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Abstract 
When very few samples of a random quantity are available from a source distribution 
of unknown shape, it is usually not possible to accurately infer the exact distribution 
from which the data samples come. Under-estimation of important quantities such as 
response variance and failure probabilities can result. For many engineering purposes, 
including design and risk analysis, we attempt to avoid under-estimation with a strategy 
to conservatively estimate (bound) these types of quantities—without being overly 
conservative—when only a few samples of a random quantity are available from model 
predictions or replicate experiments. This report examines a class of related sparse-data 
uncertainty representation and inference approaches that are relatively simple, 
inexpensive, and effective. Tradeoffs between the methods’ conservatism, reliability, 
and risk versus number of data samples (cost) are quantified with multi-attribute 
metrics used to assess method performance for conservative estimation of two 
representative quantities: central 95% of response; and 10-4 probability of exceeding a 
response threshold in a tail of the distribution. Each method’s performance is 
characterized with 10,000 random trials on a large number of diverse and challenging 
distributions. The best method and number of samples to use in a given circumstance 
depends on the uncertainty quantity to be estimated, the PDF character, and the desired 
reliability of bounding the true value. On the basis of this large data base and study, a 
strategy is proposed for selecting the method and number of samples for attaining 
reasonable credibility levels in bounding these types of quantities when sparse samples 
of random variables or functions are available from experiments or simulations. 
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1. INTRODUCTION 
When very few samples of a random quantity are available from a source distribution or 
probability density function (PDF) of unknown shape, it is usually not possible to accurately 
infer the PDF from which the data samples come. Thus, a significant component of epistemic 
uncertainty exists concerning the source distribution of random or aleatory variability. The likely 
error that accompanies sparse sampling has a bias toward underestimating the true variability of 
the source; the variance calculated from just a few samples will usually be less than the variance 
calculated from a large number of samples, for many common PDF types. This unconservative 
bias is undesirable for many engineering purposes. If a structure or pressure-vessel model were 
perfect in every other way, use of the model with sparse samples of the random-data inputs 
would likely underestimate the (strength or displacement) response variance of the real system. 
In design and risk analysis one would normally want to avoid such variance underestimation. 
The calculated mean from sparse samples will also likely have significant error, which also 
contributes to uncertainty and risk in response estimation.   
Therefore, we desire to conservatively estimate (bound) random quantities—without being 
overly conservative—when only a few samples are available from testing or simulation. This 
paper considers two representative uncertainty quantities of interest associated with a random 
quantity being sampled: A) the 2.5 to 97.5 percentile “central 95%” range of the sparsely 
sampled PDF; and B) 10-4 exceedance probability (EP) associated with a tail of the PDF 
integrated beyond a specified limit. Appropriate UQ treatments for small tail probabilities like 
this are important for assessing performance and safety margins in design, risk, and reliability 
analysis using sparse samples of experimental data or model predictions. The quantity in 
category A is important e.g. for assessing how well model results match or bound a 
representative or adequate span of the experimental data and its uncertainty for model calibration 
or validation purposes. 
Because accurate description of the aleatory distribution is not possible with relatively sparse 
samples, the set of related sparse-data UQ methods in this section are used within a strategy of 
conservative treatment of the aleatory and epistemic uncertainties involved, while at the same 
time attempting to avoid being overly conservative. Of course, the demarcation between what is 
viewed as appropriate conservatism versus inappropriate over-conservatism in a particular 
circumstance is usually not sharply identifiable in absolute terms and is dependent on subjective 
judgments and often un-crisply defined relationships and objectives regarding risk-benefit-cost 
tradeoffs. Nonetheless, this paper introduces and explores some of the tradeoffs involved and 
begins to illustrate methodology toward arriving at “conservative but not overly conservative” 
treatments of uncertainty in cases of sparse replicate data from random variables and functions. 
The sparse-data strategies and conclusions also apply for sparse model simulation results where 
random-variable inputs are being sampled and the affordable number of model evaluations is 
very limited to, say, 5 Latin-Hypercube Monte Carlo samples. Similar considerations hold when 
model inputs are experimental or synthetic samples of random functions, like various stress- 
strain curves from replicate material tests [Romero et al., 2014, 2015, 2017a], or realizations of 
random fields like spatial variation of surface roughness or material properties. 
Section 2 describes a class of related sparse-data uncertainty representation and inference 
approaches that are relatively simple, inexpensive, and effective under typical realistic 
circumstances established in sections 3 and 4. Section 3 investigates method performance for 
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conservatively bounding the central 95% range of a sparsely sampled PDF. Section 4 
investigates performance for bounding 10-4 tail probabilities. Corresponding performance metrics 
and analysis are employed to identify the best performing methods and sample sizes N to use for 
credible bounding estimates for these two uncertainty quantities. Sample sizes of N= 2, 4, 10, 20 
were investigated. Different methods are found to be best for each quantity. The number of 
samples for credible bounding with these best methods is relatively low for both quantities—on 
the order of four samples. Section 5 summarizes the main points from this large study. 
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2. A CLASS OF RELATED SPARSE-DATA UQ METHODS: TOLERANCE 
INTERVALS AND THEIR EQUIVALENT NORMAL DISTRIBUTIONS, 

ENSEMBLE OF NORMALS AND THEIR SUPERDISTRIBUTIONS 
Tolerance Intervals (TIs) and their Equivalent Normal (EN) Distributions 
Tolerance Intervals are a simple way to approximately account for the epistemic sampling 
uncertainty introduced from finite samples of a random variable. When very few samples are 
available, it is usually not possible to accurately infer the source probability distribution from 
which the samples came. Instead, a viable strategy is to attempt to be conservative, but not 
overly conservative, in estimating e.g. the central 95% range of response between the 
distribution’s 2.5 and 97.5 percentiles. This range could be useful for many envisioned purposes, 
including engineering design and model calibration and validation. The Tolerance Interval 
method is an easy and economical way to obtain such bounding estimates, as explained next. 
TIs are parameterized by two user-prescribed levels: one for the desired “coverage” proportion 
of a distribution and one for the desired degree of statistical “confidence” in covering or 
bounding at least that proportion. For instance, a 95%coverage/90%confidence TI (95%/90% TI, 
95/90 TI, or 0.95/0.90 TI) prescribes lower and upper values of a range said to have at least 90% 
odds that it covers or spans 95% of the “true” probability distribution from which the random 
samples were drawn—if they were drawn from a Normal distribution. Promising findings from 
TI robustness investigations on a large variety of other PDF types will be discussed later.  
As Figure 2-1 illustrates, a X%coverage/Y%confidence TI is constructed by multiplying the 
calculated standard deviation 𝜎̃ of the data samples by an appropriate factor f to create a TI of 
total length 2f𝜎 ̃. The interval is centered about the calculated mean 𝜇 ̃ of the samples, so the 
interval’s top and bottom endpoints are defined by 

 𝜇 ̃ ± f𝜎̃.      (2.1) 
The factor f depends on the parameters X, Y, and the number N of samples, and can be obtained 
from look-up tables (e.g. [Hahn & Meeker, 1991], [Montgomery & Runger, 1994]) or can be 
calculated from formulas (e.g. [Howe, 1969]) or associated functions available in mathematics 
and statistics software packages, e.g. [Young, 2010]. 
 

 
Figure 2-1. Scalar data samples, Tolerance Interval, and Equivalent Normal 
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Table 2-1 shows factors for constructing 95%/90% TIs. The table and Figure 2-2 reveal that 
95/90 TI size decreases quickly with the number of data samples. The rate of uncertainty 
decrease per added sample has a knee at 4 to 6 samples, with the rate of decrease being fairly 
small after 8 samples. The tolerance interval has an asymptotic standard deviation multiplier of 
1.96 for an infinite number of samples. In this case, the TI corresponds to the exact 95% central 
percentile range of a Normal PDF with 𝜇 ̃ and 𝜎 ̃ exact from ∞ samples. 
Although TI construction is based on sparse-sampling theory for Normal populations, 
investigations by Romero et al. (2013a,b) showed that TIs provide reliably conservative 
estimates of the combined epistemic and aleatory uncertainties associated with very sparse 
samples for Normal, uniform, and right-triangular PDFs, and four other distributions resulting 
from convolving various combinations of these three PDF types. The TI approach is also much 
easier to use than the four other sparse-data methods investigated.   
However, it was also found that 95/90 TIs can egregiously exaggerate the true variability when 
very few samples are involved. The approach of Pradlwarter and Schuëller (2008) usually 
exaggerates the true variability significantly less than 95/90 TIs when few samples are available, 
but has significantly lower success rates of central 95% capture and is somewhat more involved 
to implement. Its performance remains to be broadly tested and characterized, but other 
indications from [Winokur et al., 2016] are also favorable. The common practice of simply 
fitting the random data with a normal distribution was found to have substantial risk of under-
estimating the true variability of the population being sampled—even if the sampled distribution 
is Normal.  
The TI method has been used in several engineering applications at Sandia National Laboratories 
(e.g. Romero et al., 2014, 2015, Jamison et al., 2016)1 but has not yet been verified on highly 
non-linear application problems and non-symmetric distribution shapes because of the 
computational expense of the application models and because of other time and resource 
constraints in those projects. Section 3 involves testing on a highly non-linear solid mechanics 
problem with 140 non-Normal distribution shapes and analytic Normal, wide-tailed 5 degree of 
freedom T, highly skewed Log-Normal, and highly-skewed and wide-tailed Weibull 
distributions. 
TI robustness for sparse data has been established on non-symmetric gamma distributions in 
[Bhachu et al., 2016]. They found that the best performing parametric and non-parametric 
Bootstrap methods they studied required order 20 samples or more to be competitive with or 
sometimes surpass the accuracy of the TI methods. Bootstrap methods are also more 
complicated. 
Bayesian methods also have substantial difficulty with sparse data. Recent Sandia research 
[Romero, Weirs, Schroeder, et al., 2018] has shown that Bayesian approaches for dealing with 
very sparse data are significantly more complicated and not demonstrably more effective than 
the UQ methods in this report. However, the simple TI approach loses reliability and efficiency 
advantages over many of the other methods mentioned when data becomes less sparse. Then 
more sophisticated data-fitting methods such as in [Pradlwarter & Schuëller, 2008] and the  

                                                 
1 Applications in calibration and validation of a device structural dynamics model, a solid propellant combustion 
model, and several radiation-damaged electronics models have also been conducted by the first author with the TI 
UQ method, but references are not publicly available. 



 
 

15 
 
 

 

Table 2-1. 95%/90% Tolerance Interval Factors f (standard deviation multipliers) vs. # of 
samples of random quantity. (Selected results computed from formulas found in [Howe, 

1969].) 

# samples f0.95/0.90 

2 18.56 

3 6.95 

4 4.99 

5 4.19 

6 3.76 

8 3.29 

10 3.04 

20 2.57 

30 2.42 

40 2.34 

∞ 1.96 

 
 
 

 
Figure 2-2. Multiplier f on calculated standard deviation used to form 0.95/0.90 tolerance 
interval ranges vs. number of random samples. (Figure reproduced from [Romero et al., 

2011], ignore confidence interval curve.) 
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single- and multi- distribution Bayesian approaches surveyed in [Romero, Schroeder, et al., 
2017] may be preferable to the Normal PDF based single- and multi- distribution approaches 
investigated in the present report. 
For other uncertainty representation and analysis purposes, 95/90 and 95/95 “Equivalent 
Normal” (EN) PDFs are constructed from TIs such that the EN’s 0.025 and 0.975 quantiles 
coincide with the end points of the TIs. This is portrayed in Figure 2-1. A TI and its Equivalent 
Normal have the same mean 𝜇                                         calculated from the data samples. As a Normal distribution, the 
0.025 and 0.975 quantiles of the EN occur at 1.96 times the EN’s standard deviation (σ_EN). 
Equating the TI half-length to 1.96•σ_EN yields the following equation for calculating the 
Equivalent Normal’s standard deviation. 

σ_EN = fX%/Y% •𝜎̃/1.96              (2-2) 

By their construction, 0.95/0.90 Equivalent Normal PDFs have the same high reliability as 
0.95/0.90 TIs that the EN 0.025 and 0.975 quantiles contain the 0.025 and 0.975 quantiles of the 
true PDFs from which the random samples come (for a large array of PDF types). Furthermore, 
95/90 TI-ENs will have even higher reliabilities of capturing extended quantiles like 0.01 and 0.99 
of the true PDFs being sampled. Figure 2-3 depicts the basis for this statement. For any number N 
of data samples, the 99% central range of a 95%/90% TI Equivalent-Normal PDF can be shown 
to envelope a 99%_coverage/90%_confidence TI determined from TI tables. Therefore, 
whatever empirical reliability or confidence a 99/90 TI has in bounding the 99% central range of 
a sampled PDF, a greater reliability of bounding will exist if using the 99% central range of a 
95%/90% TI Equivalent Normal. 
 

 
Figure 2-3. Comparison of bounds from a 99/90 TI and the 99% Central Coverage range of a 

95/90 TI Equivalent-Normal PDF. 
 
 
Ensemble of Normals (EON) and associated Superdistribution (SD) 

 

The approaches for dealing with sparse replicate data in this subsection are somewhat more 
involved than TIs and ENs, but add versatility and are still relatively simple and inexpensive. These 
methods have a strong relation to Tolerance Intervals as explained in the next subsection. We 
first discuss the Ensemble of Normal distributions (EON) approach, and then the associated 
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Superdistribution (SD) approach. 
An ensemble of Normal distributions is a useful device for treating sparse replicate data with 
improved freedom for expressing the uncertainty of probabilities associated with outcomes or 
ranges of outcomes. EON are constructed as follows. 
If N samples are drawn from a Normal distribution Normal(µ,σ) where µ and σ are the mean and 
standard deviation of the distribution, the “sample” mean 𝜇 and the “sample” standard deviation 
𝜎̃ calculated from the N data samples will usually have error relative to the true mean and standard 
deviation µ and σ. Distributions of possible values of the true mean and standard deviation can be 
constructed from the sample mean and standard deviation as follows.  
 
A reasonable candidate µi for the value of the true mean can be obtained by drawing a random 
sample Ti from a Student’s T distribution with (N – 1) degrees of freedom (DOF) and using it in 
the following equation. The T distribution is symmetric about zero and resembles a Normal 
distribution but has wider tails. 
 
     𝜇𝑖 = μ̃ + 𝑇𝑖σ̃/√𝑁       (2-3) 

 
An asymptotically large set of reasonable candidates [µi] is generated from an asymptotically large 
set [Ti] of samples from an N-1 DOF T-distribution. It can be shown [Miller & Freund, 1985] that 
the central (1-α)% range of an asymptotically large set or distribution of candidate means [µi], 
from the distribution’s α/2 to (1 - α/2) quantiles, is a (1-α)% “confidence interval” (CI) that will 
contain the true mean µ exactly (1-α)% of the time. That is, so-produced CIs will successfully 
contain the true mean in (1-α)% of a very large number of trials, where each trial X involves 
drawing N random samples from the said Normal distribution Normal(µ,σ) and using the sample 
mean and standard deviation 𝜇𝑥 and 𝜎̃𝑥 to generate a distribution of candidate means [µi]x and a 
corresponding  CI.  
 
Analogously, a reasonable candidate σi for the value of the true standard deviation can be obtained 
by drawing a random sample 𝜒𝑖2 from a (N – 1) DOF Chi-Square distribution and using it in the 
following equation. The Chi-Square (𝜒2) distribution is a non-symmetric distribution that starts at 
zero and proceeds rightward per the example in Figure A.5. 
 

     𝜎𝑖 = σ̃√(N − 1)/𝜒𝑖
2     (2-4)              

An asymptotically large set of reasonable candidates [σi] is generated from an asymptotically large 
set [𝜒𝑖2] of samples from an N-1 DOF 𝜒2-distribution. It can be shown [Miller & Freund, 1985] 
that the range between the α/2 to the (1 - α/2) quantiles of the asymptotically large distribution or 
set of candidates [σi] constitutes a (1-α)% confidence interval that will contain the true standard 
deviation σ exactly (1-α)% of the time.  
 
Another theoretical result is that the T and 𝜒2 distributions are independent of each other, so 
sample means and standard deviations generated are not correlated with each other. 

Uncorrelated pairings of samples from the sets [𝜇𝑖] and [𝜎𝑖] can be used to generate candidate 
Normal distributions (see Figure 2-4) among which the true distribution Normal(µ,σ) may exist. 
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𝑖 

In practice it is usually not essential that the true Normal PDF Normal(µ,σ) lie among the 
candidate PDFs, as long as a sought analysis quantity like exceedance probability (EP), or a 
percentile or percentile range from the true distribution, is within or likely bounded by a suitably 
determined continuous uncertainty band constructed from the generated set of candidate Normals 
(where ‘suitably’ is considered later). The odds or reliability of this occurring depend on the 
sought quantity; on the number of samples N; and on the number of generated candidate 
Normals. The odds in many practical cases are relatively high as established later with 100 
candidate Normals. Even in cases when the distribution drawn-from is highly non-Normal, odds 
are reasonably high that the EON procedure yields useful bounds on percentiles, percentile 
ranges, and exceedance probabilities. 
To recap, Figure 2-4 and the following steps summarize the EON procedure for data samples from 
a Normal or non-Normal distribution. 

1. Given 𝑛𝑥  data samples, compute the sample mean, 𝜇̃𝑥, and sample standard deviation, 𝜎̃𝑥. 
 
2. Generate a set of 𝑛𝑟 random samples from the T distribution corresponding to 𝑛𝑥 − 1 

degrees of freedom. Refer to this set as [𝑇𝑖] and the 𝑖-th sample in the set as Ti. Similarly 
generate a set of 𝑛𝑟  samples from an 𝑛𝑥  − 1 DOF 𝜒2  distribution. 

3. Use the samples in [𝑇𝑖] and [𝜒2] and equations 2-3 and 2-4 to generate 𝑛𝑟 candidate means 
[𝜇𝑖] and standard deviations [𝜎𝑖] for an ensemble of 𝑛𝑟 Normal distributions to be used for 
uncertainty analysis as described later. 

 
An associated “Superdistribution” is shown in Figure 2-4. The SD is obtained by sampling each 
Normal PDF of the ensemble and accumulating or binning all the samples into a single 
distribution. A promising more direct method of construction is presently being investigated in 
[Romero, 2018]. The Superdistribution should be symmetric about its mean (which should be the 
same as the nominal mean 𝜇𝑥 of the data set, and of the T-based PDF of possible means inferred 
from the few samples in the data set). 
Figure 2-5 shows the standard deviation magnitudes of a 95/90 TI Equivalent-Normal, a 
Superdistribution, and a histogram of 5000 standard deviations for 𝑛𝑟 = 5000 Normals that would 
make up an associated Ensemble of Normals. (These results come from [Romero & Weirs, 
2018].) The nominal standard deviation from N=4 data samples in this example is 𝜎  = 0.0056. 
The histogram of 5000 standard deviations is generated from Eqn. 2-4 scaling of 5000 samples 
from a Chi-Square distribution with N - 1 = 3 degrees of freedom. The EON derived 
Superdistribution has a standard deviation 𝜎𝑆𝐷 = 0.0105. This value coincides with the 83rd 
percentile of the histogram and is about 88% larger than the nominal standard deviation from the 
data samples. The standard deviation of the 0.95/0.90 TI Equivalent Normal is 𝜎𝐸𝑁 = 0.0142. 
This coincides with the 92rd percentile of the histogram and is about 150% larger than the data 
standard deviation. The TI-EN standard deviation is about 35% larger than the SD standard 
deviation. In general, a 95/90 TI-EN distribution is characteristically broader than its 
counterpart SD distribution, and both are substantially broader than a Normal distribution fit 
to the raw data. 
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Figure 2-4. Construction of Ensemble of Normals (EON) and their Superdistribution (SD) from 

scaled T and Chi-Square distributions given the mean and standard deviation of the raw 
data samples. 

 
 
 

 
Figure 2-5. Magnitudes of standard deviations from N=4 data samples and corresponding 

distributions from sparse-data methods (from [Romero & Weirs, 2018]). 
 
 
Percentile Estimation Relationship between Ensemble of Normals and Tolerance Intervals 
 
Figure 2-6 shows how the EON approach can provide uncertainty information on PDF 
percentiles inferred from the sample data, as opposed to just point estimates that TI Equivalent 
Normals and Superdistributions provide. The figure shows an example for 2.5 and 97.5 
percentiles of response. These percentiles are determined on each of the 𝑛𝑟 = 5000 Normals of 
the EON, and a PDF of the 𝑛𝑟 estimates is formed for each response percentile as depicted in the 
figure. The percentile PDFs are not symmetric, although depicted so in the figure. See e.g. 
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[Romero & Weirs, 2018] for example shapes of PDFs for the 2.5 and 97.5 percentiles from 
several N=4 sample sets, along with associated SD and TI-EN distributions. 

 
Figure 2-6. EON-derived uncertainty distributions on inferred 2.5 and 97.5 percentiles of 

population response (and approximate equivalence of 95%/90% TI end-points and 
corresponding 90% confidence levels on PDFs of 2.5 and 97.5 percentiles of response). 

 

The figure indicates an approximate equivalence between the end-points of a 
95%coverage/Y%confidence TI and corresponding quantiles on PDFs of the 2.5 and 97.5 
percentiles of response per the previous paragraph. For example, the lower end of a 95/90 TI 
approximately coincides with the 0.1 quantile of the uncertainty distribution for the 2.5 
percentile, and the upper end of a 95/90 TI coincides with the 0.9 quantile of the PDF for the 
97.5 percentile. Accordingly, 90% confidence exists that the 2.5 and 97.5 percentiles of a 
Normal distribution being sampled will lie within the said upper and lower quantiles. The 
designation of this range as a ‘95%/90% EON interval’ is then appropriate, where Y% in Figure 
2-6 equals 90% in the example here. This also amounts to the statement we’ve ascribed to 95/90 
TIs—that the ends of the TI will, with 90% reliability or confidence, contain the range between 
2.5 and 97.5 percentiles of the Normal distribution being sampled. This ascription is not exactly 
true, per “non-centrality” concepts explained at the beginning of section 3.1, but the 
approximation is very close. Empirical evidence of the closeness of this relationship is presented 
in figures 2-7 to 2-9. 
For each trial in Figure 2-7, N=2 or N=20 samples are drawn from a Standard Normal 
distribution and a 95/90 TI and a 95/90 EON interval are constructed from the samples. For most 
of the 20 trials for N=2 samples, the 95/90 TIs closely coincide with the 95/90 EON intervals. 
The correspondence is uniformly very close for all 20 trials for N=20 samples. 
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Figure 2-7. Twenty trials of N=2 and N=20 samples drawn at random from a Standard- 
Normal PDF, where 95/90 TIs constructed from the samples are plotted overlying intervals 
constructed from lower (0.1) to upper (0.9) quantiles respectively of PDFs of 2.5 and 97.5 
percentiles of 100 Normals in an EON (𝒏𝒓=100). Horizontal dashed lines mark true 2.5 and 
97.5 percentiles of Std. Normal PDF. Note the >10X different vertical scales for the N=2 and 
N=20 plots; the latter shows much smaller deviations from the true percentiles. 

 

Figure 2-8 focuses on the 2.5 percentile of response and plots each UQ method’s distribution of 
10K results from 10K trials for N=2,4,10,20 samples per trial. Only the 2.5 percentile results are 
plotted because results for the 97.5 percentile are negative-reflections about a vertical line at 
abscissa=0. (This was confirmed by plotting them.) The plotted vertical green lines at -1.96 (= - 
1.96*standard deviation of unity for the Standard-Normal PDF) mark the true 2.5 percentile from 
the PDF being sampled. 
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Figure 2-8. Distributions of results extending Figure 2-7 results for the lower (2.5) percentile 

to 10K trials and N=4,10 and other sparse-data UQ methods per the plot legends. 
 
Consistent with the closeness of the TI and EON results in Figure 2-7, for each of N = 2, 4, 10, 20 
in Figure 2-8 the distribution of 95/90 TI results plots essentially on top of the distribution of ‘10% 
Assembly of Normals’ results. (Here ‘Assembly of Normals’ (AON) is a synonym for ‘Ensemble 
of Normals’ (EON), and a label ‘Q% Assembly of Normals’ in the plots in Figure 2-8 and Figure 
2-9 corresponds to 95/(100-Q) EON results in the terminology introduced earlier.) Figure 2-9 
shows a similar correspondence between 95/95 TI results and 5% AON results. Thus, the 
relationship depicted in Figure 2-6 is empirically seen to be effectively true. This allows the 
more easily constructed X%/Y% TIs to be stood in for purposes the X%/Y% EON intervals 
might be used (which are much more difficult to construct). For example, a X%/Y% TI can be 
used for a Y% confidently conservative bound on an individual percentile Z of response, instead 
of a range between two percentiles, where the X% parameter of the TI is calculated as [2*(Z) - 
100]% for e.g. a Z=99 percentile of response (the equation X% = [100 - 2*(Z)]% applies if Z% < 
50% and a conservative bound in this case is a bound from below; the estimate is conservative if 
less than the true percentile value Z%). 
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Figure 2-9. Version of Figure 2-8 with 95/90 TI results replaced by 95/95 TI results.  

 
 
Quantitative analyses of the sparse-data UQ method results will be conducted in the next two 
sections, but a few more qualitative observations and comparisons are made here. All methods’ 
distributions of results become less wide and more peaked about the true percentile value (they 
all get more accurate) as the number of samples increases. (The relatively similar sizes of the 
PDFs in the four plots is deceptive because the plots have significantly increasing ordinate scales 
and decreasing abscissa scales as N goes from 2 to 20.) The plots show three distinct PDF groups 
at N=2 samples, four distinct groups at N=4 samples, and only two distinct groups at N=10 and 
20 samples. These results accompany the following dynamics as N increases from 2 to 20 
samples. 
The PDF of Superdistribution results is very different from the PDF of Mean AON results for 
N=2, but the SD PDF changes considerably as N goes from 2 to 20 and progressively approaches 
the shape of the Mean AON PDF, which has a more stable shape in a self-similar sense over the 
range of N. (A Mean AON result in an individual trial is the equivalent of a 95/50 TI or 95/50 
EON interval between the 50th percentiles of the upper and lower PDFs in Figure 2-6.) For 
N=20 samples the SD PDF is quite similar to the Mean AON PDF. 
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3. METHODS’ PERFORMANCE FOR BOUNDING CENTRAL 95% OF 
RESPONSES 

Performance of the sparse-data UQ methods described in Section 2 is characterized in this section 
for accuracy and efficiency in bounding the central 95% of responses for a diverse and challenging 
test-bed of analytic and empirical PDF shapes. 

3.1. Performance on Four Analytic PDF Shapes 
The four analytic PDF shapes used in this subsection are a Normal distribution; a five degree-of- 
freedom (5 DOF) Student’s t distribution with zero mean (has wider tails than a Normal 
distribution); and two skewed distributions, a Log-Normal and a more highly skewed Weibull, 
both of which are described in detail in Appendix A. 
Normal PDF Results and Development and Use of a Multi-Attribute Performance Metric 

 
On average, 90% of 95/90 TIs would be expected to capture 95% or more of the Normal 
distribution being sampled. This includes capture of the central 95% range of the PDF between its 
0.025 and 0.975 quantiles as one possibility, but also “non-central” quantile ranges such as the 
0.01 to 0.96 range of the PDF. TI confidence/reliability/success rates for capturing just the central 
95% of response will be smaller than success rates for the less restrictive case of capturing any 
contiguous 95% of the PDF. Capture of only the central 95% of response as the success criterion 
anticipates the use of TIs for design or safety assessment purposes. In such endeavors we envision 
objectives such as: “We want high reliability that no more than 2.5% of results lie above the 
predicted 95/~90 TI we’re using to size safety or performance margins with.” TIs that bound the 
central 0.025 to 0.975 range of response can be used for such design objectives, or for objectives 
that no more than 2.5% of responses lie below the predicted 95/~90 TI, or no more than 2.5% of 
results lie above the predicted 95/~90 TI and no more that 2.5% of results lie below it. There is 
less design certainty about what one is establishing with TIs that enclose non-central 95% ranges. 
Therefore we choose to only count central TI successes, as a truer measure of the reliability of 
TIs when used for design and safety analysis purposes. 
Thus, TI success rates for capturing the central 95% range of a Normal PDF are smaller than the 
“advertised” 90% for 95/90 TIs. Anecdotally, five or six of the 40 TIs in Figure 2-7 do not span 
the -1.96 to 1.96 central 95% range of the Standard Normal being sampled. This corresponds to < 
90% reliability or success rate for the 95/90 TIs. Table 3-1 gives precise TI reliability rates from 
10K trials at various numbers of samples. The 95/90 TI success rate is about 89% for N=2 samples, 
falling to about 81% for N=20. These results are consistent with previous studies in [Romero et al. 
2013a,b]. The 95/95 TI success rate is about 95% for N=2 samples, falling to about 90% for N=20. 
Apparently, capture of only the central 95% of response (as the success criterion) affects TI 
capture-success rates increasingly more as the number of samples N increases and TI length drops 
precipitously (see Table 2-1 and Figure 2-2). 
The results in Table 3-1 for all sparse-data UQ methods are plotted in Figure 3-1. As expected, the 
results for 95/90 TIs and EON90% plot effectively on top of each other, as do the results for 95/95 
TIs and EON95%. A few cases in the table show the EON reliability rate is equal to or slightly 
higher than the corresponding TI reliability rate, but the majority of cases show the TI reliability 
rate is better. This is reflected by the TI methods’ better average reliability rate than the 
corresponding EON reliability rate (last column in the table). The table data and the plots also 
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show that the TI and EON methods have significantly higher central 95% capture reliability than 
the Superdistribution and Mean EON (EON50%) methods. EON50% performs least well, with 
75% reliability for N=2 samples, degrading to only 35% at N=20 samples. The SD method does 
not perform quite as poorly, but does considerably less well than 95/90 and 95/95 TI and EON. 
Reliability rates decrease with number of samples N at much faster rates for the Superdistribution 
and EON50% methods than for the 95/90 and 95/95 TI and EON methods. Because the SD and 
EON50% intervals have the same means or midpoints as the intervals from the 95/90 and 95/95 
TI and EON methods, the sizes of the SD and EON50% intervals are apparently smaller than those 
of the 95/90 and 95/95 TI and EON methods, and decrease in size much faster than the 95/90 
scaling behavior depicted in Figure 2-2. 
 

Table 3-1. Empirical Reliabilities of Sparse-Data UQ Methods for capturing the central 95% range 
of a Normal distribution sampled N times. Results from 10K random trials of each method. 

Method N=2 N=4 N=10 N=20 avg.scor
e 95/90 TI 89.4% 87.4% 84.5% 81.3% 85.7% 

EON 90% 89.1% 85.4% 83.4% 82.4% 85.1% 
95/95 TI 94.6% 93.4% 91.6% 89.6% 92.3% 
EON 95% 94.6% 92.4% 91.0% 90.1% 92.0% 
EON 50% 74.4% 51.9% 39.2% 35.4% 50.2% 
Super D. 89.6% 72.4% 54.9% 45.6% 65.6% 

 
 
 

 
Figure 3-1. Empirical  Reliabilities for capturing the central 95%range of a Normal 

distribution sampled N times (plotted data from Table 3-1). 
 
A broad consideration of engineering objectives indicates that the decrease in coverage success 
with added samples does not mean that less samples are better. With less samples, the 
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“overshoot” errors of the methods can be very large, with large potential to yield very 
conservative designs or to significantly under-estimate safety margins as discussed above. These 
outcomes can lead to unnecessary design and product costs and highly pessimistically skewed 
performance and safety perceptions of the designs and products. To get a sense of the 
conservatism vs. risk tradeoff involved, consider the design objective mentioned previously: 
“We want high reliability that no more than 2.5% of results lie above the predicted 95/90 TI 
we’re using to size safety or performance margins with.” If one can accept e.g. 85% expected 
reliability of meeting this objective (15% risk of not meeting it), instead of say 90% expected 
reliability (10% risk), then the 95/90 TI curve in Figure 3-1 indicates that 10 samples would 
suffice. Ten-sample TIs are less than 1/6 the size of 2-sample TIs (see Table 2-1), which have an 
expected reliability of about 89% in Table 3-1. The 6X difference in the size of the TI designed 
or analyzed with could translate to very large improvements in design cost, weight, and other 
objectives, larger indicated performance and safety margins, etc., with a relatively small (5%) 
increase in risk (from 10% to 15%) that the requirement is not met. 
Additionally, in this example it is of far less concern whether the TI bounds the lower 2.5 
percentile of response, as the design requirement only expresses a need to bound the upper 97.5 
percentile—a “one-sided” upper bounding requirement. Then TI lower-bounding of the 2.5 
percentile is not necessary and a somewhat higher TI success rate would be expected with this 
relaxed criterion for success. Moreover, different UQ methods could have similar success rates 
in bounding the desired percentiles, but at the same time have significantly different error 
magnitudes (e.g. the diversity of distribution shapes in Figure 2-8) that favor one method over 
the other. 
In general, a more refined and comprehensive performance measure than just capture success 
rate is needed to more fully characterize UQ method performance. Winokur et al. (2017) propose 
and use a multi-attribute weighted performance metric to help quantify tradeoffs between risk, 
conservatism, and number of samples and how these tradeoffs differ between several proposed 
UQ approaches for multi-material sparse-data problems. The performance metric is summarized 
next and a particularization of it is applied. The following development uses 95/90 TIs for 
illustration. 
Figure 3-2 shows TI mismatch errors relative to a reference percentile range that the TI is desired 
to bound. Mismatches at the upper (u) and lower (ℓ) ends of the reference percentile range are 
defined as: 

ϵu   = ru – ru-reference (3-1) 

ϵℓ   = rℓ-reference − rℓ (3-2) 

where r stands for ‘response’ of some random quantity. 
These equations return a positive value of mismatch error ϵℓ when the TI range extends below or 
bounds the reference 2.5 percentile at the lower end. In coordinated fashion, the mismatch error 
ϵu  at the upper end is measured positive when the TI range extends above or bounds the reference 
97.5 percentile. Thus, when both ϵℓ and ϵu are positive this is termed a +/+ error case and the TI 
bounds the reference range from both above and below as desired. Table 3-2 provides 
designations for the other possible error cases. 
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Figure 3-2. Definition of mismatch errors between TI and reference percentile range. 

 
 

Table 3-2. TI Mismatch Error Classifications 

 
 
In the performance scoring above for TI success or reliability rates, only errors in the +/+ 
category are “valued.” High proportions of +/+ errors relative to the other error types were 
sought. But other error categories may also involve successful TI performance, as in the case of 
the one-sided bounding requirement discussed above. The Winokur et al. metric incorporates 
preference weighting degrees of freedom (see below) to express relative desirability of the errors 
in the four categories in Table 3-2. 
Error magnitudes in the various error categories are also very important. For example, while 
errors in the -/- category may be undesirable in a given situation, if these “undershoot” or 
“shortfall” errors are very small, then they may be nominally acceptable, and in any case they 
would be considered preferable to larger -/- errors. Thus, it is important for a performance metric 
to involve not just the relative proportions of the error types, but also the error magnitudes in the 
various categories. 
For a TI in any error category, its upper and lower mismatch errors have a combined magnitude 
given by adding their absolute values: 

|ϵ| = |ϵℓ| + |ϵu|. (3-3) 
 

Among TIs in a given error classification bin like +/+, TIs with larger absolute error sums |ϵ| are 
considered worse performers than TIs with smaller average absolute errors. To assess average 
error magnitudes over a number of TI trials, errors in the various classification types can be 
grouped, summed, and averaged as follows. 
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(3-4) 
 

 
Each summation sign in this equation includes all trial TIs in the indicated error category. 
Absolute value signs are written in this equation only for negatively signed errors in a given error 
category. A form of this equation that is less vulnerable to coding mistakes takes the absolute 
value of all error terms/quantities. 
In [Romero, Schroeder, et al., 2017] it is established that on average for 70 diverse PDF shapes 
(also to be discussed in section 3.2 of the present paper) the magnitude of + + errors decreases 
with the number of samples N, in scale with the TI multiplier in Figure 2-2. This beneficial drop 
of + + error magnitudes is unfortunately accompanied by the undesired effect of lower + + 
success rates per Figure 3-1. If the rate of decrease of + + error magnitude is faster than the rate 
of decrease of the proportion of + + errors, and if these performance attributes are equally 
weighted, then the overall quality of performance would improve with added samples—as seems 
most reasonable. The Winokur et al. metric accounts for these two competing performance 
attributes, and those associated with the other error types, with the following performance metric. 
 

 

(3-5) 
 

 
The numerator in this equation comes from Equation 3-4. The proportion p++ in the denominator 
is equal to the success rate of attaining ++ errors in the 10K trials. Similarly, the other 
proportions pij  in the denominator are the rates or proportions obtained for the other error types 
in the trials. The multiplier weights wi in the denominator allow for expression of relative 
preferences for the various error types. Once the weights (which must sum to one) are 
prescribed, then the denominator value is determined by the error proportions pij in a given set of 
trials whose performance is being scored. The numerator is set by the error magnitudes involved. 
For a given set of error preferences/weights, if two sets of trials with different sparse-data UQ 
methods, for example, have the same error proportions but different average error magnitudes, 
then the denominator will be the same for both cases, but the case with the larger average error 
will have the larger numerator and therefore the larger metric value. Thus, a larger performance 
metric value coincides with lower overall performance. 
Next we briefly examine how the metric value is affected by different error preference 
weightings. See Appendix B in [Winokur et al., 2017] for a more in-depth investigation with 
numerical examples of metric behavior under different error proportions and preference 
weightings. 
In general, a set of trial results fixes the numerator value and the proportions pij in the 
denominator. The error preference weights wi also affect the denominator value such that it, and 
thus the overall metric value, vary with the values of the weights. For instance, if a high 
proportion of + + errors exist, say p++ = 0.8, and these are highly preference-weighted relative to 
the other types of errors, say w1 = w++ = 0.8, then the expressed preference for high proportion 
of + + errors is largely satisfied. The (p++ )(w++ ) term dominates the denominator in this case, 
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and the denominator is larger than if + + errors are not highly preferred/weighted, e.g. by a 
prescribed weight w1 = w++ = 0.2. The smaller denominator in the latter case, and the 
unchanged numerator value, mean a larger value of the overall performance metric, so worse 
performance is indicated, as it should be, than in the former case where w1 = w++ = 0.8 
expresses a relatively high preference for + + errors and a high proportion of them exists, p++ = 
0.8. 
On the other hand, if the same high preference w++ = 0.8 is specified for + + errors, and in a 
second set of trials with another method, the incidence of them is much lower (e.g. p++ = 0.2) 
than in the paragraph above, then the denominator would likely decrease relative to the p++ = 0.8 
case above. This would, in isolation, tend to increase the metric value in a reflection of mal- 
satisfaction of the high preference w++ = 0.8 for + + errors. But the error magnitudes (thus the 
numerator value) would also generally be different along with the new error proportions pij and 
new denominator value in the second case. Therefore, it is not evident a-priori whether the 
overall metric value would increase or decrease, i.e., whether performance would be indicated 
better or worse in the second case. The performance metric would have to be calculated to decide 
this. 
We now compare the behavior of the multi-attribute performance metric Eqn. 3-5 to the single- 
attribute performance measure in Figure 3-1, as the number of samples per trial increases. The 
limited performance measure in Figure 3-1 credits only + + errors as desirable. This corresponds 
to an error preference weighting w++ = 1.0 in Eqn. 3-5, with all other weights = zero. For this 
case, the denominator of Eqn. 3-5 decreases with added samples as the proportion of + + errors 
decreases per Figure 3-1. But the magnitude of the  numerator’s errors appear to decrease at an 
even faster rate; the performance metric value falls with added samples as the left plot in Figure 
3-3 shows for all methods. Results for EON 90% and 95% methods are given in Table B.1 in 
Appendix B, but are not plotted because the corresponding TIs are much easier to construct and 
their results are always very close to, and typically better than, the EON results as the table 
shows. The decline with added samples for all methods indicates improving overall performance 
under Eqn. 3-5’s broad measure of performance. 
By this broad performance measure, the 95/90 TI and EON methods are indicated best in Figure 
3-3’s left plot and Table B.1 by a significant relative margin when averaged over all N=2,4,10,20 
cases. The 95/95 methods are indicated worst, in stark contrast to Figure 3-1’s ranking of the 
95/95 methods as best by the single criterion of capture success while ignoring magnitudes of 
overshoot and undershoot errors. Table B.1 reveals that EON50% does best at N=4 and SD does 
best at N=10. On average over all N=2,4,10,20 cases, SD does second best and EON50% does 
third best. 
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Figure 3-3. Performance Metric results vs. number of samples for Normal distribution said 
error preferences/weights and unpenalized and 10X penalized shortfall errors as explained 

in the text. Results for each # of samples are from 10K TI trials with each method. 
 
We next consider adding to the metric a penalty factor that multiplies the magnitudes of the least 
preferred or least acceptable errors in cases where they are considered to be potentially highly 
harmful or dangerous. Equation 3-6 adds to Equation 3-5 an illustrative 10X penalty on 
shortfall/undershoot errors, where these are considered 10 times worse than overshoot errors of 
the same magnitude.  

    

 

(3-6) 
 

 
The penalty factor in Eqn. 3-6 increases the numerator value in the performance metric Equation 
3-5 (relative to use of the Eqn. 3-4 non-penalty version of the numerator) while leaving the 
denominator unchanged. The net effect is to increase the performance metric value, which 
decreases the perceived quality of method performance. This is logically consistent with having 
10X larger effective magnitudes of the least preferred or acceptable errors. Accordingly, the plot 
at right in Figure 3-3 shows that, for a given number of samples N, all the performance curves 
have higher/worse values than their counterpart curves in the plot at left with un-penalized 
shortfall errors (numerical data of the plot at right in Figure 3-3 are found in Appendix B Table 
B.2). Results for EON 90% and 95% methods are not in the plot because the corresponding TI 
results are always very close to, and typically better than, the EON results, as Table B.1 shows. 
The performance metric indicates improving overall performance with added samples for all 
methods. The 95/90 TI method is indicated best for N=2,4,10, and 95/95 TI is best at N=20 with 
95/90 TI a very close second (see Table B.2). When averaged over all N=2,4,10,20 cases, 95/90 
TI does best by a significant relative margin; SD does second best; 95/95 TI does third best 
(better than SD at large sample sizes N=10,20 but not at small sample sizes N=2,4); and 
EON50% always does worst. The latter appears to be a consequence of the 10X penalty on 
shortfall errors, which are prevalent with the EON50% method given its relatively low capture 
success rates (Figure 3-1). 
All performance curves exhibit substantial knees at N=4 data samples—for both unpenalized and 
10X penalized metrics. Beyond four samples, the incremental gains in both performance measures 
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are much smaller per added sample than are the incremental gains up to four samples. It will be 
seen that this knee is consistent for the many other PDF types studied in this paper. 
5 DOF t-distribution Results 
 
A 5 DOF t-distribution with zero mean is now considered. This distribution is symmetric about 
zero and has wider tails than a Normal distribution having the same standard deviation as the 5DOF 
t. The EON50% method is not studied here because of its poor relative performance on the Normal 
PDF. 
Table 3-3 and Figure 3-4 present the result for UQ methods applied to the t-distribution. As 
expected, all method capture success rates fall with added samples and the 95/90 TI and 95/90 
EON results are very similar, as are the 95/95 TI and EON results. A few cases in the table show 
the EON reliability rate is equal to or slightly higher than the corresponding TI reliability rate, but 
in the majority of cases the TI reliability rate is better. TI has a higher average score over the set 
of cases N=2,4,10,20, by only by one or two tenths of a percentage point (last column in the table). 
The Superdistribution method has comparable reliability to the TI and EON methods at N=2 
samples, but its reliability decrease with the number of samples N at much faster rate. SD has only 
50% reliability at N=20 samples, where it under-performs the TI and EON 95/90 and 95/95 
methods respectively by about 30 and 40 percentage points. 
Reliabilities for the TI and EON methods at small sample sizes N=2,4 are on the order of one 
percentage point better for the 5 DOF t than for the Normal PDF, but on the order of two or three 
percentage points worse at the larger sample sizes N=10,20. On average over all cases 
N=2,4,10,20, TI and EON reliabilities are one to two percentage points lower for the 5 DOF t 
distribution. Reliabilities for the SD method are about 1 percentage point better for the 5 DOF t 
than for the Normal PDF at N=2 samples, increasing to about 5 percentage points better at N=20 
samples, for a N=2,4,10,20 average of about 2 percentage points better than for the Normal PDF. 
Overall, performance is fairly similar on the Normal and the 5 DOF t distributions. 
 

Table 3-3. Empirical Reliabilities of Sparse-Data UQ Methods for capturing the central 95% range 
of a 5 DOF t-distribution sampled N times. Results from 10K random trials of each method. 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 90.2% 87.3% 81.9% 77.9% 84.3% 
EON 90% 90.4% 85.6% 81.6% 79.2% 84.2% 
95/95 TI 95.2% 93.7% 89.1% 85.9% 91.0% 
EON 95% 95.1% 92.5% 88.5% 87.2% 90.8% 
Super D. 90.9% 73.0% 57.2% 50.7% 67.9% 
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Figure 3-4. Empirical Reliabilities for capturing the central 95% range of a 5 DOF 

t-distribution sampled N times (plotted data from Table 3-3). 
 
The left plot in Figure 3-5 shows the no-penalty metric results. Metric values decrease with 
added samples (indicating improving overall performance) for all methods. The EON95% results 
are not plotted because they are very close to, but not as good on average, as the 95/95 TI results 
(see last column in Appendix B Table B.3). The 95/95 TI method is the worst performer of all 
the plotted methods, presumably because of its larger relative overshoot errors. The 95/90 TI 
method is the next best performer on average over N=2,4,10,20. The SD method performs 
slightly better—second best on average. EON90% results are the best on average, in a rare 
outperformance of 95/90 TIs on average. 
The right plot in Figure 3-5 shows the 10X penalty metric results. The EON 90% and 95% 
results are not plotted because the corresponding TI results are very close to, but typically better 
than, the EON results per Table B.4, in particular the N=2,4,10,20 average metric values in the 
table’s last column. Metric values decrease with added samples (indicating improving overall 
performance) for all methods except for SD, which increases beyond N=4 samples. Apparently, a 
prevalence of shortfall errors give SD the lowest capture success rates (Figure 3-4), and the 10X 
penalty on these errors outweighs the effect of decreasing error magnitudes as samples are 
added. (Decreasing error magnitudes are evident; they reduce the unpenalized metric’s 
numerator enough to drive the SD metric lower/better with added samples (left plot) despite the 
metric’s declining denominator from declining capture proportion p++ in Figure 3-4.) Per the  
last column in Table B.4, 95/90 TIs average the best performance by far, with the lesser 
performing SD and 95/95 TI methods scoring very similar on average. 
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Figure 3-5. Performance Metric results vs. number of samples for 5 DOF t-distribution 
and unpenalized and 10X penalized shortfall errors. Results for each # of samples are 

from 10K TI trials with each method. 
 

For this PDF type as well, all performance curves exhibit substantial knees at N=4 data samples 
for both unpenalized and 10X penalized metrics. 
Log-Normal Distribution Results 
 
The Log-Normal (L-N) distribution defined in Appendix A is now considered. The particular L-N 
distribution used comes from [Bhachu et al., 2016]. The EON50% method is not studied because 
of its poor relative performance on the Normal PDF. 
Table 3-4 and Figure 3-6 present the result for UQ methods applied to the L-N distribution. As 
expected, all method capture success rates fall with added samples and the 95/90 TI and 95/90 
EON results are very similar, as are the 95/95 TI and EON results. Several cases in the table show 
the EON reliability rate is equal to or slightly higher than the corresponding TI reliability rate. 
EON 95/90 scores very slightly better than 95/90 TIs on average (last column in Table 3-4), while 
EON 95/95 scores very slightly worse than 95/95 TIs on average. 
The capture success rates for all methods are significantly lower at each sample size N for the log- 
normal distribution than for the Normal and 5 DOF t distributions. Reliabilities for the L-N 
distribution are fairly high for all methods (>86%) for N=2 samples, but the drop in reliabilities 
with added samples is dramatic for all methods and is steepest (very steep) for the 
Superdistribution method. At N=4 samples, the TI and EON 95/95 methods still have reasonably 
high reliabilities of about 85%, and the 95/90 versions have reliabilities >70% which is perhaps 
acceptable for many engineering purposes, but SD reliability is less than 50% which would appear 
to be unacceptable in many engineering circumstances.2 A linear interpolation of the 95/95 TI and 

                                                 
2 Reliability rates of 75% or 85% are often adequate to sufficiently manage risk, especially if conservatism from 
other sources exists in the analysis or results—such as applied factors of safety, and/or large indicated design, safety, 
or performance margins from high-quality analysis, and/or when more than one source of uncertainty is present that 
involves sparse data conservatively treated with the TI method. In the latter circumstance, studies in [Romero, 
Swiler, et al, 2013] and [Winokur & Romero, 2017] indicate that when more than one dominant or influential 
uncertainty source is represented conservatively (each with reliabilities of say 70%), then if the conservatively 
represented uncertainties are combined in linear propagation or aggregation, the individual conservative biases 
compound to yield substantially greater than 70% conservative bias. 
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EON trends shows their reliabilities are about 70% at N=7 samples. More samples may present 
too much risk for this distribution type.3 In fact, less samples and a different sparse-data method 
may more optimally achieve 70% assurance in this case. This is discussed next with the help of 
the performance metric scores. 
 

Table 3-4. Empirical Reliabilities of Sparse-Data UQ Methods for capturing the central 95% range 
of a Log-Normal distribution sampled N times. Results from 10K random trials of each method. 

 
Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 86.2% 73.9% 35.8% 10.3% 51.6% 

EON 90% 86.3% 70.6% 35.2% 12.0% 51.0% 
95/95 TI 92.9% 86.5% 53.7% 19.5% 63.1% 

EON 95% 93.1% 84.0% 53.3% 22.4% 63.2% 
Super D. 87.2% 48.0% 7.9% 1.5% 36.1% 

 
 

 
Figure 3-6. Empirical Reliabilities for capturing the central 95% range of a Log-Normal 

distribution sampled N times (plotted data from Table 3-4). 
 
The left plot in Figure 3-7 shows the no-penalty metric results. The EON results are not plotted 
because they are very close to, but not as good as, the corresponding TI results on average, even 
though several individual EON results are better than their the corresponding TI results (see 
Appendix B Table B.5). Metric values decrease with added samples (indicating improving 
overall performance) for all methods except SD in going from N=10 to 20. The 95/95 TI method 

                                                 
3 More accurate/reliable tolerance intervals can be generated for log-normal distributions using a simple 
transform applied to standardly generated TIs (see e.g. [Young, 2010], [MIL-HDBK-17-1F, 2002]), but we use 
the L-N case as a bounding circumstance where an unknown distribution shape is being sparsely sampled but is 
strongly suspected to be less skewed than a log-normal with the parameters here, but is also perhaps not even 
highly skewed at all, even ~symmetric. 
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is the worst performer of all the plotted methods except at N=20 where SD is worst. The 95/90 
TI method is the best performer except for SD at N=4. In terms of average performance over the 
set N=2,4,10,20, the 95/90 TI method is best, then SD, then 95/95 TI. 
The right plot in Figure 3-7 shows the 10X penalty metric results. The EON 90% and 95% 
results are not plotted because the corresponding TI results are very close to, but typically better 
than, the EON results per Table B.6, in particular the N=2,4,10,20 average metric values in the 
table’s last column. Metric values decrease with added samples (indicating improving overall 
performance) for all methods except for SD, which increases beyond N=4 samples for the same 
reasons stated for the right plot in for the 5 DOF t-distribution. Per the last column in Table B.6, 
95/90 TIs average the best performance by far, then 95/95 TIs followed closely by SDs. 
 

 
Figure 3-7. Performance Metric results vs. number of samples for Log-Normal distribution 

and unpenalized and 10X penalized shortfall errors. Results for each # of samples are 
from 10K TI trials with each method. 

 

For this PDF type like for the others, all performance curves exhibit substantial knees at N=4 
data samples for both unpenalized and 10X penalized metrics. 
We now continue the discussion started immediately above Table 3-4, with the objective of 70% 
reliability and in view of the circumstances in footnotes 2 and 3. From Figure 3-6 and Table 3-4, 
for effectively the same level of non-capture risk one could use N=7 samples with 95/95 TIs, or 4 
samples with 95/90 TIs, or 3 samples with SD. Of course, the smaller the number of samples the 
more attractive from a cost standpoint (e.g. each sample requires a test or an expensive model 
simulation), but the size/conservatism of the overshoot errors must also be taken into account 
because this drives design and performance margin perceptions and associated cost, weight, etc. 
Accordingly, the performance metric results are applied. 
Both performance metric plots in Figure 3-7 show that N=4 with 95/90 TIs is preferable to N=3 
with SD. The non-penalized metric and left plot indicate that N=4 with 95/90 TIs is preferable to 
N=7 with 95/95 TIs. The penalized metric and right plot indicate that N=4 with 95/90 TIs is 
slightly less preferable to N=7 with 95/95 TIs. The magnitude of shortfall errors is emphasized 
with the penalty metric, which are evidently a larger share of the metric’s numerator for the 
95/90 TIs than for the 95/95 TIs. One must weigh the potential consequences of the slightly 
larger potential shortfall errors of the 95/90 method against the use of the 95/95 method with 
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added cost of three more tests or simulations. These considerations are also weighed against the 
potential cost of larger potential overshoot errors of the 95/95 method which scores lower than 
95/90 in the left (unpenalized metric) plot. The best answer depends on the particulars of the 
situation and cannot be determined here, but at least some constraints, tradeoffs, sensitivities, and 
a narrowing of UQ method choices, have been determined. 

Weibull Distribution Results 
 
The Weibull distribution defined in Appendix A is now considered. Kanwar et al. (2015) indicate 
that tolerance intervals exist specifically for two-parameter Weibull distributions are available in 
e.g. [Young, 2010], [MIL-HDBK-17-1F, 2002]. However, the present treatment assumes the 
specific form of the distribution being sampled is unknown—as is very commonly the case in 
engineering practice, see e.g. section 3.2. The EON50% method is not studied because of its poor 
relative performance on the Normal PDF. 
Table 3-5 and Figure 3-8 present the result for UQ methods applied to the Weibull distribution. As 
expected, all method capture success rates fall with added samples and the 95/90 TI and 95/90 
EON results are very similar, as are the 95/95 TI and EON results. Several cases in the table show 
the EON reliability rate is equal to or slightly higher than the corresponding TI reliability rate, but 
the average TI score is slightly higher than the average score of the corresponding EON over the 
full set of cases N=2,4,10,20 (last column in the table). 
The capture success rates for all methods are even lower (and significantly so at each sample size 
N) for the Weibull distribution than for the log-normal distribution. Reliabilities for the Weibull 
distribution are respectably high for all methods (>75%) for N=2 samples, but the drop in 
reliabilities with added samples is very dramatic for all methods and is again steepest for SD. At 
N=4 samples, the TI and EON 95/95 methods are in the low to mid 50% range (unacceptable) and 
all other methods have considerably lower reliabilities, < 35%. The Weibull distribution is 
significantly more skewed than the log-normal distribution (see plots in Appendix A) and appears 
to be quite problematic for the sparse-data UQ methods in the present study. For a reasonable 
reliability, one is limited to 2 or 3 samples and stuck with the potential for very large overshoot 
errors that could hamper design feasibility or perceptions of whether an existing system has 
adequate safety or performance margins. 

Table 3-5. Empirical Reliabilities of Sparse-Data UQ Methods for capturing the central 95% range 
of a Weibull distribution sampled N times. Results from 10K random trials of each method. 

 
Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 75.4% 34.6% 1.6% 0.0% 27.9% 

EON 90% 75.2% 31.9% 1.8% 0.0% 27.2% 
95/95 TI 87.3% 56.2% 5.0% 0.1% 37.1% 

EON 95% 87.3% 52.6% 5.6% 0.1% 36.4% 
Super D. 76.9% 12.0% 0.1% 0.0% 22.2% 
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Figure 3-8. Empirical  Reliabilities  for  capturing  the  central  95%  range  of  a   Weibull 

distribution sampled N times (plotted data from Table 3-5). 
 
The left plot in Figure 3-9 shows the no-penalty metric results. The EON results are not plotted 
because they are very close to, but not as good as, the corresponding TI results on average, even 
though several individual EON results are better than their the corresponding TI results (see 
Appendix B Tables B.7). As with the log-normal distribution, metric values decrease with added 
samples (indicating improving overall performance) for all methods except SD in going from 
N=10 to 20. As with the log-normal distribution, the 95/95 TI method is the worst performer of 
all the plotted methods except at N=20 where SD is worst. The 95/90 TI method performs best at 
N=2,10, SD is best at N=4, and 95/95 TIs are best at N=20. In terms of average performance 
over the set N=2,4,10,20, the 95/90 TI method is best, then SD, then 95/95 TI. 
The right plot in Figure 3-9 shows the 10X penalty metric results. The EON 90% and 95% 
results are not plotted because the corresponding TI results are very close to, but typically better 
than, the EON results per Table B.6, in particular the N=2,4,10,20 average metric values in the 
table’s last column. For all methods, metric values decrease with added samples initially 
(indicating improving overall performance) but then at some point increase with added samples, 
presumably for the reasons stated earlier. The increase is most notable for SD, which increases 
beyond N=4 samples. Per the last column in Table B.8, 95/90 TIs average the best performance 
by far, then 95/95 TIs, followed by SDs. 
The feasibility of all methods is limited to 2 to 3 samples for the Weibull PDF. In this regime, 
both the penalized and unpenalized performance measures show a clear preference for the 95/90 
TI (or EON) method. 
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Figure 3-9. Performance Metric results vs. number of samples for Weibull distribution 
and unpenalized and 10X penalized shortfall errors. Results for each # of samples are 

from 10K TI trials with each method. 
 
For this PDF type as well, all performance curves exhibit substantial knees at N=4 data samples 
for both unpenalized and 10X penalized metrics. 

3.2. Performance on 70 Empirical Distributions 
Romero, Schroeder, et al. (2017) examined the variability of 140 predicted responses when 
multiple stress-strain curves (reflecting variability from replicate material tests) are propagated 
through a finite element model of a ductile steel can being slowly crushed. The response quantities 
of interest (QOIs) include displacements, stresses, strains, and calculated measures of material 
damage. Each response quantity’s behavior varies according to the particular stress-strain curves 
used for the materials in the model. The desire is to estimate response variability when only a few 
stress-strain (ss) curve samples are available from material testing. Like with random variables, 
propagation of just a few ss curve (random function) samples will usually result in significantly 
underestimated response variability relative to propagation of a much larger population that 
adequately samples the presiding random-function source of ss curves. Accordingly, 95/90 
Tolerance Intervals were applied to the sparse realizations of response from propagation of small 
numbers of ss curves through the model, and performance of the TI method was characterized with 
similar procedures and metrics to those in Section 3.1 above. 
The ss curves were synthetically generated to resemble real stress-strain curves and to enable 
generation of a large population (1000) that could be propagated through the model to form 
reasonably well resolved response distributions and associated statistics for the 70 QOIs. Ten 
thousand trials were conducted where, for each trial, N ss curves were drawn at random from the 
population of 1000, and each drawn curve was used in a can-crush simulation. N responses, one 
for each ss curve, were used to construct a 95/90 TI and the ends of the TI were compared to the 
reference 2.5 and 97.5 percentiles of that response resolved (to within small error accounted for as 
explained next) from the set of 1000 results for that QOI. Figure 3-10 reproduced from [Romero, 
Schroeder, et al., 2017] shows the 95/90 TI reliability results for 70 QOIs when ss curves 
corresponding to a temperature of 200C are used in the study. 
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Figure 3-10. 95/90 TI success rates over 10,000 trials, and some of the 70 QOI response 
histograms, for N=4 stress-strain curves drawn at random per trial. All 70 histograms 

from this study are shown in [Romero, Schroeder, et al., 2017]  
 

Two green vertical lines on each histogram in the figure mark the 25th and 975th ordered samples 
of the 1000 samples, providing nominal estimates of the 2.5 and 97.5 percentiles of the 
asymptotic distributions. Normal distributions using the calculated mean and standard deviation 
from the 1000 samples in each histogram are also plotted for reference. The 2.5 and 97.5 
percentiles of the Normal distributions are signified by vertical blue dashed lines in the plots. 
The offsets between the blue and green lines for the 2.5 and 97.5 percentiles correlate well with 
performance of the TI UQ method: smaller offsets correlate with better performance. In 
particular, it appears (and stands to reason) that TI success rates suffer when the 2.5 and/or 97.5 
percentiles of a population (histogram) lie relatively far outside the corresponding percentiles of 
a Normal distribution based on the mean and standard deviation of the population. 
TI reliability for capturing the central 95% of response between the 2.5 to 97.5 percentiles is 
70% to 90% for most (62 of 70 = 89%) of the QOIs, with an average reliability of about 76% 
over all 70 QOIs. Average reliability was 79% for a second set of 70 QOIs in a similar study 
in [Romero, Schroeder, et al., 2017] for somewhat characteristically different ss curves 
corresponding to a temperature of 400C. These success rates are pleasingly high even though 
most of the 140 response histograms are highly non-Normal and the following factor biases 
the calculated success rates downward substantially. 
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Sampling uncertainty exists regarding the true 2.5 and 97.5 percentiles of a given QOI 
population because these percentiles are calculated from only M=1000 samples of response. Let 
P* be a finite-sample estimate of the true quantile or proportion P of response that lies beyond 
some threshold value. If enough samples are taken, then the estimate P* can be said with some 
percent likelihood or “confidence” to lie within a corresponding “confidence interval” of the true 
proportion, P. From [Devore, 1982], when the number M of total Monte Carlo (MC) samples 
meets the condition 

M•P ≥ 5 (3-7) 
 
then the following formula for 95% confidence intervals (CIs) applies: 

 
|P - P*| ≤ 1.96[P(1-P)/M]1/2 . (3-8) 

 
The condition (3-7) is met for both the 2.5 and 97.5 percentiles of interest here. Substituting 
either P=0.025 or P=0.975 into Equation (3-8) yields |P - P*| ≤ 0.01. Thus, the 95% CI on the 
estimated quantile P*=0.025 indicates that the estimate is within ± 0.01 or ± one quantile of the 
true 0.025 quantile, with 95% confidence. The response QOI value corresponding to the true 2.5 
percentile is therefore 95% likely to lie between the QOI values of the calculated 1.5 and 3.5 
percentiles. Likewise, the response value corresponding to the true 97.5 percentile is estimated to 
lie between the QOI values of the calculated 96.5 and 98.5 percentiles. For the results in Figure 
3-10 we form a “conservative” or “pessimistic” range denoted by calculated percentiles 1.5 to 
98.5 as the reference range to compare the trial 95% TIs against. We could also form a “non- 
conservative” or “optimistic” reference range for comparison by using the range between the 3.5 
and 96.5 percentiles. The pessimistic/conservative choice reduces the estimated reliability rate by 
about 7 percentage points vs. the optimistic/non-conservative choice when N=4 samples are 
used, per the plot in Figure 3-11 reproduced from [Romero, Schroeder, et al., 2017]. The plot 
shows that the calculated performance difference increases to about 16 percentage points at 
N=10 samples. These pessimistic reporting choices bias the reported success rates to 
substantially reduced values. 
When capture of any 95% range (such as 0.01 to 0.96) of the 70 PDFs are counted as TI 
successes, the top curve in Figure 3-11 shows the nominal success rates. These are calculated 
using the nominal 95% coverage value and not the conservative 97% or non-conservative 93% 
values just discussed above. The curve’s nominal reliability rate for N=4 samples is about 85%. 
This is about six percentage points higher than the 79% rate that is most directly comparable—
which is approximately midway between the conservative and non-conservative central 95% 
curves at N=4 in the figure. The differential increases to about twelve percentage points at N=10. 
Thus, there is significant added conservatism from counting just the central 95% response range 
vs. any 95% range in determining TI success rates. 
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Figure 3-11. Variation of TI method success rates versus the number N of 200C stress-strain 

curves drawn at random per trial (e.g. N=4 in Figure 3-10), and for conservative and non-
conservative 2.5 to 97.5 percentile ranges discussed, and for non-central 95% ranges also 
counted as successes in the green curve. Dots are averages over the 70 200C QOI cases, 

uncertainty bars are ± 1 standard deviation of the 70 individual success rates. 
 
Even if the optimistic/non-conservative choices are used to define the reference 95% ranges that 
the trial TIs are tested against, the reliability rates indicated by the green curve in Figure 3-11 are 
still slightly below the pessimistic success rates for 0.95/0.90 TI in Figure 3-1 and Figure 3-4 for 
the Normal and 5 DOF t distributions. So on average, the 0.95/0.90 TIs do less well on the 70 
distributions than on the Normal and t distributions. On a more even basis of comparison, the 
87.3% reliabilities of 0.95/0.90 TIs for central 95% capture and N=4 in tables 3-1 and 3-3 are 
compared against the central 95% capture reliabilities shown in Figure 3-10 for the 70 individual 
PDFs and N=4. Only two of the 70 PDFs show TI success rates at or above 87%. Even if all dots 
in the figure are moved upward by seven percentage points so they reflect the average benefit in 
Figure 3-11 of optimistic instead of pessimistic rates of central 95% capture for N=4, the average 
reliability would go from 76% to 83%, still below 87% reliability rates for the Normal and 5 
DOF t distributions. We can therefore conclude that that the majority of the 70 response PDFs in 
the can-crush study are more difficult than Normal and 5 DOF t distributions for the 95/90 TI 
method to be successful on. 
Whether the optimistic 83% reliability or the pessimistic 76%, the average reliability for the 70 
PDFs is slightly higher than the 74% reliability for the log-normal PDF (N=4, 95/90 TI method 
in Table 3-4). This loosely supports an argument that the “average” PDF in the can-crush study 
is somewhat easier than a log-normal distribution for the 95/90 TI method to handle well. The 
two most difficult PDFs for the TI method engender ~40% pessimistic reliabilities (in Figure 
3-10) or 47% optimistic reliabilities. These are far better than the Weibull distribution, which 
engenders 35% reliability for 95/90 TIs and N=4 (Table 3-5). Thus, the Weibull can be said to 
bound the 70 PDFs in terms of difficulty for the 95/90 TI method. 
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To get performance metric values for all 70 PDFs on a similar scale, a given trial TI’s errors ϵℓ 
and ϵu in Figure 2-1 are normalized by dividing them by the QOI’s mean value from its 1000 
histogrammed results. Figure 3-12 shows corresponding performance metric results for the 70 
PDFs individually and on average over all PDFs. For the average metric curves, performance 
metric Equations 3-4 to 3-6 also apply for a larger averaging process over the 700K normalized 
results of all 70 QOIs (10K results per QOI). 
The two performance curves far apart from the others in the left and right plots correspond to the 
two right-most distributions in the bottom row of Figure 3-10. These distributions are highly 
skewed, with a large build-up of realizations against a physical lower limit of possible values 
these two quantities can take (a lower possible limit of zero material damage at this point in the 
can crush event). When taking N samples of these two PDFs for the 10K trials, many trials 
contained multiple samples of zero response. These many trials yielded very short TIs centered 
toward zero, which did not capture the PDFs’ 97.5 percentiles of response and had relatively 
large shortfall errors there and large overshoot errors at the zero end of the PDF. Thus the low 
capture success rates in Figure 3-10 and the poor performance metric results in Figure 3-12. 
When dealing with cases like this where distributions of results are expected to butt up against 
known upper and/or lower response constraints, without knowing specific distribution shapes, 
restricted distributional forms like exponential or log-normal suitable for these cases should be 
used for determining tolerance intervals (see e.g. [Young, 2012]). 
For the unpenalized metric, performance for these two PDFs increases with added samples until 
N=7. More samples add essentially no value, causing the metric value to remain essentially flat 
or increase slightly. In fact, a distinct knee at N=3 samples exists beyond which only very 
marginal benefit occurs with added samples. For the 10X penalized metric, performance for the 
two PDFs decreases immediately with added samples beyond N=2. The effect of shortfalls from 
the true 97.5 percentile are magnified with this metric. This overwhelms any decrease in 
overshoot errors and/or increase in capture success rates that would appear to be causing the 
decrease in the no-penalty metric with added samples beyond N=2. 

 
Figure 3-12. Performance Metric results vs. number of samples for 70 can-crush response PDFs 
and unpenalized and 10X penalized shortfall errors. Black curves are from 10K 95/90 TI trials for 

each PDF. Red curve is the average of the 70 curves. Note different vertical scales in plots. 
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Zoomed versions of the plots in Figure 3-12 are shown in the upper left plots in Figure 3-13 and 
Figure 3-14. These figures compare 95/90 TI performance against 95/95 TI, SD, and EON50% 
methods. Note that the vertical scales are not the same in all plots in these figures. The plots 
zoom in on the 68 non-outlier performance curves to better examine them. (The two outlier 
performance curves exist for all methods but are outside the frames of all zoomed plots in Figure 
3-13 and Figure 3-14 except for the lower-left plot in Figure 3-14 where they are partially visible 
at upper-right in the plot.) 
In all plots the red average performance curves for the 70 PDFs are strongly affected (pulled up) 
by the two outlier curves outside the plot frames. The red average curves are significantly higher 
than visually estimable average curves of the 68-curve populations in each plot. The two outliers 
were not included for the performance metric plots in [Romero, Schroeder, et al., 2017], but are 
included in the present paper to reflect the effects of these more difficult PDF shapes. 
In Figure 3-13, the red curve in the 95/90 TI plot decreases continually with added samples (see 
Table B-9 in Appendix B), as do all 68 individual curves (it appears). The red average curve and 
all the individual curves have a strong knee at N=3 samples, beyond which improvement is 
marginal with added samples. The SD results are plotted on the same vertical scale. Individual and 
average SD and 95/90 TI curves are fairly close in height. Detailed comparisons of the average 
curves will be made later. The bulk of individual SD curves appear to decrease with added samples, 
although not all individual curves appear to, and the average curve certainly does not—which 
appears to be due to large influence from the two outliers. The individual and average SD curves 
have a strong knee at N=3 samples; improvement with more samples is very marginal or even 
negative after N=4 to 5 for the two outliers and after N=5 for the red average curve. 
The 95/95 TI results are plotted on a different vertical scale. Individual and average curves are 
higher than for SD and 95/90 TI except for more than about N=7 samples. For this method as well, 
the individual and average curves have a strong knee at N=3 samples; improvement with more 
samples is very marginal but does continue to the end of the plot (N=10) for the red average curve 
(see Appendix B Table B-9) and for the 68 individual curves (it appears). 
The ‘Mean Ensemble of Normals’ plot in Figure 3-12 uses the 95/50 EON (EON50%) method 
explained earlier, which is approximately a 95/50 TI method per Figure 2-6. Noting the vertical 
scale in the plot, the EON50% method performs relatively well on the 68 PDFs, though found to 
significantly underperform the other methods for Normal PDFs so was not tried on the other 
analytic PDFs in Section 3.1. But the red average curve for all 70 empirical PDFs is only 
lower/better than the other methods at N=2. The average performance and most of the individual 
performances do not improve significantly beyond N=2 samples like for the other methods. 
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Figure 3-13. Performance Metric results vs. number of samples for 70 can-crush response 
PDFs and unpenalized shortfall errors. All figures are zoomed versions that relegate all or 
most of the two outlier curves to lie outside the plot frames in order to show more detail of 

the other curves. Vertical scales are not the same in all plots. 
 
In Figure 3-14 all the red average curves for all methods have higher 10X penalized metric 
values at all sample sizes N than their counterpart average curves in Figure 3-13 with 
unpenalized metrics. The curve populations are also generally higher in metric value in Figure 
3-14 than in Figure 3-13 as expected, but not to the same degree as the average curves. The two 
outlier cases have outsized effects under the 10X penalized metric compared to the unpenalized 
metric (e.g. compare the >2X different vertical scales of the left and right plots in Figure 3-12). 
These outsized effects have outsized impact on the red average curves in Figure 3-14, which are 
noticeably more different from their populations of 68 individual curves than in Figure 3-13 with 
the unpenalized metric. Indeed, for 95/90 TIs the average curve shows a minimum (best 
performance) at N=3, then worsens with more samples. But the 68 individual curves appear to 
generally show continued improved performance with added samples. 
A similar story exists for 95/95 TIs except that the average curve shows a minimum (best 
performance) at N=5, then worsens with more samples. In contrast, the SD method’s individual 
results generally appear to worsen with added samples beyond N=3, as does the average curve. 
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Furthermore, the SD average curve and the population of curves lie at higher/worse metric 
values than the 95/90 and 95/95 TI results. In this respect we can use just the average curves to 
compare the relative performances of the SD, 95/90, and 95/95 TI methods. This goes for the 
EON50% method as well. The EON50% method performs relatively poorly compared to the 
other three methods, per the 68 individual curves and the average curve (note the ~2X different 
vertical scale on the EON50% plot compared to the other three). 

 
Figure 3-14. Performance Metric results vs. number of samples for 70 can-crush response 
PDFs and 10X penalized shortfall errors. All figures are zoomed versions that relegate the 
two outlier curves to lie outside the plot frames in order to show more detail of the other 

curves. Vertical scales are not the same in all plots. 
 
Figure 3-15 consolidates the four methods’ average performance curves from Figure 3-13 and 
Figure 3-14. The plotted average performance data in Figure 3-15 is given in tables B.9 and B.10 
in Appendix B. These consolidated results are discussed in the next subsection. 
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Figure 3-15. Average Performance Metric results vs. number of samples for 70 can-crush 

response PDFs and unpenalized and 10X penalized shortfall errors. (These are the red 
curves from Figure 3-13 and Figure 3-14). Note different vertical scales in plots. 

 

3.3. Discussion, Conclusions, and Recommendations for Capture of Central 
95% of Response 

For the unpenalized performance metric plot at left in Figure 3-15, the EON50% method is 
dominated by the other methods except at N=2 and 3. At N=3 the EON50% method performs 
worse than two other methods: 95/90 TIs and SD. At N=2 the EON50% method performs best of 
all methods. However, this is somewhat misleading because the relatively good performance at 
N=2 appears to be more a result of large relative overshoot errors of the other methods, rather 
than desirable performance of the EON50% method. Indeed, even though the method has 
relatively low non-penalized performance values at N=4,10,20 in Figure 3-3 (left plot), the 
EON50% method simultaneously has unacceptably low capture success rates in Figure 3-1. The 
EON50% method produces shorter prediction intervals than the other methods with a given set 
of samples. The resulting low success rate and more and greater undershoot errors are offset in 
the metric by the small relative overshoot errors. The worsening capture success rates and 
shortfall errors as samples are added appear to approximately evenly counteract the decreasing 
overshoot errors such that overall performance remains flat in the left plot in Figure 3-15. 
Consistent with these observations, the EON50% method scores far worse than the other 
methods at all sample sizes in Figure 3-3 and Figure 3-15 using the performance metric with 10X 
penalized shortfall errors. Hence, the EON50% method is substantially less fit than the other 
studied methods for general sparse-data problems. 
The Superdistribution method is considered next. SD performs about the same as, or 
significantly worse than, 95/90 TIs considering penalized and unpenalized metrics and all sample 
sizes in Figure 3-15. A similar observation holds for the analytic PDFs studied. SD performance 
in Figure 3-15 gets worse on average for the 70 PDFs with more samples than N=5 for the 
unpenalized metric and N=3 with the penalized metric, whereas 95/90 (and 95/95) TI 
performance improves or holds approximately flat with added samples (for both versions of 
performance metric). SD results are also considerably more involved to calculate than TIs. For 
these reasons, 95/90 TIs are considered preferable to SDs for bounding the central 95% of a 
generic PDF. 

No penalty on undershoot errors 10X penalty on undershoot errors 
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The 95/90 TI method has been argued in the prior two paragraphs to perform better on average 
than SD and EON50% methods on the 70 PDFs. The same is true for the analytic PDFs studied 
(all things considered). We now examine the absolute and relative performances of 95/90 and 
95/95 TIs to determine which, if either, is preferable. 
For N=5 to 10 samples in the left non-penalized metric plot in Figure 3-15, average performance 
is effectively equivalent for 95/95 and 95/90 methods applied to the 70 PDFs. From this 
performance metric the 95/95 method’s larger overshoot errors and commensurately larger 
capture reliabilities and smaller/fewer shortfall errors are an approximately equivalent tradeoff 
with the 95/90 method’s smaller overshoot errors but commensurately worse capture reliabilities 
and shortfall errors. For N=2 to 4 samples, 95/90 TIs score better than the 95/95 TIs. Presumably 
the outsized overshoot errors of the 95/95 method at very sparse samples overwhelm its other 
advantages and overall performance is worse than 95/90 TIs according to the unpenalized metric. 
But when shortfall errors are penalized by 10X, the region of the 95/90 method’s advantage 
reduces to the lower limit of N=2 samples. The right plot in Figure 3-15 shows a slight 95/95 
performance advantage for N > 2 samples. The relative average effectivnesses of the 95/90 and 
95/95 TI methods on the 70 empirical PDFs are appreciably similar on the analytic PDFs. Whether 
to use a 95/90 or 95/95 TI in a given instance comes down to the following observations and 
suggested strategy. 
If one is fairly sure that the distribution being sampled is symmetric or approximately so, then 
for a desired capture reliability such as 90%, the 5 DOF t distribution reliability results in Figure 
3-4 can be used to determine the number of samples to attain this reliability (or nearly so for a 
foreseeably large subset of symmetric PDFs, though this has not been investigated beyond 
uniform PDFs in [Romero, Swiler, et al., 2013]). Figure 3-4 indicates 90% reliability with N=2 
samples for 95/90 TIs or N=8 for 95/95 TIs. The TI multiplier factor for 95/90 TIs is 18.56 in 
Table 2-1.The multiplier for 95/95 TIs and N=8 is only about 3.7. This gives far smaller TIs to 
work with in design, model calibration or validation, etc. so avoids unnecessary and costly 
conservatism in attaining the same 90% capture reliability that 95/90 TIs with N=2 would. The 
downside, of course, is the cost of six additional samples with the 95/95 method. Ultimately, 
project resources and circumstances would presumably dictate which route is the most feasible to 
achieving the desired risk level regarding capture reliability. Also note that benefits continue to 
accrue with added samples for TI methods and the symmetric PDFs studied, but a sharp knee in 
benefit vs. sampling cost exists at N=4 samples, beyond which far less marginal benefit accrues 
with added samples. 
If one is not fairly sure that the distribution being sampled is symmetric or approximately so, then 
the following strategy is suggested. The 140 empirical PDFs give a pessimistic or conservative 
reliability vs. N curve represented by the red curve in Figure 3-11. Variation of TI method 
success rates versus the number N of 200C stress-strain curves drawn at random per trial (e.g. 
N=4 in Figure 3-10), and for conservative and non-conservative 2.5 to 97.5 percentile ranges 
discussed, and for non-central 95% ranges also counted as successes in the green curve. Dots are 
averages over the 70 200C QOI cases, uncertainty bars are ± 1 standard deviation of the 70 
individual success rates.. (This curve has slightly lower reliabilities vs. N (is conservative) 
compared to a similar curve shown in [Romero, Schroeder et al., 2017] for a second set of 70 
PDFs.) For an example minimum acceptable capture reliability of 70% (see Footnote 2), the 
lowest number of samples that can be taken is N=6 from the red curve in Figure 3-11. For N=6 
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the TI multiplier is 3.76 from Table 2-1. This is compared to the multiplier for 95/95 TIs 
determined as follows. 
The 95/90 reliability vs. N relationship in Figure 3-6 for the log-normal PDF conservatively 
bounds (from below) the average 95/90 TI reliability for the 140 empirical PDFs (conservatively 
represented by the red curve in Figure 3-11 as just explained). Figure 3-6 indicates 10 or more 
percentage points higher reliability with the 95/95 method than with the 95/90 method for N ≥ 4 
samples. We use this performance differential on the log-normal PDF as an estimator for the 
average performance differential that would exist between 95/90 and 95/95 TI methods applied to 
the 140 PDFs. Applying a +10 percentage point shift to Figure 3-11 for N ≥ 4 yields an estimate 
that N=10 samples would yield ~70% average capture reliability with 95/95 TIs. The associated 
TI multiplier is 3.4. This is a somewhat smaller/better multiplier than 3.76 with N=6 and 95/90 TIs 
determined in the preceding paragraph, but involves more tests or model simulations. Again, the 
best choice between these two options will depend on what is most feasible given project resources 
and circumstances. 
Thus, if one is willing to risk that a PDF being sampled has a central 95% capture difficulty that 
is equal to or less than the average difficulty of the 140 highly diverse and challenging PDFs in 
the empirical study (see examples in Figure 3-10), one could figure the most appropriate number 
of samples and smallest TI multiplier to achieve a desired capture reliability using the red curve in 
Figure 3-11 for 95/90 TIs and a +10 percentage point shifted version of that curve for 95/95 TIs. 
The large majority of the 140 PDFs (89%) in the empirical study enjoyed TI capture reliabilities ≥ 
these average reliability curves. See for example the highly non-normal and even multi-modal PDF 
shapes in Figure 3-10 that lie near or above the average reliability line. This large study suggests 
at the very least a high plausibility that the methodology described in the paragraph immediately 
above can be used to figure the most appropriate number of samples and smallest TI multiplier to 
achieve >70% capture reliability. If one wants to be more conservative, the Log-Normal results in 
Figure 3-6 or the Weibull results in Figure 3-8 could be used with the following considerations. 
The last paragraph in the Log-Normal subsection indicates that >70% reliability is achieved with 
N=4 samples or less with 95/90 TIs. This is similar to average reliability of the 140 PDFs with 
N=4 and 95/90 TIs. The L-N PDF is proposed as a convenient surrogate for the 140-PDF average 
reliability at N=4 samples (established at N=4 for 95/90 TIs and a presumed surrogate for 95/95 
TIs as explained two paragraphs above). As established, about 89% of the 140 PDFs have 
reliabilities of 70% or greater. Thus, capture of the central 95% of the Log-Normal PDF is as 
difficult or more difficult than for ~90% of the 140 empirical PDFs studied. 
For N > 4, the L-N PDF can reasonably be concluded to be more difficult than 90% of the 140 
PDFs because the L-N reliability rate drops more quickly vs. N than the average reliability rate 
does for the 140 PDFs (compare the 95/90 TI curve in Figure 3-6 with the red curve in Figure 
3-11). 
For N < 4, the L-N PDF is estimated to be more difficult than about 85% of the 140 PDFs. (The 
average reliability rate for the 140 PDFs and the L-N PDF is the same ~85% at N=2 and an 
assumption is made that the percentage of the 140 results above and below the average is similar 
at N=2, 3, and 4). 
Thus, the analytic Log-Normal PDF and its 95/90TI and 95/95 TI results in Figure 3-6 are 
proposed as a convenient conservative estimator of TI reliability if one is willing to risk that the 
PDF being sampled has a central 95% capture difficulty less than 85% to 90% of the 140 
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empirical PDFs studied. The substantial test-bed of 140 diverse and challenging PDF shapes 
makes it highly plausible, even reasonably credible that the desired capture reliability is 
achieved if figuring # of samples from the log-normal 95/90 and 95/95 reliability curves when 
the PDF being sampled is unknown. 
Very strong belief or credibility may require use of the Weibull distribution as a severe case 
(second most challenging in terms of capture success among the 144 analytic and empirical PDFs 
studied). As explained in the Weibull subsection, acceptable reliability levels limit the number of 
allowable samples to N=2 or 3. The 95/90 method performs best in this regime according to the 
no-penalty and 10X penalty metrics. N=2 samples yields a capture reliability of 75% but gives a 
very high multiplier of 18.6. A preferential strategy may be to use N=3 samples with 95/95 TIs. 
This yields a slightly lower capture reliability of 70% but a considerably smaller (less 
prohibitive) multiplier of 9.9. In any case, use of the Weibull PDF as a severe case is a very risk 
averse strategy and comes with the downsides of large bias toward conservatism. There is a 
remarkable irony here of needing to keep the number of samples very low (two or three) in this 
very risk-averse strategy when little to nothing is known about the PDF being sampled. 
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4. METHODS’ PERFORMANCE FOR BOUNDING 10-4 TAIL PROBABILITIES 
OF PDFS 

In this section, related sparse-data UQ methods are characterized for accuracy and efficiency in 
bounding the exceedance probability (EP) in PDF tails integrated beyond prescribed limits that 
yield EP = 10-4. A diverse and challenging set of 12 analytic and empirical PDF shapes are 
employed in the study. 
For TI Equivalent Normals (TI-ENs) exemplified in Figure 2-1 and Superdistributions 
exemplified in Figure 2-4, a single EP is yielded when integrating the PDF above or below a 
specified threshold value. When dealing with Ensemble of Normals representations of 
uncertainty exemplified in Figure 2-4, each Normal PDF in the ensemble yields an EP estimate, 
so a distribution of EP estimates occurs as depicted in  
Figure 4-1. Each EON in the study involved L=100 Normal distributions, so each CDF in the 
study, exemplified at right in the figure, is constructed from 100 EP estimates. 
 

 
 

Figure 4-1. CDF of Exceedance Probabilities calculated from the Ensemble of Normals and a 
specified threshold level of response. 

 
Example PDF Results and Multi-Attribute Performance Metric for Exceedance Probability 
 

One of the test problems for characterizing exceedance probability estimation of the sparse-data 
methods is shown in Figure 4-2. For our study to be relevant to risk and reliability analysis we 
characterize estimation accuracy for very small exceedance probabilities (10-4) in the tails of the 
test PDFs. The empirical histograms from the can-crush problem (specifically the histograms in 
Figure 3-10) presumably provide a challenging set of distribution shapes to test the UQ methods. 
Kernel density (KD) fits to selected histograms from Figure 3-10 are determined in Matlab® and 
these are normalized to PDFs of unit integrated area. The 0.9999 quantiles of the PDFs are 
determined from 106 samples, which are enough to obtain negligible error for the study’s 
purposes. The QOI response value at the 0.9999 quantile is the critical response value to the right 
of which the PDF tail integrates to 10-4 exceedance probability. Figure 4-2 shows how relatively 
small the PDF area is that lies to the right of the vertical dashed line and integrates to 10-4 
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probability. Each PDFs critical response value, so determined, provides the integration limit for 
EP estimates with the UQ methods. 
 

 
Figure 4-2. Kernel Density fit to a sample empirical histogram of response from can-crush UQ 
study (this is the QOI at bottom left corner in Figure 3-10). Vertical dashed line marks 0.9999 

quantile of a PDF from the Kernel Density fit normalized to a unit integrated area. 
 
Figure 4-3 shows distributions of EP estimation errors for 10,000 trials of each method with 
N=2,4,10,20 random samples per trial. The plot abscissas quantify estimation errors in terms of 
the number of orders of magnitude difference from the exact EP of 10-4. Note that the TI 95/90 
results lie below the curve labeled ‘TI Extended’ [Romero & Weirs, 2018], which method was 
apparently mishandled in the study and is ignored in this paper. The results labeled ‘EON 90%’ 
are the 90th percentile result in each trial, where each trial yields a distribution of results per  
Figure 4-1. Although the distribution of EON 90% results in Figure 4-3 is closest to the TI 95/90 
distribution, there are significant differences; the relationship between the two methods’ EP 
results is not directly the same as in Figure 2-6 for percentile results, although the correlation is 
high. 
One thing to notice in Figure 4-3 is that the large majority of N=2 results are all over-estimates of 
EP, highly concentrated about + 3 to 4 orders of magnitude error. This means the EP estimates 
were concentrated about values 10-1 to 1 for all methods. The peak and average of the SD errors 
are at about 10-1, while the other distributions’ peaks and averages are closer to 1. Thus, the SD 
method is on average about an order of magnitude more accurate than the other methods for this 
PDF and N=2 samples. SD also out-performs at the other samples sizes; its error distribution 
always appears by eye to have a mean and peak closest to zero and to be more compact in terms 
of its spread of values. For all methods, the average error appears to typically get better as sample 
size N increases (note that the same horizontal scales but differing vertical scales in the four plots 
of the figure). But as average error typically decreases with sample size, each error distribution’s 
proportion to the right of zero typically also decreases, indicating typically declining reliability for 
conservatively bounding the true EP (from above). Table 4-1 confirms this. Each method’s 
empirical reliability is listed vs. sample size N. Reliabilities are the proportion of trials (by 
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counting, not by integrating PDFs of results) in which the EP estimage exceeds the true EP. The 
reliabilities range from a high of ~98% (SD method) at N=2, to a low of ~67% (SD method) at 
N=20. 

 
 

Figure 4-3. Exceedance Probability estimation results in terms of # of orders of magnitude error 
from exact 10-4 for 10K trials with sparse-data UQ methods and N=2, 4, 10, 20 random samples per 

trial. Note: TI 95/90 results lie below distribution curve labeled ‘TI Extended’, which method 
appears to have been inadvertently assigned the 95/90 results in the plotting procedure. 
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Table 4-1. Empirical Reliabilities of Sparse-Data UQ Methods for Conservative Exceedance 
Probability estimation (see Figure 4-2) 

 
 

N 
TI-EN 
95/90 

TI-EN 
95/95 

EON 
90% 

 
SD 

2 87.6% 93.8% 85.3% 98.2% 

4 80.4% 88.5% 74.8% 90.4% 

10 71.9% 80.2% 67.5% 73.6% 

20 72.1% 78.4% 69.9% 66.9% 

 

Although reliability of conservatively bounding the actual 10-4 EP typically declines with 
increasing samples, the overshoot and undershoot errors also typically decline for this PDF. This 
causes generally improving performance metric results as shown in Figure 4-4. The performance 
metrics for EP estimation are described next and then the metric results in the figure are discussed. 
 

 
Figure 4-4. EP Performance Metric results vs. number of samples for PDF in Figure 4-2 and 

unpenalized and 10X penalized undershoot errors as explained in the text. Results for each # of 
samples are from 10K TI trials with each method. Note: Ignore TI Extended results, which are 

suspect. 
 
A method performance metric that penalizes overshoot or undershoot errors of the same magnitude 
equally is 

EPmetric = [∑𝑁+ ∆𝑙𝑜𝑔   + ∑𝑁− |∆𝑙𝑜𝑔| ]/𝑁+ (4-1) 
 
where 

∆𝑙𝑜𝑔 = abscissa in the error PDF plots =  𝑙𝑜𝑔(𝐸𝑃_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) −  𝑙𝑜𝑔(𝐸𝑃_𝑡𝑟𝑢𝑒)    (4-2) 
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and N+ and N - are the numbers of overshoot and undershoot cases respectively in the total number 
of trials = N+ + N -. For a given numerator sum of overshoot and undershoot error magnitudes in 
Eqn. 4-1, the greater the number of overshoot errors contributing to that sum (and so the smaller 
the number of contributed undershoot errors), the better the method performance would be because 
the proportion of conservative bounding cases would increase vs. unconservative/undershoot 
cases while the total error over all the trials remains the same. This is reflected in a lowering of the 
metric value because the numerator stays constant but the denominator increases. Again, as with 
the performance metric for central 95% PDF capture, smaller metric values imply better method 
performance. 
If undershoot errors are given a 10X magnitude amplification as in Section 3 to reflect that a (non- 
conservative) undershoot error is considered much worse than a (conservative) overshoot error of 
the same magnitude, then the performance metric becomes 
 

10X penalty EPmetric  = [∑𝑁+ ∆𝑙𝑜𝑔  + 10∑𝑁− |∆log| ]/𝑁+. (4-3) 

 
For the same set of overshoot and undershoot errors from a given set of trials, the numerator value 
in Eqn. 4-3 yields a higher/worse metric value with penalized undershoot errors vs. the non- 
penalized metric Eqn. 4-1. 
The non-penalty metric results in the left plot in Figure 4-4 show that performance of all methods 
improves with added samples. The EON 90% method performs worst at all sample sizes. The 
95/90 TI-EN method performs 2nd worst at all sample sizes. The 95/95 TI-EN results are only 
slightly better. SD results are best by a substantial margin at all sample sizes. Similar trends hold 
with the 10X penalized metric, but in contrast to the other methods (besides the ‘TI Extended’ 
method which is suspect and ignored in the following), SD performance does not continue to 
improve, and in fact slowly declines, with added samples beyond N=4. Nonetheless, at all 
sample sizes SD maintains a significant performance margin over even the closest competitor, 
95/95 TI- EN. 

Another empirical PDF that would presumably provide a challenging distribution shape to test the 
UQ methods is presented in Figure 4-5. 
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Figure 4-5. Kernel Density fit to a sample empirical histogram of response from can- crush 

UQ study (this is the QOI at top right corner in Figure 3-10). Vertical dashed line marks 
0.9999 quantile of a PDF from the Kernel Density fit normalized to a unit integrated area. 

 
Figure 4-6 shows that SD peak and average errors are noticeably closer to zero than for the other 
methods, at all sample sizes. But unlike for the first PDF, the SD error distribution is the least 
compact of all the methods. Furthermore, all methods’ error distributions have a substantially 
reduced trend of shifting leftward and gaining significantly more undershoot errors (more PDF 
area to the left of zero) as samples are added. Thus, method reliabilities do not appreciably degrade 
as sample size increases like for the first PDF. In fact, Table 4-2 shows that for all methods, 
reliabilities with N=20 samples are >95%, close to or higher than with N=2 samples. This might 
be because this PDF has an extended right tail with substantial prominence (PDF area) relatively 
close to the EP integration region. This PDF gives a much greater chance than the first one of 
attaining samples and thus UQ method candidate PDFs with weight/area to the right of the 
integration limit, and hence exaggerated EP estimates. Consistently, the first PDF’s relatively more 
prominent extended left tail than right tail would appear to work against it in terms of high 
reliability of attaining conservative EP estimates associated with its right tail which abruptly falls 
to very small value/weight relatively far from the integration limit. 
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Figure 4-6. Exceedance Probability estimation results in terms of # of orders of magnitude error 

from exact 10-4 for 10K trials with sparse-data UQ methods and N=2, 4, 10, 20 random samples per 
trial. Note: TI 95/90 results lie below distribution curve labeled ‘TI Extended,’ which method 

appears to have been inadvertently assigned the 95/90 results in the plotting procedure. 
 

Table 4-2. Empirical Reliabilities of Sparse-Data UQ Methods for Conservative 
Exceedance Probability estimation (see Figure 4-5) 

 

 
N 

TI-EN 
95/90 

TI-EN 
95/95 

EON 
90% 

 
SD 

2 90.1% 95.0% 88.8% 98.2% 

4 88.0% 93.2% 84.6% 94.6% 

10 92.5% 94.7% 91.1% 92.5% 

20 97.0% 98.0% 96.6% 95.9% 
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Figure 4-4 shows generally improving performance metric results (both penalized and 
unpenalized) for all methods as the number of samples increases. The metric denominator scales 
with the reliability rate, and since this remains relatively flat over the range N=2 to N=20 for all 
methods (Table 4-2), the improving performance metric values come from declining overshoot 
and undershoot error magnitudes. The other finding of note is that for this PDF the SD method 
appreciably out-performs the other methods at all sample sizes and for both metric variants. 
 

 
Figure 4-7. EP Performance Metric results vs. number of samples for PDF in Figure 4-5 and 

unpenalized and 10X penalized undershoot errors. Results for each # of samples are from 10K 
TI trials with each method. Note: Ignore TI Extended results. 

 
 
The UQ methods are next tested on an analytic PDF, the standard-normal shown in Figure 4-8. 
 

 
Figure 4-8. Standard-Normal PDF with vertical dashed line at 0.9999 quantile. 

 
 

No penalty on undershoot errors 10X penalty on undershoot errors 
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Figure 4-9 shows that, for this distribution as well, the SD peak and average errors are discernably 
closer to zero than for the other methods, at all sample sizes. Table 4-3 reveals that only the SD 
method reliabilities appreciably change with sample size. The 95/90 TI-EN method has reliabilities 
slightly greater than 90% at all sample sizes (ranging between 90.9% and 92.4%). The 95/95 TI- 
EN method has reliabilities close to 95% at all sample sizes (95.4% to 96.2%). The EON 90% 
method has reliabilities slightly less than 90% at all sample sizes (88.5% to 89.8%). The SD 
method reliabilities, however, drop significantly with added samples: from 96% for N=2, to 84% 
for N=20. 
 

 
 

Figure 4-9. Exceedance Probability estimation results in terms of # of orders of magnitude error 
from exact 10-4 for 10K trials with sparse-data UQ methods and N=2, 4, 10, 20 random samples 
per trial. Note: TI 95/90 results lie below distribution curve labeled ‘TI Extended’, which method 

appears to have been inadvertently assigned the 95/90 results in the plotting procedure. 
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Table 4-3. Empirical Reliabilities of Sparse-Data UQ Methods for Conservative Exceedance 
Probability estimation (see Figure 4-8) 

 
 

N 
TI-EN 
95/90 

TI-EN 
95/95 

EON 
90% 

 
SD 

2 91.1% 95.6% 89.8% 98.6% 

4 91.7% 95.8% 88.7% 96.7% 

10 92.4% 96.2% 89.3% 92.2% 

20 90.9% 95.4% 88.5% 84.4% 

 
Although SD reliability drops with added samples, its overall performance generally improves if 
the reductions in magnitudes of overshoot and undershoot errors are accounted for per the 
performance metrics. Figure 4-10 shows continuous improvement with added samples according 
to the unpenalized metric, and improvement through at least N=10 samples according to the 
penalized metric. With either performance metric the SD method again out-performs the other 
methods at all sample sizes. 
 

 
Figure 4-10. EP Performance Metric results vs. number of samples for PDF in Figure 4-8 and 
unpenalized and 10X penalized undershoot errors. Results for each # of samples are from 

10K TI trials with each method. Note: Ignore TI Extended results. 
 
In dramatic contrast, the 5 DOF t-distribution shown in Figure 4-11, which is somewhat shallower 
than a Normal distribution and has somewhat wider tails, yields UQ method results that are quite 
different than for a Normal distribution. Figure 4-12 shows considerable leftward shifting and 
widening of the error distributions of all methods as N increases. The causes all methods’ error 
distributions to have increasingly smaller proportions to the right of zero. SD errors are 
differentiated by markedly less worsening than for the other methods. Figure 4-12 shows that for 
5 DOF t-distribution like for the other three considered above, the SD peak and average errors are 
discernably closer to zero than for the other methods, at all sample sizes. SD errors are also 
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considerably more compactly distributed than the other methods’ errors are. 
 

 
 

Figure 4-11. 5 Degree-of-Freedom t distribution with vertical dashed line at 0.9999 quantile. 
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Figure 4-12. Exceedance Probability estimation results in terms of # of orders of magnitude error 

from exact 10-4 for 10K trials with sparse-data UQ methods and N=2, 4, 10, 20 random samples per 
trial. Note: TI 95/90 results lie below distribution curve labeled ‘TI Extended’, which method 

appears to have been inadvertently assigned the 95/90 results in the plotting procedure. 
 
As expected from the declining proportions of errors to the right of zero, all method reliabilities 
drop precipitously with increasing sample size as Table 4-4 shows. Reliabilities with N=2 samples 
range from ~78% for EON 90% to ~97% for SD. Reliabilities with N=20 samples fall to very low 
values ranging from ~2% for SD to ~5% for 95/90 TI-EN. In a departure from the three PDFs 
investigated above, overall performance drops with added samples as shown by increasing 
performance metric values in Figure 4-13. Associated performance declines are smaller with added 
samples for SD than for the other methods, and for this PDF like for the others, SD significantly 
out-performs the other methods at all sample sizes. 
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Table 4-4. Empirical Reliabilities of Sparse-Data UQ Methods for Conservative 
Exceedance Probability estimation (see Figure 4-11) 

 
 

N 
TI-EN 
95/90 

TI-EN 
95/95 

EON 
90% 

 
SD 

2 80.9% 90.1% 77.6% 96.6% 

4 50.6% 69.0% 41.5% 76.0% 

10 11.6% 21.0% 9.1% 14.5% 

20 2.7% 4.5% 2.3% 1.9% 

 
 

 
Figure 4-13. EP Performance Metric results vs. number of samples for PDF in Figure 4-11 and 
unpenalized and 10X penalized undershoot errors. Results for each # of samples are from 10K 

TI trials with each method. Note: Ignore TI Extended results. 
 
 
Summary of Other PDF Results and a Proposed Strategy for Selection of Method and # Samples 
 
Appendix C presents the methods’ results for log-normal and Weibull analytic distributions and 
six more empirical PDFs selected from Figure 3-10 thought to be diversely challenging. The PDF 
for Tensile EQPS Weld Max Global 1.0 in Appendix C behaves roughly like the PDF in Figure 4- 
2, although looks very different from it. The other analytic and empirical PDFs in Appendix C 
evoke method performances qualitatively similar to that in Figure 4-12 and Figure 4-13 for the 5 
DOF t distribution; performance metric values generally increase and performance generally 
decrease with added samples. SD is always the best performer for all 12 PDFs, at all sample 
sizes. 

Tables of the number of samples vs. method reliability for conservatively bounding the 10-4 EPs 
are given in Appendix C for the PDFs there. Method reliabilities for the 5 DOF t distribution 
generally bound (from below) the reliabilities for all the other PDFs above and in Appendix C 



 
 

64 
 
 

except for the third PDF in Appendix C (Figure C.3) at N=2,4 and the fourth PDF in Appendix C 
(Figure C.4) at all samples sizes. Therefore, one might claim reasonably small risk (i.e., high 
plausibility or approximately equivalently, reasonable credibility) in using the 5 DOF t 
distribution’s method-specific reliability curves as conservatively biased estimators for reliability 
vs. sample size relationships in estimating ~10-4 magnitude EPs. If one wants higher credibility of 
attaining conservative results, one could construct for each method a more conservatively biased 
N vs. reliability relationship by using at each N the lowest reliability value from the tables for the 
third and fourth PDFs in Appendix C. 
A simpler distillation of the information in this section is obtained from focusing on just the SD 
method, as the best performer for all samples sizes and PDFs studied. The following SD results 
are the most relevant, assuming a conservative bias of 70% or greater desired reliability. 
N=2 samples:   all 12 PDFs > 90% relia. (range 93.2 % to 98.6%) 
N=3 samples:   all 12 PDFs > 70% relia. (range 71.9% to 97.6%)  -linear interp. from tables 
N=4 samples:  10 of 12 PDFs > 70% relia. (range 72.2% to 96.7%); other two: 51% and 54% 

Thus, exceedance probabilities of magnitude ~10-4 estimated with SD and N=2 samples could be 
considered to conjure strong belief or credibility (from 12 of 12 cases tried) that the EP estimate 
has a high chance (at least 90%) of being conservative, and is most accurately estimated with SD 
than with the other methods studied. SD with N=3 samples could be considered to conjure strong 
belief or credibility (from 12 of 12 cases) that the EP estimate is conservative at a medium-high 
level of reliability (at least 70%). With N=4 samples, a high plausibility or ~equivalently a medium 
degree of belief or credibility (from 10 of 12 cases) could be considered to exist that the EP 
estimate is conservative at a medium-high level of reliability (at least 70%). 
For EP estimation as well, a striking counter-intuitiveness exists that the number of samples should 
be kept very low (two or three) for a risk-averse strategy when little to nothing is known about the 
PDF being sampled. 
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5. SUMMARY AND CONCLUSIONS 
An Ensemble of Normals most fundamentally represents the aleatory and epistemic uncertainties 
present when statistical inferrences are made from sparse samples drawn from a Normal 
distribution, although this paper finds substantial applicability to even highly non-normal 
distributions. Relationships were established between EONs and derivative uncertainty 
representations depicted in Figure 2-4 and Figure 2-6 (Tolerance Intervals, TI Equivalent 
Normals, and Superdistributions). The best representation to use depends on the particular UQ 
purpose. In this paper two UQ purposes were studied: A) bounding the central 95% of PDF 
response (relevant for e.g. model calibration and validation); and B) bounding a 10-4 tail 
probability of the PDF (representative of risk and reliability analysis purposes). 
For bounding a PDF’s central 95% of response between its 2.5 and 97.5 percentiles, the 
suspected relationship depicted in Figure 2-6 between EONs and TIs was found to exist (within a 
very close approximation) for four symmetric to highly skewed analytic PDFs studied: Normal, 
five degree-of-freedom t, log-normal, and Weibull. Thus, the 95/90 and 95/95 TI methods are 
concluded to be simple and economical means to obtain commensurate EON estimates of the 
central 95% of response. This is anticipated to extend more generally to the central X% capture 
problem with X%/90% and X%/95% TIs, and to use of these TIs for one-sides bounds on 
individual [100 ± X]/2 percentiles of response (aside from two-sided upper and lower bounds on 
the range between these percentiles). 
In general, reliabilities of capturing the central 95% of response are fairly sensitive to the number 
of samples N. Capture reliabilities decrease as N increases, for all methods. Higher reliability 
(good) is strongly correlated with larger average over-estimation of the true range of the central 
95% of response and associated higher design or risk mitigation costs (bad). Because of these 
and other conflicting incentives involved, it is important to consider the relationships between 
capture reliability, # of samples, magnitude of conservatism, and relative desirability of over- 
estimation vs. under-estimation errors. Multi-attribute scoring metrics were used to combine 
these factors into overall performance scores as a function of sample size N. The 95/90 and 
95/95 TI methods were found to perform better on average than the SD method on the four 
analytic PDFs and 70 empirical distributions at the tried sample sizes of N=2, 4, 10, and 20. This 
range of sample sizes and the 74 diverse and challenging distribution shapes (some of which are 
shown in Figure 3-10) provide a significant test-bed to characterize UQ method performance on. 
For the top-performing 95/90 and 95/95 TI methods, overall performance improves greatly in 
going from N=2 samples to N=3 or 4 (for all four analytic and 70 empirical PDFs), but then only 
marginally improves or even declines with more samples, as undesirable declines in capture 
reliability overwhelm beneficial error-magnitude declines. This N=4 performance “sweet spot” 
between risk-cost-conservatism tradeoffs was also found for 95/90 TIs on 70 other empirical 
PDFs studied in [Romero, Schroeder, et al., 2017]. Furthermore, findings with a linear test 
problem in [Winokur & Romero] indicate that nominally 4 experimental realizations and model 
evaluations per important random variable, function, and/or field source of variability are 
suitable with 95/90 TIs to attain a reasonable cost-risk-conservatism balance per the 
considerations in Footnote 2. 
About 89% of all the 144 PDFs discussed in this paper have reliabilities of ~75% or greater with 
95/90 TIs and N=4 random samples per trial. Related analysis projects that 89% of all 144 PDFs 
have reliabilities ≥85% with 95/95 TIs and N=4. In the authors’ judgment, this large 89% 
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proportion of the highly diverse and challenging 144 PDFs studied provides a basis for high 
plausibility ≈ reasonable credibility that reliabilities ≥75% or ≥85% are reasonable expectations 
for 95/90 TIs or 95/95 TIs respectively and N=4 samples when a distribution of unknown shape 
is being sampled. 
Other choices of N and/or reliability levels and/or credibility levels may be more suitable for the 
particular cost-risk constraints and objectives in a project. Section 3.3 offers some analysis of the 
study results to facilitate a strategy for picking the best combination of the # of samples and 
95/90 TI or 95/95 TI method to achieve a desired reliability and credibility level (also 
considering what, if anything, is known about the shape of the PDF being sampled). From the 
large data base of PDF shapes and results examined, it is proposed that the strategy offers 
moderate to high credibility options for achieving the desired reliability levels within the 
specified parameters. Added considerations affect optimal selection of sparse-data uncertainty 
representations when the uncertainty is to be propagated, as discussed in [Romero, Weirs, 
Schroeder, et al., 2018]. 

For the purpose of conservatively bounding a 10-4 tail probability of a PDF, the following related 
sparse-data UQ methods were tested: the Superdistribution method, 95/90 and 95/95 TI-Equivalent 
Normal methods, and the 90% highest EP estimate from 100 Normals of an ensemble (EON-90%). 
The methods were tested on the four analytic PDFs and eight empirical distributions chosen for 
shape diversity and perceived high difficulty for EP estimation. According to performance metrics 
established in this paper that weigh estimation error magnitudes against reliabilities of bounding 
the true EP, SD was universally the best performer for all 12 PDFs at all sample sizes. 
For all methods, reliabilities decrease as sample size increases, with high sensitivity to N for most 
of the 12 PDFs. Higher reliability (good) is strongly correlated with larger average over-estimation 
of the true EP and associated higher design or risk mitigation costs (bad). For most PDFs, reliability 
declines with sample size faster than estimation error magnitudes, leading to declining overall 
performance with N for most PDFs. Reliabilities decline with N so quickly that N=4 samples is 
the maximum that retains reasonable credibility that at least 70% reliability is achieved (when 
seeking to bound a 10-4 magnitude EP for a PDF of unknown shape). It is also concluded that N=3 
samples comes with high credibility of attaining >70% reliability, and N=2 samples comes with 
high credibility of attaining >90% reliability. The basis for these statements follows. 

N=2 samples: all 12 PDFs > 90% reliability of attaining a conservative EP estimate (exact=10-4) 
N=3 samples:   all 12 PDFs > 70% reliability 
N=4 samples:  10 of 12 PDFs > 70% reliability 
For both EP and central 95% estimation there is a striking counter-intuitiveness that the number 
of samples must be kept very low with these UQ methods to have low risk of under-estimation 
(non-bounding) of these quantities when little or nothing is known about the PDF being sampled. 
The large bias toward conservatism that achieves this low risk comes at a cost of increased 
engineering and product expenses and/or perceptions of smaller design or safety margins. Other 
UQ approaches surveyed in Section 2 would appear preferable if much is known about the PDF 
up front and/or the number of samples is more than identified in this report to give reasonably 
reliable bounding estimates. More research is needed here. 
These findings apply to sparse samples of experimental or model simulation scalar results. The 
latter may come from propagation of sparse realizations of random variable, random function, 
and/or random field data (see e.g. [Winokur et al., 2017], [Romero, Schroeder, et al., 2017]). 
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APPENDIX A. DEFINITION OF LOG-NORMAL AND WEIBULL DISTRIBUTIONS 

USED IN THIS STUDY  

The Matlab function calls for the four analytic distribution used in this study are: 
random('norm',0,1,[N,1]); 
random('t',5,[N,1]); 
random('wbl',1,1.3,[N,1]); 
random('logn',10.48,0.314,[N,1]); 

 
where N is the number of samples. 

The normal distribution has a mean of zero and unit variance (a Standard Normal). The Student-t 
distribution has 5 degrees of freedom with a zero mean. 
The Weibull distribution has 2 inputs: scale parameter (a) and shape parameter (b). The scale 
parameter is set to a=1 and the shape parameter is set to b=1.3. The pdf equation is: 

𝑓(𝑥|𝑎, 𝑏) =
𝑏

𝑎
(
𝑥

𝑎
)
𝑏−1

𝑒
−(

𝑥

𝑎
)
𝑏

. 

This pdf with the specified input parameters is plotted below. 

 
The log-normal distribution also contains two inputs: normal mean (µ) and normal standard 
deviation (σ). These do not correspond to the resulting distribution, but the underlying normal 
distribution the logarithm is taken of.  The pdf equation for this log-normal distribution is: 

𝑓(𝑥|𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
exp{

−(L − N ( 𝑥) − 𝜇)2

2𝜎2
}. 

 
This pdf with the specified parameter values is plotted below. 
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APPENDIX B. MULTI-ATTRIBUTE PERFORMANCE METRIC SCORES FOR UQ 
METHOD CAPTURE OF CENTRAL 95% OF PDFS 

The performance metric values in this appendix use Equation 3-4 for the numerator value in the 
performance metric Equation 3-5 for tables with titles indicating ‘Non-Penalized’ performance 
metric results. Tables with titles indicating ‘10X Penalized’ performance metric results use 
Equation 3-6 for the numerator to apply a 10X penalty to shortfall errors (see Figure 3-2 and Table 
3-2). 
Normal PDF 
 

Table B-1 and Table B-2 contain the numerical data plotted in Figure 3-3 for a sampled Normal 
PDF. As expected, in each table the results for 95/90 TIs and EONs are very close to each other, 
as are the results for 95/95 TIs and EONs. A few cases in the tables have EON performance 
values that are slightly lower/better than the corresponding TI values, but the majority of cases 
show TI performs better. This is reflected in each table’s last column which shows better average 
performance of the TI methods than the corresponding EON methods. Other observations on the 
performance of these and the SD and EON50% methods are given in the body text discussing 
Figure 3-3. 
 

Table B-1. Non-Penalized Performance Metric Values, Normal distribution 
sampled N times, results from 10K random trials of each method 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 29.03 6.32 2.46 1.52 9.8 

EON 90% 32.1 6.14 2.54 1.58 10.6 
95/95 TI 58.56 8.68 3.03 1.75 18.0 

EON 95% 72.29 8.48 3.07 1.84 21.4 
EON 50% 49.12 3.95 2.51 1.82 14.4 
Super D. 40.14 4.52 2.09 1.54 12.1 

 
 

Table B-2. 10X Penalized Performance Metric Values, Normal distribution 
sampled N times, results from 10K random trials of each method 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 30.88 7.4 3.14 2.06 10.9 
EON 90% 33.97 7.42 3.23 2.07 11.7 
95/95 TI 59.45 9.18 3.32 2 18.5 
EON 95% 73.17 9.09 3.38 2.07 21.9 
EON 50% 89.21 12.25 10.57 8.74 30.2 
Super D. 41.86 7.66 5.89 5.52 15.2 
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5 DOF t-distribution 
 
Table B-3 and Table B-4 contain the numerical data plotted in Figure 3-5 for a sampled 5 DOF t- 
distribution. As expected, in each table the results for 95/90 TIs and EONs are very close to each 
other, as are the results for 95/95 TIs and EONs. In Table B.3 for the unpenalized metric shows 
95/95 EON performs slightly better than the corresponding TIs for N=4, but the other cases show 
95/95 TIs performs better such that its average is better in the table’s last column. EON 95/90 
results show a rare outperformance of the corresponding TIs on average, although the TIs 
outperform EON at the larger samples sizes N=10,20. In Table B.4 for the 10X penalized metric, 
95/90 and 95/95 TIs do better on average (at N=2,4,10 but not at N=20) than their EON 
counterparts. Other observations on the performance of these and the SD method are given in the 
body text discussing Figure 3-5. 
 

Table B-3. Non-Penalized Performance Metric Values, 5 DOF t distribution 
sampled N times, results from 10K random trials of each method 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 53.61 7.89 3.48 2.34 16.8 

EON 90% 39.32 7.74 3.51 2.37 13.2 
95/95 TI 71.43 10.59 3.94 2.47 22.1 

EON 95% 88.37 10.42 4.00 2.56 26.3 
Super D. 49.54 6.19 3.70 3.02 15.6 

 
 

Table B-4. 10X Penalized Performance Metric Values, 5 DOF t distribution 
sampled N times, results from 10K random trials of each method 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 38.29 9.98 5.48 4.29 14.5 

EON 90% 42.04 10.24 5.62 4.16 15.5 
95/95 TI 72.64 11.54 4.87 3.46 23.1 

EON 95% 89.63 11.55 5.00 3.44 27.4 
Super D. 52.03 12.56 14.12 13.90 23.2 

 
 
Log-Normal Distribution 
 

Table B-5 and Table B-6 contain the numerical data plotted in Figure 3-7for a sampled log-normal 
distribution. As expected, in each table the results for 95/90 TIs and EONs are very close to each 
other, as are the results for 95/95 TIs and EONs. In Table B-5 for the unpenalized metric shows 
EONs performs slightly better than the corresponding TIs in a few cases, but the majority of cases 
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and the averages over all cases N=2,4,10,20 show in the table’s last column that TIs perform better 
on average than their corresponding EONs. In Table B-6 for the 10X penalized metric, 95/90 and 
95/95 TIs do better on average (at N=2,4,10 but not at N=20) than their EON counterparts. Other 
observations on the performance of these and the SD method are given in the body text discussing 
Figure 3-7. 
 

Table B-5. Non-Penalized Performance Metric Values, Log-Normal distribution 
sampled N times, results from 10K random trials of each method 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 347530 81513 41167 33436 125912 
EON 90% 382180 79871 41399 33427 134219 
95/95 TI 691010 106930 44631 33215 218947 
EON 95% 843560 105040 45594 33580 256944 
Super D. 475610 65192 44141 45893 157709 

 
 

Table B-6. 10X Penalized Performance Metric Values, Log-Normal distribution 
sampled N times, results from 10K random trials of each method 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 374820 105190 69956 71225 155298 

EON 90% 409300 107030 71290 68565 164046 
95/95 TI 704220 118410 60387 55659 234669 

EON 95% 856570 118420 62122 53755 272717 
Super D. 501000 129600 155110 194100 244953 

 
 
Weibull Distribution 
 

Table B-7 and Table B-8 contain the numerical data plotted in Figure 3-9 for a sampled Weibull 
distribution. As expected, in each table the results for 95/90 TIs and EONs are very close to each 
other, as are the results for 95/95 TIs and EONs. Table B-7 for the unpenalized metric shows 
EONs performs slightly better than the corresponding TIs in a few cases, but the majority of 
cases and the averages over all cases N=2,4,10,20 show in the table’s last column that TIs 
perform better on average than their corresponding EONs. In Table B-6 for the 10X penalized 
metric, 95/90 and 95/95 TIs do better on average (at N=2,4,10 but not at N=20) than their EON 
counterparts. Other observations on the performance of these and the SD method are given in the 
body text discussing Figure 3-9. 
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Table B-7. Non-Penalized Performance Metric Values, Weibull distribution 
sampled N times, results from 10K random trials of each method 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 21.10 5.45 3.21 2.94 8.18 
EON 90% 23.13 5.37 3.23 2.89 8.65 
95/95 TI 40.74 6.83 3.28 2.72 13.39 
EON 95% 50.61 6.77 3.31 2.72 15.85 
Super D. 28.91 4.57 3.69 4.53 10.43 

 

Table B-8. 10X Penalized Performance Metric Values, Weibull distribution 
sampled N times, results from 10K random trials of each method 

Method N=2 N=4 N=10 N=20 avg.score 
95/90 TI 23.3 7.7 6.4 7.2 11.2 

EON 90% 25.3 7.9 6.5 6.8 11.6 
95/95 TI 41.7 8.0 5.2 5.4 15.1 

EON 95% 51.6 8.1 5.3 5.1 17.5 
Super D. 30.9 10.0 13.5 19.0 18.3 

 
 
Average of 70 Empirical Distributions 
 
Table B-9 and Table B-10 contain the numerical data plotted in Figure 3-15 for average results of 
70 empirical distributions as explained in section 3.2. Observations on these performance data 
are given at the beginning of section 3.3. 
 

Table B-9. Non-Penalized Performance Metric Values, average results for 
70 empirical distributions sampled N times, results from 10K random 

trials of each method for each distribution 

Method N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 avg. score 
95/90 TI 1.96 0.83 0.62 0.53 0.48 0.44 0.43 0.41 0.41 0.68 
95/95 TI 3.57 1.09 0.71 0.57 0.50 0.45 0.42 0.39 0.38 0.90 
Super D. 2.62 0.76 0.62 0.58 0.59 0.60 0.63 0.65 0.70 0.86 
EON50% 1.13 1.01 0.96 0.97 0.97 1.02 1.07 1.05 1.06 1.03 
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Table B-10. 10X Penalized Performance Metric Values, average results for 
70 empirical distributions sampled N times, results from 10K random 

trials of each method for each distribution  

Method N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 avg.score 
95/90 TI 2.59 1.86 1.87 1.91 1.95 1.94 2.06 2.08 2.19 2.05 
95/95 TI 3.90 1.65 1.48 1.46 1.51 1.50 1.54 1.52 1.62 1.80 
Super D. 3.20 2.40 3.01 3.34 3.75 4.06 4.52 4.85 5.38 3.83 
EON50% 7.11 7.30 7.38 7.73 7.92 8.46 8.96 8.86 9.07 8.09 
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APPENDIX C. EXCEEDANCE PROBABILITY ESTIMATION RESULTS FOR TWO 
ANALYTIC AND SIX EMPIRICAL PDFS  

The performance metric values in this appendix use Equation 4-1 through 4-3.  
 

 

Figure C-1. 10-4 EP estimation results for Log-Normal PDF defined in Appendix A 
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Figure C-2. 10-4 EP estimation results for Weibull PDF defined in Appendix A 
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Figure C-3. 10-4 EP estimation results for Can-Crush empirical PDF for Tearing 
Parameter Weld Element 0.75 
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Figure C-4. 10-4 EP estimation results for Can-Crush empirical PDF for Tensile EQPS 
Can Top Element 0.5 
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Figure C-5. 10-4 EP estimation results for Can-Crush empirical PDF for Tearing 
Parameter Lid Buckle Element 1.0 
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Figure C-6. 10-4 EP estimation results for Can-Crush empirical PDF for Tearing 
Parameter Lid Buckle Element 0.25 
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Figure C-7. 10-4 EP estimation results for Can-Crush empirical PDF for Tearing 
Parameter Weld Max Global 0.25 



 
 

82 
 
 

 

Figure C-8. 10-4 EP estimation results for Can-Crush empirical PDF for Tensile EQPS 
Weld Max Global 1.0 
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