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ABSTRACT

In this paper, we demonstrated a successful application to use Newton-Krylov method in solving
conjugate heat transfer problem in two-phase flow in a fully coupled and fully implicit manner. Such a
problem represents the most fundamental physics, i.e., heat transfer between fuel rods and reactor coolant
during postulated accidental scenarios, in nuclear reactor safety analysis. The two-phase flow is modeled
with the one-dimensional two-fluid two-phase flow model that is widely used in system analysis codes.
The heat conduction is modeled with a two-dimensional heat conduction model. For spatial discretization,
staggered grid upwind finite volume method is used for flow equations. First-order and second-order
schemes (an extension to the first-order scheme) are both available. The standard second-order finite
differencing method is used for the two-dimensional heat conduction model. For time integration, both
the fully implicit first-order backward Euler (BDF1) and second-order BDF2 schemes are provided.
Several treatments were also introduced to enhance the robustness of the Newton-Krylov method in
solving such a non-linear problem that is discontinuous in nature because of the discrete closure
correlations. These treatments include the re-consideration of a transition region between the slug and
annular mist flow regimes, and a simplification made in the interfacial drag term. Numerical results have
been extensively validated with experimental data in both pipe and rod bundle geometries, and with a
wide range of thermal-hydraulics conditions, including pressure, inlet mass flow rate and subcooling, wall
heat flux, and outlet void fraction. Further code-to-code benchmark with the RELAP5-3D code provides
further evidence on the correct implementation of wall heat transfer models.
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1. INTRODUCTION

In nuclear reactor safety analysis, conjugate heat transfer between fuel rods and reactor coolant is
essential to the accurate prediction of the peak cladding temperature during postulated accidents, such as
the loss of coolant accident (LOCA). In existing codes, such as RELAP5 [1], these two parts of
nonlinearly coupled physics, i.e., two-phase flow and heat conduction, are solved in separate linear
systems, which introduces additional numerical errors [2]. For numerical simulations on fast or long
transient reactor accidents, it is desirable to employ fully coupled and fully implicit methods in order to
reduce numerical errors. In the pioneering work of Mousseau [2], a Jacobian-free Newton Krylov (JFNK)



method was used to solve a conjugate two-phase flow and heat conduction problem. Numerical error
analysis was given in details for the fully implicit method, which demonstrated several orders of
magnitude smaller numerical errors compared to the semi-implicit method. Following Mousseau’s
pioneering studies, a series of systematic studies were carried out previously to investigate the
applicability of JFNK method in solving two-phase flow problems when the phase
appearance/disappearance phenomenon [3-4] and realistic closure correlations are considered [5].
Although much successful experience has been obtained in these studies, it is a critical task to extend such
studies to include the heat conduction model and the wall heat transfer model that are essential to reactor
safety analysis. It is critical to investigate the applicability and solver performance of the JFNK method in
such an application, given the high complexity and discontinuous nature of wall boiling heat transfer
models.

2. FIELD EQUATIONS

Figure 1 (a) shows a typical conjugate heat transfer model between a fuel rod and its surrounding coolant
flow that resembles the flow and heat transfer conditions in nuclear reactor cores. In order to accurately
predict the thermal-hydraulics conditions, such as axial void fraction distribution and peak cladding
temperature, both the two-phase flow in the flow channel and heat conduction in the fuel rod have to be
correctly modeled. In reactor safety analysis codes, the two-phase flow in the channel is normally
modeled as one-dimensional flow due to the very large length-to-diameter aspect ratio, while the heat
conduction in the fuel rod is modeled using either one-dimensional or multi-dimensional heat conduction
equation, depending on the specific scenarios. In the following sections, the commonly used two-fluid
two-phase flow model and two-dimensional heat conduction equation, as well as closure correlations to
close the equation system, will be discussed.
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Figure 1, (a) Schematic drawing of the conjugate heat transfer between a fuel rod and its
surrounding coolant; (b) Mesh and variable arrangements for both the one-dimensional two-phase
model and two-dimensional heat conduction model.
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2.1 Field Equations

For the two-phase flow model, the single-pressure two-fluid six-equation model has been used in this
paper. Such a two-fluid model is widely used in many existing nuclear reactor system analysis codes,



including RELAPS [1], TRAC [6], TRACE [7], and CATHARE [8]. It is well known that the basic
equation set of the two-fluid model is mathematically ill-posed (lack of hyperbolicity), and different
treatments were proposed to render the equations system to be hyperbolic. Such treatments include, for
example, the virtual mass term used in the RELAP5 code [1], and the interfacial pressure term used in the
CATHARE code [8]. Such treatment terms are, however, excluded in this paper for the purpose of
simplicity. The basic set of the six-equation system includes a set of mass, momentum, and energy
equations for each phase. They are summarized as,
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in which, subscripts | and g denote the liquid phase and the gas phase, respectively; and subscript ‘int’
denotes the two-phase interface. I is net vapor generation rate due to wall boiling/condensation (77,), and
bulk evaporation/condensation (/5g). Fwan; and Fyang represent wall friction terms for the liquid phase and
the vapor phase, respectively. Qu and Q.4 are wall-to-liquid and wall-to-gas phase heat transfer terms,
respectively. Qj and Qj, are the interface-to-liquid and interface-to-gas phase heat transfer terms,
respectively. h; and hy, are phasic enthalpy carried by wall vapor generation term. h; and hy are phasic
enthalpy carried by interfacial mass transfer term. The variables to be solved from this set of equations, in
the vector form, are U = [p, ag, U, Ug, T, Tg]T, which are pressure, void fraction (volume fraction of the
gas phase), liquid phase velocity, gas phase velocity, liquid phase temperature, and gas phase
temperature, respectively. The thermodynamic properties of each phase, such as density and specific
internal energy, are determined as functions of pressure and phasic temperature, e.g., € = e(p, T). In
addition, it is noted that, oy + ag = 1.

The heat conduction in solid heat structures is modeled with the two-dimensional heat conduction
equations in Cartesian coordinates,
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in which, subscript s denotes solid heat structure; p, c,, T, and k are density, heat capacity, temperature,
and thermal conductivity of the solid heat structure, respectively. qg" is the volumetric heat source in heat
structure. The coupling between the fluid energy equation and the heat conduction equation is through the
wall heat transfer terms in the fluid energy equations and the boundary conditions for the heat conduction
equations, i.e.,

—ks—=— = qu (®)



where g, is wall heat flux to the two-phase flow due to convection, boiling, and etc. In conjugate heat
transfer, this quantity is determined from wall heat transfer coefficient, wall and fluid temperatures. Wall
heat transfer coefficient is modeled as closure correlations, which will be discussed in the next section.

2.2 Closure Correlations

Additional closure correlations are needed to close the equations system, including correlations to
determine local flow regimes, heat transfer and friction between the heat structure (wall) and fluids,
interfacial friction and heat and mass transfer. Since most of these closure correlations have been well
discussed in our previous paper [5], they will only be briefly discussed here. We will focus on the
additional closure correlations, i.e., wall heat transfer closure correlations, and the interfacial friction
model that has also been simplified in this paper.

In this paper, it is the pre-CHF (critical heat flux) two-phase flow regimes in vertical flow channels (tube
or rod bundle) that are of interest, and therefore implemented. Similar to RELAP5-3D [9], these vertical
flow regimes include bubbly flow, slug flow, annular mist flow, and mist flow pre-CHF in the two-phase
flow region. An additional single-phase liquid flow regime is also included. The transition between the
single-phase flow to two-phase flow has been discussed in two previous papers [3,4]. In each finite
volume, flow regime is determined from local geometry and thermal-hydraulics conditions, such as void
fraction, phasic densities, phasic velocities, pipe diameter, and etc. The closure correlations for
determining flow regimes are well documented in the RELAP5-3D code manual [9] and our previous
paper [5], and therefore are omitted here.

Wall friction is calculated for both the single-phase and two-phase flow conditions. For single-phase
conditions, wall friction is modeled in laminar flow, turbulent flow, and a transition flow regime between
these two. For the two-phase flow regimes, the commonly used two-phase multiplier concept is adopted.
As they are somewhat standard approaches, details are not presented in the paper. More details are
available in the RELAP5-3D code manual [9].

The model for interfacial friction has been simplified in this paper in order to improve the robustness of
the computer code. In the previous paper [5], the interfacial friction model follows that of the RELAPS-
3D code, e.g., drift flux model is used for vertical bubbly and slug flow regimes, and the drag coefficient
model is used in all other flow regimes. In this paper, the model has been simplified to use the drift flux
model in all vertical flow regimes, as the EPRI drift flux model provides a full coverage on the entire void
fraction region. In addition, no significant changes in void fraction profiles were found in numerical
results compared to the previous paper (discussed later). For all the flow regimes, the interfacial friction
term is calculated using the drift flux model,

Fint = Cinguglugl ©
where the interfacial drag coefficient, C;.,, and relative velocity, ug, are defined as,

_agai(pi—pg)g

int — (10)
|ng|ng
and
uR = Clug - Coul (11)
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in which, V; is the weighted mean drift velocity, and Cj is the distribution parameter. Both parameters are
modeled using the EPRI drift flux model proposed by Chexal and Lellouche [10].



Compared to previous studies, the major contribution in this paper is the implementation of the wall heat
transfer model. In this paper, both the single-phase and two-phase flow wall heat transfer before critical
heat flux (CHF) models are considered and implemented. Figure 2 shows a flowchart of the wall heat
transfer model implemented. Because pre-CHF conditions are considered only, the branch to the nucleate
boiling has been simplified compared to the RELAP5-3D wall heat transfer flowchart. For single-phase
heat transfer, the Dittus-Boelter correlation for turbulence flow is used. For nucleate boiling, the
correlation proposed by Chen is used,

q\,A; = hmac (Tw - Tsat)F + Ronic (Tw - Tsat)S (13)

The macroscopic convection heat transfer coefficient, 4,,., is calculated from the Dittus-Boelter
correlation; and the microscopic boiling heat transfer coefficient, #4,,., is calculated from the Forster-
Zuber correlation,

079045 949
_ : 0.24 4,,0.75
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where, AT, is wall superheat, and Ap is the difference between saturation pressure corresponding to wall
temperature and bulk pressure. For the Reynolds number factor (F) and suppression factor (S) in equation
(13), their detailed definition is omitted here, which can be found in the RELAP5-3D code manual [9].
Note that equation (13) has been proposed for saturated boiling flow conditions. If subcooled nucleate
boiling is modeled, equation (13) is used with two modifications: changing T, into 7} in the macroscopic
convection term, and a correction factor is used for F' [9].
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Figure 2, Flowchart for determining wall heat transfer modes for pre-CHF conditions.

3. NUMERICAL SCHEMES
3.1 Spatial Discretization Scheme

For the flow equations, staggered grid mesh arrangement has been used. As depicted in Figure 1 (b),
scalar variables (pressure, void fraction, and phasic temperatures) are arranged in cell centers, while
vector variables (phasic velocities) are arranged on cell edges. For advection terms in flow equations,
both the first-order and second-order upwind donor cell methods are implemented. The second-order



upwind spatial scheme is conceptually similar to the first-order one. It is obtained by introducing linear
reconstructions of variable solutions into the original first-order upwind method. For the staggered grid
arrangement, the advection terms in the gas phase mass equations are semi-discretized as,

0(agpgiiy)
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If the traditional first-order upwind donor cell method is used, the mass flux on cell edge i+1/2 is
numerically evaluated as,
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Instead of the piecewise constant assumption in the first-order scheme, the second-order scheme requires
an additional step to reconstruct piecewise linear distributions of variables in each finite volume cell. The
mass flux on cell edge i+1/2 is then evaluated based on local edge velocity and the value of scalar
variables on the cell edge (Figure 3),
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Figure 3, Schematic illustration of the linear reconstruction of variables using the slope limiter
method. ¢ is the piecewise constant variables before linear reconstruction. ¢* is the reconstructed
variables on cell edges after the linear reconstruction.

The same approach is used for the advection and the o(au)/ox terms in the energy equation. The
discretization of the advection term in the momentum equations is done slightly differently as it is
formulated in primitive form. For the first-order upwind scheme, it is discretized as,
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While for the second-order version, the discretization is obtained by replacing the donor values with
linearly reconstructed cell edge values,

u dug _ iu Uiy — Uj if ugiv12>0 (19)
9 0% liy12  Ax G2yt —ut otherwise

The linear reconstructions of variables are done using the slope limiter concept. For example, the
reconstruction of scalar variable in the i™ volume can be done as,
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in which, ¢, ; is the reconstructed slope, which can be obtained by any standard slope limiter schemes,
such as the Van Albada slope limiter used in this paper [11].

3.2 Discretized Forms
The discretized forms of the two-phase flow equation system, using BDF1 time integration scheme, are

summarized as follows:
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where, p; = pi(Pi Tii), eri = e(Pi Tui)- @lypivas2 ad plyeliis/, are edge averaged values from its
two neighboring cells. Replacing BDF1 scheme with BDF2 scheme would be straightforward. Compared
to the previous study [5], one major difference presented in this paper is the treatment on the interfacial
drag term. At first, drift flux model has been used for all vertical flow regimes as explained in section 2.2.



For the numerical discretization, the values of Co, Cy, Vg, and Ciy, are all evaluated using local edge
values. This approach is taken to simplify the code implementation, as well as to improve the solver
robustness.

The discretization of the two-dimensional heat conduction equation uses the standard second-order finite
differencing method. By assuming constant properties and dropping the subscript ‘s’ (for solid) and ‘n+1’
for most terms, the discretized equation reads,

+1
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Plij At v (4x)2 (4y)? b

The coupling between the solid heat conduction equation and the two-phase flow energy equation is via
the boundary condition of the heat conduction equation and the wall heat terms in the energy equation.
For example, in saturated flow boiling, all wall heat is assumed to deposit into the liquid phase, i.e., the
Qw term in the liquid-phase energy equation. The following steps ensure the correct coupling and energy
conservation of the conjugate heat transfer. At first, wall heat flux is evaluated from equation (13). The
wall heat transfer term at the i cell, Qui,i, is then calculated as Qy,;; = q,’;’iawli, in which a,, is the heating
surface area per unit volume. At last, qy, ; is applied to the solid heat conduction equation as the boundary
condition, such that,

Tin —Tin—1 7
LT 28
1 q (28)

w,i
Here we let qy,; be positive when heat is transferred from the solid heat structure to the fluid. The
discretized equations summarized in this section represent the nonlinear equations systems that are solved
with the Newton-Krylov method. A detailed description of the JFNK method has been provided in [5],
and therefore is omitted in this paper.
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4. NUMERICAL RESULTS AND DISCUSSIONS

Similar to previous studies, numerical results were validated with existing experimental data, i.e., the
Bartolomei data in vertical pipes [12] and FRIGG data in vertical bundles [13, 14]. Since there are no wall
temperature and phasic velocities measurements available in these data, the RELAP5-3D system analysis
code [9], was also used to benchmark the numerical results obtained in this work.

4.1. Validation

In our previous studies, both the Bartolomei flow boiling data in vertical pipes and FRIGG FT-36b flow
boiling data in vertical bundles have been used for validation purpose [5]. As described in sections 2.2
and 3.2, both the closure correlation for interfacial drag and numerical discretization have been modified
in this paper. It is therefore necessary to estimate how they affect numerical results, and to ensure that
these numerical results are still with good accuracy comparing to experimental data. Both sets of
experiments provide void fraction data at the steady state only, which will be used as the single quantity
for the validation purpose.

The Bartolomei experiments were conducted using tubes with 12 mm inner diameter, 2 mm tube wall
thickness, and 1.5 m heated length oriented vertically. These experiments covered a wide range of
thermal-hydraulics conditions: 1) pressure from 3 to 15 MPa, 2) mass flux from 405 to 2123 kg/(m?s), 3)
wall heat flux from 0.42 to 2.21 MW/m?, 4) inlet subcooling level from 11 to 140 K, and 5) maximum
outlet void fraction up to 0.6. According to the discussion in the original paper, the maximum absolute
errors of the void fraction measurements do not exceed +0.04. The FRIGG tests consist of a series of tests
with different loop configurations and thermal-hydraulics conditions. In this work, ten data sets from the
FRIGG FT-36b series are used for code validation. For the FT-36b test, the test loop consisted of 36 rods
with 4.365 m uniformly heated length and 13.8 mm outer diameter. An additional unheated rod with 20



mm outer diameter was present in the center of the rod bundle. All rods are housed in a cylinder shroud,
with 159.5 mm inner diameter. It was documented in the original report that the absolute measurement
error of void fraction is 0.003, by comparing void fraction measurements with known void fraction in a
mock-up facility.

The 25 sets of Bartolomei data and 10 sets of FRIGG FT-36b data used in this work are the same data sets
used in the previous work [5]. In this work, numerical results were obtained for all cases at the steady-
state condition, using 20 finite volume cells, time step size At = 0.2 s, and number of time steps N; = 200.
Numerical results on void fraction for several selected cases are presented in Figure 4 and Figure 5, with
comparisons to numerical results obtained in the previous work and experimental data. At first, since the
closure correlation changes only apply to the interfacial drag of the annular mist flow regime that
normally happens at large void fraction region, it is expected that void fraction prediction will be affected
only in such large void fraction region. This is evident as shown in Figure 5 that visible changes in void
fraction prediction are present, while as shown in Figure 4 the changes are small. In the large void
fraction region, numerical results obtained in this work seem to give better agreement with experimental
data. Moreover, Figure 4 also indicates that the changes made in numerical discretization of interfacial
drag term only have insignificant impact on numerical results. Overall, the numerical results obtained in
this work are almost identical to those obtained in our previous work that have been well validated, with
the exception that in larger void fraction region the improved accuracy is found.

4.2. Benchmark with RELAP5-3D Results

Both the Bartolomei and FRIGG data did not provide measurements on quantities such as wall
temperature and fluid velocities. In order to validate the wall heat transfer correlations implemented, we
have to rely on existing system analysis codes, such as the RELAP5 code, as benchmark references. The
RELAPS code was developed as a best-estimate reactor safety analysis code, which has been extensively
validated and accepted as a de facto standard for reactor safety analysis. For several selected cases,
numerical results obtained in this work are compared with RELAP5-3D results in figures 6 to 11. It is
noted that semi-implicit method and first-order upwind spatial discretization scheme are both used in the
RELAP5-3D code. For fair comparisons, the first-order BDF1 method and the same first-order upwind
spatial discretization scheme were used to generate numerical results for comparisons. In general, it
shows fairly good agreement between numerical results obtained in this work and those from RELAP5-
3D code. For most cases, the difference in void fraction prediction is small, with exception in case 413-
117. For all the cases, the predicted liquid phase temperatures agree almost perfectly with the RELAP5-
3D results. The difference in wall temperature prediction is also small. Predicted phasic velocities are also
similar between these two sets of numerical results. However, it has to be pointed out that we choose to
present the velocity of the absent vapor phase differently than that of RELAP5-3D, where the absent
vapor phase velocity is set to be the same as the liquid phase velocity in the single-phase liquid region.
For this reason, the RELAP5-3D vapor-phase velocity jumps from the single-phase liquid regime to the
two-phase flow regime, while a continuous vapor-phase velocity is shown in our results.

Overall, the comparison of numerical results of this work and those from RELAP5-3D shows good
agreement between them. There are some slight difference between them, which are likely from the
different closure correlations and numerical discretization used in this work.
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for the FRIGG FT-36b test 413-118.

5. CONCLUSIONS

In this paper, an extended study has been performed to include the two-dimensional heat conduction
model that is coupled to the two-phase flow model through wall heat transfer. The coupled conjugate heat
transfer problem is solved in a fully implicit and fully coupled manner, using the Jacobian-free Newton
Krylov (JFNK) method as the nonlinear solver. Because of the discontinuous nature of closure
correlations used, for example discrete flow regimes and discrete modes in wall heat transfer models,
several treatments were introduced to improve the robustness of the JFNK method. Compared to the



previous work, a transition region is re-introduced between the slug and annular mist flow regimes, which
is however limited to be 0.01 in void fraction and applied to interfacial heat transfer only. The width of
this transition region in void fraction has also been greatly reduced compared to 0.05 used in RELAPS-
3D. The closure correlations for interfacial drag have also been slightly simplified, as only the drift flux
model is used.

Both validation with experimental data and benchmark with the RELAP5-3D code were performed.
Compared to our previous studies, the modifications mentioned above did not introduce any significant
changes in numerical results, because these modifications are somewhat minor. Code-to-code benchmark
with the RELAPS5-3D code further verifies the correct implementation of conjugate heat transfer between
solid heat structure and fluid flow.
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