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ABSTRACT:

Rigorous characterization of the performance and generalization ability of cyber defense systems
is extremely difficult, making it hard to gauge uncertainty, and thus, confidence. This difficulty
largely stems from a lack of labeled attack data that fully explores the potential adversarial space.
Currently, performance of cyber defense systems is typically evaluated in a qualitative manner
by manually inspecting the results of the system on live data and adjusting as needed.

Additionally, machine learning has shown promise in deriving models that automatically learn
indicators of compromise that are more robust than analyst-derived detectors. However, to
generate these models, most algorithms require large amounts of labeled data (i.e., examples of
attacks). Algorithms that do not require annotated data to derive models are similarly at a
disadvantage, because labeled data is still necessary when evaluating performance.

In this work, we explore the use of temporal generative models to learn cyber attack graph
representations and automatically generate data for experimentation and evaluation. Training and
evaluating cyber systems and machine learning models requires significant, annotated data,
which is typically collected and labeled by hand for one-off experiments. Automatically
generating such data helps derive/evaluate detection models and ensures reproducibility of
results.

Experimentally, we demonstrate the efficacy of generative sequence analysis techniques on
learning the structure of attack graphs, based on a realistic example. These derived models can
then be used to generate more data. Additionally, we provide a roadmap for future research
efforts in this area.

INTRODUCTION:

In order to quantify the performance of machine learning algorithms on a cybersecurity problem
or assess the efficacy of a cyber defense system, realistic attack data is necessary. Open-source
data is limited due to sensitivity issues and concerns, and is generally limited in its
representation. In addition, most cyber data is unlabeled and cyber attacks are very rare, so good
labeled training sets are scarce. Therefore, data is typically collected and annotated by hand for
experimentation, which is time-consuming and difficult to replicate. This lack of data for
experimentation and evaluation makes it difficult to perform foundational research and advance
state-of-the-art detection methods.
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Automatically generating cyber data is a difficult problem. Realistic cyber attacks contain a time

component and potentially complex dependencies. So, how can realistic, meaningful labeled
cyber data be generated?

A naive approach would be to randomly alter the payload, or to insert random noise between
stages of a known, observed attack. This approach is similar to fuzzing, a technique to test
software by randomly generating inputs. Although a good baseline for comparison, more
intelligent techniques to actively adapt the data may prove more realistic and successful.

In this work, we explore the use of generative sequence learning algorithms for automatically
learning the structure and transition probabilities of an attack graph, based on observed attack
state transitions. Generative models learn the joint distribution between the inputs and outputs of
a system. By directly modeling the joint distribution, these models can then generate likely input
examples for a desired output. These models can then be used to generate more attack state
transition data as needed.

To measure the efficacy of this approach, we specify a ground-truth probabilistic model of an
attack graph, generate attack states from this model, and train two different generative models on
the resulting observed sequences. We explore Markov models and deep learning (long short-term
memory; LSTMs). Measuring the difference between the estimated transition probability
matrices of both models against that of the ground-truth provides a metric of performance for
each algorithm.

Our results indicate that both methods do well at learning the transitions and probabilities of an
attack graph. LSTMs might be of interest for learning and generating more complex attack
graphs with long-term dependencies. We leave this investigation to future work. This work is a
step toward automatically inducing generative models from observed cyber data, which can then
be used for consistent, reproducible experimentation.

DETAILED DESCRIPTION OF EXPERIMENT/METHOD:

In order to reason and evaluate attack data generation methods, a rigorous, well-defined
representation of an attack graph is necessary. Additionally, models of a given attack graph must
be probabilistic in some sense in order to be able to generate interesting data that fully explores
the adversarial space. Fortunately, finite—state machines and other more complex automata
provide a useful formalism for defining attack graphs succinctly. Also, these representations
have strong ties to generative modeling, which should make them effective for automatic data
generation.

A finite-state automata (FSA) can be thought of as an abstract computer that contains a finite
amount of memory. It consists of states of activity that describe a problem space (e.g., elements
of a cyber attack) and conditions defining transitions to and from each state. Additionally,
automata can be represented graphically by a series of states enclosed in circles and transitions
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between these states represented as arrows between states as shown in Figure 1. This graphical
representation helps aid understanding and reasoning. FSAs are a good start for representing
attack graphs, but are only accepting devices and not generating devices. That is, they can only
determine if an observed sequence is “accepted” by the FSA via a binary flag (“yes” or “no”). In
order to formulate a generating attack graph, a probabilistic finite—state automata (PFA) is
necessary, which defines state transitions probabilistically [1]. By randomly traversing the PFA
based on its possible states and transition probabilities, it is able to generate more interesting,
slightly random data.

The goal of this methodology is to use an existing cyber attack to generate similar (but different)
attack data to create a richer set of training data for learning algorithms. The process can be
described as follows:

1) Choose initial cyber attack.

2) Analyze the attack and determine states and transitions.

3) Define or estimate the transition probabilities.

4) Use the PFA to generate data by randomly traversing the graph, based on the defined

probabilities.
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Figure 1: Markov chain of the attack graph (left) and the associated Probabilistic Finite Automata (right)
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Suppose the Markov chain representation of the attack graph is defined by the left side of Figure
1, which is a realistic example borrowed from [2]. It can easily be converted into a PFA, by
having the output along any transition simply be the current state, as shown on the right side of
the figure. Then this model can be run probabilistically to generate attack data. For example, one
generated attack sequence may be:
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Execute - Move - Look - Move - Transfer - Cleanup

RESULTS:

Experimentally, we demonstrated the efficacy of generative sequence analysis techniques on
learning the structure of attack graphs, based on a realistic example. That is, given an observed
sequence of attack state transitions, we investigated how many samples were necessary to learn
the state transitions and probabilities of the attack graph using maximum likelihood estimation
(MLE) of Markov models and deep learning (long short-term memory (LSTM)).

Markov models are a standard, well-known technique and baseline for sequence analysis. These
models are based on the Markov assumption that the next state is only dependent on the current
state. They are typically trained using maximum likelihood estimation, which estimates the
transition probabilities from the observed transitions as:

Wij

xwj

where w;; is the observed count associated with the transition from i — j. The estimated
transition probabilities of a Markov process converge to the actual transition probabilities at rate
1/~+/n, where n is the sample size.

Long short-term memory (LSTM) [3] is a recurrent neural network that can be used for sequence
prediction and classification, in addition to data generation. Its recurrent structure assumes that
sequences are dependent, which allows this model to learn long-term dependences. This
recurrence allows it to represent a more complex class of models than Markov models. They
have shown significant success on various sequence learning problems, such as speech
recognition [4].

Using the probabilistic finite-state automata (PFA) from Figure 1 as our ground truth attack
graph, we measured the difference between the estimated transition probability matrices of the
models with that of the PFA's probability matrix. The difference between the true transition
probability matrix P and the estimated probability matrix P’ is measured by the Frobenius norm
between the two matrices, defined as: ||P — P’||.

Figure 2 shows the norm between the models’ estimated probability matrices and the ground-
truth as a function of the number of training samples provided to the model. Both methods
asymptotically approach the theoretical error rate with negligible difference, although MLE
approaches faster. This result is not surprising given the consistency and efficiency of MLE.
However, LSTMs are able to represent more complex models with long-term dependence, which
may make them useful for generating more sophisticated attack data.
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Additionally, both of these models can be used to generate more example data based on what has
been "learned," which we also demonstrated. For example, some generated sequences from the
LSTM are:

Execute - Move - Look - Look - Look - Move - Transfer - Cleanup

Execute - Move - Look = Transfer - Cleanup
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Figure 2: Difference between estimated transition probabilities and ground-truth as a function of the number of samples that
the model is allowed to observe

DISCUSSION:

These results are a first step toward systematically generating full attack data. In future work, it
would be useful to explore the automatic identification of attack states, as well as the internal
dynamics of those states. That is, in addition to learning and generating state transitions, it might
also be possible to learn and automate the generation of data that is representative of each state.
Additionally, if the states can be detected automatically, an analyst would not need to research
and derive each state by hand.

Learning generative models of full attack graphs would allow game-theoretic learning
mechanisms to adapt and evolve attack data in order to preemptively generate data that avoids
detection. Such proactive mechanisms could be used to enhance and augment machine learning
models and cyber systems in order to make detection capabilities more robust.
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Providing other primitives (e.g., packet crafting) for data generation would allow cybersecurity
analysts to define their own attack use cases. These mechanisms would allow analysts to define
attack scenarios based on their own expertise or open-source threat reporting. In order to
demonstrate such a use case, we explored a real-world attack described in open-source threat
reporting. We chose the malicious advertising attacks that were downloading ransomware on
visitors to major news sites, such as New York Times and BBC [1] [2] [3]. After researching the
attack from multiple sources, we derived the following states:
1) Delivery of Malicious Advertising (Malvertising) to Popular Websites
1. The adversary does a little reconnaissance to determine which advertising
networks to load their malvertising to.
2. Adversary crafts malicious ad, perhaps specifically to evade detection by the ad
networks.
3. Adversary uploads ad onto ad network.
4. Ad networks push ad to websites (e.g., BBC and New York Times).
2) User Visits Website Containing Malicious Ad
1. User enters the URL of the site (e.g., nytimes.com) or gets referred to the site by
clicking on a link.
2. User is redirected to two malicious servers owned by the adversary.
3) Malicious Server Attempts to Compromise Browser
1. The second malicious server uses Angler Exploit Kit (AEK) to look for
exploitable vulnerabilities in the browser itself or in plugins.
2. AEK is used to try to exploit identified vulnerabilities.
3. If successful, the adversary downloads the BEDEP backdoor onto the user's
system, which in turn drops malware known as TROJ_AVRECON.
4) Adversary Elevates Privileges and Executes Ransomware
1. Adversary may need to exploit a different vulnerability in order to execute the
malware.
Adversary executes the malware.
Dropper unpacks itself.
Malware may need to elevate privileges by exploiting yet another vulnerability.
Malware encrypts the user's hard drive.
Malware requests ransom from user to unlock hard drive.
Malware collects payment via bitcoin.
Malware provides key for decrypting hard drive.
5) I\/Ialware Cleans Up
1. Malware removes all artifacts (e.g., Windows Registry keys).
2. Malware removes itself.
If there were provided tools for generating (or replaying) data from each state (e.g., network
traffic containing the exploit), then it would be possible to generate data without first needing to
observe it. Also, the graph and/or states could be tweaked (e.g., altering probabilities, adding
noise, etc.) to perform sensitivity analysis on the resulting detection methods.
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ANTICIPATED OUTCOMES AND IMPACTS:
Generating consistent, annotated attack data will allow for more principled evaluation of cyber
defense systems and statistical/machine learning models. The ability to quantitatively assess the
detection capabilities of current cyber defense systems is crucial to trusting the nation’s cyber
assets and improving resiliency.

Y/
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Since generative models can create data based on a model’s learned representation, they can
actively synthesize new data points, pass them through current analytics/models, observe the
output, and adaptively “learn” what triggers detection /subversion. Successive iterations of this
process would allow tracking false positives/negatives, and thus allow guantitative
summarization of expected performance.

Additionally, such data generation mechanisms will be useful for machine learning and statistical
models by: 1) providing data for training and deriving such models, 2) alleviating the need for
data collection and associated sensitivity issues, and 3) ensuring the reproducibility of
experimental results.

Emulytic environments provide an opportunity to instantiate virtualized environments to test
vulnerabilities in systems and collect corresponding artifacts. However, knowledge of attacks is
still required and creating diverse data is laborious. Also, automatically generating realistic data
for simulation is an open problem in such environments.

This work has strong ties to the Linkography work at Sandia as the linkograph formulation and
representation of attack graphs are directly related to Markov models [2]. This work directly
leveraged the LinkShop library as well [6].

Additionally, given a generative model that can manufacture data, game-theoretic approaches
can be used to train a model to detect the newly generated data, thereby making detection
capabilities more robust. This method can be viewed as a more advanced way of correcting
learning bias in highly-skewed samples, which is typically accomplished by oversampling,
undersampling or randomly perturbing existing data to create new inputs. Game-theoretic
techniques have had demonstrative success on images using generative adversarial networks
(GAN:S).

To be successful in future research in this area, correctly representing the structure and
constraints of cyber data may be crucial; future research will need to include investigating the
necessary realism and validity of the generated data. Cybersecurity will continue to be
challenged by attacks hiding amid large amounts of data, thus negatively impacting national
security. The ability to quantitatively assess the detection capabilities of current cyber defense
systems is crucial to trusting the nation’s cyber assets and improving resiliency.

This work ties to the Cyberspace Mission Area and various future research goals in the Data
Science Research Challenge. Attack graphs are activity-based models of adversarial intent.
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Intelligently evolving such models allows quantifying uncertainty and identifying system
subversions and vulnerabilities, which will allow for proactive remediation to increase
resilience/confidence.
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CONCLUSION:

Although machine learning has made significant advances in applications such as speech
recognition, handwriting recognition, image labeling, language translation, and sequence (e.g.,
character) prediction, its success has been less prominent in cybersecurity applications. One
factor contributing to this lack of success is the need for realistic, consistent data for
experimentation and evaluation.

In this work, we explored the use of generative sequence learning to learn attack graph
representations from observed sequences in order to automatically induce data generation
methods for cyber data. We performed an experiment using a few generative learning algorithms
on a realistic example and demonstrated the efficacy and potential of this idea. We also provided
some suggestions for future research directions.
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