, in which
386 when there is supersaturation, sufficient water vapor condenses in one time step to eliminate su-
387 persaturation; likewise, when there is subsaturation, sufficient cloud water, if available, evaporates
388 within one time step to eliminate subsaturation. It is a well known fact that bulk microphysics
389 often overestimates the evaporation rate as compared with bin microphysics in which droplet size
390 distribution is more realistically represented (?). The bin microphysics allows supersaturation and
391 water vapor condenses within a finite time scale (1-10 second for droplets, ?), and the same for
392 cloud liquid evaporation. The slower evaporation time scale might be a reason for the larger cloud
393 fraction with the bin scheme. Furthermore, as an air parcel rises above its lifting condensation
394 level, the condensational latent heat will be released more gradually in the bin simulation causing
395 a more gradual increase in parcel buoyancy. Thus while the updraft velocity may be the same
396 for air parcels at cloud base, the increase above cloud base may occur at a slower pace with bin
397 microphysics (Fig. 8, third row, see also Fig.10). Since the updraft may be weaker and the cloud
398 size is bigger (Figure 7d) for the bin microphysics, the core area, defined as the updraft cloud area
399 with positive buoyancy, may be much less susceptible to lateral entrainment mixing (?) and may
400 penetrate deeper with more gradual but continuous condensational latent heating (Fig. 8, fourth
401 row). This speculation as to why the choice of microphysics affects the simulated clouds will
402 require further investigation.

403 *b. Observational uncertainty*

404 In making judgements about the realism of the LES clouds, one must consider observational
405 uncertainty. Compared to the other cloud quantities presented in this paper, the cloud base height
406 and total vertically projected cloud fraction are the most reliably observed quantities due to the
407 high sensitivity of the ceilometer in detecting the altitude and occurrence of a cloud base. Even so
408 the ceilometer can miss very small clouds of thickness below 100 m (?). Thus the actual total cloud
409 fraction might be still slightly higher than shown. The observed cloud chord length was calculated
410 as the duration of the continuous occurrence of a cloud base multiplied by the wind speed measured
411 by wind profilers. This calculation makes use of the frozen turbulence assumption. Although the
412 fixed vertical-pointing instrument may not always measure the center area of clouds, our use of
413 multi-day data and large samples should significantly lower the uncertainty and still give a good
414 representation of cloud size. For LES, snapshot data are used to determine cloud size as the mean
415 horizontal distance in zonal and meridional dimensions covered by contiguous clouds.

416 The largest uncertainty in cloud statistics is associated with cloud top; such uncertainty affects
417 the area fraction with cloud depth greater than 300 meters (Fig. 7b). Cloud top is determined only
418 from cloud radar echoes above the cloud base, as the lidar and ceilometer signals are attenuated
419 by the cloud before reaching cloud top. At SGP, insect returns above cloud base are hard to dis-
420 tinguish from real clouds with the radar, and in ARSCL data, this distinguishing is often done
421 manually (??). Thus sometimes clear air above the cloud that contains insects is mistakenly clas-
422 sified as cloud, which leads to an overestimation in the altitude of cloud top and the cloud vertical
423 extent. Based on this, the actual difference between LES and observation for the area fraction with
424 cloud depth greater than 300 meters might not be as large as shown in Fig. 7b.

425 Liquid water path is measured by a microwave radiometer (MWR), which is known for its
426 poor performance for thin low-level clouds, such as are common for ShCu. The uncertainty in
427 an individual measurement may be up to 20 g m^{-2} and a well-known issue of the 2-channel
428 MWR retrieval are the non-zero LWP values for clear-sky (e.g. non-zero values before 8 a.m.
429 in Figure 7e). The in-cloud average value of LWP is about 80 g m^{-2} at diurnal maxima on
430 active shallow cumulus days. These LWP retrievals for ShCu come with a significant degree of
431 uncertainty (??). In addition, the field of view of MWR is about 5.9^0 degrees which suggests
432 that at the cloud base level, the measuring area could be as large as 200^2 m^2 for 30-second data
433 considering the horizontal wind speed of 7 m s^{-1} . Clouds may partially fill this area and the
434 observed value is an average of much larger area than the grid size of LES, which might be a
435 reason for the model-observation difference shown in Fig. 7f. To test this hypothesis, we calculate
436 the mean LES LWP over an area of 200^2 m^2 surrounding cloudy grid points. However it does not
437 change the LES area fraction with LWP greater than 80 g m^{-2} in Figure 7f. Thus this partial beam
438 filling issue can not explain the difference between LES and observation in Figure 7f.

439 *c. Model sensitivities*

440 To explore the robustness of differences of LES with observations, we have performed a large
441 number of sensitivity tests, in addition to the choice of microphysics. These are more fully de-
442 scribed in Appendix (Section A2) but we summarize pertinent results here (Fig. 11 and 12). Sen-
443 sitivity tests illustrate that LES results are rather insensitive to domain sizes but slightly sensitive
444 to resolution changes. Specifically, LES using bulk microphysics with domain sizes of 57.6^2 km^2 ,
445 28.8^2 km^2 and 14.4^2 km^2 and default resolutions produce almost identical total projected cloud
446 fraction. If the horizontal resolution changes from 100 m to 50 m to 25 m, the LES total projected
447 cloud fraction increases from 20% to 22% to 24%. Similarly if vertical resolution increases from

448 45 m to 20 m to 10 m in lowest 5 km while keeping the default horizontal resolution, the LES total
449 projected cloud fraction increases from 20% to 22% to 25%. The systematic LES underestimate
450 of cloud fraction also appears robust with respect to uncertainties in forcing data. We have also run
451 LES with bulk microphysics for every individual day (Fig. 13) in our case library (Section A3),
452 and while LES produces shallow cumulus clouds on 66% of days, the underestimate of the total
453 cloud fraction is present on almost every day of shallow cumulus.

454 The persistent discrepancy in cloudiness between LES and observations leads us to speculate
455 about factors we have not tested. In particular, three dimensional radiative transfer was not per-
456 formed, perhaps contributing to a shortwave cloud effect smaller than the observed. Other missing
457 aspects include a lack of surface flux heterogeneity and interactive land-surface models.

458 **5. Evaluation of LES with observed vertical velocity and mass flux**

459 Cloud-scale vertical velocity and convective mass flux are key diagnostics of convection and the
460 essentials of convection parameterization in many large-scale models. Here, we compare vertically
461 pointing cloud radar retrievals of vertical velocity and mass flux with our LES.

462 *a. What to compare?*

463 Due to considerations of radar sensitivity and insect contamination, comparison of observations
464 to LES requires great caution. In particular, vertical velocity retrievals are performed on a subset
465 of cloudy profiles, and probability of a retrieval increases strongly with liquid water path. Figure 9
466 shows that the probability distribution of liquid water path as a function of time of day, and the
467 corresponding cumulative probability for a 10-second radar observed profile to be qualified for
468 a valid retrieval of vertical velocity as a function of liquid water path. For instance, Figure 9
469 shows that at 10 LST, among all the radar profile observations with liquid water path greater

470 than 30 g m^{-2} , only about 50% have a valid retrieval of vertical velocity in clouds; however the
471 probability of a vertical velocity retrieval for profiles with LWP greater than 80 g m^{-2} increases
472 up to 95%. Therefore, we will use a in-cloud liquid water path of 80 g m^{-2} as a threshold to select
473 data points from both radar observations and LES for vertical velocity and mass fluxes, in order to
474 avoid sampling LES cloudy profiles which would rarely be used by the radar retrieval algorithm.

475 Figure 10 shows the comparison between LES and radar retrieval at 1330 LST at the time of
476 peak cloud fraction. The top row illustrates calculations that are limited to cloudy profiles with
477 liquid water path of 80 g m^{-2} and greater. The bottom row shows calculations without this restric-
478 tion using all valid retrievals and all cloudy profiles from the LES. Comparing the two rows, the
479 observed updraft and downdraft area fractions in the bottom increase only about 40% while LES
480 values more than double. This is consistent with the fact that the retrieval algorithm generally does
481 not work in clouds with low liquid water path. For a cloud with liquid water content of 0.1 g m^{-3} ,
482 80 g m^{-2} corresponds to a cloud vertical extent of 800 m. Thus the restriction to cloudy profiles
483 with LWP greater than 80 g m^{-2} excludes cloud edge regions or thin clouds in order to focus on
484 an active ShCu cloud core region.

485 *b. Updraft and downdraft*

486 In the top row of Figure 10, the LES and radar data show comparable updraft and downdraft
487 vertical velocities that increase with height. However, the updraft velocity in LES is stronger than
488 observed – 1.5 m s^{-1} compared to 1 m s^{-1} just above 2000 m where the updraft fraction peaks.
489 Furthermore the updraft is stronger in the LES with bulk microphysics; for example, at 3000
490 meters, the bulk LES updraft velocity is 3 m s^{-1} versus 2 m s^{-1} in bin microphysics. In both LES
491 and radar data in the top row, the downdraft fraction occupies a significant area compared with
492 updraft fraction. In the radar data, the downdraft maximum area is 1% versus 2% for the updraft.

493 In the LES with bin microphysics, these numbers are 2% versus 4%. The updraft fraction peaks
494 just above cloud base in both LES and observations. However, the LES downdraft fraction peaks
495 at middle levels in the clouds similar to the observed. The large downdraft fraction leads to non-
496 negligible downdraft mass flux; for example, with the bin LES the downdraft mass flux maximum
497 value is 0.02 m s^{-1} , about 30% of the updraft mass flux whose maximum value is 0.07 m s^{-1} .
498 This behavior is also true when the whole cloudy area is considered (bottom row). Specifically,
499 in the bin LES the downdraft fraction peaks at 4.5%, about 1/2 of the updraft peak of 9%, and
500 the downdraft flux maximizes at 0.045 m s^{-1} , more than 1/3 of the updraft value of 0.11 m s^{-1} .
501 A comparison of the top and bottom rows suggests that cloudy profiles with 80 g m^{-2} or greater
502 liquid water path represent more than 1/3 of the in-cloud updraft area (maximum values of 4% in
503 top plot versus 9% in bottom plot in the bin LES) and in-cloud downdraft area (maximum values
504 of 1.7% in top versus 4.5% in bottom). Furthermore these cloudy profiles carry more than 60%
505 of the updraft mass flux (maximum values of 0.07 m s^{-1} in top versus 0.11 m s^{-1} in bottom)
506 and more than 40% of the downdraft mass flux (maximum values of 0.02 m s^{-1} in top versus
507 0.045 m s^{-1} in bottom). Interestingly, the ratio of downdraft area (or flux) to updraft area (or
508 flux) is significantly smaller in the bulk LES; if the observed ratio is to be trusted despite of the
509 underestimated updraft/downdraft fraction in retrieval data due to insect contamination and radar
510 sensitivity, the comparison suggests that the bin LES have more realistic cloud dynamics. Overall,
511 it is worth noting that the non-negligible downdraft in-cloud area fraction and mass flux in our
512 case differs from oceanic shallow cumulus studies (?), in which the downdrafts are found usually
513 outside of clouds (?) and the in-cloud downdraft is very minor compared to in-cloud updraft (?).

514 **6. Summary**

515 Based on 13 years of observational data at the ARM SGP site, we have constructed case libraries
516 for different convective regimes: active and forced fair-weather shallow cumulus (?), and shallow
517 cumulus that develops into late-afternoon deep convection (?). This study focuses on active shal-
518 low cumulus, for which we have constructed a new composite case called CASS relying heavily
519 upon observations. Through this new case, we hope to connect all together: observations, LES
520 and in the future, a single-column version of GCM for parameterization development.

521 This case aims to represent a pure land-surface driven diurnal cycle of shallow cumulus that
522 is sensitive to local temperature and humidity conditions. There is a prevailing well-developed
523 continental non-precipitating shallow cumulus case (ARM97) which has been widely used in cloud
524 modeling studies. However, the ARM97 case was not completely typical of surface-forced shallow
525 cumulus due to an initial cloud present in the early morning. In addition, ARM97 used very few
526 actual cloud observations. It is only by constructing a new case that we can get a case typical
527 of surface-driven shallow cumulus and for which we can use the observations from the advanced
528 instrumentation that ARM has installed in the 20 years since the date of the ARM97 case.

529 The new composite case consists of forcing data based on long-term sounding, surface heat
530 fluxes and continuous variational analysis of the ARM SGP site measurements. For initial con-
531 ditions, the early-morning initial profile incorporates a residual layer resulting from the previous
532 day's mixed layer, a very common behavior of atmospheric boundary layer almost on every ShCu
533 day. As a result, the simulated cloud onset time improves by shifting to one hour earlier. For
534 boundary conditions, because no single station nor single instrument data characterizes the do-
535 main mean surface heat fluxes and evaporative fraction accurately, cloud base is best simulated
536 using a constrained total surface heat flux and an average of evaporative fraction measured over

537 different land types. For large-scale forcing, we disregard the values not statistically significant
538 and simplify the forcing pattern to retain the essence of average large-scale advective tendencies
539 and subsidence rate. All these steps are taken to keep the case consistent with the observations
540 while at the same time keeping the case as simple as possible to represent the local atmospheric
541 and surface conditions on a typical surface-forced shallow cumulus days.

542 LES results for the composite case are evaluated against observed cloud statistics, such as total
543 surface projected cloud fraction, cloud fraction with vertical extent greater than 300 meters, cloud
544 base height and cloud chord length. Overall, both LES we present exhibit a good comparison with
545 observation, particularly for the diurnal evolution of cloud base altitude. This leads credence to the
546 case that we have constructed. Despite this, both LES illustrate an underestimate in the amount
547 of cloud and its radiative impact. This bias is particularly robust and LES show little sensitivi-
548 ties to case construction or model configuration options such as grid resolution or domain size.
549 The largest model sensitivity we have found is to the choice of microphysics. Compared with the
550 default bulk 1-moment microphysics scheme, the LES with spectral bin microphysics improves
551 somewhat the underestimated total cloud fraction and area fraction of clouds with vertical extent
552 greater than 300 meters. The LES with bin microphysics shows weaker in-cloud vertical motion
553 and smaller in-cloud condensate. We speculate that these changes are the result of a more realis-
554 tic representation of supersaturation and droplet size distribution driven by a finite time scale of
555 condensation and evaporation that causes clouds to linger longer. With a larger cloud fraction,
556 updrafts are more protected from entrainment leading to a taller clouds. The condensational heat
557 release is more gradual leading to less in-cloud condensate.

558 The LES are further compared to radar retrievals of vertical velocity and mass fluxes. Due to
559 radar sensitivity and retrieval algorithm limitations, the fairest comparison is limited to cloudy
560 profiles with liquid water path greater than 80 g m^{-2} . The LES exhibit downdraft velocities that

561 are comparable to observations but have a slightly stronger updrafts. In both observation and LES,
562 velocities increase with height. Both LES have a larger updraft area and a larger updraft mass flux,
563 approximately double that observed. Both LES and radar retrievals show a significant portion of
564 the cloudy columns with $LWP > 80 \text{ g m}^{-2}$ is occupied by downdrafts – 25% or more. This leads to
565 non-negligible downdraft mass flux inside the clouds. This downdraft behavior is different from
566 that of oceanic shallow cumulus in which the downdraft mainly happens in the immediate vicinity
567 outside of the cloud (???).

568 It may be worth bearing in mind that this case is well designed to represent mid-latitude surface-
569 driven non-precipitating shallow cumulus at the US Southern Great Plains. Our case might not
570 apply to convection over other continental regions, such as the Amazon with its dense vegetation
571 coverage and stronger surface latent fluxes or the African Monsoon region with much stronger
572 surface sensible heat flux or Cabauw, a mid-latitude region with higher evaporative fraction but a
573 colder and drier boundary layer (?) .

574 In summary, a new composite LES case called CASS is successfully developed to represent the
575 typical fair-weather non-precipitating shallow cumulus clouds over the SGP whose life cycle is
576 mainly driven by land-surface forcing. The CASS case is well constrained by observations and
577 LES show some sensitivity to different microphysics schemes. In the future, we will systematically
578 test the sensitivity of this case to local environmental conditions such as atmospheric moisture and
579 stability, evaporative fraction and surface heterogeneity. We will also compare LES to the new
580 observations of sub-cloud vertical velocity from the Doppler Lidar as well as surface heterogeneity
581 from the new SGP facilities ARM has established (?). The CASS case will also be used for
582 testing single-column versions of climate models with newly developed boundary layer mixing
583 and convection parameterizations.

584 *Acknowledgments.* The authors sincerely thank Marat Khairoutdinov, Peter Blossey, Robert Pin-
585 cus and Takanobu Yamaguchi who originally developed SAM and contributed significant im-
586 provement to the code. We thank Anning Cheng, Kuan-Man Xu, Thijs Heus and Chris Brether-
587 ton for their suggestions and discussions on this work. We thank Chris Golaz for his com-
588 ments on the manuscript. We thank Patrick Minnis's NASA Langley group, David Doelling
589 from NASA/Langley, and Andrew Heidinger from NOAA/NESDIS for discussions and providing
590 GOES satellite images for our case selections. We sincerely thank three anonymous reviewers and
591 the Editor Wojciech Grabowski for their constructive comments to improve the manuscript. Data
592 from the U.S. Department of Energy (DOE) as part of the Atmospheric Radiation Measurement
593 (ARM) Climate Research Facility Southern Great Plains site were used. This work was supported
594 by Atmospheric Systems Research (ASR) program and ARM program in Office of Biological and
595 Environmental Research, Office of Science, DOE. Lawrence Livermore National Laboratory is
596 operated for the DOE by Lawrence Livermore National Security, LLC under Contract DE-AC52-
597 07NA27344.

599 **A1. CASS access**

600 CASS stands for Continental Active Surface-forced Shallow cumulus. Please visit
601 <http://portal.nersc.gov/project/capt/CASS/> to download the forcing data for the composite case.
602 Through this website, successive version of CASS will be released. These improved versions are
603 anticipated to include updates of the forcing data according to the ARM data changes on initial
604 sounding, surface heat fluxes and continuous forcing based on variational analysis. We will also
605 release input data needed to drive the land surface scheme once it is ready. In addition, informa-
606 tion on the observed cloud statistics, composite soundings, the sensitivity tests and the ensemble
607 runs are also available online and data is upon request to the first author. The composite case is
608 built upon a case library from year 1997 to 2009. We are actively extending this case library for
609 CASS to the most recent years together with observational statistics from new instruments at the
610 newly-arranged super site of ARM SGP.

611 **A2. Sensitivity tests**

612 Listed in Table 1, there are 13 independent LES sensitivity experiments with bulk microphysics
613 in which only one model configuration or one forcing uncertainty is changed while other condi-
614 tions are held the same as in the default control run.

615 Figure 11 shows the LES bias relative to observed cloud statistics at 1330 LST, the diurnal peak
616 time of the total cloud fraction. In all the cloud statistics except the cloud base, the LES sensitivity
617 runs shows biases of same sign, particularly underestimate of cloud fraction, cloud chord length,
618 liquid water path and radiation at the surface. Although the LES underestimate the cloud area
619 with vertical extent greater than 300 m, the LES tend to overestimate the fraction of much deeper

620 clouds such as with LWP greater than 80 g m^{-2} . The cloud base height is particularly sensitive to
621 the evaporative fraction and the total heat flux, with the largest biases shown for the LES forced
622 with either the EBBR fluxes alone or the ECOR fluxes alone.

623 Figure 12 shows the LES bias in the mixed layer potential temperature and mixing ratio relative
624 to the sounding data at 1130 LST and 1730 LST. Through the diurnal evolution, the boundary
625 layer development in potential temperature and mixing ratio is very comparable to sounding data.
626 In the late morning, the boundary layer shows a cold bias about 0.6 K for all the sensitivity runs
627 except experiment 11 in which large-scale forcing retains the small values that are not significant
628 different from zero. In this experiment, including these small tendencies in temperature field leads
629 to slightly warm bias in late morning. In the late afternoon, the cold bias almost diminishes in most
630 of the sensitivity runs while the warm bias in experiment 11 grow as big as 0.55 K. The slight dry
631 bias about 0.2 g kg^{-1} in the morning grows to about 0.6 g kg^{-1} in the late afternoon.

632 Among all the sensitivity runs, bin microphysics LES run shows more superiority in simulating
633 total projected cloud fraction, cloud area fraction with the cloud vertical extent greater than 300 m
634 and cloud chord length. Compared with other model configurations or forcing uncertainty, the
635 control run with bulk microphysics shows slight superiority in simulating cloud base height, do-
636 main mean liquid water path and very comparable statistics in other cloud properties and boundary
637 layer thermodynamics.

638 **A3. Ensemble of golden days**

639 In addition to sensitivity tests, we take the ensemble approach in which many ShCu days of
640 LES are forced individually. There are totally 76 days in our shallow cumulus case library. Due
641 to missing data of either sounding or large-scale forcing, we have 62 days for valid LES runs.
642 For each day, we reduce the large-scale subsidence rate by 30% as was done in the composite

643 case. The initial soundings at 0530 LST on individual days often exhibit a residual layer or even
644 multiple mixed-layers above the stable layer near the surface. From the LES of these 62 days,
645 only on 40 days does the LES produce shallow cumulus while on the other 22 days quite different
646 weather regimes are produced: 2 days of clear sky, 10 days of single layer overcast stratiform
647 clouds and another 10 days of multi-layered clouds. This indeed reflects the fact that although
648 each golden day case is observed to have shallow cumulus, uncertainties and random errors in the
649 initial conditions, surface fluxes and large-scale forcing may contribute to a failure in the LES.

650 Figure 13 shows the comparison between the LES of the composite case and the ensemble
651 runs of 40 days of shallow cumulus. Although there is quite a spread in the cloud statistics due
652 to day-to-day variability (as shown by the interquartile range of the ensemble runs), the general
653 behavior of the whole ensemble and especially the ensemble mean is very similar to the LES
654 simulation for the composite case. The ensemble mean shows a consistent underestimation of
655 total cloud fraction, cloud area with vertical extent greater than 300 m and cloud horizontal extent
656 such as chord length and in the surface longwave radiation and shortwave cloud radiative effect.
657 The ensemble still shows overestimate in the area fraction with clouds whose liquid water path is
658 greater than 80 g m^{-2} .

659 Despite the similarities, there are some small but statistically significant differences between
660 the ensemble mean and the composite case. For example, the liquid water path of ensemble
661 mean is significantly greater than the LES simulation of the composite case except at the diurnal
662 peak time of 1330 LST. These differences may reflect a small non-linearity of LES responses
663 to forcings. In other words, the ensemble mean behavior resulting from individual day forcings
664 is not necessarily the same as the LES result of the composite case driven by the mean forcing.
665 Another possible cause of the small differences is that the ensemble of 40 days of shallow cumulus
666 LES runs is a subset of all the observed shallow cumulus days which constitute the composite

667 case. As such, the forcing of the composite case consists of contributions from all the cases
668 including those do not produce shallow cumulus clouds in the individual LES runs. With this
669 difference in the forcing, even if the LES response to forcing is linear, there might be differences
670 between the ensemble mean and the composite case. Still we emphasized that all differences with
671 the observations are the same for the ensemble mean and the composite case. This gives us the
672 confidence that the composite case may represent the average behavior of SGP surface-forced
673 shallow cumulus days and will be appropriate to serve as a good case for both LES tests and
674 climate model parameterization studies.

675 **References**

676 Angevine, W. M., H. Jiang, and T. Mauritsen, 2010: Performance of an eddy diffusivity–mass
677 flux scheme for shallow cumulus boundary layers. *Mon. Wea. Rev.*, **138** (7), 2895–2912, doi:
678 10.1175/2010MWR3142.1, URL <http://dx.doi.org/10.1175/2010MWR3142.1>.

689 Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at
690 the ACRF SGP site. *J. Climate*, **21**, 3344–3358.

681 Betts, A. K., M. Köhler, and Y. Zhang, 2009: Comparison of river basin hydrometeorology in
682 ERA-Interim and ERA-40 reanalyses with observations. *J. Geophys. Res. Atmos.*, **114**, d02101,
683 doi:10.1029/2008JD010761.

684 Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen,
685 2013: Higher-order turbulence closure and its impact on climate simulations in the commu-
686 nity atmosphere model. *J. Climate*, **26** (23), 9655–9676, doi:10.1175/JCLI-D-13-00075.1, URL
687 <http://dx.doi.org/10.1175/JCLI-D-13-00075.1>.

688 Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, D. P. Schanen, N. R. Meyer, and
689 C. Craig, 2012: Unified parameterization of the planetary boundary layer and shallow con-
690 vection with a higher-order turbulence closure in the community atmosphere model: single-
691 column experiments. *Geosci. Model Dev.*, **5** (6), 1407–1423, doi:10.5194/gmd-5-1407-2012,
692 URL <http://www.geosci-model-dev.net/5/1407/2012/>.

693 Bogenschutz, P. A., and S. K. Krueger, 2013: A simplified pdf parameterization of subgrid-scale
694 clouds and turbulence for cloud-resolving models. *J. Adv. Model. Earth Syst.*, **5** (2), 195–211,
695 doi:10.1002/jame.20018, URL <http://dx.doi.org/10.1002/jame.20018>.

696 Brown, A. R., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. *Quart. J. Roy. Meteor. Soc.*, **128**, 1075–1093.

697

698 Chandra, A. S., P. Kollias, and B. A. Albrecht, 2013: Multiyear summertime observations of day-
699 time fair-weather cumuli at the arm southern great plains facility. *J. Climate*, **26** (24), 10 031–
700 10 050, doi:10.1175/JCLI-D-12-00223.1, URL <http://dx.doi.org/10.1175/JCLI-D-12-00223.1>.

701 Cheng, A., and K.-M. Xu, 2015: Improved low-cloud simulation from the community atmosphere
702 model with an advanced third-order turbulence closure. *J. Climate*, **28** (14), 5737–5762, doi:
703 10.1175/JCLI-D-14-00776.1, URL <http://dx.doi.org/10.1175/JCLI-D-14-00776.1>.

704 Clothiaux, E., and Coauthors, 2001: *The ARM Millimeter Wave Cloud Radars (MMCRs) and the*
705 *Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP)*. DOE Tech. Memo.
706 ARM VAP-002.1, U.S. Department of Energy, Washington, D.C.

707 Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. Miller, and
708 B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a
709 combination of active remote sensors at the ARM CART sites. *J. Appl. Meteor.*, **39**, 645–665.

710 Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara,
711 and P. Brown, 2005: Atmospheric radiative transfer modeling: a summary of the AER codes.
712 *J. Quant. Spectrosc. Radiat. Transfer*, **91** (2), 233 – 244, doi:<http://dx.doi.org/10.1016/j.jqsrt.2004.05.058>, URL <http://www.sciencedirect.com/science/article/pii/S0022407304002158>.

713

714 Dawe, J. T., and P. H. Austin, 2012: Statistical analysis of an les shallow cumulus cloud ensemble
715 using a cloud tracking algorithm. *Atmospheric Chemistry and Physics*, **12** (2), 1101–1119, doi:
716 10.5194/acp-12-1101-2012, URL <http://www.atmos-chem-phys.net/12/1101/2012/>.

717 de Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. de Voogd, 2012: Parameterization of the
718 vertical velocity equation for shallow cumulus clouds. *Mon. Wea. Rev.*, **140** (8), 2424–2436,
719 doi:10.1175/MWR-D-11-00277.1, URL <http://dx.doi.org/10.1175/MWR-D-11-00277.1>.

720 Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from the
721 ARM SGP Central Facility. Part I: Low-level cloud macrophysical, microphysical and radiative
722 properties. *J. Climate*, **18**, 1391–1410.

723 Endo, S., and Coauthors, 2015: Racoro continental boundary layer cloud investigations. part ii:
724 Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based obser-
725 vations. *J. Geophys. Res. Atmos.*, n/a–n/a, doi:10.1002/2014JD022525, URL <http://dx.doi.org/10.1002/2014JD022525>.

726 Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain, 2009: Ice for-
727 mation in arctic mixed-phase clouds: Insights from a 3-d cloud-resolving model with size-
728 resolved aerosol and cloud microphysics. *J. Geophys. Res. Atmos.*, **114** (D4), n/a–n/a, doi:
729 10.1029/2008JD010782, URL <http://dx.doi.org/10.1029/2008JD010782>, d04205.

730 Gentine, P., A. K. Betts, B. R. Lintner, K. L. Findell, C. C. van Heerwaarden, and F. D'Andrea,
731 2013a: A probabilistic bulk model of coupled mixed layer and convection. part ii: Shallow
732 convection case. *J. Atmos. Sci.*, **70** (6), 1557–1576, doi:10.1175/JAS-D-12-0146.1, URL <http://dx.doi.org/10.1175/JAS-D-12-0146.1>.

733 Gentine, P., A. A. M. Holtslag, F. D'Andrea, and M. Ek, 2013b: Surface and atmospheric con-
734 trols on the onset of moist convection over land. *J. Hydrometeor.*, **14** (5), 1443–1462, doi:
735 10.1175/JHM-D-12-0137.1, URL <http://dx.doi.org/10.1175/JHM-D-12-0137.1>, <http://dx.doi.org/10.1175/JHM-D-12-0137.1>.

739 Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A pdf-based model for bound-
740 ary layer clouds. part ii: Model results. *J. Atmos. Sci.*, **59** (24), 3552–3571,
741 doi:10.1175/1520-0469(2002)059<3552:APBMFB>2.0.CO;2, URL [http://dx.doi.org/10.1175/1520-0469\(2002\)059<3552:APBMFB>2.0.CO;2](http://dx.doi.org/10.1175/1520-0469(2002)059<3552:APBMFB>2.0.CO;2).

742

743 Guichard, F., and Coauthors, 2004: Modeling the diurnal cycle of deep precipitating convection
744 over land with cloud-resolving models and single-column models. *Quart. J. Roy. Meteor. Soc.*,
745 **130**, 3139–3172.

746 Hägeli, P., D. G. Steyn, and K. B. Strawbridge, 2000: Spatial and temporal variability of mixed-
747 layer depth and entrainment zone thickness. *Bound.-Layer Meteor.*, **97**, 47–71.

748 Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. *J. Atmos. Sci.*,
749 **65** (3), 1003–1018, doi:10.1175/2007JAS2322.1, URL <http://dx.doi.org/10.1175/2007JAS2322.1>,
750 <http://dx.doi.org/10.1175/2007JAS2322.1>.

751 Hourdin, F., and Coauthors, 2013: Lmdz5b: the atmospheric component of the ipsl climate model
752 with revisited parameterizations for clouds and convection. *Clim. Dyn.*, **40** (9-10), 2193–2222,
753 doi:10.1007/s00382-012-1343-y, URL <http://dx.doi.org/10.1007/s00382-012-1343-y>.

754 Jakob, C., 2010: Accelerating progress in global atmospheric model development through
755 improved parameterizations: Challenges, opportunities, and strategies. *Bull. Amer. Mete-
756 or. Soc.*, **91** (7), 869–875, doi:10.1175/2009BAMS2898.1, URL <http://dx.doi.org/10.1175/2009BAMS2898.1>,
757 <http://dx.doi.org/10.1175/2009BAMS2898.1>.

758 Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of
759 atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-

760 phase cumulus cloud model. part I: Model description and possible applications. *J. Atmos. Sci.*,
761 **61** (24), 2963–2982, doi:10.1175/JAS-3350.1, URL <http://dx.doi.org/10.1175/JAS-3350.1>.

762 Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer
763 1997 IOP: model formulation, results, uncertainties and sensitivities. *J. Atmos. Sci.*, **30**, 607–
764 625.

765 Lamer, K., and P. Kollias, 2015: Observations of fair-weather cumuli over land: Dynamical
766 factors controlling cloud size and cover. *Geophys. Res. Lett.*, **42** (20), 8693–8701, doi:
767 10.1002/2015GL064534, URL <http://dx.doi.org/10.1002/2015GL064534>, 2015GL064534.

768 Lamer, K., P. Kollias, and L. Nuijens, 2015: Observations of the variability of shallow trade
769 wind cumulus cloudiness and mass flux. *J. Geophys. Res. Atmos.*, **120** (12), 6161–6178, doi:
770 10.1002/2014JD022950, URL <http://dx.doi.org/10.1002/2014JD022950>, 2014JD022950.

771 Lenderink, G., and Coauthors, 2004: The diurnal cycle of shallow cumulus clouds over land:
772 A single-column model intercomparison study. *Quart. J. Roy. Meteor. Soc.*, **130**, 3339–3364,
773 doi:10.1256/qj.03.122.

774 Lin, W., and Coauthors, 2015: Racoro continental boundary layer cloud investigations. part iii:
775 Separation of parameterization biases in single-column model cam5 simulations of shallow cu-
776 mulus. *J. Geophys. Res. Atmos.*, n/a–n/a, doi:10.1002/2014JD022524, URL <http://dx.doi.org/>
777 10.1002/2014JD022524.

778 Long, C. N., and Y. Shi, 2008: An automated quality assessment and control algorithm for surface
779 radiation measurements. *Open Atmos. Sci. J.*, **2**, 23–37.

780 Mace, G. G., and S. Benson, 2008: The vertical structure of cloud occurrence and radiative forcing
781 at the sgp arm site as revealed by 8 years of continuous data. *Journal of Climate*, **21** (11), 2591–

782 2610, doi:10.1175/2007JCLI1987.1, URL <http://dx.doi.org/10.1175/2007JCLI1987.1>, http://
783 dx.doi.org/10.1175/2007JCLI1987.1.

784 Mace, G. G., S. Benson, and S. Kato, 2006a: Cloud radiative forcing at the atmospheric radiation
785 measurement program climate research facility: 2. vertical redistribution of radiant energy by
786 clouds. *J. Geophys. Res. Atmos.*, **111** (D11), n/a–n/a, doi:10.1029/2005JD005922, URL <http://dx.doi.org/10.1029/2005JD005922>, d11S91.

787

788 Mace, G. G., and Coauthors, 2006b: Cloud radiative forcing at the atmospheric radiation
789 measurement program climate research facility: 1. technique, validation, and comparison
790 to satellite-derived diagnostic quantities. *J. Geophys. Res. Atmos.*, **111** (D11), n/a–n/a, doi:
791 10.1029/2005JD005921, URL <http://dx.doi.org/10.1029/2005JD005921>, d11S90.

792

793 Mather, J., 2016: *Decadal Vision Progress Report: Implementation Plans and Status for the Next
Generation ARM Facility*. DOE/SC-ARM-16-036.

794

795 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer
796 for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. *J.
797 Geophys. Res. Atmos.*, **102** (D14), 16 663–16 682, doi:10.1029/97JD00237, URL <http://dx.doi.org/10.1029/97JD00237>.

798

799 Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics
800 parameterization for application in cloud and climate models. part i: Description. *J. Atmos. Sci.*,
801 **62** (6), 1665–1677, doi:10.1175/JAS3446.1, URL <http://dx.doi.org/10.1175/JAS3446.1>.

802

803 Neggers, R. A. J., M. Köhler, and A. C. M. Beljaars, 2009: A dual mass flux framework for
boundary layer convection. part i: Transport. *J. Atmos. Sci.*, **66** (6), 1465–1487, doi:10.1175/2008JAS2635.1, URL <http://dx.doi.org/10.1175/2008JAS2635.1>.

804 Neggers, R. A. J., and A. P. Siebesma, 2013: Constraining a system of interacting parameteriza-
805 tions through multiple-parameter evaluation: Tracing a compensating error between cloud verti-
806 cal structure and cloud overlap. *J. Climate*, **26** (17), 6698–6715, doi:10.1175/JCLI-D-12-00779.
807 1, URL <http://dx.doi.org/10.1175/JCLI-D-12-00779.1>.

808 Neggers, R. A. J., A. P. Siebesma, and T. Heus, 2012: Continuous single-column model evaluation
809 at a permanent meteorological supersite. *Bull. Amer. Meteor. Soc.*, **93** (9), 1389–1400, doi:
810 10.1175/BAMS-D-11-00162.1, URL <http://dx.doi.org/10.1175/BAMS-D-11-00162.1>.

811 Neggers, R. A. J., A. P. Siebesma, G. Lenderink, and A. A. M. Holtslag, 2004: An evaluation of
812 mass flux closures for diurnal cycles of shallow cumulus. *Mon. Wea. Rev.*, **132** (11), 2525–2538,
813 doi:10.1175/MWR2776.1, URL <http://dx.doi.org/10.1175/MWR2776.1>.

814 Oue, M., P. Kollas, K. W. North, A. Tatarevic, S. Endo, A. M. Vogelmann, and W. I. Gustafson,
815 2016: Estimation of cloud fraction profile in shallow convection using a scanning cloud
816 radar. *Geophys. Res. Lett.*, n/a–n/a, doi:10.1002/2016GL070776, URL <http://dx.doi.org/10.1002/2016GL070776>.

817 Park, S., and C. S. Bretherton, 2009: The university of washington shallow convection and moist
818 turbulence schemes and their impact on climate simulations with the community atmosphere
819 model. *J. Climate*, **22** (12), 3449–3469, doi:10.1175/2008JCLI2557.1, URL <http://dx.doi.org/10.1175/2008JCLI2557.1>.

820 Randall, D. A., and D. G. Cripe, 1999: Alternative methods for specification of observed forcing in
821 single-column models and cloud system models. *J. Geophys. Res. Atmos.*, **104** (D20), 24 527–
822 24 545, doi:10.1029/1999JD900765, URL <http://dx.doi.org/10.1029/1999JD900765>.

825 Rio, C., and F. Hourdin, 2008: A thermal plume model for the convective boundary layer: Rep-
826 resentation of cumulus clouds. *J. Atmos. Sci.*, **65** (2), 407–425, doi:10.1175/2007JAS2256.1,
827 URL <http://dx.doi.org/10.1175/2007JAS2256.1>.

828 Rio, C., F. Hourdin, F. Couvreux, and A. Jam, 2010: Resolved versus parametrized boundary-layer
829 plumes. part ii: Continuous formulations of mixing rates for mass-flux schemes. *Bound.-Layer*
830 *Meteor.*, **135** (3), 469–483, doi:10.1007/s10546-010-9478-z, URL <http://dx.doi.org/10.1007/s10546-010-9478-z>.

831 Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux
832 approach for the convective boundary layer. *J. Atmos. Sci.*, **64** (4), 1230–1248, doi:10.1175/
833 JAS3888.1, URL <http://dx.doi.org/10.1175/JAS3888.1>.

834 Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow
835 cumulus convection. *J. Atmos. Sci.*, **60**, 1201–1219.

836 Turner, D. D., S. A. Clough, J. Liljegren, E. Clothiaux, K. Cady-Pereira, and K. Gaustad, 2007a:
837 Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Mea-
838 surement (ARM) microwave radiometers. *IEEE Trans. Geosci. Remote Sens.*, **45**, 3680–3690,
839 doi:10.1109/TGRS.2007.903703.

840 Turner, D. D., and Coauthors, 2007b: Thin liquid water clouds: Their importance and our chal-
841 lenge. *Bull. Amer. Meteor. Soc.*, **88**, 177–190.

842 Twomey, S., 1959: The nuclei of natural cloud formation Part II: The supersaturation in natural
843 clouds and the variation of cloud droplet concentration. *Geofisica pura e applicata*, **43** (1),
844 243–249, doi:10.1007/BF01993560, URL <http://dx.doi.org/10.1007/BF01993560>.

846 Vilà-Guerau de Arellano, J., 2007: Role of nocturnal turbulence and advection in the formation of
847 shallow cumulus over land. *Quart. J. Roy. Meteor. Soc.*, **133**, 1615–1627, doi:10.1002/qj.138.

848 Vogelmann, A. M., and Coauthors, 2012: Racoro extended-term aircraft observations of boundary
849 layer clouds. *Bull. Amer. Meteor. Soc.*, **93** (6), 861–878, doi:10.1175/BAMS-D-11-00189.1,
850 URL <http://dx.doi.org/10.1175/BAMS-D-11-00189.1>.

851 Vogelmann, A. M., and Coauthors, 2015: Racoro continental boundary layer cloud investigations.
852 part i: Case study development and ensemble large-scale forcings. *J. Geophys. Res. Atmos.*,
853 n/a–n/a, doi:10.1002/2014JD022713, URL <http://dx.doi.org/10.1002/2014JD022713>.

854 Wang, Y., J. Fan, R. Zhang, L. R. Leung, and C. Franklin, 2013: Improving bulk microphysics
855 parameterizations in simulations of aerosol effects. *J. Geophys. Res. Atmos.*, **118** (11), 5361–
856 5379, doi:10.1002/jgrd.50432, URL <http://dx.doi.org/10.1002/jgrd.50432>.

857 Xie, S., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column model/cloud
858 system resolving model forcing data using numerical weather prediction products constrained
859 by surface and top of the atmosphere observations. *J. Geophys. Res. Atmos.*, **109**, D01104,
860 doi:10.1029/2003JD004045.

861 Xie, S., and Coauthors, 2010: ARM climate modeling best estimate data. *Bull. Amer. Meteor. Soc.*,
862 **91**, 10.1175/2009BAMS2891.1.

863 Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on
864 column-integrated budgets of mass, heat, moisture, and momentum: Approach and application
865 to arm measurements. *J. Atmos. Sci.*, **54**, 1503–1524.

866 Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep
867 convection over land: Inferences from observations of the diurnal cycle collected at the ARM
868 Southern Great Plains site. *J. Atmos. Sci.*, **67**, 2943–2959.

869 Zhang, Y., and S. A. Klein, 2013: Factors controlling the vertical extent of fair-weather shal-
870 low cumulus clouds over land: Investigation of diurnal-cycle observations collected at the arm
871 southern great plains site. *J. Atmos. Sci.*, **70**, 1297–1315, doi:10.1175/JAS-D-12-0131.1.

872 Zhao, C., and Coauthors, 2012: Toward understanding of differences in current cloud retrievals
873 of arm ground-based measurements. *J. Geophys. Res. Atmos.*, **117** (D10), n/a–n/a, doi:10.1029/
874 2011JD016792, URL <http://dx.doi.org/10.1029/2011JD016792>.

875 LIST OF TABLES

Table 1. List of sensitivity tests on LES configurations and forcing uncertainties. 33

Sensitivity Tests	
−1	same as 0, except with spectral bin microphysics scheme
0	CASS default control run with bulk microphysics scheme (which is used in all the following experiments)
1	same as 0, except with a quartered domain of 14.4 km by 14.4 km
2	same as 0, except with a quadruple domain of 57.6 km by 57.6 km
3	same as 0, except with a doubled finer horizontal resolution of 25 meter
4	same as 0, except with a half coarser horizontal resolution of 100 meter
5	same as 0, except with a doubled finer vertical resolution of 10 meter below 5 km
6	same as 0, except with a half coarser vertical resolution of 45 meter below 5 km
7	same as 0, except with a constant geostrophic wind 10 m s^{-1}
8	same as 0, except with a wind nudging time scale of 10 hours, 10 times longer than control run
9	same as 0, except with a subsidence rate without ECOR flux correction
10	same as 0, except with an initial sounding without residual layer behavior
11	same as 0, except with large-scale forcing without removing values that are not significantly different from zero
12	same as 0, except with EBBR average surface heat fluxes
13	same as 0, except with ECOR average surface heat fluxes

TABLE 1. List of sensitivity tests on LES configurations and forcing uncertainties.

LIST OF FIGURES

878 **Fig. 1.** Top left (a): $0.65 \mu\text{m}$ reflectance by GOES-8 at 08:15 Local Standard Time (LST) on June 21 1997 over
 879 ARM SGP site (yellow star denotes the location of central facility). Top right (b): Time versus height plot
 880 of vertical cloud fraction (%) based on the vertically pointing radar-lidar-ceilometer combined value added
 881 product (ARSCL). X-axis is the LST on June 21 1997. Bottom left (c): same image but for 2001/05/14 at
 882 13:15 LST, one of the shallow cumulus days selected in ???. Bottom right (d): observed ARSCL time-height
 883 profile of cloud fraction for our composite case.

884 **Fig. 2.** Initial sounding profile at 0530 LST. The redline shows the average sounding over all days used in the composite,
 885 while the blue line shows the CASS sounding after imposing a residual layer. The initial sounding
 886 for the ARM97 case is denoted by grey solid lines. 36

887 **Fig. 3.** Diurnal cycle of domain-average surface sensible (red) and latent (blue) heat fluxes from EBBR (dotted lines),
 888 ECOR (dashed lines) and combined EBBR/ECOR data (solid lines) using total energy flux from
 889 EBBR and an average evaporative fraction based on both EBBR and ECOR data. 38

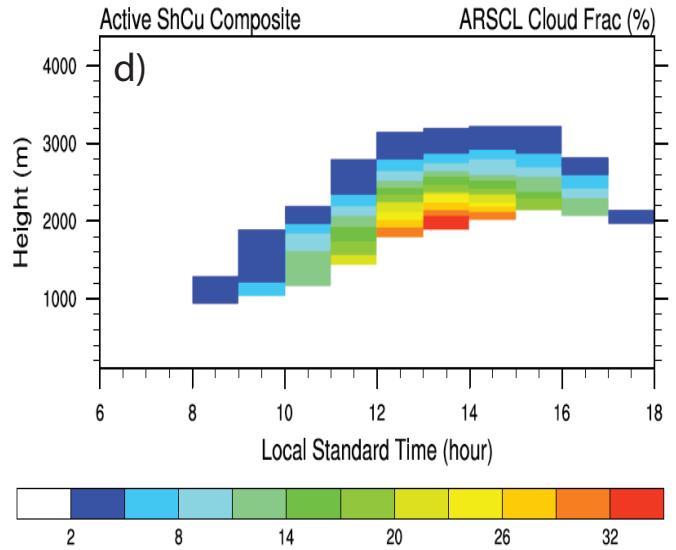
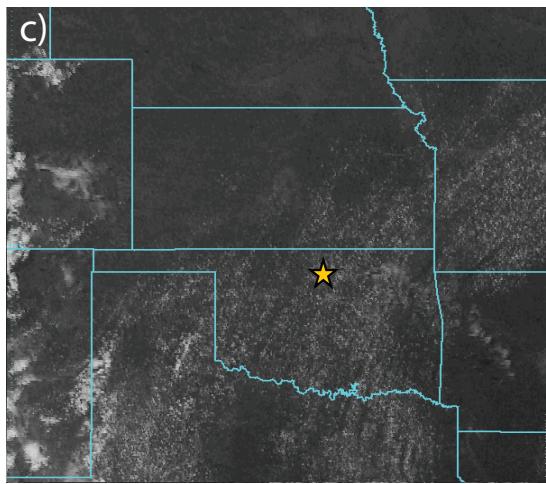
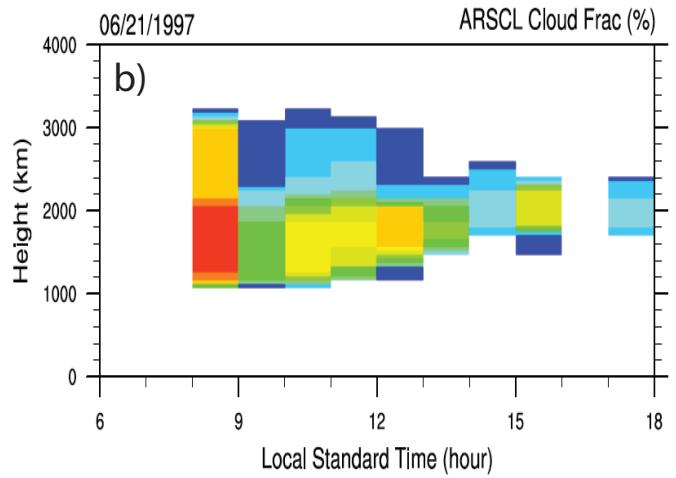
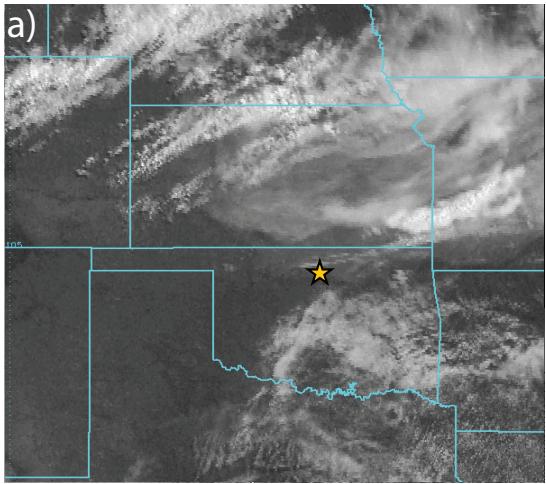
890 **Fig. 4.** Time-Height composite mean large scale horizontal advective tendency for temperature (top row) and water
 891 vapor mixing ratio (second row), subsidence rate (third row) and zonal wind (bottom left), meridional wind
 892 (bottom middle) and wind speed (bottom right) for the composite case based on long-term continuous
 893 forcing data from variational analysis. In the first three rows, the left figures are the original composite
 894 values; the middle figures show the data passing the significance test that values are statistically different
 895 from "zero"; and the right figures show our idealization of the forcing. 39

896 **Fig. 5.** Vertical profiles of (left) potential temperature and (right) water vapor mixing ratio at (top) 1130 LST and
 897 (bottom) 1730 LST. 40

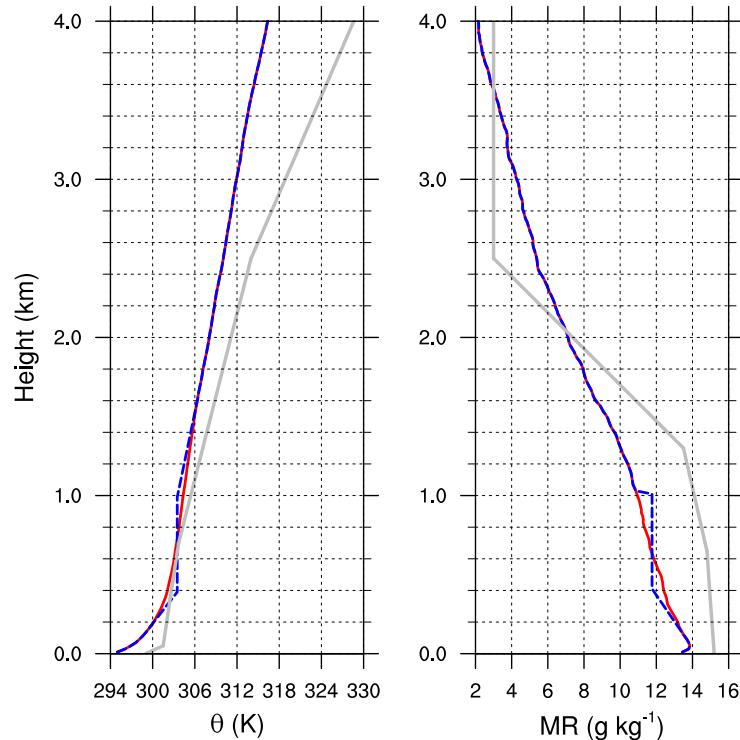
898 **Fig. 6.** Vertical profiles of (top left) potential temperature, (top right) water vapor mixing ratio, (bottom left) cloud
 899 fraction and (bottom right) in-cloud cloud water content at 1330 LST. Solid grey line denotes observed
 900 cloud fraction at 1330 LST. 41

901 **Fig. 7.** Time series of (a) total projected cloud fraction at the surface, (b) projected cloud fraction with cloud vertical
 902 extent greater than 300 meters, (c) average cloud base height and (d) average cloud chord length, (e)
 903 liquid water path, (f) projected cloud fraction with liquid water path greater than 80 g m^{-2} , (g) downward
 904 longwave radiation at surface and (h) downward cloud shortwave radiative effect at surface from obser-
 905 vation (solid black), LES with 1-moment bulk microphysics (bulk, dotted red) and LES with bin spectral
 906 microphysics (bin, dashed blue). The width of shading on either side the observed composite mean value
 907 denotes one standard error of the mean across all the sample days. The shading is only shown for hours
 908 with sample days greater than 30 for the purpose of statistical significance. 42

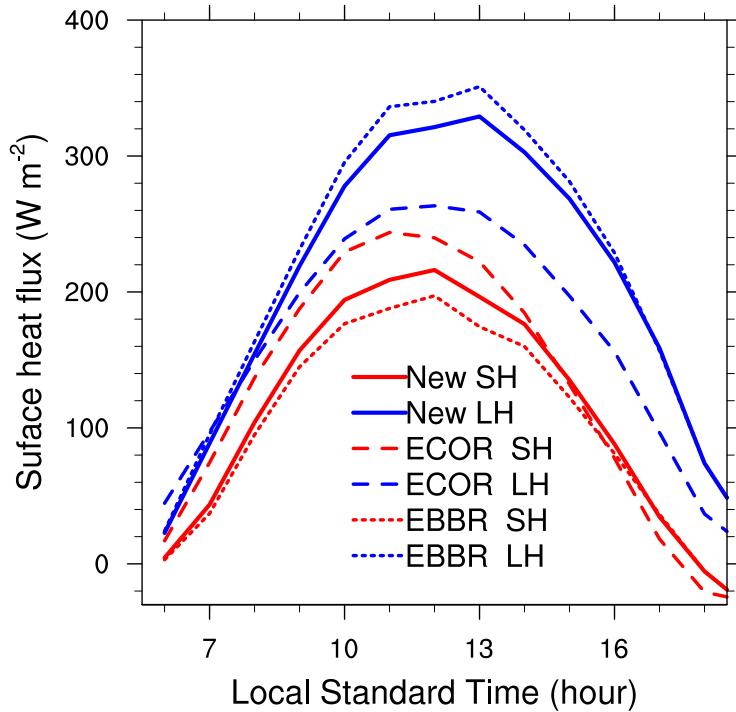
909 **Fig. 8.** (Top row) LES cloud fraction with (left) bulk and (right) bin microphysics; (second row) in-cloud total
 910 condensate; (third row) in-cloud updraft velocity; (fourth row) buoyancy in the cloud core area. 43

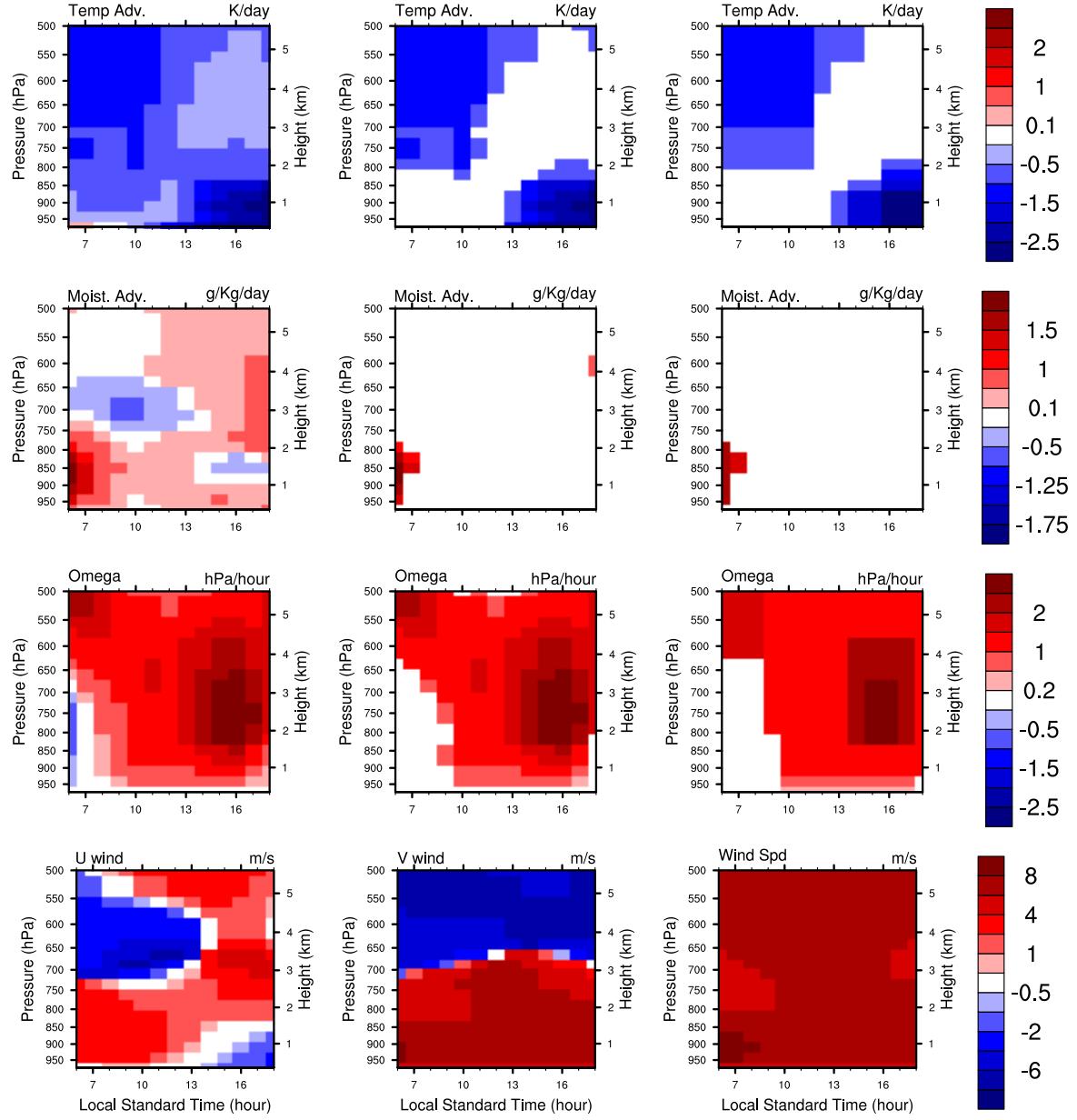




911 **Fig. 9.** Observed (top left) liquid water path probability distribution versus local standard time (hour) and (top right)
 912 the fraction of occurrence for a radar profile with simultaneous liquid water path observation greater than
 913 the reported value to pass the fuzzy logic algorithm for valid vertical velocity retrieval. Bottom rows show
 914 the LES liquid water path probability distribution for bulk (bottom left) and bin (bottom right) microphysics
 915 runs. 44

916 **Fig. 10.** Comparison at 1330 LST between LES with bin (dashed lines) and bulk (dotted lines) microphysics and
 917 radar retrievals (solid lines): (left) vertical velocity for updraft (red) and downdraft (blue); (middle) updraft
 918 and downdraft area fractions; (right) updraft and downdraft mass flux. The comparison (top row) is limited
 919 to cloudy profiles with liquid water path greater than 80 g m^{-2} in both LES and valid observations. Bottom
 920 row is the comparison for all the cloud profiles in LES and all the valid retrievals. 45


921 **Fig. 11.** Model bias (model minus observation) at 1330 LST when shallow cumulus cloud fraction peaks during the
 922 day. X-Axis numbers denote the sensitivity tests listed in Table 1. 46

923 **Fig. 12.** Model bias (model minus observation) in mixed-layer potential temperature (top) and mixing ratio (bottom)
924 at 1130 LST (left) and 1730 LST (right). X-Axis numbers denote the sensitivity tests listed in Table 1. 47


925 **Fig. 13.** Comparison between observation (black line), ensemble mean of individual day LES runs (blue long dashed
926 line) and the LES of the composite CASS control run (red line). All LES runs are with bulk microphysics.
927 The shaded area around the ensemble mean value denotes the width of one standard error across 40 in-
928 dividual day ensemble runs which produce shallow cumulus clouds. The vertical solid grey lines denote
929 inter-quartile range of the 40 ensemble runs which produce shallow cumulus clouds. 48


930 FIG. 1. Top left (a): 0.65 μ m reflectance by GOES-8 at 08:15 Local Standard Time (LST) on June 21 1997 over ARM SGP site
 931 (yellow star denotes the location of central facility). Top right (b): Time versus height plot of vertical cloud fraction (%) based on
 932 the vertically pointing radar-lidar-ceilometer combined value added product (ARSCL). X-axis is the LST on June 21 1997. Bottom
 933 left (c): same image but for 2001/05/14 at 13:15 LST, one of the shallow cumulus days selected in ???. Bottom right (d): observed
 934 ARSCL time-height profile of cloud fraction for our composite case.

935 FIG. 2. Initial sounding profile at 0530 LST. The redline shows the average sounding over all days used in the composite,
 936 while the blue line shows the CASS sounding after imposing a residual layer. The initial sounding for the ARM97 case is denoted
 937 by grey solid lines.

938 FIG. 3. Diurnal cycle of domain-average surface sensible (red) and latent (blue) heat fluxes from EBBR (dotted lines), ECOR
 939 (dashed lines) and combined EBBR/ECOR data (solid lines) using total energy flux from EBBR and an average evaporative fraction
 940 based on both EBBR and ECOR data.

941 FIG. 4. Time-Height composite mean large scale horizontal advective tendency for temperature (top row) and water vapor
 942 mixing ratio (second row), subsidence rate (third row) and zonal wind (bottom left), meridional wind (bottom middle) and wind
 943 speed (bottom right) for the composite case based on long-term continuous forcing data from variational analysis. In the first three
 944 rows, the left figures are the original composite values; the middle figures show the data passing the significance test that values
 945 are statistically different from "zero"; and the right figures show our idealization of the forcing.

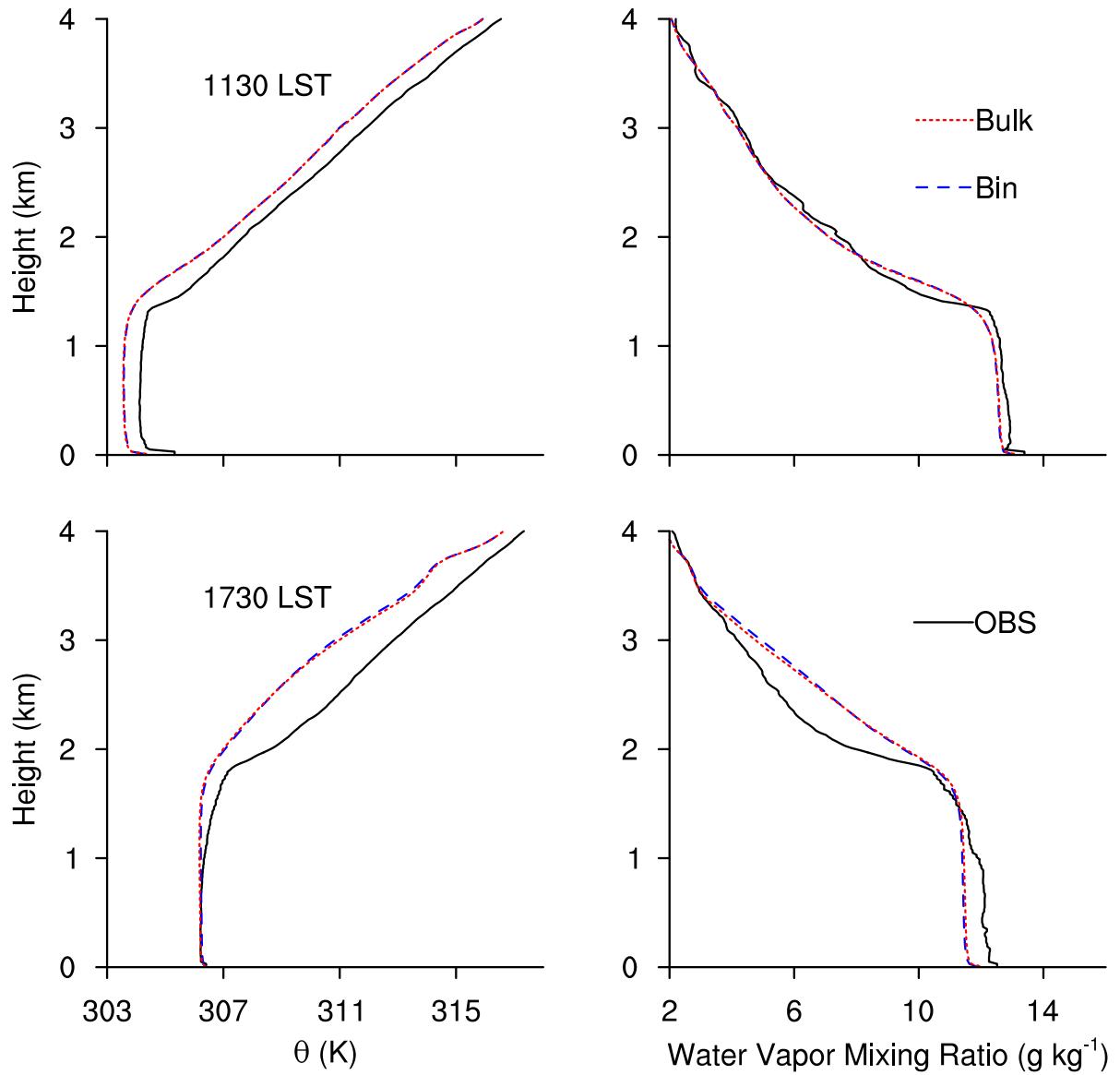


FIG. 5. Vertical profiles of (left) potential temperature and (right) water vapor mixing ratio at (top) 1130 LST and (bottom) 1730 LST.

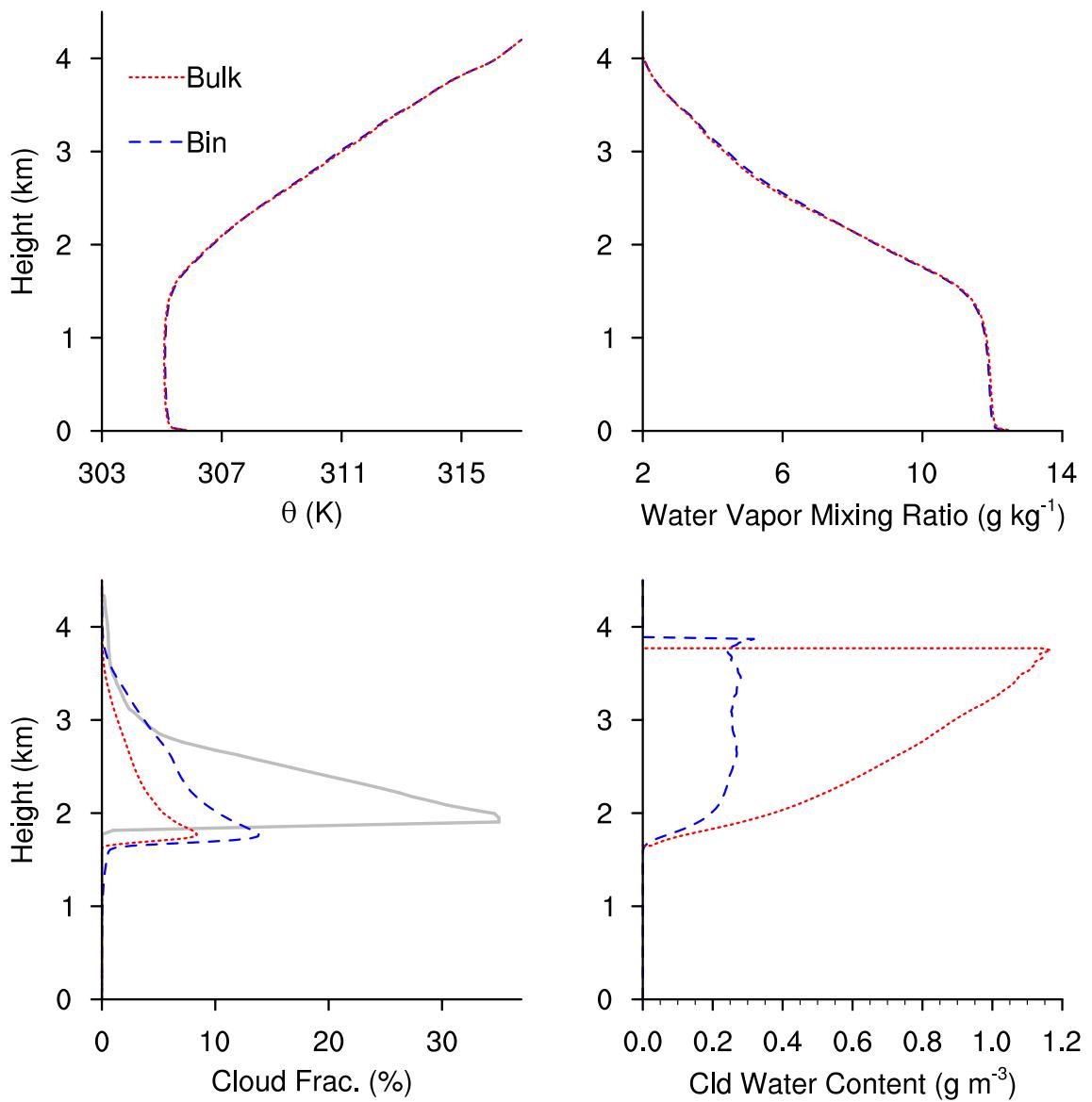
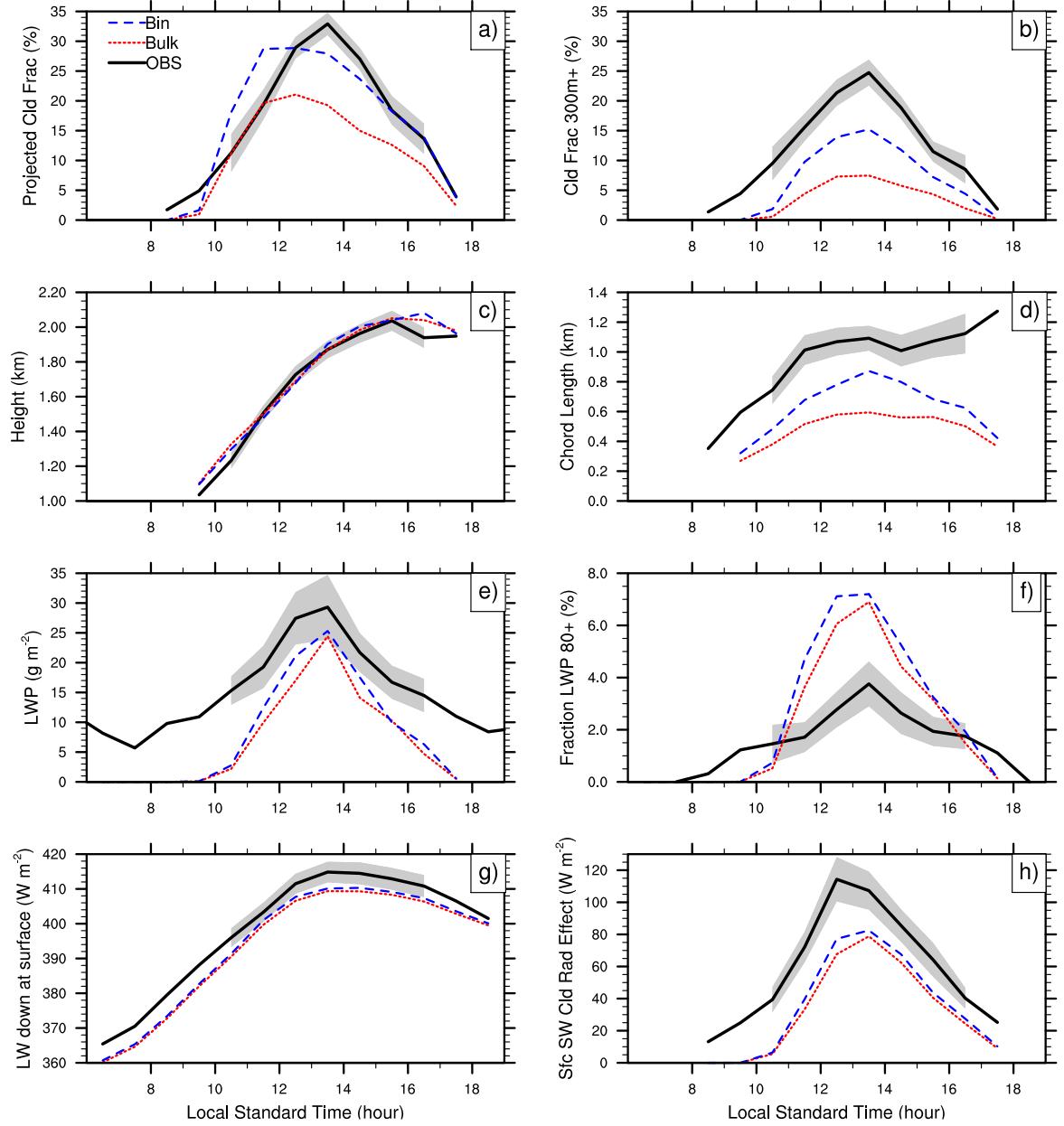



FIG. 6. Vertical profiles of (top left) potential temperature, (top right) water vapor mixing ratio, (bottom left) cloud fraction and (bottom right) in-cloud cloud water content at 1330 LST. Solid grey line denotes observed cloud fraction at 1330 LST.

946 **FIG. 7.** Time series of (a) total projected cloud fraction at the surface, (b) projected cloud fraction with cloud vertical extent
947 greater than 300 meters, (c) average cloud base height and (d) average cloud chord length, (e) liquid water path, (f) projected
948 cloud fraction with liquid water path greater than 80 g m^{-2} , (g) downward longwave radiation at surface and (h) downward cloud
949 shortwave radiative effect at surface from observation (solid black), LES with 1-moment bulk microphysics (bulk, dotted red) and
950 LES with bin spectral microphysics (bin, dashed blue). The width of shading on either side the observed composite mean value
951 denotes one standard error of the mean across all the sample days. The shading is only shown for hours with sample days greater
952 than 30 for the purpose of statistical significance.

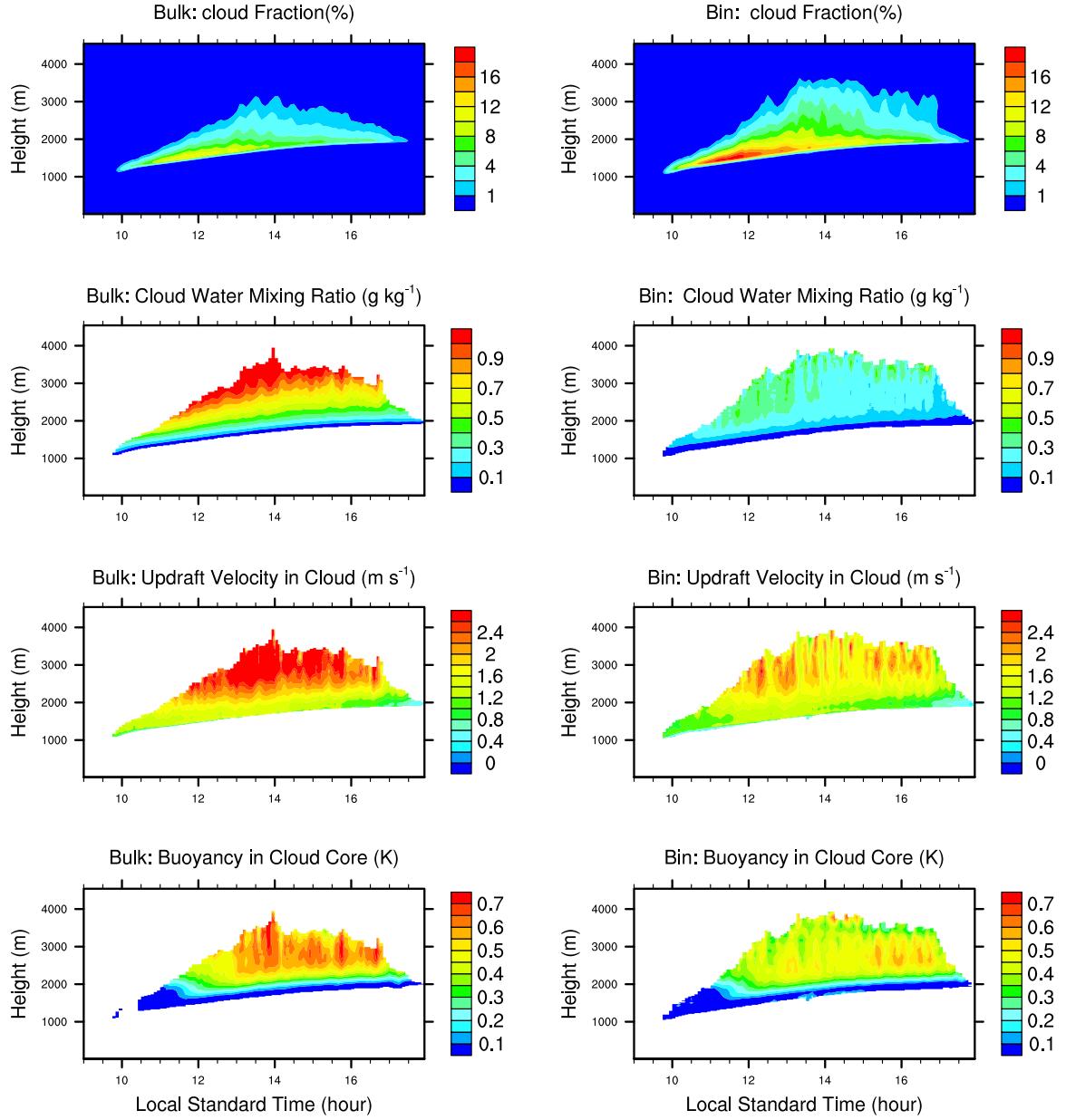
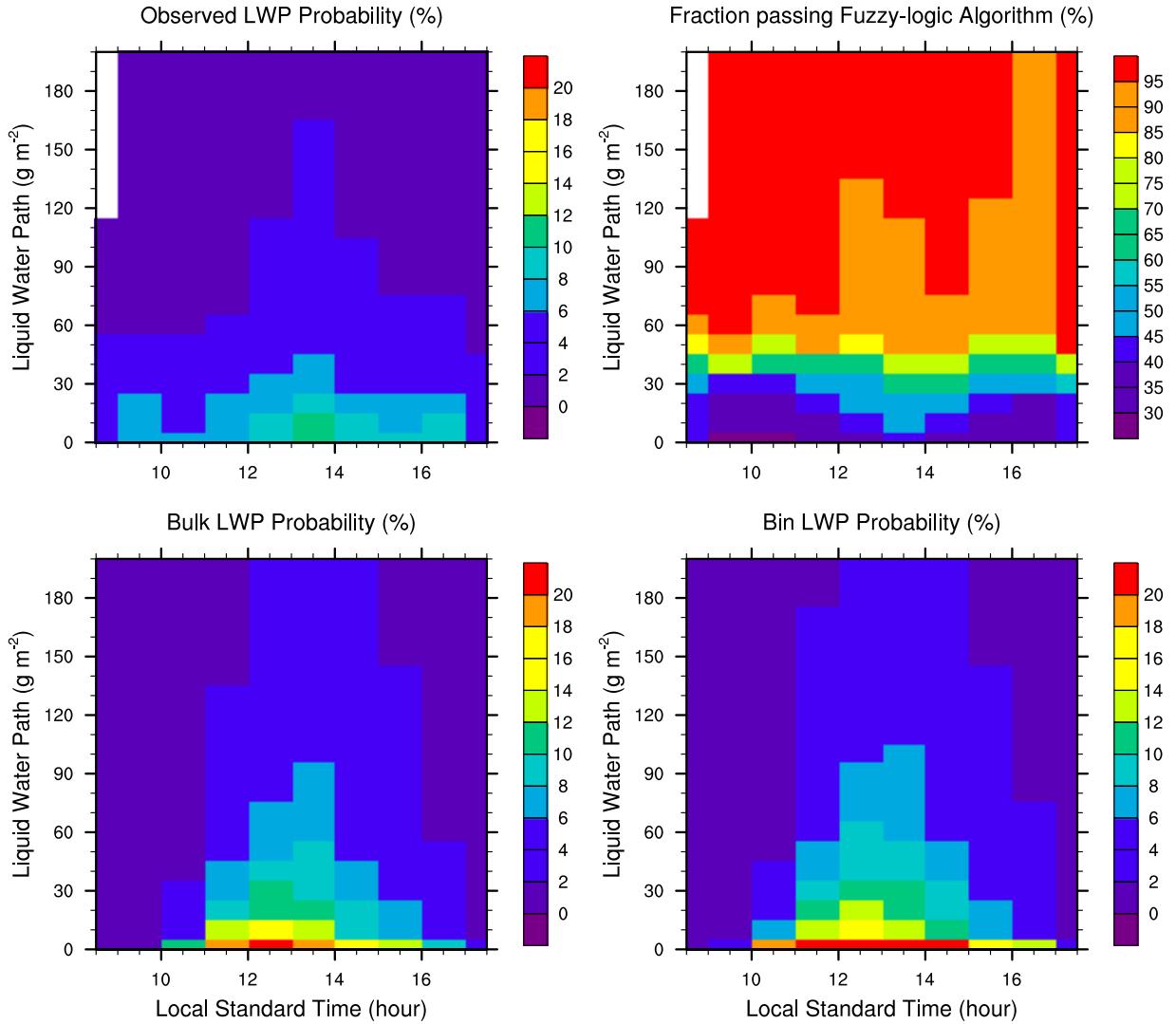
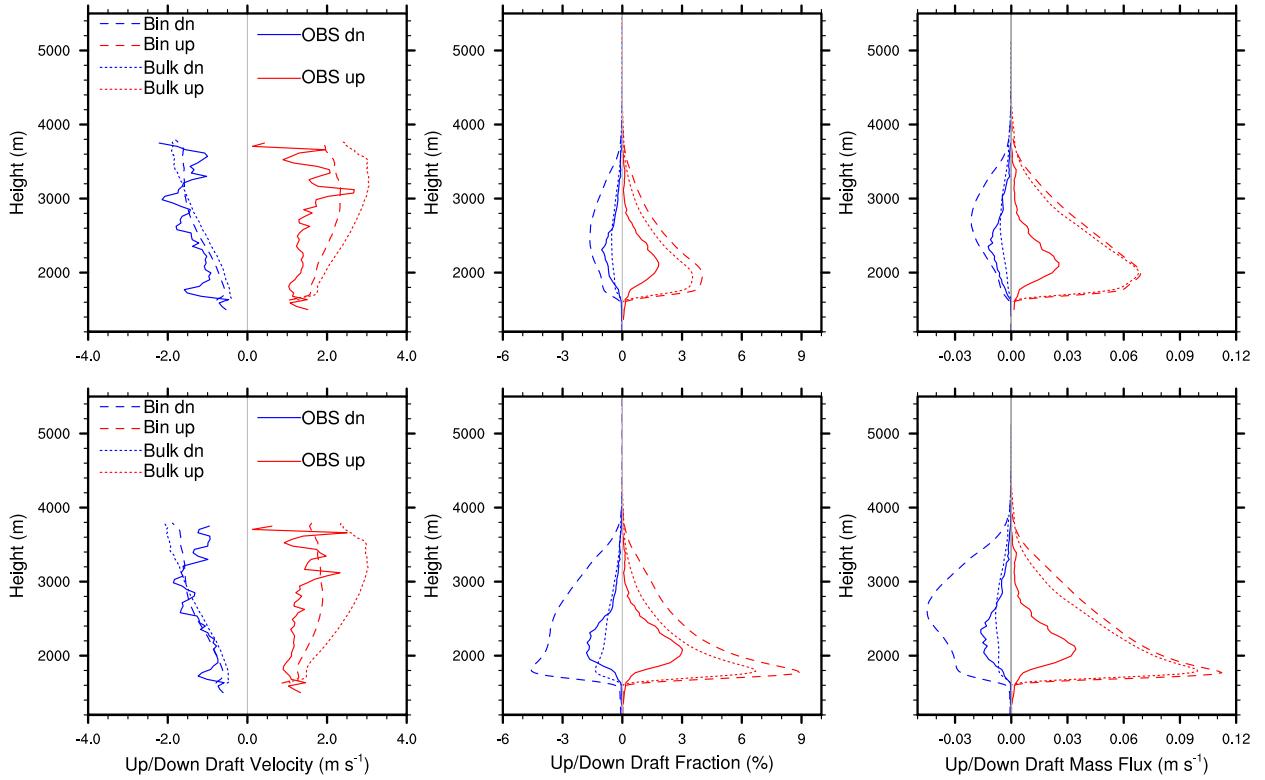




FIG. 8. (Top row) LES cloud fraction with (left) bulk and (right) bin microphysics; (second row) in-cloud total condensate; (third row) in-cloud updraft velocity; (fourth row) buoyancy in the cloud core area.

953 FIG. 9. Observed (top left) liquid water path probability distribution versus local standard time (hour) and (top right) the
954 fraction of occurrence for a radar profile with simultaneous liquid water path observation greater than the reported value to pass
955 the fuzzy logic algorithm for valid vertical velocity retrieval. Bottom rows show the LES liquid water path probability distribution
956 for bulk (bottom left) and bin (bottom right) microphysics runs.

957 FIG. 10. Comparison at 1330 LST between LES with bin (dashed lines) and bulk (dotted lines) microphysics and radar
958 retrievals (solid lines): (left) vertical velocity for updraft (red) and downdraft (blue); (middle) updraft and downdraft area fractions;
959 (right) updraft and downdraft mass flux. The comparison (top row) is limited to cloudy profiles with liquid water path greater than
960 80 g m⁻² in both LES and valid observations. Bottom row is the comparison for all the cloud profiles in LES and all the valid
961 retrievals.

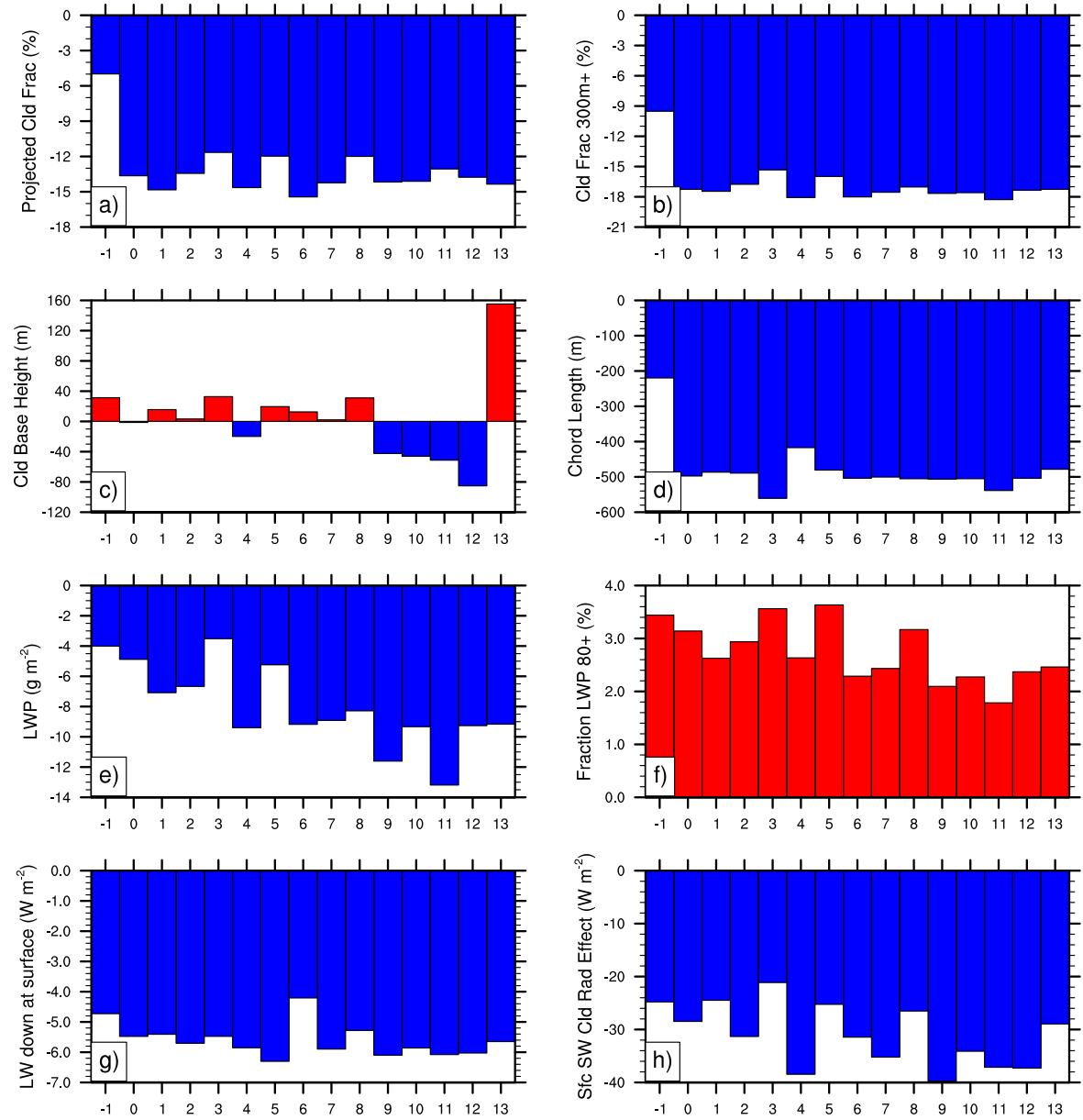


FIG. 11. Model bias (model minus observation) at 1330 LST when shallow cumulus cloud fraction peaks during the day. X-Axis numbers denote the sensitivity tests listed in Table 1.

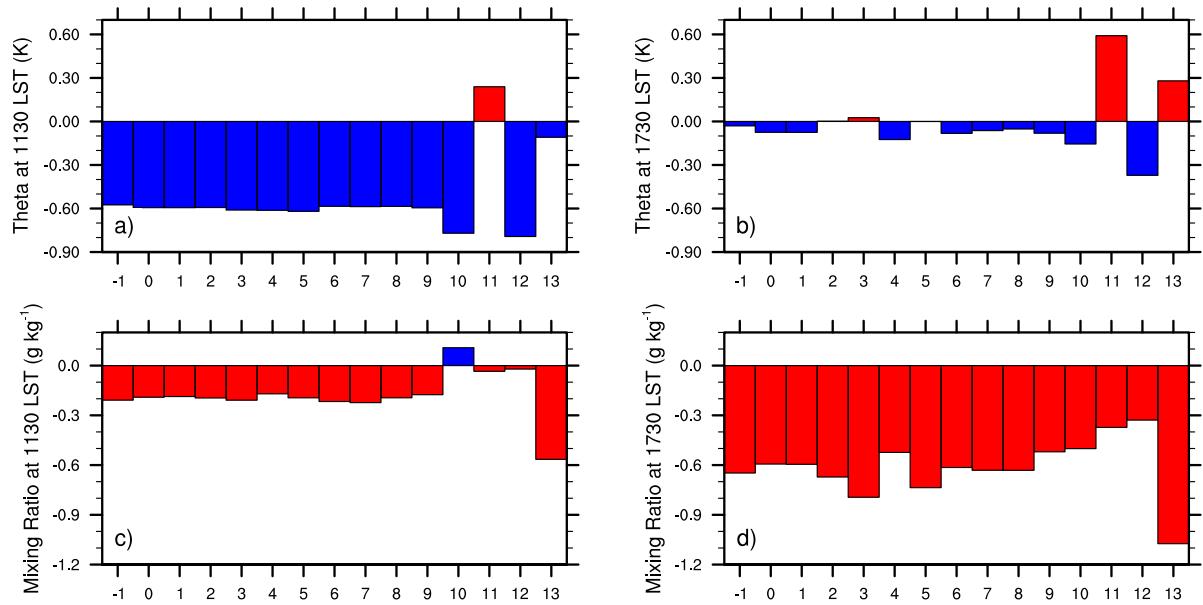
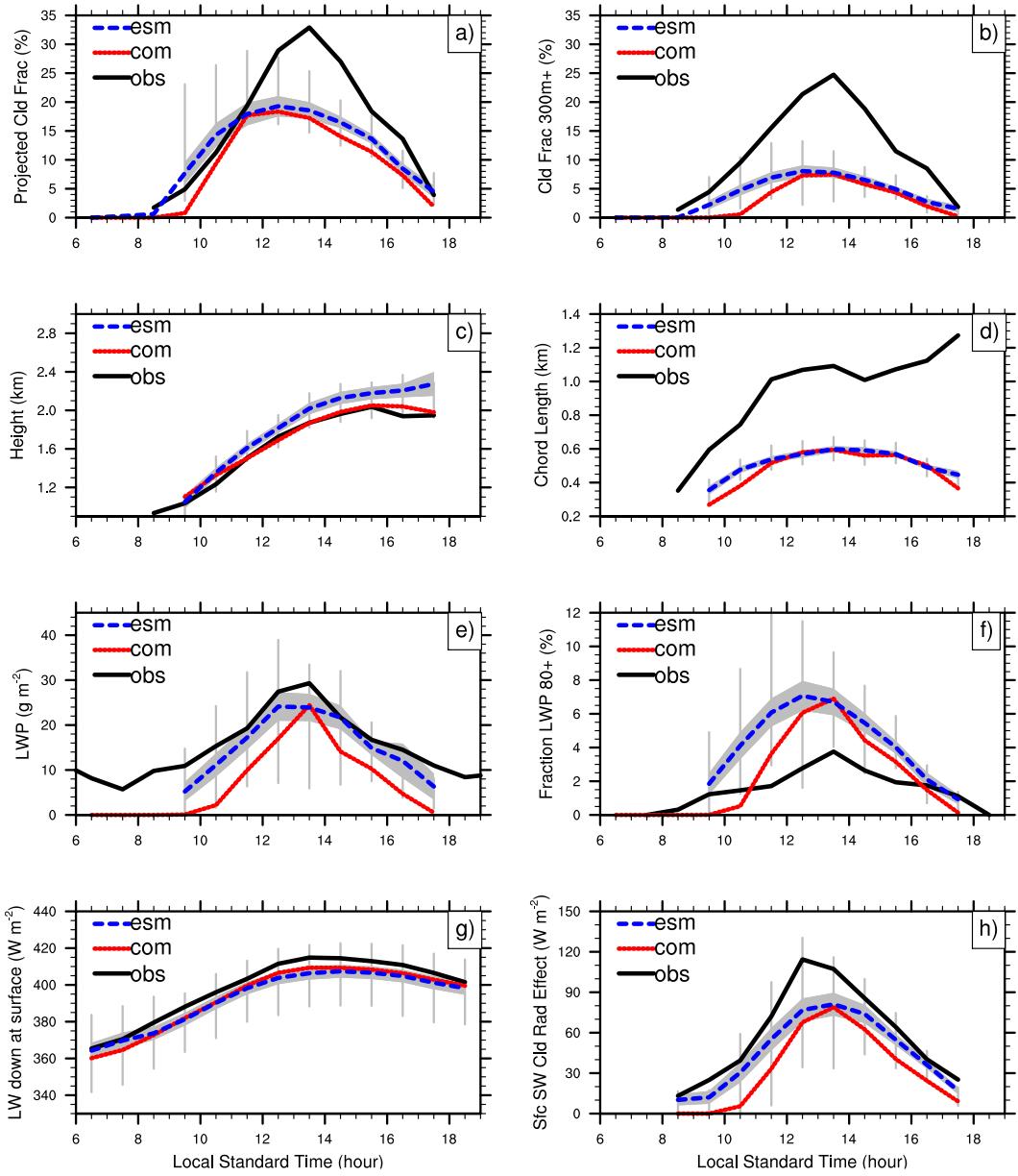



FIG. 12. Model bias (model minus observation) in mixed-layer potential temperature (top) and mixing ratio (bottom) at 1130 LST (left) and 1730 LST (right). X-Axis numbers denote the sensitivity tests listed in Table 1.

962 FIG. 13. Comparison between observation (black line)
963 and ensemble mean of individual day LES runs (blue long dashed line)
964 and the LES of the composite CASS control run (red line). All LES runs are with bulk microphysics. The shaded area around
965 the ensemble mean value denotes the width of one standard error across 40 individual day ensemble runs which produce shallow
966 cumulus clouds. The vertical solid grey lines denote inter-quartile range of the 40 ensemble runs which produce shallow cumulus
967 clouds.