¢

LAWRENCE
LIVERM ORE
NATIONAL
LABORATORY

LLNL-CONF-739564

PANN: Power Allocation via Neural
Networks - Dynamic Bounded-Power
Allocation in High Performance
Computing

W. Whiteside, S. Funk, A. Marathe, B. Rountree

October 6, 2017

Energy-Efficient SuperComputing (E2SC) Workshop at
SuperComputing 2017 Conference

Denver, CO, United States

November 13, 2017 through November 13, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

PANN: Power Allocation via Neural Networks
Dynamic Bounded—Power Allocation in High Performance Computing

Will Whiteside
Shelby Funk

wew @cs.uga.edu
shelby @cs.uga.edu
Department of Computer Science
University of Georgia

ABSTRACT

Exascale architecture computers will be limited not only by hard-
ware but also by power consumption. In these bounded power sit-
uations, a system can deliver better results by overprovisioning —
having more hardware than can be fully powered. Overprovisioned
systems require power to be an integral part of any scheduling algo-
rithm. This paper introduces a system called PANN that uses neural
networks to dynamically allocate power in overprovisioned systems.
Traces of applications are used to train a neural network power con-
troller, which is then used as an online power allocation system.
Simulation results were obtained on traces of ParaDiS and work is
continuing on more applications. We found in simulations PANN
completes jobs up to 24% faster than static allocation. For tightly
constrained systems PANN performs 6% to 11% better than Con-
ductor. A runtime system has been constructed, but it is not yet
performing as expected, reasons for this are explored.

ACM Reference Format:

Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree. 2017.
PANN: Power Allocation via Neural Networks: Dynamic Bounded—Power
Allocation in High Performance Computing. In E2SC’17: E2SC’17: Energy
Efficient Supercomputing, November 12—17, 2017, Denver, CO, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3149412.3149420

1 MOTIVATION

As high—performance computing reaches towards exascale systems,
power is becoming a critical constraint. An exascale computer built
using modern hardware would consume levels of power that are
both physically and fiscally impractical[8]. Future high—performance
computers will have a power constraint, and optimizing performance
under this constraint will be necessary. This adds an additional re-
quirement for scheduling high—performance computing systems —
one where automated systems can provide better results than man-
ual systems. Thus this problem should be handled by an automated
system that requires as little input from the users as possible.

This paper presents PANN, Power Allocation via Neural Net-
works, a distributed runtime power allocation system using artificial

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to pub-
lish or reproduce this article, or to allow others to do so, for Government purposes
only.

E2§C’17, November 12-17, 2017, Denver, CO, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5132-4/17/11...$15.00
https://doi.org/10.1145/3149412.3149420

Aniruddha Marathe

Barry Rountree
marathel @lInl.gov
rountree4 @llnl.gov
Lawrence Livermore National Laboratory
Department of Energy

intelligence. The system consists of a neural network' controller on
each rank to craft a request for power. The neural network is trained
using a genetic algorithm and traces of previous similar jobs. The
idea of training neural networks by genetic algorithm was intro-
duced by Montana et al.[7]. A copy of the neural network is run
on each rank at the end of each execution phase. The power re-
quests are collected and distributed to the ranks in such a way that
each rank can determine its own power bound for the next time step.
PANN adheres to two constraints: (1) the power used must never go
above the power bound, and (2) overhead must scale linearly with
the number of processors. Simulation results demonstrate that this
system is capable of completing simulated jobs up to 24% faster
than static power allocation and up to 11.5% faster than Conductor.

This paper deals with allocating power on high performance com-
puting jobs that follow a particular set of constraints:

A job splits the work across many MPI ranks

The work is further split into many smaller tasks

Each task has an execution phase followed by a communica-
tion phase

Communication is done in an all-to—all manner

The next execution phase cannot start until the all-to—all
communication phase completes

e A similar job on similar architecture will have similar work
distribution properties

These constraints are satisfied by many real world applications.
Tests were run with ParaDiS[4], a ’large scale dislocation dynamics

simulation code to study the fundamental mechanisms of plasticity[3].”

It partitions the work across many ranks and simulates each rank in-
dependently for a timestep, but, due to the highly interconnected
nature of this problem, it still uses a global synchronization after
each timestep to maintain a global state of the model. This is a not
uncommon application model, and is a good fit with the goals of
this project.

1.1 Motivating Example

Figure 1 is a diagram of a synthetic job consisting of four ranks
executing ten tasks each, with and without a power controller. The
color of the rectangle shows the power allocation to that rank. The
power controller determines that rank 2 can complete on time with a
lower power allocation and allocating more power to rank 3 reduces
the execution time of the critical path. Using a power controller
that makes this change (as well as a bevy of other, less obvious
changes), this job shows a 16% speedup under the power bound. It

'For an introduction to neural networks and genetic algorithms see [9].

E2SC’17, November 12-17, 2017, Denver, CO, USA

Rank 0

Rank 1
Rank 2

Rank 3

Io I50 J100 150

Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree

High Power

J200 250 |

Trace Using Static Power Allocation

Rank 0

Rank 1
Rank

Rank 3

Lo |50 J100

150

Low Power
]200]250

Trace With PANN Power Controller

Figure 1: Diagram of a synthetic job showing of ten tasks each on four ranks. The boxes represent execution phases and the lines
represent communication phases. Note that the scales are the same and the trace with the power controller finishes approximately

16 % sooner.

also decreases the internal wait times for communication phases to
finish, so less power is wasted waiting for MPI calls, however the
goal of the controller remains to finish a job as quickly as possible,
and any power savings are merely incidental.

2 A DISTRIBUTED APPROACH

A common metric used in predicting power usage is utilization —
the proportion of time spent in the execution phase divided by com-
bined time of the execution and communication phases. This met-
ric is particularly useful in predicting power usage — low utilization
means that the rank can be run at a lower power and not affect over-
all runtime, and high utilization indicates that apportioning more
power to this rank would speed up the system.

Much of the current work on power management in high—performance

computing has been focused on job—independent online scheduling.
For example the systems Conductor[6] and POWsched[5] use uti-
lization history to choose the correct run configuration and power
bound. These systems are hampered by making no attempt to pre-
dict how power needs will change in the next execution step. There
is room for improvement over these systems by using a system that
can use patterns in execution times to predict future power needs
and by reducing overhead, both in communication and power con-
troller execution.

Since each rank is in a good position to predict its future power
consumption needs, a distributed system can be a good fit. Each
rank tracks its power and utilization history, and separately com-
putes power requests. Minimizing interprocess communication in-
creases scalability at the cost of less precise decisions on power
allocation.

2.1 Global Synchronization

Communication in many applications surveyed [1][2][3] follow an
all-to—all communication network, where all the ranks communi-
cate with each other. This strategy, while not ideal for peak comput-
ing performance, is in heavy use, and systems designed to improve
throughput on this strategy can have a large impact on real world
applications. Since the different runtimes result in different ranks
reaching the all-to—all communication phase at different times, most
of this idle time is spent in the first all-to—all MPI call of a commu-
nication phase. In some applications over 90% of the time is spent
waiting for MPI calls[1], and a system that balances runtimes by
adjusting power allocated to ranks would result in much faster per-
formance.

This all-to—all communication assumption is made at the MPI
level, and an application that uses hybrid MPI/OpenMP parallelism
would be a good fit for the PANN controller if most of the MPI
communication is global. In this case PANN would control power
allocation among the MPI ranks and the OpenMP parallelism would
be handled by a different system. Conductor [6] demonstrates the
efficacy of a system to maximize OpenMP performance under a pro-
cessor level power bound while using an MPI level power allocation
system to determine these power bounds.

3 THE PANN SYSTEM

PANN uses data from previous runs of an application to produce a
power controller to speed up future runs of that same application.
First, several runs of an application are run with tracing software to
extract relevant data. From these runs, the execution and communi-
cation phases are collected, as well as statistics about communica-
tion networks.

PANN: Power Allocation via Neural Networks

current
utilization

historical
utilization

historical
utilization

Figure 2: Inputs and outputs of the neural network controller

These traces are then used as a training set for a genetic algorithm
to train a neural network to produce the minimum root mean square
runtime on the traces. The genetic algorithm produces a great many
candidate neural network power controllers. These controllers are
selected for fitness by running a simulation of the system, using
the trace data. Formally, the genotype of the genetic algorithm is
the weights of the neural network, the fitness function is the root
mean square runtime of the training set of traces using the neural
network controller, and the crossover and mutation operations are
standard neural network/genetic algorithm operations[9]. Once the
neural network is trained, it is assessed by simulating a previously
unseen trace and measuring the speedup. Experimentation with mu-
tation operators changing the size of the network or the connection
graph and incorporating backwards propagation into the training
did not substantively change the results, but did increase the train-
ing time, and thus are no longer included.

Rank 0

Rank 1

L 150 J100 1150 1200 1250

Trace With PANN Power Controller

Figure 3: A detail showing where the neural network is used in
PANN

As a power controller, PANN works by having a trained neural
network craft a request at the end of each execution phase. Figure 2
shows the request consists of a power need and a confidence score.
This combination allows a rank to make many different statements;
a rank that needs more power (is at a high utilization) can make
a high request with high confidence, likewise a rank that has too
much power (is at a low utilization) can make a low request with
high confidence. If a rank is at some middle utilization it can declare
a low confidence in its request, and that will be taken into account.
The confidence score is used as a cumulative vote on the amount

E2SC’17, November 12—-17, 2017, Denver, CO, USA

of power to put up for distribution. This allows the system to trend
toward a stable fastest allocation (if one exists) by allowing ranks
that appear to be near their stable values to give low confidence and
ranks far from their stable values to give high confidence, then the
power that is voted to be up for allocation is distributed according
to the requests made. Since this is an artificial intelligence system,
the definitions of high, low, and middle are learned by the model
and do not need to be specified by the user. As a note, the request
scores are used as percentage of total requests, and are thus unitless
(the exact values do not correspond to the wattages for the power
bound) and the confidence scores are interpreted as on a largely 0
to 1 scale, but the system does not actually constrain them.

Additionally, the power currently allocated to this node is ap-
pended to its request. This is used in the calculations to correct
rounding errors that would otherwise accumulate and cause the sys-
tem to not fully utilize the power allocation.

These requests are summed with three all-reduce calls, one for
requests (r¢,;) one for confidence (c¢,;) one for power (p¢,;). These
sums are then be used independently by each rank to determine
the amount of power it has been allocated for the next execution
phase using the algorithm given below. Since the only global calcu-
lation is summing the requests, there is no single pinch point and all
the calculation can be completely distributed. The CPU level power
bound is changed before the beginning of the next execution phase.
When rounding is performed, the system always rounds down, to
keep the power bound strict. We have found the rounding error to
be negligible — with the correction factor, it remains within a single
unit of power allocation per processor for the entire runtime, and
can be made as small as desired by using finer resolution power
allocations.

n—1 n—1
. _ 1 _
For ease of expression, let Cy = =~ > ¢rjand Ry =) rej
=0 =0

n—1
and Py = Y pej.
j=0

The algorithm to apportion power uses three cases based on the
sum of the confidence scores. In the case that C; < 0 the algorithm
transfers no power at all, leaving the power in the previous configu-
ration. On the other hand, when C; > % the power is apportioned
based directly on the requests p;y1,; = %Pbound. Below is the

formula used when 0 < C < 3.

Tt,i

Pit1,i = pei (1 —C) + (ia

ct) 2Pyound — P) (1)

t

Claim: This algorithm will never allow the total power to go
above the allocated power. More formally:

n—1

> " pij < Prouna Vt 2

j=0

PROOF. The algorithm begins by setting po ; = P’“";L‘”d.

Case1: C; <0

In this case the algorithm transfers no power at all, so pi4+1,; =
Dt,i-

Case2: C; > 1
In this case the algorithm apportions power according to this for-

mula:

E2SC’17, November 12-17, 2017, Denver, CO, USA

Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree

Percent Speedup

25

Speedup Under Various Controllers

20+

=
w
|

=
o
|

—— PANN
—@— Conductor

20

T T T T T T T
30 40 50 60 70 80 90 100

Power Limit (% of Maximum)

Figure 4: Speedup comparison between simulated PANN and Conductor

Te i n—1

Pet1i = R Phound) > pei (1= Ct) + (Ct) (2Poouna — P) (7)
This sums to Pyoyuna and, with rounding down, is guaranteed to Distributir:;;rives:
be at or below the power bound.
Case3:0<Ct<% P
+ 2C: Pyound — 2Ct P, 8
Then the algorithm will use the formula given above: . . ¢ ¢ 5 bound e ®)
Factoring gives:
Tt,i (1 - QCt)Pt + 2C(thound (9)

DPt+1,i = Pt,i (1 - Ct) + (Ct) (2Pbound - Pt) @

Ry

Summing all the indices ¢ gets:

n—1
Sl o=+ | LG | (2Poouna — P) | (5)
=0 > T

=0

which since by induction P; < Ppoyng and 1 — 2C; > 0 means:

(1 - 2Ct)Pt + 2Cthound S (1 - 2Ct)Pbound + 2Cthound
S Pbound
(10
S0:
Piy1 < Pround (11)
This middle confidence level allows the controller to make small

Noting that some of the variables do not depend on ¢ gives us:

adjustments to the allocation. This is used for all the confidence lev-

Canceling some common terms gives:

n—1
Zpt,i (1 - Ct) + R Ct (2Pbound - Pt) (6)
i=0 ¢

els between the two cases above and tends to be the most common
action in the experiments.

n—1

Tt,i
;J ' 3.1 Handling Different Granularity MPI Node

and Power Configuration

On the systems used for testing PANN, the configuration presented
a particular problem. The MPI ranks were assigned at the core

PANN: Power Allocation via Neural Networks

level, whereas the RAPL could only change the power level at the
socket level. This means that there are a group of MPI ranks that all
must be assigned the same power bound. There are several potential
strategies to deal with this problem. For consistency between this re-
striction and systems without these restrictions — e.g. new Intel pro-
cessors that allow a per-core or even more granular power bound —
PANN uses an averaging system for setting the power bound on a
core. For a cores on socket J set the power level py41,s to:

ZJPHM
pri1g = JeT (12)

This satisfies the two requirements of making the power bound
strict and giving the ability to change power bounds on runtime
systems. This does reduce the ability to choose power levels at small
granularity, and thus reduces the ability of the system to produce
speedups.

3.2 Comparison to Conductor

Conductor([6] is an online dynamic power management system. It
begins by characterizing performance levels with various configura-
tions of OpenMP threads at various power levels at the beginning of
a job. It then apportions power according to previous time steps and
choosing the configuration that performs best at that power bound.
This works well on small to medium jobs. On large jobs it requires
a good deal of communication overhead to accumulate the history
onto a single node and then this node requires a rather long execu-
tion time to apportion the power optimally.

Because PANN has very few all-reduce calls and the computa-
tion of power allocation is distributed across all of the ranks, it has
significantly less overhead than comparable systems. The schedules
produced by this system have fewer guarantees, and, being designed
by an artificial intelligence system, do not have an easily expressible
goal for the method used to allocate power. While these design pa-
rameters seem to indicate that the power allocation of this system
must be inferior to that of Conductor, simulated experiments shows
that is not the case. The most likely reason for this is that the ar-
tificial intelligence training causes the individual ranks to work in
concert, making requests that are as accurate as possible, while not
being greedy. Another possible reason that this system usually per-
forms better than Conductor is much simpler; the application and
computing system is noisy and an exact solution to the previous
time step is an inexact solution to future time steps.

4 RESULTS

To test PANN both a simulation and a runtime system were created.
Both of these are necessary components, as the simulation is used
both as a training device and as a validation tool. The runtime sys-
tem is not yet performing as expected, it currently behaves similar
to the static power allocation, and requires further tuning. Positive
experiments on the simulation lead to expectation that the runtime
system will be effective.

4.1 Training

For this paper, three traces were used as a training set. These traces
were extracted from runs of ParaDiS at full power. These traces
need to be similar to the applications that the power controller will

E2SC’17, November 12—-17, 2017, Denver, CO, USA

be used on, and the greater the similarity, the better the controller
will perform. However, some testing has been done using small
traces, with few ranks and few timesteps, to produce controllers for
larger traces running for longer, and good results were found.

While the traces must be extracted from the target system, or a
similar system, the training can be performed on any system. This
means that the training can be taken offline and performed on what-
ever system is convenient. The training runs were allowed to run
for about 12 hours on a single core of a Xeon E5 processor, and
used less than one gigabyte of RAM, so are comparable to a con-
sumer desktop. This shows that cheaper processor time can be used
to save more expensive processor time, and if the trained system
is used several times — or even just once on a large run — the total
power used to run a program can be reduced.

Once a PANN network is trained, it can be deployed either in the
simulation for validation or in the runtime system.

4.2 Simulation Results

Experiments were run on Lawrence Livermore National Labora-
tory’s Cab and Catalyst, both Intel Xeon parallel compute clusters.
Three sample runs of ParaDiS on eight MPI ranks, using test inputs
from the ParaDiS test set (Copper[1-3]), were run on Catalyst to
produce the training set. The genetic algorithms and its simulations
were run on a single thread on Catalyst to train the model. This train-
ing phase can be as long or as short as the user desires. Simulation
results for PANN were created by simulating with a new test trace
(using Copper4) that was not a part of the training set.

Tests were run with sample inputs to ParaDiS producing several
execution traces. These traces were used as a training set by PANN
to produce a neural network controller for each power bound. We
compared both PANN and Conductor to runs using static power
allocation where all ranks were allocated the same power level. This
gives a fair comparison of the speedups due to each controller and
controls for any differences between computer systems.

These neural network controllers were run on the test trace ex-
tracted from ParaDiS and the speedups were calculated. Speedup
here is defined as the percent reduction in time from simulating the
trace with static power versus the simulated time of the trace with
either PANN or Conductor. These speedups are graphed in figure 4.
The highest speedup was found running the simulated processors at
an average of 75% of their maximum performance power, with the
speedup decreasing as the power allocation moves away from this
value. It is expected that there would be no speedup at 100% power
— there is nothing to do but allow the processors to work at their
maximum speed. The most notable feature of this graph is the rel-
atively consistent 22% to 25% speedups in the 40% to 75% power
bound range. This indicates that PANN can perform well over a
range of power levels. This is an important result because the goal
of PANN is to be a part of a larger scheduling system that manages
both time and power allocations, and having a large range of power
allocations under which an application performs well increases the
usability of the scheduler, allowing the computer to change its ef-
fective characteristics based on the users’ needs at the time.

Conductor was tested with ParaDiS on the same input file at a
range of power bounds. The Conductor speedups are also graphed

E2SC’17, November 12-17, 2017, Denver, CO, USA

in figure 4. This shows that PANN usually performs better than Con-
ductor at the same power bound, but that at higher power bounds
Conductor does better. We speculate that this is due to PANN’s dy-
namic nature — when large changes need to be made, the neural
network in PANN does a better job of predicting and making those
changes, but at high power allocations there is not much room for
changes. In these cases the deterministic and exact Conductor per-
forms better. Conductor’s relative decrease in performance as the
power allocation decreases indicates that Conductor does not per-
form as well as PANN over as wide of range of power bounds. Ad-
ditionally, this test was over a small set of processors, so any com-
munication overheads were minimized and the calculation overhead
is virtually non-existent.

4.3 Runtime Results

Runtime System Results

Frequency
bl

[Static Allocation
6 [l PANN

140500 142500 144500 146500 148500 150500
Time (ms)

Figure 5: PANN comparison with static power allocation on test
set.

We created a runtime system, which we tested on Catalyst, the
results of which are shown in figure 5. The median runtime of the
PANN test was 143,634ms, while the median runtime of the static
power allocation was 143,247ms. This represents a slowdown of
0.27%, statistically indistinguishable from zero. Unfortunately due
to time constraints we were unable to do the level of tuning and
optimizing we would like to improve the runtime system’s perfor-
mance.

There are several potential reasons the runtime system is not giv-
ing results on par with the simulations. The most significant reason
appears to be inter-run variation. Though the system was trained on
several runs of the program, the results show that the distribution of
runs was insufficient for training purposes, and more runs, or more
variation in the training runs, are required to produce better results.

ParaDiS runtimes are highly stochastic, varying upwards of 10%
on total runtime and even higher on individual task runtimes. This
randomness Figure 6 shows the variation measured in the controller-
less runtimes. This randomness may be causing additional issues in
the real system as opposed to the simulations.

Additionally, the implementation shows that the neural network
needs more accurate training. This may need to be accomplished
with more training traces or with traces more similar to the objective
trace. Obtaining these similar traces would not be prohibitive in
the real world, as often ParaDiS is run for a period, the results are

Will Whiteside, Shelby Funk, Aniruddha Marathe, and Barry Rountree

Inter Run Variation

Frequency
[oe}

i -

141500 143500 145500 147500 149500 151500
Time (ms)

Figure 6: Variation in runtime in ParaDiS. All runs used exactly
the same inputs and were performed on the same cluster.

recorded, and then the run is restarted from that point with some
updated parameters, usually re-meshing. These earlier runs should
be a good source of training data for the later runs.

Another factor that would improve the runtime system is better
tuning of the genetic algorithm.

However some useful information can be gleaned from this im-
plementation. Disabling the power bound setting part of the con-
troller allows a real-world analysis of the overhead. For this test
a ParaDiS with a mean runtime of 143.90 seconds was run many
times with and without the controller attached. The runs with the
controller calculating but not changing power resulted in a mean
runtime of 144.05 seconds, for a difference of means of 149.15 ms,
or 0.1%. This accounts for most of the potential sources of slow
downs, the MPI communication calls and the calculation of the re-
quests and the power limits. The only overhead unaccounted for is
the RAPL method for changing the power bound. This is largely
negligible, as Intel’s RAPL system has very fast methods for chang-
ing the power bounds as well as the fact that this cost would be
incurred by any system that balances load by allocating power. This
indicates that the real world overhead is insignificant.

4.4 Additional Testing

PANN Trained at Various Power Levels

25

20 /;77” ”'*\

154 ¥

S
2 104

o
a 5+ Trained At
= o] ——+— 50.00%
S = 60.00%
O 75.00%
o 27 95.00%
o

—~104

_154

-20 T T T T T T

30 40 50 60 70 80 90 100

Power Limit (% of Maximum)

Figure 7: Simulated speedup of various PANN controllers at
various power levels

PANN: Power Allocation via Neural Networks

As an additional test, the neural network controllers trained at
various power levels were simulated at the whole sweep of power
levels to judge how well a controller would perform outside of the
training parameters. Figure 7 shows the results of this test. This
shows that some controllers performed well when they were close
to their training level and poorly when the power bound was signifi-
cantly different. Most notable is the controller from the 75% power
bound, it performed the best on the largest sweep (from 60% to
80%). However, it performed by far the worst on the lowest power
bound, actually slowing the completion down by 18%. Similarly,
the controller from 50% did well in the low power range and poorly
in the high power range.

Conversely, the controller from 95% performed evenly across the
whole sweep, and actually performed worst on the power bound
it was trained on. This seems to show that it has learned some of
the pattern, but did not learn as much because at the 95% power
bound it did not have as much wiggle room to learn. Comparing
the 50% and 95% bounds appears to be a near textbook example
of overfitting, the 50% fits very well at 50%, but does very poorly
at everything ; 80%, whereas the 95% one does about the same
on all the power levels all the way down to 40%. Strangely, the
controller trained at 60% did not perform as well at the 60% power
bound as the controller trained at 75%. This is an odd result, but it is
likely due to the 60% controller getting stuck in a local minimum in
the learning phase. Notably missing from this chart are controllers
trained at 40% and 45%. These controllers were excluded from the
chart because they performed so poorly on power bounds from 60%
to 95% that it broke the scale, at some points almost doubling the
runtimes from the static power allocation. This illustrates one of
the weaknesses of artificial intelligence based approaches, particu-
lar care must be used to guarantee the maximized fitness function
corresponds to the actual goal of the user. In this case the goals and
fitness functions may seem to be fairly close — maximize speedup at
40% versus maximize speedup over a range of values — but it turns
out that those are different enough to produce negative results[9].

The results gleaned from this analysis are that if at all possible,
the controller should be trained at the power allocation that the pro-
cess is going to be run at. However, it seems that the performance
does not degrade too much as long as the power bound is relatively
close to the training bound. If the allocation and training bound are
too different, the controller can actually degrade performance, so
care should be taken to choose a controller appropriate to the power
allocation in use.

5 CONCLUSION AND FUTURE WORK

This paper presents PANN, a novel online distributed power allo-
cation controller for power—bounded high—performance computing.
Using artificial intelligence increases applicability and performance.
The controller adds minimal execution and communication over-
head and produces speedups when operating under a power bound.
It simulates up to a 24% speedup over static power allocation on
traces of real jobs and 6% to 11% speedups compared to Conduc-
tor.

PANN works by collecting traces of an application. These traces
are used as a training set of a genetic algorithm, which uses the
traces to train a neural network to allocate power during those traces

E2SC’17, November 12—-17, 2017, Denver, CO, USA

dynamically. Once this neural network is trained it can be deployed
to dynamically allocate power on running programs.

Currently, the training phase requires logging previous runs of
an application, but future versions will have the ability to learn auto-
matically during the run of an application. Using the online training
version will allow PANN to be used on a wide range of platforms
and programs with no work from the application developer.

In the opposite direction, we plan to add functionality to PANN
that allows developers to give hints about the power needs and uti-
lize that information to better allocate power. These hints will be
used as part of the learning process, so the controllers could learn
exactly what the developers mean by their hints, without requiring
developers to understand the underlying power demands of their
applications.

Currently this research only considers CPU power. Future ver-
sions could take memory and cooling power into account, as well
as using actual input power, measured at the power supply. This also
has great promise in being used to control cooling systems, allow-
ing a fan to be spun up before the processor starts to warm, main-
taining efficiency and reducing overall cooling costs. We also plan
to have a similar system that is is designed to improve performance
on applications with more localized communication patterns.

6 ACKNOWLEDGEMENTS

This work performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Con-

tract DE-AC52-07NA27344 (LLNL-CONF-739564). Also, we would

like to thank Walt Whiteside and Brandon Posey.

REFERENCES

[11 AMG. https://codesign.lInl.gov/amg2013.php.

[2] CoMD. https://github.com/exmatex/CoMD.

[3] ParaDiS. paradis.stanford.edu.

[4] BULATOV, V. E. A. Scalable line dynamics in paradis. Supercomputing (2004).
[5] ELLSWORTH, D., MALONY, A., ROUNTREE, B., AND SCHULZ, M. Dy-
namic power sharing for higher job throughput. Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(2015), 80:1-80:11.

MARATHE, A., BAILEY, P., LOWENTHAL, D., ROUNTREE, B., SCHULZ, M.,
AND DE SUPINSKI, B. A run-time system for power-constrained hpc applications.
High Performance Computing (2015), 394-408.

MONTANA, D., AND DAvIS, L. Training feedforward neural networks using
genetic algorithms. In International Joint Conference on Artificial Intelligence
(1989), vol. 89, pp. 762-767.

PAWLOWSKI, S. Exascale science: the next frontier in high performance comput-
ing. International Conference on Supercomputing (2010).

RUSSELL, S., AND NORVIG, P. Artificial Intelligence: a Modern Approach. Pear-
son, 2003.

[6

[7

[8

[9

