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Abstract—Triangle counting has long been a challenge problem
for sparse graphs containing high-degree ‘“hub” vertices that
exist in many real-world scenarios. These high-degree vertices
create a quadratic number of wedges, or 2-edge paths, which
for brute force algorithms require closure checking or wedge
checks. Our work-in-progress builds on existing heuristics for
pruning the number of wedge checks by ordering based on
degree and other simple metrics. Such heuristics can dramatically
reduce the number of required wedge checks for exact triangle
counting for both real and synthetic scale-free graphs. Our
triangle counting algorithm is implemented using HavoqGT,
an asynchronous vertex-centric graph analytics framework for
distributed memory. We present a brief experimental evaluation
on two large real scale-free graphs: a 128B edge web-graph and
a 1.4B edge twitter follower graph, and a weak scaling study on
synthetic Graph500 RMAT graphs up to 274.9 billion edges.

I. INTRODUCTION

We present a short summary of our work-in-progress to-
wards triangle counting in large scale-free graphs, motivated
by the recent Graph Challenge [9]. Such graphs are particu-
larly challenging for triangle counting due to the presence of
high-degree vertices that create a quadratic number of wedges,
that may or may not have a closing edge creating a triangle.
Over the years, a number heuristics have been developed to
reduce the number of wedges that require checking while
maintaining an exact count of the triangles. A series of
heuristics that dramatically reduce the number of wedge checks
is based on directing the edges based on degree [4], [5], which
has empirically been evaluated along with other orderings
such as by k-core [10], [2], [11]. Our work builds on these
heuristics, and we present a new empirical evaluation for large
scale-free graphs in distributed memory implemented in our
HavoqGT! framework.

The key technique that our approach leverages is based
on creating an augmented Degree-Ordered Directed (DOD)
graph, where the original undirected edges are directed from
low-degree to high-degree [4], [5]. Edges between vertices
of equal degree are directed based on a simple hashed-based
tie breaking. Figure 1 illustrates an undirected triangle (left),
and the transformation after degree-based ordering (right).
An important outcome of this transformation is that the
distribution of outgoing directed edges is concentrated on the
low-degree vertices, removing many edges from the original
high-degree vertices. This dramatically reduces the number

'HaovqGT is available open source: http:/software.llnl.gov/havoqgt/
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Fig. 1: A triangle in an undirected graph with d; < d; < dj,
(left) and the associated degree-based ordering (right).
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Fig. 2: Degree distributions for WDC 2012 [1] graph.

of wedges checked during triangle counting. The original
undirected degree distributions and the DOD directed degree
distributions are shown in Figures 2, 3, for the two real graphs
used in this study. In these two cases, the maximum out-degree
in the DOD graph is multiple orders of magnitude smaller
than the maximum original undirected degree. An additional
heuristic we apply to reduce wedge checks and distributed
communication is to track which vertices have zero outgoing
edges in the DOD graph. Consider the DOD graph illustrated



Degree Distribution for Twitter Graph
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Fig. 3: Degree distributions for Twitter [7] follower graph.

in Figure 1(right); if a vertex has zero out-degree, it cannot be
a j vertex in a triangle, eliminating the need to query j for a
closing edge to k.

This paper presents a snapshot of our work-in-progress
towards triangle counting for large graphs in distributed mem-
ory?. Strong and weak scaling studies are presented for real
and synthetic graphs, including some of the largest graphs used
for triangle counting to date.

II. APPROACH

Our approach begins with an undirected graph, that has
been partitioned with a vertex-cut method in HavoqGT called
distributed delegates [8] to partition the high-degree vertices.
The following steps are applied, which are also illustrated in
Figure 4:

1) A 2-core decomposition is performed, eliminating all
vertices and edges in the 1-periphery that cannot be a
member of a triangle. See Figure 4(a-b).

2) A Degree-Ordered Directed (DOD) graph is constructed
where each edge is directed from low-degree to high-
degree. See Figure 4(b-c). For edges between vertices
of equal degree, ties are broken based on a hash of
the vertex identifiers. A key atribute of this DOD graph
is that the maximum out-degree is significantly smaller
than the input undirected graph. Figures 2 and 3 compare
the degree distribution of the original undirected graph
to the out-degree distribution of the DOD graph for
our two real test graphs. Another implication of this
reduction in maximum out-degree is that a simple 1D
partitioning of the DOD graph is now feasible, without
the use of vertex-cut delegates (for the sparse graphs we
have tested). A 1D partitioning is preferred for step 3’s
wedge creation.

3) Finally, (O’”_‘éeg "¢“) wedges are created for each vertex
in the DOD graph, and each wedge-check query is per-

2Interested readers may contact the author for updated manuscripts of this
work.

formed using HavoqGT’s vertex-centric programming
model to check existence of the closing edge.

III. RESULTS & DISCUSSION

For our experimental study, we used LLNL’s Catalyst
cluster with 300 compute nodes. Each compute nodes has 24-
cores (2x Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz),
128GB DRAM, and 800GB NVRAM (Intel SSD 910). For
all experiments, the input undirected graph was stored on
NVRAM, and the DOD graph was created and processed in
DRAM. There was sufficient DRAM to process both of the
real graphs we tested, but not for the synthetic graphs. For
consistency, we chose to process all input undirected graphs
directly from NVRAM. Informative statistics about our test
graphs are shown in Table I, including the max degree of the
input undirected graphs and the DOD max degree after degree
order transformation.

A. Strong Scaling on Real Graphs

Our initial strong scaling experiments have been performed
on two large scale-free graphs: Twitter follower graph [7]
and WDC 2012 Webgraph [1]. The 2012 Webgraph is the
largest known open-source real-graph. HavoqGT is primarily
designed for distributed graph processing, so we have limited
our studies to graphs large enough to warrant distributed
memory.

The strong scaling performance results on the Twitter and
WDC 2012 graphs are shown in Figures 5 and 6 respectively.
Overall, near-linear strong scaling was observed. Of the three
phases required for our algorithm, computing the 2-core and
creating the DOD graph are insignificant compared to the cost
of wedge checking.

To our knowledge, this is the first result to count the
triangles in the WDC 2012 graph, and also the largest real-
graph for triangle counting. Using 256 compute nodes, 9.65
trillion triangles were counted in 808.7 seconds.

The Twitter graph has been perviously used in triangle
counting studies on large shared-memory machines. Shun, et
al. [11] presented the fastest prior result on this dataset, to our
knowledge. Using a 4-socket, 40-core Intel shared-memory
system, Shun, et al. reported counting the triangles in the
Twitter graph in 55.9 seconds. Our experiments using 256
compute nodes of Catalyst improves this to 11.9 seconds (4.7x
faster). The approximate break-even point using Catalyst is at
16-nodes (384-cores), where our approach takes 50.3 seconds.
Direct comparisons between shared-memory and distributed-
memory algorithms and systems are difficult to make, and the
CPU generations of these systems are different. However, as
the debate beween shared and distributed memory is common
among the graph analytics community, this result serves as
another example of a medium-sized graph analytic strong scal-
ing in distributed-memory beyond the performance achieved
by the best known shared-memory algorithm.
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Fig. 4: Example transformation of (a) input undirected graph; (b) 2-core decomposition that eliminates vertices that cannot
be members of triangles; (c¢) Degree Ordered Directed (DOD) graph from which wedges are computed.

TABLE I: Graph Dataset Information & Results

Dataset V] |E| Max degree  DOD max degree  # Wedges  # Triangles  Fastest time (sec) Triangles per sec
Twitter [7] 41.65 M 1.47 B 3.1 M 4,158 147.8 B 34.82 B 8.52 4.1 GTPS (256 nodes)
WDC 2012 [1] 3.56 B 128.74 B 95 M 10,683 1226 T 9.65T 808.7 11.9 GTPS (256 nodes)
G500 Scale 34  17.18 B 2749 B 69.8 M 23,896 246 T 50.58 T 36,178 1.4 GTPS (64 nodes)
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Fig. 5: Triangle Counting results on 1.4 billion edge Twitter
follower graph.

B. Weak Scaling on Synthetic Graphs

Additionally, a weak scaling study was performed using
undirected synthetic RMAT [3] graphs from the Graph500
[6] challenge, shown in Figure 7. Graph500 scales 28-34
are shown, the largest having 274.9 billion edges, using 1-
64 compute nodes of Catalyst. While the graph size (number
of vertices and edges) is weak-scaled, the amount of work
(number of triangles and wedge checks) grows super-linearly,
leading to a super-linear increase in running time. The total

Fig. 6: Triangle Counting results on 128 billion edge WDC
2012 Webgraph. This dataset requires a minimum of 64
compute nodes on Catalyst due to large memory requirements.

time to count the triangles tracks the increase in the number
of wedges checked, as the graph size is increased. The rate
of wedges and triangles processed per second is shown in
Figure 8, where a near-linear scaling is observed.

At the largest scale tested, Scale 34, the graph contained
50.58 trillion triangles, and was processed in 36,178 seconds
using 64 compute nodes. To our knowledge, this is the largest
graph for triangle counting to date.



Weak scaling of Triangle Counting
on Graph500 RMAT (Scales 28-34)
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Fig. 7: Triangle Counting results for Graph500 RMAT graphs
weak-scaled from Scale 28 (1 compute node) to Scale 34 (64
compute nodes). The total time tracks the number of wedge
checks performed, which grows super-linearly.

Weak scaling of Triangle Counting
on Graph500 RMAT (Scales 28-34)
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Fig. 8: Rates of Triangles and Wedges processed per second
for Graph500 RMAT graphs weak-scaled (Scales 28-34).

IV. SUMMARY

In summary, we present our work to date on triangle
counting for large scale-free graphs in HavoqGT. Our approach

scales to the largest known real graph in the open-source,
WDC 2012, containing 128 billion edges. At peak scaling,
our approach can count the 9.65 trillion triangles in this
graph in 808.7 seconds using 256 compute nodes of Catalyst.
The 1.4 billion edge Twitter follower graph containing 34
billion triangles was computed in 11.2 seconds, improving the
prior fastest result for this graph by 4.7x. Finally, a quarter-
trillion edge Graph500 RMAT graph was processed in 36,178
seconds, the largest graph used for triangle counting to our
knowledge.
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