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ABSTRACT:  

Rigorous characterization of the performance and generalization ability of cyber defense systems 

is extremely difficult, making it hard to gauge uncertainty, and thus, confidence. This difficulty 

largely stems from a lack of labeled attack data that fully explores the potential adversarial space. 

Currently, performance of cyber defense systems is typically evaluated in a qualitative manner 

by manually inspecting the results of the system on live data and adjusting as needed. 

 

Additionally, machine learning has shown promise in deriving models that automatically learn 

indicators of compromise that are more robust than analyst-derived detectors. However, to 

generate these models, most algorithms require large amounts of labeled data (i.e., examples of 

attacks). Algorithms that do not require annotated data to derive models are similarly at a 

disadvantage, because labeled data is still necessary when evaluating performance. 

 

In this work, we explore the use of temporal generative models to learn cyber attack graph 

representations and automatically generate data for experimentation and evaluation. Training and 

evaluating cyber systems and machine learning models requires significant, annotated data, 

which is typically collected and labeled by hand for one-off experiments. Automatically 

generating such data helps derive/evaluate detection models and ensures reproducibility of 

results. 

 

Experimentally, we demonstrate the efficacy of generative sequence analysis techniques on 

learning the structure of attack graphs, based on a realistic example. These derived models can 

then be used to generate more data. Additionally, we provide a roadmap for future research 

efforts in this area. 
 

INTRODUCTION:  
In order to quantify the performance of machine learning algorithms on a cybersecurity problem 

or assess the efficacy of a cyber defense system, realistic attack data is necessary. Open-source 

data is limited due to sensitivity issues and concerns, and is generally limited in its 

representation. In addition, most cyber data is unlabeled and cyber attacks are very rare, so good 

labeled training sets are scarce. Therefore, data is typically collected and annotated by hand for 

experimentation, which is time-consuming and difficult to replicate. This lack of data for 

experimentation and evaluation makes it difficult to perform foundational research and advance 

state-of-the-art detection methods. 
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Automatically generating cyber data is a difficult problem. Realistic cyber attacks contain a time 

component and potentially complex dependencies. So, how can realistic, meaningful labeled 

cyber data be generated?  
 
A naïve approach would be to randomly alter the payload, or to insert random noise between 

stages of a known, observed attack. This approach is similar to fuzzing, a technique to test 

software by randomly generating inputs. Although a good baseline for comparison, more 

intelligent techniques to actively adapt the data may prove more realistic and successful. 

 

In this work, we explore the use of generative sequence learning algorithms for automatically 

learning the structure and transition probabilities of an attack graph, based on observed attack 

state transitions. Generative models learn the joint distribution between the inputs and outputs of 

a system. By directly modeling the joint distribution, these models can then generate likely input 

examples for a desired output. These models can then be used to generate more attack state 

transition data as needed.  
 

To measure the efficacy of this approach, we specify a ground-truth probabilistic model of an 

attack graph, generate attack states from this model, and train two different generative models on 

the resulting observed sequences. We explore Markov models and deep learning (long short-term 

memory; LSTMs). Measuring the difference between the estimated transition probability 

matrices of both models against that of the ground-truth provides a metric of performance for 

each algorithm.  

 

Our results indicate that both methods do well at learning the transitions and probabilities of an 

attack graph. LSTMs might be of interest for learning and generating more complex attack 

graphs with long-term dependencies. We leave this investigation to future work. This work is a 

step toward automatically inducing generative models from observed cyber data, which can then 

be used for consistent, reproducible experimentation.  

 
DETAILED DESCRIPTION OF EXPERIMENT/METHOD: 

In order to reason and evaluate attack data generation methods, a rigorous, well-defined 

representation of an attack graph is necessary. Additionally, models of a given attack graph must 

be probabilistic in some sense in order to be able to generate interesting data that fully explores 

the adversarial space. Fortunately, finite–state machines and other more complex automata 

provide a useful formalism for defining attack graphs succinctly. Also, these representations 

have strong ties to generative modeling, which should make them effective for automatic data 

generation. 

 
A finite-state automata (FSA) can be thought of as an abstract computer that contains a finite 

amount of memory. It consists of states of activity that describe a problem space (e.g., elements 

of a cyber attack) and conditions defining transitions to and from each state. Additionally, 

automata can be represented graphically by a series of states enclosed in circles and transitions 
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between these states represented as arrows between states as shown in Figure 1. This graphical 

representation helps aid understanding and reasoning. FSAs are a good start for representing 

attack graphs, but are only accepting devices and not generating devices. That is, they can only 

determine if an observed sequence is “accepted” by the FSA via a binary flag (“yes” or “no”). In 

order to formulate a generating attack graph, a probabilistic finite–state automata (PFA) is 

necessary, which defines state transitions probabilistically [1]. By randomly traversing the PFA 

based on its possible states and transition probabilities, it is able to generate more interesting, 

slightly random data. 

 

The goal of this methodology is to use an existing cyber attack to generate similar (but different) 

attack data to create a richer set of training data for learning algorithms. The process can be 

described as follows: 

1) Choose initial cyber attack. 

2) Analyze the attack and determine states and transitions. 

3) Define or estimate the transition probabilities. 

4) Use the PFA to generate data by randomly traversing the graph, based on the defined 

probabilities. 

 
Figure 1: Markov chain of the attack graph (left) and the associated Probabilistic Finite Automata (right) 

Suppose the Markov chain representation of the attack graph is defined by the left side of Figure 

1, which is a realistic example borrowed from [2]. It can easily be converted into a PFA, by 

having the output along any transition simply be the current state, as shown on the right side of 

the figure. Then this model can be run probabilistically to generate attack data. For example, one 

generated attack sequence may be: 
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Execute → Move → Look → Move → Transfer → Cleanup 

 
RESULTS:  
Experimentally, we demonstrated the efficacy of generative sequence analysis techniques on 

learning the structure of attack graphs, based on a realistic example. That is, given an observed 

sequence of attack state transitions, we investigated how many samples were necessary to learn 

the state transitions and probabilities of the attack graph using maximum likelihood estimation 

(MLE) of Markov models and deep learning (long short-term memory (LSTM)). 

 

Markov models are a standard, well-known technique and baseline for sequence analysis. These 

models are based on the Markov assumption that the next state is only dependent on the current 

state. They are typically trained using maximum likelihood estimation, which estimates the 

transition probabilities from the observed transitions as: 

 
𝑤𝑖𝑗

∑ 𝑤𝑗
 

 

where 𝑤𝑖𝑗  is the observed count associated with the transition from 𝑖 → 𝑗. The estimated 

transition probabilities of a Markov process converge to the actual transition probabilities at rate 

1 √𝑛⁄ , where 𝑛 is the sample size. 

 

Long short-term memory (LSTM) [3] is a recurrent neural network that can be used for sequence 

prediction and classification, in addition to data generation. Its recurrent structure assumes that 

sequences are dependent, which allows this model to learn long-term dependences. This 

recurrence allows it to represent a more complex class of models than Markov models. They 

have shown significant success on various sequence learning problems, such as speech 

recognition [4]. 

 

Using the probabilistic finite-state automata (PFA) from Figure 1 as our ground truth attack 

graph, we measured the difference between the estimated transition probability matrices of the 

models with that of the PFA's probability matrix. The difference between the true transition 

probability matrix 𝑃 and the estimated probability matrix 𝑃′ is measured by the Frobenius norm 

between the two matrices, defined as: ||𝑃 − 𝑃′||. 
 

Figure 2 shows the norm between the models’ estimated probability matrices and the ground-

truth as a function of the number of training samples provided to the model. Both methods 

asymptotically approach the theoretical error rate with negligible difference, although MLE 

approaches faster. This result is not surprising given the consistency and efficiency of MLE. 

However, LSTMs are able to represent more complex models with long-term dependence, which 

may make them useful for generating more sophisticated attack data.  
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Additionally, both of these models can be used to generate more example data based on what has 

been "learned," which we also demonstrated. For example, some generated sequences from the 

LSTM are: 

Execute → Move → Look → Look → Look → Move → Transfer → Cleanup 

Execute → Move → Look → Transfer → Cleanup 

 

 
Figure 2: Difference between estimated transition probabilities and ground-truth as a function of the number of samples that 

the model is allowed to observe 

DISCUSSION:  
These results are a first step toward systematically generating full attack data. In future work, it 

would be useful to explore the automatic identification of attack states, as well as the internal 

dynamics of those states. That is, in addition to learning and generating state transitions, it might 

also be possible to learn and automate the generation of data that is representative of each state. 

Additionally, if the states can be detected automatically, an analyst would not need to research 

and derive each state by hand. 

 

Learning generative models of full attack graphs would allow game-theoretic learning 

mechanisms to adapt and evolve attack data in order to preemptively generate data that avoids 

detection. Such proactive mechanisms could be used to enhance and augment machine learning 

models and cyber systems in order to make detection capabilities more robust.  
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Providing other primitives (e.g., packet crafting) for data generation would allow cybersecurity 

analysts to define their own attack use cases. These mechanisms would allow analysts to define 

attack scenarios based on their own expertise or open-source threat reporting. In order to 

demonstrate such a use case, we explored a real-world attack described in open-source threat 

reporting. We chose the malicious advertising attacks that were downloading ransomware on 

visitors to major news sites, such as New York Times and BBC [1] [2] [3]. After researching the 

attack from multiple sources, we derived the following states: 

1) Delivery of Malicious Advertising (Malvertising) to Popular Websites 

1. The adversary does a little reconnaissance to determine which advertising 

networks to load their malvertising to. 

2. Adversary crafts malicious ad, perhaps specifically to evade detection by the ad 

networks. 

3. Adversary uploads ad onto ad network. 

4. Ad networks push ad to websites (e.g., BBC and New York Times).   

2) User Visits Website Containing Malicious Ad 

1. User enters the URL of the site (e.g., nytimes.com) or gets referred to the site by 

clicking on a link.   

2. User is redirected to two malicious servers owned by the adversary.   

3) Malicious Server Attempts to Compromise Browser 

1. The second malicious server uses Angler Exploit Kit (AEK) to look for 

exploitable vulnerabilities in the browser itself or in plugins.  

2. AEK is used to try to exploit identified vulnerabilities. 

3. If successful, the adversary downloads the BEDEP backdoor onto the user's 

system, which in turn drops malware known as TROJ_AVRECON. 

4) Adversary Elevates Privileges and Executes Ransomware 

1. Adversary may need to exploit a different vulnerability in order to execute the 

malware. 

2. Adversary executes the malware. 

3. Dropper unpacks itself. 

4. Malware may need to elevate privileges by exploiting yet another vulnerability.  

5. Malware encrypts the user's hard drive. 

6. Malware requests ransom from user to unlock hard drive. 

7. Malware collects payment via bitcoin. 

8. Malware provides key for decrypting hard drive. 

5) Malware Cleans Up 

1. Malware removes all artifacts (e.g., Windows Registry keys).  

2. Malware removes itself. 

If there were provided tools for generating (or replaying) data from each state (e.g., network 

traffic containing the exploit), then it would be possible to generate data without first needing to 

observe it. Also, the graph and/or states could be tweaked (e.g., altering probabilities, adding 

noise, etc.) to perform sensitivity analysis on the resulting detection methods. 
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ANTICIPATED OUTCOMES AND IMPACTS:  
Generating consistent, annotated attack data will allow for more principled evaluation of cyber 

defense systems and statistical/machine learning models. The ability to quantitatively assess the 

detection capabilities of current cyber defense systems is crucial to trusting the nation’s cyber 

assets and improving resiliency. 

 

Since generative models can create data based on a model’s learned representation, they can 

actively synthesize new data points, pass them through current analytics/models, observe the 

output, and adaptively “learn” what triggers detection /subversion. Successive iterations of this 

process would allow tracking false positives/negatives, and thus allow quantitative 

summarization of expected performance. 

 

Additionally, such data generation mechanisms will be useful for machine learning and statistical 

models by: 1) providing data for training and deriving such models, 2) alleviating the need for 

data collection and associated sensitivity issues, and 3) ensuring the reproducibility of 

experimental results. 

 

Emulytic environments provide an opportunity to instantiate virtualized environments to test 

vulnerabilities in systems and collect corresponding artifacts. However, knowledge of attacks is 

still required and creating diverse data is laborious. Also, automatically generating realistic data 

for simulation is an open problem in such environments.  

 

This work has strong ties to the Linkography work at Sandia as the linkograph formulation and 

representation of attack graphs are directly related to Markov models [2]. This work directly 

leveraged the LinkShop library as well [6].  

 

Additionally, given a generative model that can manufacture data, game-theoretic approaches 

can be used to train a model to detect the newly generated data, thereby making detection 

capabilities more robust. This method can be viewed as a more advanced way of correcting 

learning bias in highly-skewed samples, which is typically accomplished by oversampling, 

undersampling or randomly perturbing existing data to create new inputs. Game-theoretic 

techniques have had demonstrative success on images using generative adversarial networks 

(GANs). 

 

To be successful in future research in this area, correctly representing the structure and 

constraints of cyber data may be crucial; future research will need to include investigating the 

necessary realism and validity of the generated data. Cybersecurity will continue to be 

challenged by attacks hiding amid large amounts of data, thus negatively impacting national 

security. The ability to quantitatively assess the detection capabilities of current cyber defense 

systems is crucial to trusting the nation’s cyber assets and improving resiliency. 

 

This work ties to the Cyberspace Mission Area and various future research goals in the Data 

Science Research Challenge. Attack graphs are activity-based models of adversarial intent. 
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Intelligently evolving such models allows quantifying uncertainty and identifying system 

subversions and vulnerabilities, which will allow for proactive remediation to increase 

resilience/confidence. 
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CONCLUSION:  
Although machine learning has made significant advances in applications such as speech 

recognition, handwriting recognition, image labeling, language translation, and sequence (e.g., 

character) prediction, its success has been less prominent in cybersecurity applications. One 

factor contributing to this lack of success is the need for realistic, consistent data for 

experimentation and evaluation. 

 

In this work, we explored the use of generative sequence learning to learn attack graph 

representations from observed sequences in order to automatically induce data generation 

methods for cyber data. We performed an experiment using a few generative learning algorithms 

on a realistic example and demonstrated the efficacy and potential of this idea. We also provided 

some suggestions for future research directions. 
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