
LLNL-CONF-739564

PANN: Power Allocation via Neural
Networks - Dynamic Bounded-Power
Allocation in High Performance
Computing

W. Whiteside, S. Funk, A. Marathe, B. Rountree

October 6, 2017

Energy-Efficient SuperComputing (E2SC) Workshop at
SuperComputing 2017 Conference
Denver, CO, United States
November 13, 2017 through November 13, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

PANN: Power Allocation via Neural Networks

Dynamic Bounded–Power Allocation in High Performance Computing

Will Whiteside
Shelby Funk

wew@cs.uga.edu

shelby@cs.uga.edu

Department of Computer Science

University of Georgia

Aniruddha Marathe
Barry Rountree
marathe1@llnl.gov

rountree4@llnl.gov

Lawrence Livermore National Laboratory

Department of Energy

ABSTRACT

Exascale architecture computers will be limited not only by hard-

ware but also by power consumption. In these bounded power sit-

uations, a system can deliver better results by overprovisioning –

having more hardware than can be fully powered. Overprovisioned

systems require power to be an integral part of any scheduling algo-

rithm. This paper introduces a system called PANN that uses neural

networks to dynamically allocate power in overprovisioned systems.

Traces of applications are used to train a neural network power con-

troller, which is then used as an online power allocation system.

Simulation results were obtained on traces of ParaDiS and work is

continuing on more applications. We found in simulations PANN

completes jobs up to 24% faster than static allocation. For tightly

constrained systems PANN performs 6% to 11% better than Con-

ductor. A runtime system has been constructed, but it is not yet

performing as expected, reasons for this are explored.

ACM Reference Format:

Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree. 2017.

PANN: Power Allocation via Neural Networks: Dynamic Bounded–Power

Allocation in High Performance Computing. In E2SC’17: E2SC’17: Energy

Efficient Supercomputing, November 12–17, 2017, Denver, CO, USA. ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3149412.3149420

1 MOTIVATION

As high–performance computing reaches towards exascale systems,

power is becoming a critical constraint. An exascale computer built

using modern hardware would consume levels of power that are

both physically and fiscally impractical[8]. Future high–performance

computers will have a power constraint, and optimizing performance

under this constraint will be necessary. This adds an additional re-

quirement for scheduling high–performance computing systems –

one where automated systems can provide better results than man-

ual systems. Thus this problem should be handled by an automated

system that requires as little input from the users as possible.

This paper presents PANN, Power Allocation via Neural Net-

works, a distributed runtime power allocation system using artificial

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to pub-
lish or reproduce this article, or to allow others to do so, for Government purposes
only.

E2SC’17, November 12–17, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5132-4/17/11. . . $15.00
https://doi.org/10.1145/3149412.3149420

intelligence. The system consists of a neural network1 controller on

each rank to craft a request for power. The neural network is trained

using a genetic algorithm and traces of previous similar jobs. The

idea of training neural networks by genetic algorithm was intro-

duced by Montana et al.[7]. A copy of the neural network is run

on each rank at the end of each execution phase. The power re-

quests are collected and distributed to the ranks in such a way that

each rank can determine its own power bound for the next time step.

PANN adheres to two constraints: (1) the power used must never go

above the power bound, and (2) overhead must scale linearly with

the number of processors. Simulation results demonstrate that this

system is capable of completing simulated jobs up to 24% faster

than static power allocation and up to 11.5% faster than Conductor.

This paper deals with allocating power on high performance com-

puting jobs that follow a particular set of constraints:

• A job splits the work across many MPI ranks

• The work is further split into many smaller tasks

• Each task has an execution phase followed by a communica-

tion phase

• Communication is done in an all–to–all manner

• The next execution phase cannot start until the all–to–all

communication phase completes

• A similar job on similar architecture will have similar work

distribution properties

These constraints are satisfied by many real world applications.

Tests were run with ParaDiS[4], a ”large scale dislocation dynamics

simulation code to study the fundamental mechanisms of plasticity[3].”

It partitions the work across many ranks and simulates each rank in-

dependently for a timestep, but, due to the highly interconnected

nature of this problem, it still uses a global synchronization after

each timestep to maintain a global state of the model. This is a not

uncommon application model, and is a good fit with the goals of

this project.

1.1 Motivating Example

Figure 1 is a diagram of a synthetic job consisting of four ranks

executing ten tasks each, with and without a power controller. The

color of the rectangle shows the power allocation to that rank. The

power controller determines that rank 2 can complete on time with a

lower power allocation and allocating more power to rank 3 reduces

the execution time of the critical path. Using a power controller

that makes this change (as well as a bevy of other, less obvious

changes), this job shows a 16% speedup under the power bound. It

1For an introduction to neural networks and genetic algorithms see [9].

E2SC’17, November 12–17, 2017, Denver, CO, USA Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree

Trace Using Static Power Allocation

Trace With PANN Power Controller

Rank 1

Rank 0

Rank 2

Rank 3

Rank 1

Rank 0

Rank 2

Rank 3
Low Power

High Power

0 50 100 150 200 250

0 50 100 150 200 250

Figure 1: Diagram of a synthetic job showing of ten tasks each on four ranks. The boxes represent execution phases and the lines

represent communication phases. Note that the scales are the same and the trace with the power controller finishes approximately

16% sooner.

also decreases the internal wait times for communication phases to

finish, so less power is wasted waiting for MPI calls, however the

goal of the controller remains to finish a job as quickly as possible,

and any power savings are merely incidental.

2 A DISTRIBUTED APPROACH

A common metric used in predicting power usage is utilization –

the proportion of time spent in the execution phase divided by com-

bined time of the execution and communication phases. This met-

ric is particularly useful in predicting power usage – low utilization

means that the rank can be run at a lower power and not affect over-

all runtime, and high utilization indicates that apportioning more

power to this rank would speed up the system.

Much of the current work on power management in high–performance

computing has been focused on job–independent online scheduling.

For example the systems Conductor[6] and POWsched[5] use uti-

lization history to choose the correct run configuration and power

bound. These systems are hampered by making no attempt to pre-

dict how power needs will change in the next execution step. There

is room for improvement over these systems by using a system that

can use patterns in execution times to predict future power needs

and by reducing overhead, both in communication and power con-

troller execution.

Since each rank is in a good position to predict its future power

consumption needs, a distributed system can be a good fit. Each

rank tracks its power and utilization history, and separately com-

putes power requests. Minimizing interprocess communication in-

creases scalability at the cost of less precise decisions on power

allocation.

2.1 Global Synchronization

Communication in many applications surveyed [1][2][3] follow an

all–to–all communication network, where all the ranks communi-

cate with each other. This strategy, while not ideal for peak comput-

ing performance, is in heavy use, and systems designed to improve

throughput on this strategy can have a large impact on real world

applications. Since the different runtimes result in different ranks

reaching the all–to–all communication phase at different times, most

of this idle time is spent in the first all–to–all MPI call of a commu-

nication phase. In some applications over 90% of the time is spent

waiting for MPI calls[1], and a system that balances runtimes by

adjusting power allocated to ranks would result in much faster per-

formance.

This all–to–all communication assumption is made at the MPI

level, and an application that uses hybrid MPI/OpenMP parallelism

would be a good fit for the PANN controller if most of the MPI

communication is global. In this case PANN would control power

allocation among the MPI ranks and the OpenMP parallelism would

be handled by a different system. Conductor [6] demonstrates the

efficacy of a system to maximize OpenMP performance under a pro-

cessor level power bound while using an MPI level power allocation

system to determine these power bounds.

3 THE PANN SYSTEM

PANN uses data from previous runs of an application to produce a

power controller to speed up future runs of that same application.

First, several runs of an application are run with tracing software to

extract relevant data. From these runs, the execution and communi-

cation phases are collected, as well as statistics about communica-

tion networks.

PANN: Power Allocation via Neural Networks E2SC’17, November 12–17, 2017, Denver, CO, USA

current

utilization

historical

utilization

historical

utilization

power

request

request

con�dence

Figure 2: Inputs and outputs of the neural network controller

These traces are then used as a training set for a genetic algorithm

to train a neural network to produce the minimum root mean square

runtime on the traces. The genetic algorithm produces a great many

candidate neural network power controllers. These controllers are

selected for fitness by running a simulation of the system, using

the trace data. Formally, the genotype of the genetic algorithm is

the weights of the neural network, the fitness function is the root

mean square runtime of the training set of traces using the neural

network controller, and the crossover and mutation operations are

standard neural network/genetic algorithm operations[9]. Once the

neural network is trained, it is assessed by simulating a previously

unseen trace and measuring the speedup. Experimentation with mu-

tation operators changing the size of the network or the connection

graph and incorporating backwards propagation into the training

did not substantively change the results, but did increase the train-

ing time, and thus are no longer included.

Trace With PANN Power Controller

current

utilization

historical

utilization

historical

utilization

power

request

request

confidence

Rank 1

Rank 0

Rank 2

Rank 3

0 50 100 150 200 250

Figure 3: A detail showing where the neural network is used in

PANN

As a power controller, PANN works by having a trained neural

network craft a request at the end of each execution phase. Figure 2

shows the request consists of a power need and a confidence score.

This combination allows a rank to make many different statements;

a rank that needs more power (is at a high utilization) can make

a high request with high confidence, likewise a rank that has too

much power (is at a low utilization) can make a low request with

high confidence. If a rank is at some middle utilization it can declare

a low confidence in its request, and that will be taken into account.

The confidence score is used as a cumulative vote on the amount

of power to put up for distribution. This allows the system to trend

toward a stable fastest allocation (if one exists) by allowing ranks

that appear to be near their stable values to give low confidence and

ranks far from their stable values to give high confidence, then the

power that is voted to be up for allocation is distributed according

to the requests made. Since this is an artificial intelligence system,

the definitions of high, low, and middle are learned by the model

and do not need to be specified by the user. As a note, the request

scores are used as percentage of total requests, and are thus unitless

(the exact values do not correspond to the wattages for the power

bound) and the confidence scores are interpreted as on a largely 0

to 1 scale, but the system does not actually constrain them.

Additionally, the power currently allocated to this node is ap-

pended to its request. This is used in the calculations to correct

rounding errors that would otherwise accumulate and cause the sys-

tem to not fully utilize the power allocation.

These requests are summed with three all–reduce calls, one for

requests (rt,i) one for confidence (ct,i) one for power (pt,i). These

sums are then be used independently by each rank to determine

the amount of power it has been allocated for the next execution

phase using the algorithm given below. Since the only global calcu-

lation is summing the requests, there is no single pinch point and all

the calculation can be completely distributed. The CPU level power

bound is changed before the beginning of the next execution phase.

When rounding is performed, the system always rounds down, to

keep the power bound strict. We have found the rounding error to

be negligible – with the correction factor, it remains within a single

unit of power allocation per processor for the entire runtime, and

can be made as small as desired by using finer resolution power

allocations.

For ease of expression, let Ct = 1

n

n−1
∑

j=0

ct,j and Rt =
n−1
∑

j=0

rt,j

and Pt =
n−1
∑

j=0

pt,j .

The algorithm to apportion power uses three cases based on the

sum of the confidence scores. In the case that Ct ≤ 0 the algorithm

transfers no power at all, leaving the power in the previous configu-

ration. On the other hand, when Ct ≥ 1

2
the power is apportioned

based directly on the requests pt+1,i =
rt,i

Rt
Pbound. Below is the

formula used when 0 < Ct <
1

2
.

pt+1,i = pt,i (1− Ct) +

(

rt,i

Rt

Ct

)

(2Pbound − Pt) (1)

Claim: This algorithm will never allow the total power to go

above the allocated power. More formally:

n−1
∑

j=0

pt,j ≤ Pbound ∀t (2)

PROOF. The algorithm begins by setting p0,i =
Pbound

n
.

Case 1: Ct ≤ 0
In this case the algorithm transfers no power at all, so pt+1,i =

pt,i.

Case 2: Ct ≥
1

2

In this case the algorithm apportions power according to this for-

mula:

E2SC’17, November 12–17, 2017, Denver, CO, USA Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree

20 30 40 50 60 70 80 90 100

Power Limit (% of Maximum)

0

5

10

15

20

25

P
e
rc

e
n
t

S
p
e
e
d
u
p

PANN

Conductor

Speedup Under Various Controllers

Figure 4: Speedup comparison between simulated PANN and Conductor

pt+1,i =
rt,i

Rt

Pbound (3)

This sums to Pbound and, with rounding down, is guaranteed to

be at or below the power bound.

Case 3: 0 < Ct <
1

2

Then the algorithm will use the formula given above:

pt+1,i = pt,i (1− Ct) +

(

rt,i

Rt

Ct

)

(2Pbound − Pt) (4)

Summing all the indices i gets:

n−1
∑

i=0











pt,i (1− Ct) +











rt,i
n−1
∑

j=0

rt,j

Ct











(2Pbound − Pt)











(5)

Noting that some of the variables do not depend on i gives us:

n−1
∑

i=0

pt,i (1− Ct) +









n−1
∑

i=0

rt,i

Rt

Ct









(2Pbound − Pt) (6)

Canceling some common terms gives:

n−1
∑

i=0

pt,i (1− Ct) + (Ct) (2Pbound − Pt) (7)

Distributing gives:

Pt + 2CtPbound − 2CtPt (8)

Factoring gives:

(1− 2Ct)Pt + 2CtPbound (9)

which since by induction Pt ≤ Pbound and 1− 2Ct ≥ 0 means:

(1− 2Ct)Pt + 2CtPbound ≤ (1− 2Ct)Pbound + 2CtPbound

≤ Pbound

(10)

so:

Pt+1 ≤ Pbound (11)

This middle confidence level allows the controller to make small

adjustments to the allocation. This is used for all the confidence lev-

els between the two cases above and tends to be the most common

action in the experiments.

3.1 Handling Different Granularity MPI Node

and Power Configuration

On the systems used for testing PANN, the configuration presented

a particular problem. The MPI ranks were assigned at the core

PANN: Power Allocation via Neural Networks E2SC’17, November 12–17, 2017, Denver, CO, USA

level, whereas the RAPL could only change the power level at the

socket level. This means that there are a group of MPI ranks that all

must be assigned the same power bound. There are several potential

strategies to deal with this problem. For consistency between this re-

striction and systems without these restrictions – e.g. new Intel pro-

cessors that allow a per-core or even more granular power bound –

PANN uses an averaging system for setting the power bound on a

core. For a cores on socket J set the power level ρt+1,J to:

ρt+1,J =

∑

j∈J

pt+1,j

N
(12)

This satisfies the two requirements of making the power bound

strict and giving the ability to change power bounds on runtime

systems. This does reduce the ability to choose power levels at small

granularity, and thus reduces the ability of the system to produce

speedups.

3.2 Comparison to Conductor

Conductor[6] is an online dynamic power management system. It

begins by characterizing performance levels with various configura-

tions of OpenMP threads at various power levels at the beginning of

a job. It then apportions power according to previous time steps and

choosing the configuration that performs best at that power bound.

This works well on small to medium jobs. On large jobs it requires

a good deal of communication overhead to accumulate the history

onto a single node and then this node requires a rather long execu-

tion time to apportion the power optimally.

Because PANN has very few all–reduce calls and the computa-

tion of power allocation is distributed across all of the ranks, it has

significantly less overhead than comparable systems. The schedules

produced by this system have fewer guarantees, and, being designed

by an artificial intelligence system, do not have an easily expressible

goal for the method used to allocate power. While these design pa-

rameters seem to indicate that the power allocation of this system

must be inferior to that of Conductor, simulated experiments shows

that is not the case. The most likely reason for this is that the ar-

tificial intelligence training causes the individual ranks to work in

concert, making requests that are as accurate as possible, while not

being greedy. Another possible reason that this system usually per-

forms better than Conductor is much simpler; the application and

computing system is noisy and an exact solution to the previous

time step is an inexact solution to future time steps.

4 RESULTS

To test PANN both a simulation and a runtime system were created.

Both of these are necessary components, as the simulation is used

both as a training device and as a validation tool. The runtime sys-

tem is not yet performing as expected, it currently behaves similar

to the static power allocation, and requires further tuning. Positive

experiments on the simulation lead to expectation that the runtime

system will be effective.

4.1 Training

For this paper, three traces were used as a training set. These traces

were extracted from runs of ParaDiS at full power. These traces

need to be similar to the applications that the power controller will

be used on, and the greater the similarity, the better the controller

will perform. However, some testing has been done using small

traces, with few ranks and few timesteps, to produce controllers for

larger traces running for longer, and good results were found.

While the traces must be extracted from the target system, or a

similar system, the training can be performed on any system. This

means that the training can be taken offline and performed on what-

ever system is convenient. The training runs were allowed to run

for about 12 hours on a single core of a Xeon E5 processor, and

used less than one gigabyte of RAM, so are comparable to a con-

sumer desktop. This shows that cheaper processor time can be used

to save more expensive processor time, and if the trained system

is used several times – or even just once on a large run – the total

power used to run a program can be reduced.

Once a PANN network is trained, it can be deployed either in the

simulation for validation or in the runtime system.

4.2 Simulation Results

Experiments were run on Lawrence Livermore National Labora-

tory’s Cab and Catalyst, both Intel Xeon parallel compute clusters.

Three sample runs of ParaDiS on eight MPI ranks, using test inputs

from the ParaDiS test set (Copper[1-3]), were run on Catalyst to

produce the training set. The genetic algorithms and its simulations

were run on a single thread on Catalyst to train the model. This train-

ing phase can be as long or as short as the user desires. Simulation

results for PANN were created by simulating with a new test trace

(using Copper4) that was not a part of the training set.

Tests were run with sample inputs to ParaDiS producing several

execution traces. These traces were used as a training set by PANN

to produce a neural network controller for each power bound. We

compared both PANN and Conductor to runs using static power

allocation where all ranks were allocated the same power level. This

gives a fair comparison of the speedups due to each controller and

controls for any differences between computer systems.

These neural network controllers were run on the test trace ex-

tracted from ParaDiS and the speedups were calculated. Speedup

here is defined as the percent reduction in time from simulating the

trace with static power versus the simulated time of the trace with

either PANN or Conductor. These speedups are graphed in figure 4.

The highest speedup was found running the simulated processors at

an average of 75% of their maximum performance power, with the

speedup decreasing as the power allocation moves away from this

value. It is expected that there would be no speedup at 100% power

– there is nothing to do but allow the processors to work at their

maximum speed. The most notable feature of this graph is the rel-

atively consistent 22% to 25% speedups in the 40% to 75% power

bound range. This indicates that PANN can perform well over a

range of power levels. This is an important result because the goal

of PANN is to be a part of a larger scheduling system that manages

both time and power allocations, and having a large range of power

allocations under which an application performs well increases the

usability of the scheduler, allowing the computer to change its ef-

fective characteristics based on the users’ needs at the time.

Conductor was tested with ParaDiS on the same input file at a

range of power bounds. The Conductor speedups are also graphed

E2SC’17, November 12–17, 2017, Denver, CO, USA Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree

in figure 4. This shows that PANN usually performs better than Con-

ductor at the same power bound, but that at higher power bounds

Conductor does better. We speculate that this is due to PANN’s dy-

namic nature – when large changes need to be made, the neural

network in PANN does a better job of predicting and making those

changes, but at high power allocations there is not much room for

changes. In these cases the deterministic and exact Conductor per-

forms better. Conductor’s relative decrease in performance as the

power allocation decreases indicates that Conductor does not per-

form as well as PANN over as wide of range of power bounds. Ad-

ditionally, this test was over a small set of processors, so any com-

munication overheads were minimized and the calculation overhead

is virtually non-existent.

4.3 Runtime Results

140500 142500 144500 146500 148500 150500

Ti�� ����

0

2

4

6

8

10

12

14

16

re
q
u
e
n
c
y

Static Allocation
PANN

Runtime System Results

Figure 5: PANN comparison with static power allocation on test

set.

We created a runtime system, which we tested on Catalyst, the

results of which are shown in figure 5. The median runtime of the

PANN test was 143,634ms, while the median runtime of the static

power allocation was 143,247ms. This represents a slowdown of

0.27%, statistically indistinguishable from zero. Unfortunately due

to time constraints we were unable to do the level of tuning and

optimizing we would like to improve the runtime system’s perfor-

mance.

There are several potential reasons the runtime system is not giv-

ing results on par with the simulations. The most significant reason

appears to be inter-run variation. Though the system was trained on

several runs of the program, the results show that the distribution of

runs was insufficient for training purposes, and more runs, or more

variation in the training runs, are required to produce better results.

ParaDiS runtimes are highly stochastic, varying upwards of 10%

on total runtime and even higher on individual task runtimes. This

randomness Figure 6 shows the variation measured in the controller-

less runtimes. This randomness may be causing additional issues in

the real system as opposed to the simulations.

Additionally, the implementation shows that the neural network

needs more accurate training. This may need to be accomplished

with more training traces or with traces more similar to the objective

trace. Obtaining these similar traces would not be prohibitive in

the real world, as often ParaDiS is run for a period, the results are

141500 143500 145500 147500 149500 151500

Time (ms)

0

2

4

6

8

10

12

14

16

re
q
u
e
n
c
y

Inter Run Variation

Figure 6: Variation in runtime in ParaDiS. All runs used exactly

the same inputs and were performed on the same cluster.

recorded, and then the run is restarted from that point with some

updated parameters, usually re-meshing. These earlier runs should

be a good source of training data for the later runs.

Another factor that would improve the runtime system is better

tuning of the genetic algorithm.

However some useful information can be gleaned from this im-

plementation. Disabling the power bound setting part of the con-

troller allows a real-world analysis of the overhead. For this test

a ParaDiS with a mean runtime of 143.90 seconds was run many

times with and without the controller attached. The runs with the

controller calculating but not changing power resulted in a mean

runtime of 144.05 seconds, for a difference of means of 149.15 ms,

or 0.1%. This accounts for most of the potential sources of slow

downs, the MPI communication calls and the calculation of the re-

quests and the power limits. The only overhead unaccounted for is

the RAPL method for changing the power bound. This is largely

negligible, as Intel’s RAPL system has very fast methods for chang-

ing the power bounds as well as the fact that this cost would be

incurred by any system that balances load by allocating power. This

indicates that the real world overhead is insignificant.

4.4 Additional Testing

30 40 50 60 70 80 90 100

Power Limit (% of Maximum)

�20

�15

�10

�5

0

5

10

15

20

25

P
e
rc

e
n
t

S
p
e
e
d
u
p

�rained At

5�	��

6�	��

75	��

95	��

PANN Trained at Various Power Levels

Figure 7: Simulated speedup of various PANN controllers at

various power levels

PANN: Power Allocation via Neural Networks E2SC’17, November 12–17, 2017, Denver, CO, USA

As an additional test, the neural network controllers trained at

various power levels were simulated at the whole sweep of power

levels to judge how well a controller would perform outside of the

training parameters. Figure 7 shows the results of this test. This

shows that some controllers performed well when they were close

to their training level and poorly when the power bound was signifi-

cantly different. Most notable is the controller from the 75% power

bound, it performed the best on the largest sweep (from 60% to

80%). However, it performed by far the worst on the lowest power

bound, actually slowing the completion down by 18%. Similarly,

the controller from 50% did well in the low power range and poorly

in the high power range.

Conversely, the controller from 95% performed evenly across the

whole sweep, and actually performed worst on the power bound

it was trained on. This seems to show that it has learned some of

the pattern, but did not learn as much because at the 95% power

bound it did not have as much wiggle room to learn. Comparing

the 50% and 95% bounds appears to be a near textbook example

of overfitting, the 50% fits very well at 50%, but does very poorly

at everything ¿ 80%, whereas the 95% one does about the same

on all the power levels all the way down to 40%. Strangely, the

controller trained at 60% did not perform as well at the 60% power

bound as the controller trained at 75%. This is an odd result, but it is

likely due to the 60% controller getting stuck in a local minimum in

the learning phase. Notably missing from this chart are controllers

trained at 40% and 45%. These controllers were excluded from the

chart because they performed so poorly on power bounds from 60%

to 95% that it broke the scale, at some points almost doubling the

runtimes from the static power allocation. This illustrates one of

the weaknesses of artificial intelligence based approaches, particu-

lar care must be used to guarantee the maximized fitness function

corresponds to the actual goal of the user. In this case the goals and

fitness functions may seem to be fairly close – maximize speedup at

40% versus maximize speedup over a range of values – but it turns

out that those are different enough to produce negative results[9].

The results gleaned from this analysis are that if at all possible,

the controller should be trained at the power allocation that the pro-

cess is going to be run at. However, it seems that the performance

does not degrade too much as long as the power bound is relatively

close to the training bound. If the allocation and training bound are

too different, the controller can actually degrade performance, so

care should be taken to choose a controller appropriate to the power

allocation in use.

5 CONCLUSION AND FUTURE WORK

This paper presents PANN, a novel online distributed power allo-

cation controller for power–bounded high–performance computing.

Using artificial intelligence increases applicability and performance.

The controller adds minimal execution and communication over-

head and produces speedups when operating under a power bound.

It simulates up to a 24% speedup over static power allocation on

traces of real jobs and 6% to 11% speedups compared to Conduc-

tor.

PANN works by collecting traces of an application. These traces

are used as a training set of a genetic algorithm, which uses the

traces to train a neural network to allocate power during those traces

dynamically. Once this neural network is trained it can be deployed

to dynamically allocate power on running programs.

Currently, the training phase requires logging previous runs of

an application, but future versions will have the ability to learn auto-

matically during the run of an application. Using the online training

version will allow PANN to be used on a wide range of platforms

and programs with no work from the application developer.

In the opposite direction, we plan to add functionality to PANN

that allows developers to give hints about the power needs and uti-

lize that information to better allocate power. These hints will be

used as part of the learning process, so the controllers could learn

exactly what the developers mean by their hints, without requiring

developers to understand the underlying power demands of their

applications.

Currently this research only considers CPU power. Future ver-

sions could take memory and cooling power into account, as well

as using actual input power, measured at the power supply. This also

has great promise in being used to control cooling systems, allow-

ing a fan to be spun up before the processor starts to warm, main-

taining efficiency and reducing overall cooling costs. We also plan

to have a similar system that is is designed to improve performance

on applications with more localized communication patterns.

6 ACKNOWLEDGEMENTS

This work performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under Con-

tract DE–AC52–07NA27344 (LLNL-CONF-739564). Also, we would

like to thank Walt Whiteside and Brandon Posey.

REFERENCES
[1] AMG. https://codesign.llnl.gov/amg2013.php.
[2] CoMD. https://github.com/exmatex/CoMD.
[3] ParaDiS. paradis.stanford.edu.
[4] BULATOV, V. E. A. Scalable line dynamics in paradis. Supercomputing (2004).
[5] ELLSWORTH, D., MALONY, A., ROUNTREE, B., AND SCHULZ, M. Dy-

namic power sharing for higher job throughput. Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(2015), 80:1–80:11.

[6] MARATHE, A., BAILEY, P., LOWENTHAL, D., ROUNTREE, B., SCHULZ, M.,
AND DE SUPINSKI, B. A run-time system for power-constrained hpc applications.
High Performance Computing (2015), 394–408.

[7] MONTANA, D., AND DAVIS, L. Training feedforward neural networks using
genetic algorithms. In International Joint Conference on Artificial Intelligence
(1989), vol. 89, pp. 762–767.

[8] PAWLOWSKI, S. Exascale science: the next frontier in high performance comput-
ing. International Conference on Supercomputing (2010).

[9] RUSSELL, S., AND NORVIG, P. Artificial Intelligence: a Modern Approach. Pear-
son, 2003.

