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Auxiliary-field Quantum Monte Carlo Simulations of Strongly-Correlated Systems,
the Final Report

I. OVERALL OBJECTIVE

In this final report, we present preliminary results
of ground state phases of interacting spinless Dirac
fermions. The name “Dirac fermion” originates from
the fact that low-energy excitations of electrons hopping
on the honeycomb lattice are described by a relativistic
Dirac equation. Dirac fermions have received much at-
tention particularly after the seminal work of Haldale!
which shows that the quantum Hall physics can be re-
alized on the honeycomb lattice without magnetic fields.
Haldane’s work later becomes the foundation of topolog-
ical insulators (TIs). While the physics of TIs is based
largely on spin-orbit coupled non-interacting electrons,
it was conjectured® that topological insulators can be in-
duced by strong correlations alone.

Motivated by the idea of topological Mott insula-
tors, we study the physics of interacting spinless Dirac
fermions. The system is arguably the simplest model
that can possibly realize the topological Mott insulator.?
The model is defined by the Hamiltonian
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Here éj (¢,) creates (destroys) a spinless fermion at site i,
and n; is the number operator. ¢ is the uniform hopping
integral between near-neighbor sites ¢ and j. The param-
eter V7 and V; represent the strength of near-neighbor
(NN) and next-next-neighbor (NNN) interactions. The
notation (ij) and ((ij)) denote the summation is carried
out over NN and NNN sites respectively. We use ¢ as the
unit of energy and set ¢t = 1.

In this report, focus will be on the physics induced by
the NN interaction V;. As such, the NNN interaction will
be set to Vo = 0. At half-filling and V; > 0, exact QMC
calculations®* have shown that the system will undergo
a quantum phase transition at V;° ~ 1.36(3). The ground
state is a semimetal for V3 < V¢, and a charge density
wave at V3 > V°. There is no QMC data for V3 < 0 to
date due to the sign problem. We use the AFQMC ap-
proach developed for generalized Hartree-Fock orbitals
and extend the algorithm for spinless fermions. Trial
wave functions are generated using a mean-field theory
that allows both diagonal <éjéz> (density order) and off-

diagonal (é;réj> (bond order) order parameters. The pre-
vious report has given results of the attractive V3 model
at half-filling. In this case, the ground state phase sep-
arates into particle-rich and hole-rich regions when the
interaction strength V; < —1.7. Here we will report pre-
liminary data of the model when it is doped with holes.
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FIG. 1. (a) Schematic ground state phase diagram of doped
Hubbard model for spinless fermions on the honeycomb lat-
tice. h and p are hole and particle density respectively. (b)
Real-space near-neighbor p, + ip, pairing symmetry. A and
B are the two sublattice indices of the honeycomb lattice.
The complex number attached to each arrow is the pair-field
operator form factor.

II. PRELIMINARY RESULTS

Density distribution: The results at half-filling sug-
gest that the ground state of doped Hubbard model for
spinless Dirac fermions will phase separate at sufficiently
large |V7|. In order to verify this conjecture, we will first
be looking at real space density distribution p(r) and
hole-hole correlation function. The latter quantity is de-
fined as
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Here (...) denotes the ground state expectation value,
and q is the allowed wave vectors within the first Bril-
louin zone. L is the linear dimension of the L x L x 2
honeycomb lattice. Fig. 2 summarizes the data acquired
on the L = 6 latticeat V; = —1.6 and —1.8. At p =5/12,
which is close to half-filling p = 6/12, the density dis-
tribution already shows some degree of inhomogeneity
at V1 = —1.6. Recall that at p = 6/12 the critical V;
for phase phase separation is roughly V; = —1.7. As
a result, the slight inhomogeneity observed in the slight
doped case is very likely a precursor of phase separation.
Indeed, at V3 = —1.8, the doped ground state phase sepa-
rates, as shown in Fig. 2(c). This is also demonstrated by
the structure factor N(q) Fig. 2(d) which clearly peaks
at the smallest (in length) wave vector. Turning to the
heavily doped case p = 3/12, the density distribution is
quite homogeneous at V; = —1.6. Here again, Fig. 2(g)
and (h) strongly indicate that the system is phase sepa-
rated at V = —1.8. To better contract the behavior of
N(q) near the phase separation critical point, we plot in
Fig. 3 the charge structure factor along high symmetry
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FIG. 2. Density distribution p(r) (left column) and structure factor N(q) (right column) of doped Hubbard model for spinless
Dirac fermions on the 6 x 6 x 2 lattice. The particle density is (a)-(d) p = 5/12, and (e)-(h) p = 3/12. The black and red
dots in the density plots represent lattice sites. The yellow circles in the N(q) plots show the allowed k-points in the first
Brillouin zone. Note that N(q = 0) is not plotted. At V3 = —1.8, it is clear that both systems phase separate into hole-rich
and particle-rich regions. In this case, N(q) peaks at the smallest (in length) wave vector.

points I'-M-K-T". It appears that, at least for L = 6, the calculation suggests the possibility of p-wave supercon-
ground state phase separates for V3 < —1.8 regardless of  ductivity in the doped model. To verify, we compute the
doping levels. uniform p-wave superconducting pairing structure factor

Superconductivity: Next we move on to examine prop- 1
erties of the groul}d state before the sys.tem phase sepa- Pyiip= 5L Z Z (AiAL_j + AIAi-‘!‘j)? (3)
rates. In our previous report, the Bogoliubov-de Gennes icA




where the pair-field operator is defined as
A= Fsiéy, (4)
s

The quantity Fs = (1,e??™/3,¢47/3) is the p-wave pair-
ing form factor shown in Fig. 1(b), and § denotes near-
neighbor bonds of site i on sublattice A. Our prelimi-
nary results for the L = 6 lattice are plotted in the left
panel of Fig. 4 at four different doping levels. The data

indicate that the p-wave superconductivity is enhanced
by increasing |V4|. In all cases, the sudden drop in P4,
near —1.8 < V; < —1.6 is caused by the phase separation.
Interestingly, there seems to be an optimal doping for the
p-wave superconductivity. In order to confirm there is a
superconducting phase, we compute P,1;, at two differ-
ent system sizes at the same density p = 4/12. The data
are presented in the right panel of Fig. 4. Apart from
the finite-size effect®, P,;, in fact grows with L. This
tendency indicates the existence of a long-range p-wave
superconducting order in the doped model.
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 Our preliminary data for the doped cases seem to suggest
that the phase separation phase boundary depend strongly
on L.
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FIG. 3. Charge structure factor N(q) plotted along high symmetry lines shown in the inset of panel (a). In all panels, there is
< —1.80. The diverging N

a dramatic change in the behavior of N(q) as we scan |V1| across —1.60 < V4
that the ground state is phase separated at Vi < —1.8.
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FIG. 4. Left: Uniform p+ip pairing structure factor as a function of |V | measured at 4 different doping levels. In all cases, Pp+ip
grows with the strength of attraction until the system phase separates near —1.8 < V4 < —1.6. Right: Same quantity measured
on two system sizes. For |Vi| < 1.0, Ppyip seems to scale with L, indicating the existence of a long-range superconducting
order.



