‘ ! ! . LLNL-CONF-737552

LAWRENCE
LIVERM ORE
NATIONAL

wouroe | TrIANQGle Counting for Scale-Free
Graphs at Scale in Distributed
Memory

R. Pearce

August 28, 2017

2017 IEEE High Performance Extreme Computing Conference
(HPEC)

Waltham, MA, United States

September 12, 2017 through September 14, 2017

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Triangle Counting for Scale-Free Graphs at Scale in
Distributed Memory

Roger Pearce
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
rpearce @lInl.gov

Abstract—Triangle counting has long been a challenge problem
for sparse graphs containing high-degree ‘“hub” vertices that
exist in many real-world scenarios. These high-degree vertices
create a quadratic number of wedges, or 2-edge paths, which
for brute force algorithms require closure checking or wedge
checks. Our work-in-progress builds on existing heuristics for
pruning the number of wedge checks by ordering based on
degree and other simple metrics. Such heuristics can dramatically
reduce the number of required wedge checks for exact triangle
counting for both real and synthetic scale-free graphs. Our
triangle counting algorithm is implemented using HavoqGT,
an asynchronous vertex-centric graph analytics framework for
distributed memory. We present a brief experimental evaluation
on two large real scale-free graphs: a 128B edge web-graph and
a 1.4B edge twitter follower graph, and a weak scaling study on
synthetic Graph500 RMAT graphs up to 274.9 billion edges.

I. INTRODUCTION

We present a short summary of our work-in-progress to-
wards triangle counting in large scale-free graphs, motivated
by the recent Graph Challenge [9]. Such graphs are particu-
larly challenging for triangle counting due to the presence of
high-degree vertices that create a quadratic number of wedges,
that may or may not have a closing edge creating a triangle.
Over the years, a number heuristics have been developed to
reduce the number of wedges that require checking while
maintaining an exact count of the triangles. A series of
heuristics that dramatically reduce the number of wedge checks
is based on directing the edges based on degree [4], [5], which
has empirically been evaluated along with other orderings
such as by k-core [10], [2], [11]. Our work builds on these
heuristics, and we present a new empirical evaluation for large
scale-free graphs in distributed memory implemented in our
HavoqGT! framework.

The key technique that our approach leverages is based
on creating an augmented Degree-Ordered Directed (DOD)
graph, where the original undirected edges are directed from
low-degree to high-degree [4], [5]. Edges between vertices
of equal degree are directed based on a simple hashed-based
tie breaking. Figure 1 illustrates an undirected triangle (left),
and the transformation after degree-based ordering (right).
An important outcome of this transformation is that the
distribution of outgoing directed edges is concentrated on the
low-degree vertices, removing many edges from the original
high-degree vertices. This dramatically reduces the number

'HaovqGT is available open source: http:/software.llnl.gov/havoqgt/

®

@ @

/

® ®

Fig. 1: A triangle in an undirected graph with d; < d; < dj,
(left) and the associated degree-based ordering (right).

Degree Distribution for WDC 2012 Graph

T Ot Degroe T
108 —m— Original Degree
109 - B

=

g

O 101 :
| \\/' 7
10° 1

I A A 1 1 R N VT Y T SRR MR |

10° 10' 10% 10* 10* 10° 105 107 10®
Vertex Degree (log-binned)

Fig. 2: Degree distributions for WDC 2012 [1] graph.

of wedges checked during triangle counting. The original
undirected degree distributions and the DOD directed degree
distributions are shown in Figures 2, 3, for the two real graphs
used in this study. In these two cases, the maximum out-degree
in the DOD graph is multiple orders of magnitude smaller
than the maximum original undirected degree. An additional
heuristic we apply to reduce wedge checks and distributed
communication is to track which vertices have zero outgoing
edges in the DOD graph. Consider the DOD graph illustrated

Degree Distribution for Twitter Graph

‘ ” " -~ DOD Out Degree ‘
—m— Original Degree
100 1
g 10*| 1
=
5]
)
10% |- b
10° |- i
TN T T T T T A1 S A W T

100 10! 102 10 10* 10° 10°
Vertex Degree (log-binned)

Fig. 3: Degree distributions for Twitter [7] follower graph.

in Figure 1(right); if a vertex has zero out-degree, it cannot be
a j vertex in a triangle, eliminating the need to query j for a
closing edge to k.

This paper presents a snapshot of our work-in-progress
towards triangle counting for large graphs in distributed mem-
ory?. Strong and weak scaling studies are presented for real
and synthetic graphs, including some of the largest graphs used
for triangle counting to date.

II. APPROACH

Our approach begins with an undirected graph, that has
been partitioned with a vertex-cut method in HavoqGT called
distributed delegates [8] to partition the high-degree vertices.
The following steps are applied, which are also illustrated in
Figure 4:

1) A 2-core decomposition is performed, eliminating all
vertices and edges in the 1-periphery that cannot be a
member of a triangle. See Figure 4(a-b).

2) A Degree-Ordered Directed (DOD) graph is constructed
where each edge is directed from low-degree to high-
degree. See Figure 4(b-c). For edges between vertices
of equal degree, ties are broken based on a hash of
the vertex identifiers. A key atribute of this DOD graph
is that the maximum out-degree is significantly smaller
than the input undirected graph. Figures 2 and 3 compare
the degree distribution of the original undirected graph
to the out-degree distribution of the DOD graph for
our two real test graphs. Another implication of this
reduction in maximum out-degree is that a simple 1D
partitioning of the DOD graph is now feasible, without
the use of vertex-cut delegates (for the sparse graphs we
have tested). A 1D partitioning is preferred for step 3’s
wedge creation.

3) Finally, (O’”_‘éeg "¢“) wedges are created for each vertex
in the DOD graph, and each wedge-check query is per-

2Interested readers may contact the author for updated manuscripts of this
work.

formed using HavoqGT’s vertex-centric programming
model to check existence of the closing edge.

III. RESULTS & DISCUSSION

For our experimental study, we used LLNL’s Catalyst
cluster with 300 compute nodes. Each compute nodes has 24-
cores (2x Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz),
128GB DRAM, and 800GB NVRAM (Intel SSD 910). For
all experiments, the input undirected graph was stored on
NVRAM, and the DOD graph was created and processed in
DRAM. There was sufficient DRAM to process both of the
real graphs we tested, but not for the synthetic graphs. For
consistency, we chose to process all input undirected graphs
directly from NVRAM. Informative statistics about our test
graphs are shown in Table I, including the max degree of the
input undirected graphs and the DOD max degree after degree
order transformation.

A. Strong Scaling on Real Graphs

Our initial strong scaling experiments have been performed
on two large scale-free graphs: Twitter follower graph [7]
and WDC 2012 Webgraph [1]. The 2012 Webgraph is the
largest known open-source real-graph. HavoqGT is primarily
designed for distributed graph processing, so we have limited
our studies to graphs large enough to warrant distributed
memory.

The strong scaling performance results on the Twitter and
WDC 2012 graphs are shown in Figures 5 and 6 respectively.
Overall, near-linear strong scaling was observed. Of the three
phases required for our algorithm, computing the 2-core and
creating the DOD graph are insignificant compared to the cost
of wedge checking.

To our knowledge, this is the first result to count the
triangles in the WDC 2012 graph, and also the largest real-
graph for triangle counting. Using 256 compute nodes, 9.65
trillion triangles were counted in 808.7 seconds.

The Twitter graph has been perviously used in triangle
counting studies on large shared-memory machines. Shun, et
al. [11] presented the fastest prior result on this dataset, to our
knowledge. Using a 4-socket, 40-core Intel shared-memory
system, Shun, et al. reported counting the triangles in the
Twitter graph in 55.9 seconds. Our experiments using 256
compute nodes of Catalyst improves this to 11.9 seconds (4.7x
faster). The approximate break-even point using Catalyst is at
16-nodes (384-cores), where our approach takes 50.3 seconds.
Direct comparisons between shared-memory and distributed-
memory algorithms and systems are difficult to make, and the
CPU generations of these systems are different. However, as
the debate beween shared and distributed memory is common
among the graph analytics community, this result serves as
another example of a medium-sized graph analytic strong scal-
ing in distributed-memory beyond the performance achieved
by the best known shared-memory algorithm.

(a (b)

o -

©

Fig. 4: Example transformation of (a) input undirected graph; (b) 2-core decomposition that eliminates vertices that cannot
be members of triangles; (c¢) Degree Ordered Directed (DOD) graph from which wedges are computed.

TABLE I: Graph Dataset Information & Results

Dataset V] |E| Max degree DOD max degree # Wedges # Triangles Fastest time (sec) Triangles per sec
Twitter [7] 41.65 M 1.47 B 3.1 M 4,158 147.8 B 34.82 B 8.52 4.1 GTPS (256 nodes)
WDC 2012 [1] 3.56 B 128.74 B 95 M 10,683 1226 T 9.65T 808.7 11.9 GTPS (256 nodes)
G500 Scale 34 17.18 B 2749 B 69.8 M 23,896 246 T 50.58 T 36,178 1.4 GTPS (64 nodes)
Triangle Counting on Twitter Graph Triangle Counting on WDC 2012 Graph
T T T T T T T T T 256 T T T
1,024 - .
1,024 | '\-\. i
I -| 64
64 - N
o) = 128 b
El = E
) = 1)
A 1o 2 e
g § g 16 |- B
= | 14 =
0.25| y 2r i
I 11 0.25 | \\ﬁ i
1.56-10"2 b1 ! ! ! ! ! ! ! [! ! !
1 2 4 8 16 32 64 128 256 64 128 256
Number of Compute Nodes (x24 cores) Number of Compute Nodes (x24 cores)
—e— 2 Core —=—DOD Creation —e— Wedge Check ‘ —e—2-Core —#— DOD Creation —e— Wedge Check ‘
—&— Scalability

Fig. 5: Triangle Counting results on 1.4 billion edge Twitter
follower graph.

B. Weak Scaling on Synthetic Graphs

Additionally, a weak scaling study was performed using
undirected synthetic RMAT [3] graphs from the Graph500
[6] challenge, shown in Figure 7. Graph500 scales 28-34
are shown, the largest having 274.9 billion edges, using 1-
64 compute nodes of Catalyst. While the graph size (number
of vertices and edges) is weak-scaled, the amount of work
(number of triangles and wedge checks) grows super-linearly,
leading to a super-linear increase in running time. The total

Fig. 6: Triangle Counting results on 128 billion edge WDC
2012 Webgraph. This dataset requires a minimum of 64
compute nodes on Catalyst due to large memory requirements.

time to count the triangles tracks the increase in the number
of wedges checked, as the graph size is increased. The rate
of wedges and triangles processed per second is shown in
Figure 8, where a near-linear scaling is observed.

At the largest scale tested, Scale 34, the graph contained
50.58 trillion triangles, and was processed in 36,178 seconds
using 64 compute nodes. To our knowledge, this is the largest
graph for triangle counting to date.

Weak scaling of Triangle Counting
on Graph500 RMAT (Scales 28-34)

'1012

40,000
o
E
30,000 - | —e—# Triangles 13 &
- —=— # Wedges =
3 edges £
g S
£ 20,000 19 %
_E =
L]
10,000 (- 11 &
./4/4,/*/'/‘/. §

0 5 | | | | | | | - 0

1 2 4 8 16 32 64
Number of Compute Nodes (x24 cores)

Fig. 7: Triangle Counting results for Graph500 RMAT graphs
weak-scaled from Scale 28 (1 compute node) to Scale 34 (64
compute nodes). The total time tracks the number of wedge
checks performed, which grows super-linearly.

Weak scaling of Triangle Counting
on Graph500 RMAT (Scales 28-34)

1010 E T T T T T T T -
E —e— Wedges / Sec E
% | | —=m— Triangles / Sec]
2 L |
T B
ks r]
= r i
k| - :
= L]
3
g 108 ¢ E
o0 = |
it r]
= i]
| | | | | | |

1 2 4 8 16 32 64
Number of Compute Nodes (x24 cores)

Fig. 8: Rates of Triangles and Wedges processed per second
for Graph500 RMAT graphs weak-scaled (Scales 28-34).

IV. SUMMARY

In summary, we present our work to date on triangle
counting for large scale-free graphs in HavoqGT. Our approach

scales to the largest known real graph in the open-source,
WDC 2012, containing 128 billion edges. At peak scaling,
our approach can count the 9.65 trillion triangles in this
graph in 808.7 seconds using 256 compute nodes of Catalyst.
The 1.4 billion edge Twitter follower graph containing 34
billion triangles was computed in 11.2 seconds, improving the
prior fastest result for this graph by 4.7x. Finally, a quarter-
trillion edge Graph500 RMAT graph was processed in 36,178
seconds, the largest graph used for triangle counting to our
knowledge.
ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
737552). Experiments were performed at the Livermore Com-
puting facility.

REFERENCES

[1] Web Data Commons
hyperlinkgraph/, 2012.

[2] Ariful Azad, Aydin Bulug, and John Gilbert. Parallel triangle counting
and enumeration using matrix algebra. In Parallel and Distributed
Processing Symposium Workshop (IPDPSW), 2015 IEEE International,
pages 804-811. IEEE, 2015.

[3] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat:
A recursive model for graph mining. In Fourth SIAM International
Conference on Data Mining, April 2004.

[4] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing
algorithms. SIAM Journal on Computing, 14(1):210-223, 1985.

[5] Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in
Science & Engineering, 11(4):29-41, 2009.

[6] Graph 500 Steering Committee. The graph500 benchmark. http:/www.
graph500.org, 2010.

[7] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is
Twitter, a social network or a news media? In WWW ’10: Proceedings
of the 19th international conference on World wide web, pages 591-600,
New York, NY, USA, 2010. ACM.

[8] Roger Pearce, Maya Gokhale, and Nancy M Amato. Faster parallel
traversal of scale free graphs at extreme scale with vertex delegates. In
High Performance Computing, Networking, Storage and Analysis, SC14:
International Conference for, pages 549-559. IEEE, 2014.

[9] Siddharth Samsi, Vijay Gadepally, Michael Hurley, Michael Jones,
Edward Kao, Sanjeev Mohindra, Paul Monticciolo, Albert Reuther,
Steven Smith, William Song, Diane Staheli, and Jeremy Kepner. Static
graph challenge: Subgraph isomorphism. In /JEEE HPEC, 2017.

[10] Thomas Schank and Dorothea Wagner. Finding, counting and listing
all triangles in large graphs, an experimental study. In WEA, pages
606-609. Springer, 2005.

[11] Julian Shun and Kanat Tangwongsan. Multicore triangle computations
without tuning. In Data Engineering (ICDE), 2015 IEEE 31st Interna-

tional Conference on, pages 149-160. IEEE, 2015.

webgraph. http://webdatacommons.org/

