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The HERMES (high explosive response to mechanical stimulus) model was developed over the past 
decade to enable computer simulation of the mechanical and subsequent energetic response of 
explosives and propellants to mechanical insults such as impacts, perforations, drops, and falls.  The 
model is embedded in computer simulation programs that solve the non-linear, large deformation 
equations of compressible solid and fluid flow in space and time. It is implemented as a user-defined 
model, which returns the updated stress tensor and composition that result from the simulation 
supplied strain tensor change. Although it is multi-phase, in that gas and solid species are present, it 
is single-velocity, in that the gas does not flow through the porous solid. More than 70 time-dependent 
variables are made available for additional analyses and plotting. The model encompasses a broad 
range of possible responses: mechanical damage with no energetic response, and a continuous 
spectrum of degrees of violence including delayed and prompt detonation. This paper describes the 
basic workings of the model. 

I. INTRODUCTION 
The HERMES model was developed to describe the circumstances under which explosives or 
propellants undergo a rapid release of energy following a mechanical insult. The model has been 
applied to the analysis of accidents (Hazards assessment), to a suite of standardized tests used to assess 
whether a system can be designated an Insensitive Munition (IM assessment), and to laboratory-scale 
experimental test vehicles. At present, it is not a fully predictive model, whose results could be used 
in the absence of testing. Instead HERMES is best used as a guide for understanding the results of 
testing, as an aid for designing new tests, and for identifying key mechanisms that contribute most to 
the reaction violence in a specific scenario.   

Fundamental to our model is the interplay between damage in the explosive and the violence of the 
energetic response. Mechanical insults produce damage, which is manifest as surface area by the 
creation of cracks and fragments, and as porosity by the separation of crack faces and isolation of the 
fragments. As the kinetic energy and power of the insult increases, the degree of damage and the 
volume of damage both increase. After a localized ignition (see Sec. IV.A), open porosity permits a 
flame to spread easily throughout the damaged volume and ignite the newly formed surface area. The 
additional surface area leads to a proportional increase in the mass-burning rate. The pressure increases 
at an accelerating rate, because the burn velocity is pressure dependent. If neither mechanical strength 
nor inertial confinement can successfully contain the pressure, the surrounding materials begin to 



2 

 

expand. The expansion of a confining structure can produce a metal fragment field, and the expansion 
of gas products can produce air blast. Both of these consequences can be used as measures of violence 
for the event.  At the same time, the expansion reduces the pressure, slows the further production of 
gas product, and may even extinguish the flame. Under circumstances of high confinement, whether 
from material strength or the inertia of a large mass, pressure may build up rapidly enough that a shock 
wave is propagated into the surrounding unburned explosive. In some cases, this may lead to the 
development of a delayed detonation, DDT (deflagration-to-detonation transition). If the confining 
structure is weaker, unburned but fragmented explosive may be ejected away from the burning 
material. If that cloud of unburned fragments hits a nearby solid, a stopping shock will develop in the 
cloud that may lead to a delayed detonation, XDT (x for unknown cause of detonation transition). 
XDT is now generally believed to be caused by the shock recompaction of damaged, porous material, 
leading to a detonation that may spread to the nearby, undamaged explosive or propellant. Our model 
is intended to be useful for performing computer simulations of the entire spectrum of energetic 
response. 

There are three main components of the model: pressure equilibration between the reactant and gas 
products (Sec. II), mechanical strength and failure of the solid reactant (Sec. III), and rate laws that 
determine the composition (reactant and gas product) as it evolves in time and space (Sec. IV). We 
conclude by describing previous and potential future applications of HERMES, and assessing its 
capabilities and shortcomings. (Sec. V) 

II. CALCULATION OF PRESSURE 
In computational studies of DDT (Baer and Nunziato 1986, Lapela et al. 2001), and interior ballistics 
(Gough and Zwarts 1979), the stress tensor of the mixture has contribution from both the gas and the 
solid phases. At low porosity, there can be stress in the solid due to stress bridging in the 
skeleton/matrix that surrounds the gas-filled pores, even when the gas pressure is nil. Any gas pressure 
adds to the total stress tensor. In the rock and soil mechanics literature, the stress in the matrix that 
exceeds the pressure in the intervening fluid (water) is called the effective stress (Terzaghi et al. 1996, 
p83), and the strength of the matrix is assumed to depend on the effective stress. If the porosity is so 
high that the particles lose contact, there is no longer a contribution to the pressure from stress bridging 
in the matrix and the composite has no strength. Figure 1 illustrates the differences between low 
porosity (left) and high porosity (right). In our model, the gas and solid phases are present at the initial 
time. The initial porosity of the explosive is filled with product gas at the initial conditions, usually 1 
bar and 298K. 

A. Equation of state of the gas products 
We use the thermodynamic chemical equilibrium solver Cheetah (Fried et al. 2002, Bastea et al. 2006) 
to develop an equation of state table for the equilibrium composition of the gas products. Once the 
constituents of the explosive are determined, our table is constructed by calculating the pressure and 
internal energy density for a set of isotherms over a range of densities. Typically, our density range is 
10-6 to 3.5 g/cc, and our temperature range is 290 to 30,000K. Our interpolations in the table are 
logarithmic in density and pressure, and linear in internal energy density and temperature. We permit 
extrapolation in density, but force the temperature to be no lower than the lowest temperature entry 
and no higher than the highest entry.  
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Figure 1. Illustration of low porosity (25% by volume, left), where stress-bridging can occur from one side of the 
cross section to the other in the connected matrix of solid (yellow or light) and high porosity (75% by volume, 
right), where the individual particles of solid (yellow or light) are in pressure equilibrium with the surrounding 
gas product (red or dark). 

 

The critical point temperature of the gas product mixture is often below 500K. As a consequence, the 
gas-fluid coexistence region is then located within the boundaries of our table. The recent addition 
(Cheetah v.8) of liquid phase species of water, carbon dioxide and ammonia have dramatically 
improved the behavior in this region for CHNO explosives by reducing and/or eliminating Van der 
Waals loops. However, in some cases, changes in the condensed phase or gas composition on an 
isotherm can lead to non-monotonic behavior (kinks). If a kink is observed, we use a smooth 
approximation for the isotherms. We connect a pressure-density point on the high-density side of the 
kink and a point on the low-density side with a straight line in (log-density, log-pressure) space and 
(log-density, energy density) space. This fosters convergence of our iteration for pressure equilibrium. 
To calculate the gas pressure for a density, specific internal energy pair, we interpolate the pressure 
and density logarithmically and the specific energy and temperature linearly. The gas energy density 
is tabulated as relative to the reactant at STP. As a result, transformation of reactant to product is not 
accompanied by any “energy of reaction”. Rather the energy density of the gas products at STP have 
a large negative value. As an example, the products of a TNT detonation expanded to STP have an 
energy density of -1000 cal/g in our table, which corresponds to the conventional explosive yield of 
TNT without afterburn, 1000 cal/g. With this convention, there is no change in the internal energy 
density for a conversion of reactant to product at constant volume. 

B. Equation of state of the solid 
We use a Mie-Grüneisen equation of state for the solid pressure, Ps.  

𝑃" = 𝑃$%	 𝑣" +
𝛤
𝑣"

𝑒 − 𝑒$%(𝑣")  (1) 

where Pad is the pressure on the adiabat from room temperature and pressure, vs is the specific volume 
of the solid, G is the Grüneisen coefficient and ead is the specific energy (energy per unit mass) on the 
adiabat, and where 
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𝑃$% = −
𝜕𝑒$%
𝜕𝑣"

 (2) 

The pressure on the adiabat is given by a low-order polynomial in excess compression. It is convenient 
for us to use the adiabat as the reference curve for the solid (and also the skeleton/matrix in Section C 
below) because we are implementing a version of CREST (Handley, 2006) for the conversion rate of 
reactant to gas product in a detonation. (See Sec. IV.D) That model uses a measure of entropy as the 
dependent variable, for which the principal adiabat is the reference state. 

𝑃$% = 𝐴0𝜇 + 𝐴2𝜇2 + 𝐴3𝜇3 (3) 

where 

𝜇 =
1
𝑣"𝜌6

− 1 (4) 

The parameter r0 is the reference state mass density of the (non-porous) solid reactant. The specific 
internal energy on the adiabat is given for the polynomial (Eq. 3) by 

𝜌6𝑒$% 𝑣" = 𝐴0 𝑉 − ln 𝑉 − 1 + 𝐴2
1
𝑉 − 𝑉 + 2ln	(𝑉)

+ 𝐴3 𝑉 −
3
𝑉 +

1
2𝑉2 − 3 ln 𝑉 +

3
2  

(5) 

where the relative volume, V, is 

𝑉 = 𝜌6𝑣" (6) 

The Grüneisen coefficient is given by 
𝛤
𝑣"
= 𝜌6 𝐵6 + 𝐵0𝜇 + 𝐵2𝜇2  (7) 

The A-coefficients (Eq. 3) are fitted to available data for the reactant, either the measured Hugoniot of 
the unreacted solid, measured isotherms, or molecular dynamics calculations of the isotherms, together 
with an estimate of the Grüneisen parameter (B-coefficients, Eq. 7). 
 

C. Equation of state of the skeleton/matrix  
Matrix compaction is based on the P-a model described by (Herrmann 1969). The fundamental 
premise of that model is that if the solid equation of state has the form 

𝑃" = 𝑓 𝑣"  (8) 

where Ps is the solid pressure (Eq. 1) and vs is the solid specific volume, then the equation of state of 
the porous matrix has the form 

𝑃> = 𝑓
𝑣
𝛼@

 (9) 

where v is the total specific volume of solid plus void, and using the same functional dependence, f. 
Herrmann’s distention ratio, aH, was given by 
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𝛼@ =
𝑣
𝑣"

 (10) 

In his formulation, the mass fraction of gas product is always zero. In our generalization, we replace 
the specific volume of the mixture, v, (Eqs. 9 and 10) with the matrix specific volume, vm.  

𝑣> =
𝑣

1 − 𝜆 (11) 

where l is the mass fraction of gas product. The specific volume of the mixture, which is the reciprocal 
of the density, is the sum of gas and solid contributions, 

𝑣 = 𝜆𝑣B + 1 − 𝜆 𝑣" (12) 

where vg is the gas specific volume. In what follows, we define our distention ratio, a, by 

𝛼 =
𝑣>
𝑣"

 (13) 

With this change, the porosity, φ, which is the volume fraction of gas, Fg, is given by 

𝜑 = 𝛷B =
𝜆𝑣B
𝑣 =

𝑣 − (1 − 𝜆)𝑣"
𝑣 = 1 −

𝑣"
𝑣>

= 1 −
1
𝛼 (14) 

We modified Herrmann’s implementation in three other ways. First, we assume that the unload-reload 
and crush curves are adiabats. In Herrmann’s examples the reference curves were taken to be the 
normal Hugoniot of the solid. In other applications (Linde, et al. 1972) the reference curves were 
quasi-static (isothermal) unloading and crush curves. Second, we reduce the modulus for unloading-
reloading by a multiplier, fr, that is a linear function of our distension ratio. 

𝑓E = 𝑓E0 + 1 − 𝑓E0
𝛼F − 𝛼
𝛼F − 1

, 𝛼 ≤ 𝛼F (15) 

Here ax is an input parameter, the maximum distention ratio that can support compressive stress. When 
the reactant is sufficiently dilute, the matrix relative volume exceeds ax, and there is pressure 
equilibrium between the separated reactant particles and the gas product. For a > ax, fr takes the value 
fr1. When a has the value 1, fr takes the value 1. If the reactant is not dilute, so that the reactant particles 
touch, then the matrix carries some of the external load. Experimental models using dynamic 
photoelasticity illustrate the stress-bridging that can occur for the case where gas pressure is nil 
(Roessig and Foster 2001).  In (Eq. 15) fr1 is the minimum ratio of the modulus of the porous solid to 
the modulus of the non-porous solid. In our work ax is normally taken to be about 1.6 and fr1 is taken 
to be about 0.2. The unload-reload curve is then given by 

𝑃IE = 𝑓E𝑃$%
𝑣>
𝛼  (16) 

A reduction of the stiffness of the unload-reload curve with porosity is often observed experimentally. 
In addition, we found that calculations using a different porous crush algorithm (Reaugh 1987) 
exhibited reduced numerical noise when such a stiffness reduction was included. We use the solid 
reference adiabat (Eq. 3) as the basis function to calculate the unload-reload adiabat.  
The matrix adiabat is the pressure per unit superficial area (solid plus gas volume). The matrix pressure 
is given by the same Grüneisen form as the solid (Eq. 1), and uses the same Grüneisen ratio (Eq. 7). 
The energy on the adiabat, however, is not amenable to an analytic form since the adiabatic pressure 
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is path-dependent due to irreversible crushing. Instead, we perform a numerical integration for each 
element along its own path. 

Next, the adiabatic pressure is assessed for tensile failure, using one of the three modules available in 
HERMES. (Tensile failure is described in Sec. III.A). If required, the stress tensor and porosity 
measures are adjusted. The crush curve, Pc, that limits the pressure for porous solids is then evaluated. 
In Herrmann’s (and our) formulations the crush curve is a function of the distention ratio, and increases 
to a maximum as the distention ratio approaches 1. 

𝑃J = 𝑔(𝛼) (17) 

We used one of Herrmann’s example crush curves as a starting point. Ignoring the elastic limit, his 
curve is given by 

𝑃J = 𝑃6 1 −
𝛼 − 1
𝛼F − 1

0
J

 (18) 

where in Herrmann’s example, the power c is 2. Our third change is to modify the crush curve so that 
the crush pressure is achieved at a value of amin slightly larger than 1. (See Eq. 19). The purpose of 
this change is to permit the Newton iteration, we use to solve for the value of a on the crush curve at 
a given specific volume of the matrix, to achieve convergence, especially for c ≥ 4. 

𝑃J = 𝑃6 1 + 𝛿J −
𝛼 − 1
𝛼F − 1

0
J

 

𝛿J =
𝛼MNO − 1
𝛼F − 1

0
J
	 

(19) 

With this change, the value of a where the pressure is zero, amax, exceeds ax. 

𝛼>$F = 1 + 𝛼F − 1 1 + 𝛿J J = 𝛼F + 𝛿P (20) 

 

 If the unload-reload adiabat Pur (Eq. 16) exceeds the crush pressure, the porosity is reduced so that 
the adiabatic pressure is equal to the crush pressure at the current specific volume of the matrix. Then 
the flow strength is calculated and the stress tensor evaluated for plastic flow (as described in Sec. 
III.B). If required, the stress tensor and porosity measures are adjusted. We illustrate the load-unload 
curves and the crush curve in Figure 2. The crush curve is shown as a solid line. It is assumed that the 
assembly started as poured, unconsolidated powder at initial relative volume 1.6, then loaded to 
various pressures, unloaded, and reloaded (dashed lines). 
 

D. Calculation of pressure equilibrium 
 The equation for pressure equilibrium is based on multi-phase, multi-velocity formulations used 
for DDT (Baer and Nunziato 1986, Lapela et al. 2001) and for calculations of interior ballistics (Gough 
and Zwarts 1979). At pressure equilibrium, the solid pressure is given by 

𝑃" = 𝑃B + 𝑃>/Φ" (21) 
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Figure 2. Crush curve (solid) from initial relative volume 1.6, loaded to various pressures and unloaded to various 
porosities (dashed curves) and reloaded. The crush pressure in this illustration is 100 MPa, and the power c has 
the value 2. 

 

where Pm is the macroscopic matrix pressure, equal to the effective stress (Terzaghi et al. 1996, p89), 
exerted on the total cross section; Fs is the volume fraction of the reactant; and Pg is the pressure of 
the product gas. In this way, the solid pressure is the sum of the gas pressure and the pressure in the 
solid due to stress bridging. (Throughout, we assume that the volume fractions of each species and 
their area fractions are equal based on stereological principles.) If the porosity is so large that the solid 
particles are separated, the matrix contribution is nil, and the solid and gas pressures are equal. The 
total pressure of the mixture is given by 

𝑃 = ΦB𝑃B + Φ"𝑃" = 𝑃B + 𝑃> (22) 

where  

ΦB + Φ" = 1 (23) 

The matrix specific volume is given by (Eq. 11). It is unchanged by the partition of volume between 
the reactant and the gas product: 

𝑣> =
𝑣

1 − 𝜆 =
𝜆

1 − 𝜆 𝑣B + 𝑣" 
(24) 

where vs and vg are the specific volumes of reactant and product. As a result, the macroscopic matrix 
pressure is unchanged during the iteration to pressure equilibrium. We note that (Eq. 23) is just (Eq.12) 
divided by v. 
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E. Energy partition during pressure equilibrium 
For any volume element, conservation of energy in the absence of heat transfer is given by 

𝑑𝑒 = − 𝑃 + 𝑄 𝑑𝑣 + 𝑑𝑤> (25) 

where e is the specific internal energy of the element, P is the element pressure, and Q is the artificial 
viscosity used in the computer simulation program to spread a shock front over a few computational 
cells. The term dwm is the incremental work done against the stress-deviator tensor of the matrix.  

𝑑𝑤> = 𝑣>(𝜏FF𝑑𝜀FF + 𝜏XX𝑑𝜀XX + 𝜏YY𝑑𝜀YY + 𝜏FX𝑑𝜀FX + 𝜏XY𝑑𝜀XY + 𝜏YF𝑑𝜀YF) (26) 

where the total strain increments deij are input to the model from the simulation program, and the 
stress-deviator tensor (tij) is calculated in HERMES including strength effects (See Section III.B). In 
our formulation, the matrix is the only constituent that exhibits shear resistance. 
The model must partition the energy among the constituents. For energy partitioning, we reject thermal 
equilibrium, which is an assumption that is inconsistent with the mesoscale picture of damaged 
explosive burning from exposed surfaces. We estimate the characteristic times for thermal and stress 
equilibrium by the following to show that stress equilibrium occurs much faster than thermal 
equilibrium. 

Laminar burn speeds for the HMX explosives LX-10 and PBX 9501 are linear in pressure and were 
measured to be 200 mm/s at a pressure of 0.2 GPa (Tringe et al. 2014). Even for a fragment as small 
as 20 µm, the time to completely burn at that pressure is 50 µsec. The characteristic time for pressure 
equilibration in the same size fragment is 10 nsec, given by the ratio of the diameter to the sound speed 
in the solid, at least 2 mm/µs. In contrast, the time for thermal equilibrium from conduction is 250 
µsec. As a consequence, the interior of the fragment is not preheated until the arrival of the burn front. 
Even for a detonation, described by the coalescence of burning hot spots, the product and reactant are 
separated by a flame thickness calculated to be 4 nanometers (Reaugh 2006). For a characteristic size 
of 2 µm the time to burn completely at 20 GPa is 50 nsec, but the characteristic time for thermal 
equilibrium is 700 nsec. The characteristic pressure equilibration time is 1 nsec. 

As an alternative to thermal equilibrium, several authors have proposed (Cowperthwaite 1981, Partom 
1981), or calculated (Reaugh and Lee 2002) the partition of energy during the transformation of 
reactant to product. These put the solid reactant on its adiabat and apply the left-over energy to the gas 
product. In addition, we need to partition the additional shock energy from the artificial viscosity, Q. 
We have chosen to add the shock energy to the solid when it can support bridging stresses. When the 
reactant is too dilute to support bridging stresses, the solid stays on its adiabat and the shock energy is 
added to the gas product. The closure for partitioning energy density among the constituents is 

𝑒 = 1 − 𝜆 𝑒" + 𝜆𝑒B (27) 

The incremental energy density of the solid is given by 

𝑑𝑒" = − 𝑃> + 𝑄 𝑑𝑣> + 𝑑𝑤> − 𝑃" − 𝑃>/Φ" 𝑑𝑣" (28) 

and the gas is given the remaining energy density via (Eq. 27). 

III. CALCULATION OF MECHANICAL FAILURE AND STRENGTH 
In our model, shear strength and mechanical failure are associated with the matrix. If the porosity is 
so large that stress bridging does not occur, the shear strength is nil. (We neglect any viscous 
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contribution of a particle-laden fluid.) The pressure dependence of shear strength uses the adiabatic 
matrix pressure, Padm. In our calculation, the matrix pressure is first calculated assuming that the matrix 
is on the unload-reload path. The resulting stress tensor is tested for tensile failure (Sec. III.A) and 
adjusted as needed. The matrix pressure is then limited by the crush curve (Eq. 19) and the stress tensor 
evaluated for plastic flow (Sec. III.B).  

A. Calculation of tensile failure 
Tensile failure is accomplished using one of three mutually exclusive methods chosen by input 
parameters. The first (Sec. III.A. 1) is a limit on tensile pressure to avoid non-physical states of stress. 
It is not intended to have any mechanical significance or accuracy. The second (Sec. III.A.2) is 
intended to represent quasi-static or dynamic fracture toughness with a more-or-less mesh-independent 
formulation. In this module cracks are represented by adjoining mesh elements where the maximum 
principal stress (most tensile) is reduced to zero. The third (Sec. III.A.3) is intended to represent 
dynamic fragmentation including failure in both compression and tension. Each broken element carries 
a single fragment dimension, generally smaller than the element itself, and an associated porosity. 
1. Minimum pressure module 
The minimum pressure module, sometimes known as a “pmin” model, tests the unload matrix pressure 
including the Grüneisen energy dependence against an input parameter, Pmin. If the unload pressure is 
more tensile than Pmin, the pressure in that element is set to zero. When this happens, the element 
behaves as if it were a suddenly broken spring, and sends pressure waves (high-frequency noise) into 
neighboring elements. Since larger elements have more stored energy than smaller ones, the failure 
patterns developed by “pmin” models are notoriously mesh dependent. 
2. Tensile fracture module 
The tensile fracture module, implemented in HERMES, is intended to apply to individual cracks or a 
small network of interacting cracks. It was developed to replicate a model developed at LLNL, which 
is approximately independent of mesh size (Zywich 2013). Creating surface area is accompanied by 
irreversible energy absorption, which is tied to experimental fracture measurements. In this way, the 
element in question does not behave like a suddenly broken spring.  Instead, energy is absorbed in 
creating fracture surfaces by gradually reducing the stress as a function of tensile strain. In the module, 
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the energy absorbed when creating a given superficial surface area is made less dependent on mesh 
size by making the specific energy density absorbed proportional to the inverse mesh size.  
The principal stress deviators, ordered so that the most tensile (largest algebraic value) is s1, and the 
most compressive s3, are given by the usual equations, for example (Fung and Tong, 2001, p88). 
 
 

𝜏6 =
2
3 𝐽2	

0/2

 

3𝜃 = cos_0
2𝐽3
𝜏63

 

𝑠0 = 𝜏6 2 cos 𝜃  

𝑠2 = 𝜏6 2 cos 𝜃 −
2𝜋
3  

𝑠3 = 𝜏6 2 cos 𝜃 +
2𝜋
3  

(29) 

where J2 and J3 are the second and third invariants of the stress deviator tensor 

𝐽2 =
1
2	𝜏bc𝜏bc 

𝐽3 =
1
3 𝜏bc𝜏cd𝜏db	 

(30) 

with the usual summation convention. It is not noted by Fung and Tong that the principal stress 
deviators, as given in (Eq. 26), are always ordered. That comes from the observation that the angle q 
is between 0 and p/3, so cos (q) is between 0.5 and 1; cos (q-2p/3) between -0.5 and 0.5; and cos 
(q+2p/3) between -0.5 and -1. 
The maximum principal stress on the matrix adiabat, s1 = s1 - Pad, is tested against the maximum 
permitted principal stress at failure, sfail 
𝜎f$bg = 𝜎JE 1 − 𝑑f  (31) 

where scr is a parameter, and df is the accumulated damage associated with tensile failure. If the value 
of s1 exceeds sfail, then the stress state, damage and porosity are updated. There are three cases to 
consider, according to (Zywich 2013). 
 
a. The case where s1 = 0 (all stress deviators 0) 
The current volumetric strain, ev, and the nominal adiabatic matrix pressure, P*

adm, is calculated 

𝜀h = −
1
𝑉 − 1  

𝑃$%>∗ = 𝐾f𝜀h 
(32) 
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where V is the updated relative volume, Kf is the unload reload modulus frA1 (Eq. 3 and 16), and ev is 
positive in tension. We define the parameters ecr and ef by 

𝜀JE = 𝜎JE/𝐾f 

𝜀f =
2𝑠𝒢
𝜎JE𝐿

 
(33) 

where L is an input parameter corresponding to a characteristic dimension of the element, s is the ratio 
of hydrostatic to deviatoric fracture energy, taken to be 1/3, and G is the strain energy release rate 
(Zehnder 2012 p57), which is related to the plane-strain fracture toughness, KIc. 

𝒢 =
𝐾mJ2

𝐸 1 − 𝜈2  (34) 

where E is Young’s modulus and n is Poisson’s ratio. 
The updated damage and matrix adiabatic pressure are calculated by the following replacements at 
each time step with the proviso that the damage does not decrease. 

𝑑f ←
𝜀h − 𝜀JE
𝜀f − 𝜀JE

 

𝑃$%> ←
𝑃$%>∗ 𝜀JE(1 − 𝑑f)
𝜀JE + 𝑑f 𝜀f − 𝜀JE

 
(35) 

 
b. The case where Padm is compressive and s1 is tensile 
The difference between s1 and sfail is used to calculate the damage increment. 

𝛥𝑑f =
𝜎0 − 𝜎f$bg 𝐴r
1 − 𝜎JE𝐴r

 (36) 

where AT is a parameter calculated from other input parameters 

𝐴r =
𝜎JE𝐿

2𝒢(2𝐺) (37) 

where G is the shear modulus and L is the characteristic dimension of the element. The stress deviators 
are multiplied by a term Smul 

𝑆>Ig =
1

1 + 2𝐺𝛥𝜆f
 

Δλw =
Δdw

2G A{s0 − Δdw
	 

(38) 

The pressure Padm is adjusted as in (Eq. 35). 

c. The case where Padm and s1 are both tensile 
This case is solved by a Newton iteration. A consistent new value of damage, df, is calculated so that 
the figure of merit, Ft, is nearly zero: 



12 

 

𝑃$%> = 𝑃$%>∗ (1 − 𝑑f) 

𝑆| = 𝜎JE(1 − 𝑑f) 

𝑆>Ig =
𝐴r𝑆|

𝐴r𝑆| + 𝛥𝑑f
 

𝐹~ = 𝑆>Ig𝑠0 − 𝑃$%> − 𝑆| 

(39) 

The stress deviators are multiplied by the term Smul and the pressure is updated as in (Eq. 35). 

3. Fragmentation module 
We wished to retain features of a fragmentation model we previously developed (Maienschein et al. 
1998) to describe the impact fragmentation that would result from solid rocket motor fallback 
accidents. In its original form, the specific surface area, S/V, was given by 
𝑆
𝑉 = 𝐴" 𝜀 − 𝜀6 𝜀 , for	𝜀 > 𝜀6 

𝜀 =
𝜀2𝑑𝑡~

6

𝜀	̇𝑑𝑡~
6

 
(40) 

where e is the plastic strain. The parameter 𝜀  is a measure of the average strain rate, but formulated 
so that it is unchanged after deformation stops. As and e0 are parameters. For our present application, 
we have introduced an additional input parameter Smax, so that the specific surface area is limited to 
that corresponding to a minimum fragment size, which we typically take as comparable to the 
explosive crystals used in the formulation. Until the plastic strain reaches the value e0, the specific 
surface area does not change. The use of the average strain rate was to permit extrapolation to linear 
scale factors spanning several orders of magnitude, in such a way that geometrically scaled 
experiments produced the same number of fragments. For our present purposes, the test experiments 
and the system-scale events to which the module will be applied do not differ by such a wide margin. 
As a result, we simplified the module by eliminating the strain-rate dependence.  
𝑆
𝑉 = 𝐴" 𝜀 − 𝜀6 ,			𝜀 > 𝜀6 (41) 

In contrast to the fallback application, however, the tests for which the module will be applied include 
both compressive and tensile loading. For that purpose, we have chosen to make e0 be smaller when 
the loading is largely tensile, and larger when the loading is compressive. We use the functional form 
we found suitable for describing ductile failure in metals (Wilkins et al. 1980): 

𝐷� = 𝑤�𝑤"𝑑𝜀
�

6
 (42) 

where the weighting function for shear, ws, is taken to be unity, and the weighting function for pressure, 
wp, is 

𝑤� =
1

1 + 𝑃$%>/𝑝6
 (43) 

where the pressure, Padm, is positive in compression. As the tensile pressure approaches the negative 
of the positive input parameter p0, the weighting function increases without bound. The parameter e0 
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is taken to be the value of plastic strain when the plastic damage variable, Dp reaches a critical input 
parameter value. 

In our module, the porosity increases from fracture strain. To accomplish this, we introduce a tensile 
pressure limit, st0, which decreases as an element’s maximum porosity, fx, increases.  

𝜎~6 = 𝜎6 1 −
𝛼>F − 1

𝛼F + 𝛿P − 1
exp −

𝑆
𝑉 𝐿6  

𝛼>F =
1

1 − 𝜑F
	 

(44) 

Here s0 and L0 are input parameters. The reduction of the tensile pressure limit with fragment size (via 
S/V) is a way to account for the reduced ligament area of binder as the fragments get smaller. In most 
of our applications we have set L0 to zero. 

If the magnitude of the tensile pressure is calculated to be greater than st0, the magnitude of the tensile 
pressure is reduced, and some of the volume strain is taken up as porosity. This is done in a gradual 
way, rather than suddenly reduced to zero, following the method of tensile fracture (Sec. III.A.2). 
When the tensile pressure first exceeds st0, we save the value of a as the parameter al. We describe a 
damage value, Dt, which starts at zero, and increases to 1 when a increases from al to al +ef. The input 
parameter ef is set so that creating a fracture surface with the same area requires the same energy, 
independent of the mesh size, Dx. For three-dimensional calculations with a fixed st0, this requires ef 
to be proportional to (Dx)-1. Following Zywich, we also assume it to be the case for two-dimensional 
axisymmetric calculations as well. 

In our simplified module, we use only the tensile pressure, so that we can calculate the new damage, 
a, and pressure without iteration if the calculated tensile pressure exceeds st0(1-Dt) by the following 
replacement steps. 

 

𝜀~ ←
𝜎~6
𝐾f

 

𝐷~ ←
1 − 𝜀~ −

𝛼g
𝑉>

𝜀f
𝑉>	

− 𝜀~
 

𝛼 ← 𝛼g + 𝐷~𝜀f 

𝑃$%> ← −𝜎~6 1 − 𝐷~  

𝜑 ← 1 −
1
𝛼 

(45) 

where j is porosity, Vm is the relative volume of the matrix, equal to 𝑣>𝜌6, and Kf is the bulk modulus 
of the solid (Eq. 32). 

Once the variable Dt reaches 1, (when the relative volume exceeds al+ef), the tensile pressure is never 
permitted to exceed zero. If the magnitude of the unadjusted tensile pressure is calculated to exceed 
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zero, then all the residual expansion from zero pressure is taken up as porosity, and a takes the value 
Vm. For this module, the element strength is multiplied by (1-Dt). 

B. Calculation of shear strength 
In our model, we iterate on the plastic strain rate to achieve consistency with the strain-rate dependence 
of the shear strength. 
1. Calculation of shear strength at a given plastic strain rate 
Following (Vorobiev et al. 2007) the pressure- and strain- dependent strength is given by 

𝑌� = 𝑌b𝑓� 1 − Ω + 𝑌EΩ (46) 

where W is a damage measure that varies between zero and one, fe is a strain hardening measure that 
has the maximum value of one, Yi is the strength of the undamaged (intact) reactant, and Yr is the 
(residual) strength of the fully damaged material. The damage parameter W, is given by 

Ω =
𝐷	max(0,φ-𝜑JE)

1 + 𝐷	max(0,φ-𝜑JE)
 (47) 

where φ is the porosity, and where D and jcr are parameters. The strain hardening term fe is calculated 
by 

𝑓� = 𝛿 + 𝐶(1 − 𝛿) (48) 

where C is a parameter between zero and one. The strain hardening measure d, which varies between 
zero and one, is calculated by 

𝛿 =
𝜀�

𝜀� + 𝜀�
 (49) 

where eh is a parameter and ep is the plastic strain. The strength of fully damaged material (residual 
strength) is given by 

𝑌E = 𝑅𝑌6
𝐴E
𝑌6
+ 𝐵E

𝑃>
𝑅𝑌6

 (50) 

where the parameter Ar is the cohesion, Br is related to the friction angle, and Y0 is the characteristic 
yield strength. Pm is the macroscopic matrix pressure. In this formulation, the pressure dependence of 
fully damaged material is not rate-dependent, but the pressure-independent part (cohesion) is rate-
dependent. The residual strength is constrained not to exceed the intact strength. For geologic 
materials, the parameter Ar is taken to be zero for cohesionless soils and broken rock (Vorobiev et al. 
2007). Here we let the parameter Ar be larger than zero to represent the observed rate-dependent 
residual strength of explosive at (nearly) zero pressure. The strain-rate parameter R is calculated by 

𝑅 = 1 +
𝜀�
𝜀6

E

 (51) 

where 𝜀� is the plastic strain rate, and where r and 𝜀6 are parameters. 

The strength of the intact material also has a pressure dependence: 
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𝑌b = 𝑅𝑌6 𝑜 + 𝑚
𝑃>
𝑅𝑌6

+ 𝑚/6 2 − (𝑚/6) , 𝑃> ≥ 0 (52) 

Here o and m are parameters and o generally takes the value one. For the case where Pm < 0, a straight-
line interpolation between the uniaxial tensile strength, Yt, and Yi (0) is extrapolated to the pressure 
intercept at zero strength. 

𝑌b = 𝑌b 0 +
3 𝑌b 0 − 𝑌~

𝑌~
𝑃>, 𝑃> < 0 (53) 

where Yt =btenY0, and the input parameter bten is the ratio of uniaxial tensile strength to uniaxial 
compressive strength. For metals, bten is about 1. For granular geologic materials, bten is typically 0.1. 
We note that (Eq. 51) (Vorobiev et al. 2007) has the disadvantage of being unbounded at high strain 
rates. The experimental data typically available from Split Hopkinson Pressure Bar apparatus (SHPB) 
are limited to a strain rate of a few thousand per second. Dynamic tests, even at velocity < 30 m/s can 
lead to local strain rates more than ten times the SHPB limit. In plane shocks, the strain rates are a few 
hundred times that limit. As a result, the extrapolated rate-dependent strength can become larger than 
is plausible. We incorporated a strength limiter that is applied smoothly, rather than an abrupt cut-off. 
The nominal strength Ye (Eq. 46) is scaled to an input parameter Ymax. That maximum value is applied 
for all values of Ye, so must be included when fitting parameters to experimental data: 

𝑌 = 𝑌>$F
𝑌�/𝑌>$F

1 + 𝑌�/𝑌>$F
 (54) 

 
2. Iteration of strength to convergence on strain rate 
The section above describes the calculation of the yield strength as a function of an assumed plastic 
strain rate. We perform an iteration on yield strength to converge to a strain rate using the figure of 
merit, Fy: 

𝐹X = 3𝐺𝜀�Δ𝑡 + 𝑌 − 𝜎 (55) 

where G is the shear modulus, Dt the time step, and 𝜎 the equivalent stress assuming the stress tensor 
were incremented elastically. We found that the change in slope of the yield stress near zero pressure 
was enough to prevent convergence with a Newton method solver. Instead we have implemented a 
robust but slow solver that logarithmically bisects the highest and lowest strain rates to find the 
subsequent trial value. The initial limits are between 0 and, 𝜀>$Fwhere 

𝜀>$F =
𝜎

3𝐺Δ𝑡 
(56) 

If the plastic strain rate is zero, the strength takes its minimum value, and the elastic assumption for 𝜎 
was correct. The upper limit to plastic strain rate is if all the applied strain increment is plastic, which 
results in the largest possible strength for this element at this time. Convergence is achieved when the 
value of the figure of merit is less than an input tolerance (we typically use values between 10-7 and 
10-5) multiplied by a characteristic value of the strength, Y0.  
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3. Calculation of the increase in porosity 
The increase in porosity (dilatency) common to granular geologic materials and assumed to be present 
in granular energetic materials, is calculated by 

𝜑 = 𝐴
𝑑𝑌
𝑑𝑃>

𝜀�(1 − 𝜑) (57) 

(Vorobiev et al. 2007) and is thermodynamically stable when the parameter A < 1. In our case, we use 

𝐴 =
𝐴6 + 𝐴0

𝑑𝑌
𝑑𝑃>

1 + 𝑑𝑌
𝑑𝑃>

 (58) 

where both A0 and A1 are taken to be less than 1. With the relatively simple analytic expressions for 
the pressure dependence of the intact and broken solid (Eq. 50, 52-54), we use analytic derivatives. 
4. Calculation of the Mohr-Coulomb yield surface 
For metals and clays, the von Mises yield surface for strength is widely used. In principal stress space, 
with axes (s1, s2, s3), the von Mises yield surface is a circular cylinder whose axis is the principal 
diagonal in the (1, 1, 1) direction. A cross-section normal to that cylinder (at constant pressure) is a 
circle, whose radius is the equivalent stress. See Fig. 2. The equivalent stress is given by 
3𝐽2	.	Although experiments to probe the yield surface are difficult, they have been done in a few 

instances, and for metals and clays, the yield surface can be nearly circular. Some tests with an 
aluminum alloy (Wilkins et al. 1980) have shown that even for metals, the equivalent strength in shear 
may not lie on the circle scaled to compression or tension. We are ignoring here such effects as 
kinematic hardening, whereby the circle does not expand with increasing plastic strain, but rather 
translates in the direction of straining. 

In contrast, for geologic and dry granular materials, the Mohr-Coulomb criterion is widely used (Fung 
and Tong, 2001 p161-163). (HERMES includes an input parameter to select the Mohr-Coulomb 
criterion.) The condition for that criterion is 
𝜎J − 𝜎~
2 = 𝑓0

𝜎J + 𝜎~
2 	 (59) 

where sc is the most compressive principal stress and st is the most tensile principal stress. The 
dependence is the arbitrary function f1. In this formulation, compressive stresses are positive. Most 
hydrodynamics codes follow the convention (Wilkins 1999) that the principal stresses and stress 
deviators are positive in tension, and pressure is positive in compression. In terms of the principal 
stress deviators ordered algebraically,  

𝑠0 ≥ 𝑠2 ≥ 𝑠3 (60) 

the Mohr-Coulomb criterion is rewritten for that convention as 
𝑠0 − 𝑠3
2 = 𝐴>J + 𝐵>J 𝑃> −

𝑠0 + 𝑠3
2  (61) 

where we have made the general functional dependence a (locally) linear one. 

For our explosive, the data for pressure, strain-, and strain-rate dependent flow strength were taken in 
either uniaxial or triaxial compression. In uniaxial compression, the lateral stress is zero, whereas in 
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triaxial compression, the lateral stress is compressive.  In either case, two of the three principal stresses 
are equal and less compressive than the third (axial) component. It is therefore convenient to make the 
basis for the module the equivalent stress in compression, so that 

𝑌J = 𝑓2(𝑃>) (62) 

where we use f2 to represent the pressure dependence described above in sections III.B.1 and 2. It is 
convenient to express other states of stress by the parameter x  where 

𝑠2 = 𝜉𝑠0 
𝑠0 + 𝑠2 + 𝑠3 = 0 

(63) 

Since we use the radial return method (Wilkins 1999) for reducing the stress tensor from the elastic 
trial state to the yield surface, the parameter, ξ can be evaluated from the elastic trial state before the 
flow stress is calculated. For uniaxial compression, ξ = 1. For uniaxial tension, ξ = -1/2. In shear, ξ = 
0. In uniaxial compression, (Eq. 61) can be written 
3𝑠0
2 = 𝐴>J + 𝐵>J 𝑃> + 𝑠0/2  (64) 

We then evaluate the yield stress in compression as 

𝑌J = 3 𝑠02 + 𝑠22 + 𝑠32 /2 (65) 

so that (Eq. 64) becomes 

𝑌J/2 = 𝐴>J + 𝐵>J 𝑃> + 𝑌J/6 	 (66) 

We evaluate Bmc from (Eq. 66) by calculating the tangent to the yield surface (Eq. 62). 

𝐵>J =
𝑓2�

2 + 𝑓2�/3
 (67) 

where '
2f  is the pressure derivative of f2. At present, we are using an approximate function, 

Ar exp(-Pm/Y0) to calculate the pressure derivative. We found that the discontinuous change in the 
pressure derivative near to where the residual strength is limited to be no larger than the intact strength 
led to a discontinuous change in the slope, Bmc, and a discontinuous change to the calculated strength. 
This prevented convergence. A more satisfactory solution would be to force the residual strength to 
approach the intact strength gradually as a function of pressure. This has not yet been implemented.  
We evaluate (Eq. 61) for the general value of ξ to obtain 

1 + 𝜉/2 𝑠0 = 𝐴>J + 𝐵>J𝑃> + 𝐵>J𝜉𝑠0/2 (68) 

We use (Eq. 66) to evaluate (Amc+BmcPm) in terms of Yc, and note that 

𝑌� = 3 1 + 𝜉 + 𝜉2 𝑠02 (69) 

In terms of the compressive yield stress, 

𝑌� =
3 1 + 𝜉 + 𝜉2 1 − 𝐵>J/3

2 + 1 − 𝐵>J 𝜉
𝑌J (70) 
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The intersection of the yield surface with the plane perpendicular to the main diagonal or pressure 
axis, s1 = s2 = s3, is shown in Fig. 2 for three values of '

2f . The extreme value of three is the largest 
possible value, and corresponds to a friction angle of 90o where Bmc takes the value one. The slope of 
one (Bmc = 0.43) is typical of rocks and soils. The value zero corresponds to no pressure dependence, 
and for that case the yield surface is equivalent to the Tresca condition (Fung and Tong 2001 p158). 
The importance for our work is that the equivalent strength in pure shear is reduced relative to that in 
compression from 0.866 for no pressure dependence to 0.577 for the pressure derivative equal to three. 
A modification of the triax test might be used to determine the suitability of the Mohr Coulomb model. 
After the application of isostatic stress, the axial load could be reduced, rather than increased. This 
loading path is triaxial “tension” although all principal stresses are compressive. In Fig. 2, triaxial 
tension obtains on the corners of the yield surface that (apparently) intercept the three principal stress 
axes. The calculated and measured strengths could then be compared at several different confining 
pressures. 
 

 

 
Figure 2. Intersection of the yield surface with a plane normal to the pressure axis. All surfaces are normalized 
to have the same value in triaxial compression. The three axes (thin black lines) are the three principal stresses. 
In this figure, the principal stresses are not ordered. 

 

b0
b1
b3
s1
s2
s3
vm

s2 s1 

s3 

Mohr-Coulomb 
dY/dp = 1. 

von Mises 

Tresca 
dY/dp = 0 

Mohr-Coulomb 
dY/dp = 3. 



19 

 

IV. CALCULATION OF THE CHANGE IN COMPOSITION (BURN) 
An important capability of the HERMES model is to quantify the amount of reactant that is converted 
to gas product as a function of time. The reaction violence of the event depends on both the amount 
of product and the time over which it is formed. For a given violence metric there is an associated 
characteristic time. If the product mass is developed more quickly than that, the violence measure is 
about the same as that produced by a detonation of the same mass of explosive. If the time to burn 
takes much longer than that, the violence measure is much reduced over that produced by a detonation. 
We quantified this effect when air blast is used as the violence measure (Reaugh et al. 2012). A similar 
effect, although with different characteristic times, also holds for the response of the surrounding 
confinement, whether measured by crater volume or shrapnel velocity. 

In HERMES, there are separate modules that describe ignition from a mechanical insult that does not 
produce shocks, the propagation of an ignition front through a mass of damaged material, the 
subsequent burning of the material, and the growth of reaction to detonation if strong shocks develop. 
In our formulation, the post-shear-ignition burning and the post-shock-initiation burning occur 
simultaneously. Both contribute to the evolving mass of product gas. 

A. Calculation of ignition without shocks 
The basis of our shear-ignition criterion is the observation that in low-speed impacts, ignition is 
accompanied by significant shear deformation. We do not identify whether the localization mechanism 
is crystal twinning, continuum shear bands, friction, or grain-to-grain slip. Instead, we use properties 
of the stress tensor to identify where shear deformation dominates.  

The ignition parameter is an integral over plastic strain but with weighting factors for shear 
deformation and for the normal stress acting on the plane of maximum shear. When the normal stress 
is tensile, the weight is zero. This factor was motivated by the view that more frictional work is done 
on an interface when the normal stress is more compressive. The ignition parameter is given by 

𝐷ignit = 𝑓£𝑓¤𝜀�𝑑𝑡
~

6
 (71) 

where the shear weighting factor, ft , is given by 

𝑓£ = 2 −
27 𝐽3
2𝑌3

£

	 (72) 

where Y is the equivalent stress, 3𝐽2	. The weighting term inside the parentheses (Eq. 72) has the 
value 2 in shear and the value 1 in compression or tension. When the factor is raised to a power, t, 
approximately 4, there is an order of magnitude difference for the weight during shear deformation 
than for compression or tension. The normal stress weighting factor, fs is given by 

𝑓¤ =
𝑃> + 𝑠2/2

𝜎6

0/2

 (73) 

Here s0 is a parameter of order 50 MPa. Use of this criterion in simulations of the US and UK variants 
of the Steven test (Reaugh and Jones 2010) has shown that ignition in both tests occurs when Dignit 
reached the same value, although the peak pressures in the two tests differ by nearly a factor of two. 
Similarly, scorch marks on the steel holder from UK tests are not on the axis of symmetry, where the 
pressure is largest, but at an intermediate radius, near where our ignition criterion has its maximum 
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value (Curtis, et al. 2012). Computer simulations of those tests have shown that the value of the 
ignition criterion is quite sensitive to the coefficient of friction used. A separate parameter study, using 
a simplified geometry where a disk of explosive is crushed between two platens, illustrated both the 
sensitivity to friction, and how the localization of plastic strain depends on the pressure- and strain-
rate- sensitivity of the flow stress (Reaugh, 2010). If the flow stress is assumed constant, the maximum 
strain developed, and the maximum value of the ignition criterion, is inversely proportional to the 
mesh size. With pressure- strain- and strain-rate dependence as given in Sec. III.B.1 and 2, the ignition 
criterion decays exponentially with increasing distance from the surface – the e-folding length for one 
explosive was about 0.6 mm (Reaugh and Jones, 2010). This result is analogous to the development 
of a boundary layer in gas dynamics, where the characteristic thickness of the layer is determined by 
the flow velocity and the viscosity, a particular instance of rate-dependent shear strength. 

B. Calculation of sub-sonic burning after ignition 
Once an element is ignited, it is assumed to burn as an assembly of particulates with a starting specific 
surface area. For smooth, compact objects the specific surface area is simply related to the 
characteristic dimension, Dc. 
𝑆
𝑉 =

6
𝐷J

 (74) 

For spheres, Dc is the diameter. For cubes, Dc is the length of an edge. For naturally broken material, 
the specific surface area will be larger than that implied by its nominal size. However, the value 
depends on the scale of the irregularity that is resolved by the measurement technique. 

For our purposes, the scale of irregularity is determined by the scale that can be sensed by an advancing 
flame. The frangibility test (shotgun test) (Atwood, et al. 2007) has been used to characterize 
propellant or explosive response to mechanical insult. In that test, an explosive or propellant sample 
is impacted on a steel plate. The resulting fragments are collected and burned in a closed bomb, and 
the pressure history measured. Results of that test can be used to determine the specific surface area 
as a function of impact velocity, typically in the range 30 to 300 m/s (Maienschein et al. 1998). 

The rate of change of the mass fraction converted to product for fragments burning from their surface 
inward is given by 

𝜆 =
𝑆
𝑉 𝑣¦ 𝑃 1 − 𝜆 2/3	 (75) 

where vb is the pressure-dependent laminar burn speed. Here S/V is the specific surface area before 
burning starts. At a given pressure, the mass burning rate of broken material is larger than that 
measured for intact material. The ratio of the burning rates is the ratio of the surface areas. One 
complication in interpreting the test results is that fragmentation of the propellant or explosive is not 
uniform throughout the damaged volume. The pile of resulting fragments has a broad size distribution. 
We were, however, able to determine parameters for a simple linear dependence of specific surface 
area with plastic strain (Maienschein et al. 1998). If the fragmentation model is not operative, we use 
(Eq. 41) to calculate the surface area but with the critical plastic strain taken to be e0 an input parameter. 
We have chosen “reasonable” values for the two parameters when data are absent. There are limited 
data available for specific formulations. In principle, frangibility tests can be performed on explosives, 
and in practice they are sometimes tested. In general, explosives are more difficult to ignite than 
propellants so that the early pressure history recorded in these tests can be affected by the increased 
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amount of ignition aid needed to start the fragments burning. Recent observations of quasi-static 
damage (Wiegand, et al. 2011) suggest that high confining pressure may significantly reduce the 
surface area developed with plastic strain. The fragmentation module (Sec. III.A.3) includes the 
capability for reproducing such data.  

C. Calculation of the spread of an ignition front 
The permeation of hot product gas through a damaged reactant bed depends on the viscosity of the hot 
gas, the local channel dimension, and the local pressure gradient. Once hot gas arrives at the surface 
of cooler reactant, there is an induction time, which depends on the thermal properties of the reactant 
and the chemical kinetic reaction rates, before a self-sustaining local flame can start. This is an active 
research area for experiments and for multi-velocity, multi-phase computer simulations. Direct 
numerical simulation at the mesoscale, resolving both the boundary layer of flow through a channel, 
heat transfer between the hot gas and the solid, and the growth of reaction from a (reduced) chemical 
reaction net could be a fruitful and complementary approach. So far as we know, this has not yet been 
attempted. 

In HERMES, we have taken the simplification of using an input value for the ignition front velocity, 
which probably should depend on the local pressure and porosity. We anticipate that the results of 
research would be used to calculate the local time of ignition more adequately. In the interim, we have 
performed a limited number of parameter studies that show the ignition front velocity can have a 
significant effect on the subsequent response (Reaugh et al. 2014). Other computer simulations with 
a much smaller sample volume showed less effect of ignition front velocity. In those latter simulations, 
most of the porous bed had ignited before significant deformation occurred. 

D. Calculation of the growth to detonation 
If broken, porous explosive is shocked with sufficient amplitude, a detonation can develop. It is 
observed for all explosives that for one-dimensional plane shocks, the distance between the surface 
where a shock was introduced, and the point in the interior of the explosive where detonation develops 
(run-distance), depends on the shock amplitude. Weaker shocks require a longer run-distance to 
develop. Detonation models reproduce this feature. In addition, the CREST model distinguishes 
shocks from gradual pressure rises. We have chosen a simple subset of the CREST equations to couple 
detonation development with the growth of reaction due to burning in broken material. The subset of 
the CREST reaction model we use is given by 

𝜆 = 𝑚2𝜆2 1 − 𝜆  

𝜆0 = 1 − 𝜆0 −2𝑏0 ln 1 − 𝜆0  

𝜆2 = 𝜆0 1 − 𝜆2 2𝑏2
𝑏2𝜆0
𝑏0

− ln 1 − 𝜆2  

𝑏0 = 𝑐6 𝑍 − 𝑐03 J0 

𝑏2 = 𝑐2 𝑍 − 𝑐03 J3 

𝑚2 =
𝑐06
𝑏2

𝑍 − 𝑐03 J00 

(76) 
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Here we have retained the notation of (Handley 2011). The variable l is the mass fraction of product 
gas, and the superior dot signifies the time-derivative. The Z parameter is a function of entropy as 
described by (Lambourn, 2006). The ci parameters are input values. The parameter c13 may be positive, 
negative, or zero. The resulting pop plots (run distance as a function of shock pressure) exhibit either 
a cut-off shock pressure (below which a detonation does not form) when c13 positive, or an asymptotic 
run distance approached at low shock pressure when c13 negative, or an approximate power-law 
dependence when c13 is zero. 
The Z parameter as used in the original CREST model does not consider either plastic work in shear 
or the plastic work of irreversible compaction. Those applications to detonation have ignored both 
strength in the reactant and resistance to compaction (they use a snowplow approximation) as being 
small compared with detonation shocks. In our work, which applies both to shocks and modest 
deformations, we only consider the irreversible work associated with shocks (Q-heating), and subtract 
the plastic work from the energy density to calculate Z. We also we subtract the irreversible adiabatic 
energy of compaction, unload and reload. 

We found that we could interpolate the shock-sensitivity of explosives as a function of porosity by 
using an analytic modification to (Eq. 76). The input parameters c0, c2, and c10 are multiplied by a 
power of Fc, which is a function of porosity. Data for shock sensitivity of explosives as a function of 
porosity is generally sparse. We have fitted experiments on HMX-based explosives and double-base 
propellants with the function 

𝐹J 𝜙 = exp −
𝜙>

𝐴J + 𝐵J𝜙>
 

𝑐6� = 𝑐6𝐹JJ0 

𝑐2� = 𝑐2𝐹JJ3 

𝑐06� = 𝑐06𝐹JJ00 

(77) 

where fm is the porosity caused by mechanical effects, but not by burning. Ac and Bc are input 
parameters. Since Fc is less than one, a given value of Z is less efficient at producing the reaction rate 
for porous explosives.  

V. APPLICATIONS OF THE HERMES MODEL 
A. Shear Ignition 
During the development of HERMES, we have published results of our applications to laboratory-
scale experimental test configurations. In (Reaugh and Jones 2010) we fitted the strength model to 
results of mechanical property tests on a UK HMX-based explosive, and applied the shear ignition 
module to evaluate the ignition parameter in two variants of the Steven test (Chidester et al. 1992). 
We found that the same value of the ignition parameter occurred at the experimental “go/no-go” 
threshold velocities (70 m/s for the UK variant and 110 m/s for the US variant). The calculated peak 
pressures in these tests (1.4 GPa for the UK variant and 0.9 GPa for the US variant) differ because the 
fixture support for the two variants are quite different. The calculated location of the maximum value 
of the ignition parameter was adjacent to the back plate in a ring that surrounds the center of impact. 
In (Curtis et al. 2012) a photograph of a recovered UK fixture for a “go” showed a discolored ring 
surrounding the center of impact. 
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Application to the spigot intrusion test (Hughes et al. 2012) and (Hughes et al. 2014) were less 
successful. In those applications, HERMES was used in the finite element program LS-DYNA 
(Hallquist, 1998), which we used in a Lagrange framework, as were the applications to the Steven test 
above. However, the severe mesh distortion near the spigot as it punches through the explosive stopped 
this calculation early. Subsequent tests with HERMES in ALE-3D (Noble et al. 2017) were more 
successful when using an Eulerian or Arbitrary Lagrange Eulerian (ALE) framework. These test 
calculations have not been published. 
Applications to shear localization in an idealized drop test (Curtis and Reaugh 2016) were successfully 
carried out through ignition and early post-ignition burning in a Lagrange formulation. Simulations of 
the skid test (White et al. 2014) compared with experiment showed the ignition parameter to have a 
much-reduced value compared to Steven test results at drop conditions corresponding to an 
experimental “go”. The inference drawn there was that the well-understood influence of high melting-
temperature grit on the surface was the cause. However, experiments with gritted Steven tests have 
not been performed, and skid test experiments on clean surfaces produced no ignition (Heatwole et al. 
2015). As a result, there is no quantitative change to shear ignition sensitivity caused by the presence 
of grit that can be demonstrated. 

 
B. Deflagration-to-Detonation Transition (DDT) 
Applications to DDT have calculated the response of porous explosives in an experimental test fixture. 
(Reaugh et al. 2014) performed simulations of LX-04 (85% HMX, 15% Viton binder) molding powder 
beads confined in a thick-walled steel tube. At that time, the all-porosity variant of CREST was not 
available so the DDT calculation was performed at 15% porosity, and the CREST detonation 
parameters were fitted to SDT experiments on 15% porous HMX Class 1 powder. There were no DDT 
experiments performed at that porosity, but the calculated transition distance was consistent with the 
measured transition distance as a function of porosity. 
A subsequent application to 180 µm PETN powder at 21% porosity had the advantage of both SDT 
tests and DDT tests at the same porosity. The speed of the ignition front through that powder, and the 
particle size distribution around the 180 µm mean value were not measured, and the calculations 
(Reaugh et al. 2018) showed the sensitivity of the calculated transition distance to estimated value 
ranges of those parameters. The calculations also demonstrated the processes leading to DDT. The 
burning explosive creates a plug of higher-density powder that moves into the undisturbed powder as 
a weak shock. In the calculations, the build-up to detonation starts just behind the shock front. This 
phenomenon has been measured in SDT experiments instrumented with either pressure or velocity 
gauges. Other calculations addressed the DDT transition of HMX Class 1 powder in Lexan tubes 
(Tringe et al. 2017) whose experimental diagnostics included visible light and flash X-ray diagnostics. 
 
C. Future Applications 
We will apply the all-porosity CREST model to calculations of the DDT transition distance as a 
function of porosity. It is possible that the PETN experiments (Luebcke et al. 1996) would be suitable 
candidates, because SDT tests have been performed at several porosities. 
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The fragmentation and all-porosity SDT model were developed to enable calculations of XDT. 
Although we have performed a few initial calculations, we have not yet systematically applied the 
model to the wide variety of test configurations in the literature that have led to XDT. 
The ALE framework makes it possible to examine the post-ignition spread of reaction and subsequent 
reaction violence in both laboratory tests and postulated accidents. This aspect has only begun to be 
explored. 

 
VI. ASSESSMENT 
At the present, the HERMES model can calculate the mechanical and energetic response of explosives 
and propellants to mechanical stimulus. Until recently, there have been just a few of us who have 
exercised the model, and that has been for a limited number of examples. We have recently added a 
few additional users. As is always the case, they have uncovered errors which we have subsequently 
fixed. As a result, the model has been made more robust, in that no changes have been required to 
continue or complete the calculations. 

The spirit of our development has been keep the various modules as simple as we could, and still 
represent the phenomena we know (or suspected) to have importance in the response. In some cases, 
the modules are too simple. In other cases, they may well be not simple enough. The module for 
strength is about as simple as is consistent with describing a material that exhibits pressure, strain, and 
strain-rate dependent hardening that varies with the initial temperature. The various parameters of the 
model are difficult to fit to experiment because of their non-linear interactions with each other. Our 
module for the propagation of a flame front in lightly or heavily damaged material (an input constant) 
is too simple, but experiments have not produced unambiguous results. 

Because we iterate pressure equilibration to convergence and a separately iterate strength to 
convergence, HERMES can be up to 10 times slower than standard equations of state and strength. 
This puts a burden on load balancing for parallel processing. In Lagrange simulations, the HERMES 
material stays with the elements that it starts in, so that load balancing can be straightforward. In 
Eulerian simulations, the post-ignition HERMES material eventually spreads throughout the mesh, 
which would require a relatively sophisticated load-balancing algorithm.  

Nevertheless, we are satisfied that we have a computational model that can be used as computational 
models have traditionally been used. We perform computations with the model to help understand the 
results of the last set of experiments, and then perform computations with the model to help design the 
next set of experiments. 
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