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CHAPTER 1. GENERAL INTRODUCTION 

General Overview 

Computational chemistry uses the theoretical advances of quantum mechanics and 

the algorithmic and hardware advances of computer science to give insight into chemical 

problems. It is currently possible to do highly accurate quantum chemistry calculations, 

but the most accurate methods are very computationally expensive. Thus it is only 

feasible to do highly accurate calculations on small molecules, since typically more 

computationally efficient methods are also less accurate. The overall goal of my 

dissertation work has been to try to decrease the computational expense of calculations 

without decreasing the accuracy. In particular, my dissertation work focuses on 

fragmentation methods, intermolecular interactions methods, analytic gradients, and 

taking advantage of new hardware. 

Fragmentation methods can decrease the computational cost of an ab initio 

method drastically and retain accuracy.1 Fragmentation methods typically begin by 

splitting a large chemical system into many smaller parts (monomers). Using a many-

body expansion approach, one can split the total energy for the system into the sum of the 

monomer energies, the sum of the dimer energies, the sum of the energies of each set of 

three monomers, and so on. Thus, the energy (or any other property) for the total system 

is computed by calculating energies (or properties) for monomers, dimers, etc., and 

recombining the results. A calculation on the total system is never required, so the 

computational cost is dramatically decreased. Additionally, fragmentation methods are 

naturally parallelizable, since each monomer/dimer/etc calculation can be done 
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separately. Two fragmentation methods are the Fragment Molecular Orbital (FMO) 

method and the Effective Fragment Molecular Orbital (EFMO) method2 3 4. 

 Intermolecular interaction methods usually are much less computationally 

expensive than ab initio methods since molecules are typically expressed as potentials 

and not wavefunctions.5 Intermolecular interaction methods can be used to provide 

interaction energies and are often also used to shed light onto non-covalent interactions 

and how molecules are interacting with each other. Despite the fact the non-covalent 

interactions are weak compared to covalent bonds, non-covalent interactions are 

responsible for hydrogen-bonding in water, the double helix in DNA, and are a potential 

explanation for how geckos cling to glass walls6. Intermolecular interaction methods 

range in functional form, accuracy, and computational cost. One intermolecular 

interaction method is the Effective Fragment Potential (EFP) method.7 

Gradients are important and necessary for any energy method. Geometry 

optimizations, transition state searches, molecular dynamics simulations, response 

properties, and reaction path following all rely on the derivative of the energy with 

respect to the geometry. A numeric finite-difference method can be used to calculate a 

gradient. However, in a numeric finite-difference procedure, each gradient element 

involves doing at least two energy calculations. Thus, it is important to derive and 

implement analytic gradients for a method so that more information can be calculated 

from an energy method without using a computationally expensive numeric finite-

difference procedure. 

 All of the above methods are limited by the computational resources available, 

and quantum chemistry would not be where it is today without computers. The ability to 
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solve a self-consistent field calculation was made possible by the efforts to build 

computers in the twentieth century. However, computers have finite resources, and the 

size of a feasible energy or property calculation is bounded by the resources and 

hardware available and by the ability of the software to use the resources efficiently. 

When there have been advances in computer hardware, there have been advances in 

quantum chemistry, but only because chemists have written software to take advantage of 

the available computing power. As an example, as computers moved from uniprocesser 

to multiprocessor, parallel chemistry programs were written to take advantage of the 

hardware, allowing larger calculations to be run. Currently, the scientific computing 

platform is typically a cluster of multiprocessors connected with a network. The number 

of cores and memory on the nodes varies extensively. However, additional hardware can 

be incorporated, such as Graphical Processing Units and Remote Area RAM, which can 

ideally be used to speed up a calculation. As one designs chemistry software, it is 

important to consider what the future of scientific computing will look like, and see how 

new hardware trends can be incorporated. 

 Together, all of the foregoing considerations support the goal of accurate and 

computationally inexpensive calculations.  

 

Dissertation Organization 

Chapter 1 of the thesis provides a general overview of the parts of quantum 

chemistry and the methods that are relevant to the rest of the chapters. Chapter 2 

discusses the derivation and implementation of the gradient for the Effective Fragment 

Molecular Orbital (EFMO) method. Chapter 3 Chapter benchmark different sets of 
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multipole moments in the Effective Fragment Potential (EFP) method, and Chapter 4 

discusses using the EFMO method to calculate the melting temperature of ice. 

 

Theoretical Background and Methods 

 Before describing the work in this dissertation, some background on quantum 

chemistry is necessary. In particular, background is provided on the Schrodinger 

equation, Hartree-Fock method, many-body expansions and perturbation theory, and 

response and gradient theory.  

In classical mechanics, the dynamics of a system—the manner in which particles 

in a system progress over time—is described by Newton’s second law, F = ma . 

However, in the late 1800s and early 1900s, scientists discovered that classical mechanics 

and Maxwell’s electromagnetism equations couldn’t properly describe physical 

phenomena, such as how the intensity of radiation emitted from a blackbody varies with 

frequency, or how the kinetic energy of an electron emitted from a metal varies with the 

frequency of the incoming light that causes the electron emission. Thus, it was discovered 

that microscopic “particles” have both wave-like and particle-like properties, that there 

are theoretical limits on how well the position and velocity of a wave-particle can be 

simultaneously known, and that classical mechanics is not applicable to microscopic 

particles. A different type of mechanics, called quantum mechanics, was developed. In 

quantum mechanics, the motion of a particle is governed by the time-dependent 

Schrodinger equation8 9, shown in Eq. (1): 

   (1) 
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Ψ(x, t)  is the wavefunction, or state function that contains all of the possible information 

about the particle. In classical mechanics, the “state” would specify the position and 

velocity of all particles in a system, and the forces acting on the particles. As mentioned 

above, in quantum mechanics one cannot know with infinite precision both the position 

and velocity of a particle. Thus, the wavefunction does not specify the classical “state”. 

Instead, the Born density of the wavefunction gives the probability at time t of finding the 

particle between x and x+dx. Ĥ is the Hamiltonian operator, which is the sum of the 

kinetic and potential energy operators ( K̂ and T̂ , respectively). The kinetic energy 

operator is , where∇2  is the Laplacian operator, m is the mass of the particle, 

and  is Planck’s constant divided by 2π . The form of the potential energy operator 

depends on the system.  

 If T̂  is independent of time, then Eq. (1) can be separated into a time-dependent 

equation and a time-independent equation. Most of computational chemistry works with 

potential energy operators that are assumed not to change much with time. Thus, the 

time-independent form of the Schrodinger equation is what most computational chemists 

work with. The time-independent equation can be written as 

 Ĥψ (x) = Eψ (x)   (2) 

where ψ (x) is the time-independent wavefunction, and E is the total energy of the 

system. 

For a molecular system, with electrons and nuclei, the Hamiltonian (in atomic units) is  

 Ĥ = − 1
2i

electrons

∑ ∇2 −
A

nuclei

∑ 1
2M A

∇2 −
A

nuclei

∑ ZA

riAi

electrons

∑ +
j<i

electrons

∑ 1
riji

electrons

∑ +
B<A

nuclei

∑ ZAZB

rABA

nuclei

∑   (3) 
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where M A  is the ratio of the mass of nucleus A to the mass of an electron, ZA is the 

atomic number of nucleus A, r is a position vector, and rxy = rx − ry   The first two terms 

in Eq. (3) are the kinetic energy operators for the electrons and nuclei, respectively, and 

the last three terms are the Coulomb potential energy operators between electrons and 

nuclei, electrons and electrons, and nuclei and nuclei, respectively.  

 Nuclei are much heavier than electrons, and their velocities are much smaller. 

Thus, a good approximation to Eq. (3) is to assume the nuclei are stationary (have no 

kinetic energy), and only solve for the electronic part of the wavefunction. This 

assumption is called the Born-Oppenheimer (BO) approximation.10 Applying the Born-

Oppenheimer approximation, the Hamiltonian becomes 

 Ĥelec = − 1
2i

electrons

∑ ∇2 −
A

nuclei

∑ ZA

riAi

electrons

∑ +
j<i

electrons

∑ 1
riji

electrons

∑   (4) 

and the electronic wavefunction and energy can be solved as: 

 Ĥelecψ elec = Eelecψ elec  (5) 

The energy can also be computed as an expectation value of the wavefunction: 

 Eelec = ψ elec Ĥelec ψ elec   (6) 

where the wavefunction is normalized. An important consequence of the BO 

approximation is that, since the nuclei are stationary, ψ elec  (referred to just as ψ from 

now on) depends explicitly on the electronic coordinates, and implicitly (parametrically) 

on the nuclear coordinates. 

In the Born-Oppenheimer approximation, the total energy is: 

 Etot = Eelec +
B<A

nuclei

∑ ZAZB

rABA

nuclei

∑   (7) 
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The function Etot , which depends explicitly on the nuclear coordinates in the second term 

on the right-hand side of Eq. (7), and parametrically on the nuclear coordinates in the first 

term on the right-hand side of Eq. (7), can be thought of as the potential energy surface 

that the nuclei move on. Unfortunately, Eq. (5) can only be solved exactly for systems 

with one electron, because the electron-electron repulsion term in the Born-Oppenheimer 

electronic Hamiltonian (Eq. (4)) is not separable. Thus, approximate methods are 

necessary to solve for the electronic wavefunction of molecules with multiple electrons. 

One of the most common approximate methods is the Hartree-Fock method.8 The 

Hartree-Fock method uses several key concepts: one-electron spin-orbitals, the 

antisymmetry principle, and the variational principle. In the Hartree-Fock method, the 

wavefunction is an antisymmetrized product of one-electron functions (spin-orbitals). A 

spin-orbital is a product of a molecular orbital and a spin function. The wavefunction 

must be antisymmetrized, since electrons are fermions (the antisymmetry principle). One 

way of ensuring that the wavefunction is antisymmetric is by writing it in terms of Slater 

determinants. A further approximation is made that the wavefunction is a single Slater 

determinant. Using Eq. (6) and Eq. (7), the energy of a Slater determinant is 

 Etot = φi ĥi φi
i

N

∑ + 1
2 ij

N

∑ φ j Ĵi φ j − φ j K̂i φ j( ) +Vnn   (8) 

where ĥi  is a one electron operator arising from the kinetic energy of the 

electrons and the Coulombic potential energy of the electrons with the nuclei, Ĵ  and K̂  

are two-electron operators that arise from the electron-electron repulsion term, Vnn  is the 

nuclear repulsion term, and N is the number of electrons. The variational principle states 

that given any arbitrary wavefunction (which is normalized, well-behaved, and satisfies 
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appropriate boundary conditions), the expectation value of the Hamiltonian with the 

arbitrary wavefunction will be less than or equal to the lowest-energy eigenvalue (ground 

state energy) of the Hamiltonian.9 

Since the Slater determinant is a trial wavefunction, the variational principle can 

be applied to it. Thus, Eq. (8) is minimized with respect to the spin-orbitals so that the 

energy is as close to the true ground state energy as possible. A standard way of carrying 

out the minimization is by using Lagrange multipliers to minimize Eq. (8) under the 

constraint that the spin-orbitals remain orthonormal. Rearranging the Lagrange multiplier 

equations leads to the Hartree-Fock pseudo-eigenvalue equations: 

 

   (9) 

where F  is the Fock operator and is a Lagrange multiplier. 

The Fock operator is: 

 F̂(1) = ĥ(1)+
j

N

∑ Ĵ j (1)− K̂ j (1)( )   (10) 

Eq. (9) is the variational condition for the Hartree-Fock method. That is, if the 

orbitals are chosen such that they minimize the total energy, then Eq. (9) must be true.  

Since a unitary transformation of the spin-orbitals does not change the expectation value 

of a single-determinant wavefunction, the Lagrange multipliers can be chosen to be 

diagonal, as shown below. 

   (11)   

The set of Lagrange multipliers that are diagonal, as shown in Eq. (11), are 

referred to as the canonical eigenvalues, and the orbitals that produce them are referred to 
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as the canonical orbitals. The canonical eigenvalues are interpreted as “orbital energies”. 

Multiplying on the left side of Eq. (11) by orbital j and integrating gives:  

   (12) 

Note that Eq. (12) is equivalent to Eq. (11), and is thus a different way of writing the 

variational condition. The orbital energies are the diagonal elements of the Fock operator: 

   (13) 

Eq. (11) is a pseudo-eigenvalue equation because the Fock operator depends on all spin-

orbitals, not just orbital i. To compute orbital i, all other orbitals must be known, and thus 

an iterative method, called a self-consistent field (SCF) calculation, is used to solve the 

set of Hartree-Fock equations. The above equations are written in terms of spin-orbitals, 

which consist of a spatial molecular orbital and a spin function. It is often possible to 

integrate out the spin functions. For example, if the desired system has an even number of 

electrons and a singlet wavefunction, and if there are no spin-dependent terms in the 

Hamiltonian, the spin functions can be integrated out, and Eq. (8) rewritten terms of only 

spatial orbitals. A wavefunction as described above (with an even number of electrons 

and a singlet wavefunction) is referred to as a Restricted Hartree-Fock (RHF) 

wavefunction. The RHF energy can be written as 

 

Eelec = 2
i

N /2

∑ ϕi ĥi ϕi +
ij

N /2

∑ 2 ϕi (1)ϕ j (2) 1
r12

ϕi (1)ϕ j (2) − ϕ i (1)ϕi (2) 1
r12

ϕ j (1)ϕ j (2)






  (14) 

 

where ϕi  is a spatial molecular orbital. 
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To make solving the Hartee-Fock equations more computationally feasible, the 

Linear Combination of Atomic Orbitals (LCAO) approximation is used. In the LCAO 

approximation, each molecular orbital is expanded in a set of atomic basis functions, as 

shown below: 

 ϕi (r) =
µ

basis functions

∑ cµiχµ (r)  (15) 

where r is the electronic coordinate, cµi  is the coefficient of atomic basis function µ  in 

the ith molecular orbital, and χµ  is basis function µ  . Re-writing the Hartee-Fock 

equations with the LCAO approximation leads to the Roothaan-Hall equations, where the 

coefficients of the atomic basis functions are solved for.11 

 Once the wavefunction is obtained, there is often still information desired. For 

instance, one might want to find the geometry of a molecule with the lowest energy, or 

see how the electronic density changes when perturbed by an electric field. To see how 

the wavefunction changes in the presence of a perturbation, gradients must be computed. 

The analytic gradient is composed of derivatives of the orbitals and derivatives of the 

operators. By Eq. (15), the orbitals are a sum of products of basis functions and 

coefficients that are calculated in the SCF procedure. The basis functions are typically 

Gaussian functions, so the derivatives of the basis functions should be straightforward. 

The derivatives of the coefficients are slightly more complicated, since they are solved 

variationally. If the derivative is with respect to nuclear geometry, then it is clear that the 

molecular orbital coefficients depend implicitly on the nuclear geometry. The molecular 

orbital derivative is typically expanded in the basis of the unpertubed molecular orbital 

coefficients:12 
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∂cµi

∂a
=

m

molecular orbitals

∑ Umi
a cµm   (16) 

The U a  matrix is called the response matrix. If the response matrix is known, the 

derivative of the molecular orbitals can be computed. Thus, the response matrix needs to 

be calculated somehow. Since the molecular orbital coefficients are determined 

variationally, the derivative of the molecular orbital coefficients can be determined by the 

derivative of the variational condition. For canonical Hartree-Fock orbitals, the 

variational condition is Eq. (12)—that the Fock matrix must be diagonal. Taking the 

derivative of Eq. (12) leads to a set of equations called the Coupled-Perturbed Hartree-

Fock (CPHF) equations, which can be solved to compute the response matrix, and thus 

the derivative of the molecular orbital coefficients. For RHF wavefunctions, and other 

variational wavefunctions, the response matrix is not needed for the first-order derivative, 

since the variational condition (and for RHF, the orthonormal orbital constraint) can be 

used to remove the term with the response matrix in it. 12 

The Hartree-Fock method does not take into account electron correlation, since it 

is a single-determinant method. However, methods that include electron correlation are 

often much more computationally expensive than Hartree-Fock. For example, when N is 

the size of the basis set, Hartree-Fock calculations scale as ~ O(N4). That is, doubling the 

basis set leads to the time to solution increasing by 16 (24) times. MP2, a method that 

includes electron correlation through Raleigh-Schrodinger perturbation theory, scales as 

O(N5). Coupled-cluster singles and doubles with perturbative triples, a method that 

includes multiple determinants and is often considered the “gold-standard” of 

computational chemistry, scales as O(N7). There are multiple ways of dealing with the 

computational cost. One way is simply to improve the algorithm or hardware. Another 
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way is to simplify the energy method somehow. There are a few common ways of 

simplifying the energy method. One way includes starting from the ab initio expressions 

and then simplifying extensively so that there is no longer a wavefunction to be solved 

for. Force fields and intermolecular interaction methods often involve deriving a 

simplified functional form for the energy, and then fitting parameters to it. Certain 

intermolecular interaction methods, such as Sum of Interaction Between Fragments Ab 

initio computed (SIBFA)13 14 and the EFP method, have functional forms that are derived 

from quantum chemistry and also have parameters that are computed from ab initio 

calculations. Another way of decreasing computational cost is by fragmentation methods, 

such as FMO. 1 15 The EFP and FMO methods are discussed briefly below. 

 In the EFP method, the interaction energy between the monomers in a system is 

computed. The general form for the EFP interaction energy is: 

 EEFP =
A<B

monomers

∑ EAB
Coulomb + EAB

dispersion + EAB
charge-transfer + EAB

exchange-repulsion( ) + Epolarization   (17) 

The Coulomb, polarization, and dispersion terms are considered “long-range” terms and 

can be derived from perturbation theory. The charge transfer and exchange repulsion 

terms are considered “short-range” terms, and can be derived by considering the 

intermolecular overlap. For the long-range terms, consider the interaction energy between 

two monomers A and B. A non-perturbed Hamiltonian is constructed by summing the 

individual Hamiltonians for A and B. The perturbation is the Coulomb interaction 

between A and B. The Coulomb interaction is typically written using a multipole moment 

expansion. Then, the first-order interaction energy is the Coulomb interaction energy. 

The second order energy is a sum of the polarization and dispersion energies. Since the 
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interaction energy is calculated from a simplified functional form, it is much less 

computationally expensive than an SCF calculation.  

 The FMO method begins with a many-body expansion. The system is first 

divided into monomers (fragments). The total energy is then written as a many-body 

expansion: 

 

E =
A

monomers

∑ EA +
A>B

monomers

∑ EAB − EA − EB( )

+
A>B>C

monomers

∑ EABC − EA − EB − EC( )− EAB − EA − EB( )− EBC − EB − EC( )− ECA − EA − EC( )  + ...

  (18) 

 

Eq. (18) adds the energy of the monomers, the interaction energy of the dimers (two-body 

energy), the interaction energy of the trimers (three-body energy), and so on. In the FMO 

method, the many-body expansion is typically truncated at the two-body or three-body 

term. The monomer energies are computed in the presence of a Coulomb electrostatic 

potential (ESP) of all the other monomers in the system. Since the electrostatic potential 

depends on the monomer charge densities, the monomer energies must be iterated to self-

consistency. The dimer and trimer energies are calculated in the ESP, but are not iterated. 

The FMO method is a “nearly-linear” scaling method.16  

 Fragmentation methods lend themselves to efficient multi-level parallelization. 

Multi-level parallelization is important, since by itself, the speed-up due to parallelization 

is limited by the serial part of the code and communication overhead. With multi-level 

parallelization, if the problem is split up into many pieces that can be run in parallel, and 

each piece is parallelized itself, then scalability can be recovered. In FMO, multi-level 



 14

parallelization is formulated using the Generalized Distributed Data Interface (GDDI) 

library17 18 19. 
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CHAPTER 2. ANALYTIC GRADIENTS FOR THE EFFECTIVE FRAGMENT 

MOLECULAR ORBITAL METHOD 

A paper published in  

Journal of Chemical Theory and Computation 2016, 12 (10), 4743-4767 

Colleen Bertoni and Mark S. Gordon 

 

Abstract 

The analytic gradient for the Coulomb, polarization, exchange-repulsion, and 

dispersion terms of the fully integrated effective fragment molecular orbital (EFMO) 

method is derived and the implementation is discussed. The derivation of the EFMO 

analytic gradient is more complicated than that for the effective fragment potential (EFP) 

gradient, because the geometry of each EFP fragment is flexible (not rigid) in the EFMO 

approach. The accuracy of the gradient is demonstrated by comparing the EFMO analytic 

gradient with the numeric gradient for several systems, and by assessing the energy 

conservation during an EFMO NVE ensemble molecular dynamics simulation of water 

molecules. In addition to facilitating accurate EFMO geometry optimizations, this allows 

calculations with flexible EFP fragments to be performed.  

Introduction 

Many interesting chemical systems involve large molecules (such as protein-

ligand complexes and enzyme catalysis) or many molecules (such as chemical reactions 

in solution). However, it is computationally expensive to perform ab initio calculations 

on large systems. Several methods have been developed to make such calculations 

feasible. These include using parameterized classical force fields to model interactions 
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between molecules, hybrid quantum mechanics (QM)/molecular mechanics (MM) 

methods, and fragmentation schemes that perform ab initio calculations on fragments of a 

system and then combine the fragment results.1 

The effective fragment molecular orbital (EFMO) method was developed to 

combine the sophisticated semi-classical effective fragment potential (EFP) method2 with 

the fragment molecular orbital (FMO) method3, in order to take advantage of the 

computational efficiency of both4. The FMO method is a fragmentation method based on 

a many-body expansion of the energy that has been applied extensively to molecular 

clusters and biological systems.5 The EFP method is a sophisticated model potential 

method that is derived from first principles, with no empirically fitted parameters. 

Fragment geometries in the EFP method are rigid. The EFP method decomposes the 

interaction energy into five terms: Coulomb, polarization, exchange-repulsion, 

dispersion, and charge-transfer. It has enabled many studies of intermolecular 

interactions, including solvent effects on chemical processes.6 The original EFMO 

method combined the fragmentation scheme of the FMO method with just the Coulomb 

and polarization interaction energy terms of the EFP method. An approximate gradient 

for the original EFMO method was reported.4 

The EFMO method has recently been greatly improved, by incorporating the EFP 

dispersion, exchange-repulsion, and charge-transfer interaction terms.7 This improved 

method was called the fully integrated effective fragment molecular orbital (FIEFMO) 

method in Ref. 7. The gradient for the additional terms was not derived or implemented. 

Hereinafter the FIEFMO method will be referred to simply as the EFMO method, and the 
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original method with just the Coulomb and polarization terms will be referred to as the 

original EFMO method. 

There are many motivations for the development of fully analytic gradients. 

Geometry optimizations of molecules are typically much more accurate, numerically 

stable and less time consuming with analytic, rather than numeric gradients. Transition 

state searches and reaction path following are enabled by analytic gradients, and fully 

analytic gradients are essential for molecular dynamics (MD) simulations.8 

This work presents the derivation and implementation of the gradient terms that 

are needed to make the original EFMO gradient fully analytic, and the Coulomb, 

exchange-repulsion, polarization, and dispersion terms that are needed to make the fully 

integrated EFMO gradient fully analytic. The gradient of the charge-transfer term, 

usually the least important and most computationally demanding component of the EFP 

interaction energy,43 has not been derived or implemented, as discussed further in Section 

3.3. Since the EFMO analytic gradient involves EFP interaction energy derivatives 

without assuming the fragments are rigid, an added benefit of the derivation presented 

here is that it provides insight regarding which EFP interaction energy terms are most 

important with regard to fragment flexibility.  

This paper is organized as follows. Section 2 introduces the notation used; Section 

3 gives a brief overview of the EFMO energy expression; Section 4 presents the 

derivation of the EFMO gradient while noting the differences with the EFP gradient; 

Section 5 discusses the implementation of the EFMO analytic gradient; Section 6 

presents test calculations on a variety of systems (a cluster of water molecules, a cluster 

of water molecules, methanol molecules, and dimethyl sulfoxide molecules, and an ionic 



 20

liquid pair) and discusses the consequent potential energy surfaces; Section 7 presents 

timing comparisons to FMO gradients. The final section concludes. 

Notation and definitions  

Much of the notation and definitions are adopted from Yamaguchi et al.9 This work 

assumes a basis set that contains both contracted and uncontracted Gaussian functions. 

2.1 Indices 

-- i,j,k denote occupied canonical molecular orbital (occ CMO) indices  

-- l,m,n,o denote localized molecular orbital (LMO) indices 

-- a,b,c denote virtual molecular orbital (vir) indices 

-- p,q,r,s denote any canonical molecular orbital (occ or vir) indices 

-- t,u denote primitive Gaussian (PG) indices 

-- µ,ν,ξ,σ  denote atomic orbital (AO) indices 

-- A,B,C denote fragment indices 

-- I,J,K denote nuclei indices or multipole expansion points  

-- α ,β,γ ,κ  denote directions x, y, or z 

2.2 Definitions 

ZI is the nuclear charge on atom I 

Sps is the overlap integral between orbitals p and s 

cµp is the canonical or virtual MO coefficient of AO µ in MO p 

cµl
L is the localized MO coefficient of AO µ in LMO l 

Pµν = 2
i

occ

∑cµicνi






 is the restricted Hartree-Fock (RHF) density matrix element for AOs µ  

and ν  
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2.3 Superscript Notation 

A variable with a superscript in parentheses, e.g., Spq
(x ) , denotes that the derivative with 

respect to x is taken only of the AO terms, and any molecular orbital coefficients are 

considered to be constant. A variable with a fragment index as a superscript denotes the 

variable for that fragment. However, if the appropriate fragment is clear by context, the 

superscript might be omitted.  

2.4 Derivative of a canonical MO coefficient with respect to a perturbation  

The derivative of an MO coefficient can be written in terms of the orbital response 

matrix9 Ux: 

 

∂cµp

∂x
= Uqp

x

q

CMO

∑ cµq 

(2.1) 

Ux is the orbital response matrix to a perturbation x. In this work, there are nuclear 

perturbations, which will be denoted by an x, and field perturbations, which will be 

denoted by a Greek letter. Ux is an NMO X NMO matrix, where NMO is the number of 

molecular orbitals. It is convenient to think about the response matrix in terms of sub-

matrices; i.e., the occupied orbital-occupied orbital (occ-occ) block, virtual orbital-virtual 

orbital (vir-vir) block, and virtual orbital-occupied orbital (vir-occ) block.  

2.5 Localized molecular orbital notation and definitions  

Localized MOs l   are related to canonical MOs by a unitary transformation L: 
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l = Lli i
i

occ
CMO

∑

cµl
L = Lli

i

occ
CMO

∑ cµi
 

(2.2) 

L is a unitary transformation matrix ( Lmn
m

LMO

∑ Lml = δ ln ) calculated by a localization method, 

such as the Boys method10, which was originally proposed by Edmiston and 

Ruedenberg11,12.   

2.6 Derivative of a localized MO coefficient with respect to a nuclear perturbation, 

written in terms of the canonical response matrix and localization response matrix  

Following previous studies that considered perturbed localized molecular 

orbitals,13,14,15,16 the nuclear derivative of the LMO coefficient is split into a term that 

includes a localization response matrix (which describes how the localization transform 

changes with geometry) and a term that includes the canonical response matrix (which 

describes how the canonical molecular orbitals change with geometry):  

∂cµl
L

∂x
= ∂

∂xi

occ
CMO

∑ Llicµi( ) = cµn
L

n

LMO

∑ vnl
x + Lli

i

occ
CMO

∑ Uqi
x

q

occ+vir
CMO

∑ cµq  

(2.3) 

where vnl
x is the localization transform response matrix. 

The EFMO method 

The EFMO method is an integration of the FMO and EFP methods, designed to 

take advantage of the speed and accuracy of the two methods. The FMO and EFP 
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methods are described briefly in Sections 3.1 and 3.2, respectively. Since the EFMO 

method has been described previously7,4, only a brief overview is given in Section 3.3.  

3.1 The Fragment Molecular Orbital (FMO) Method 

Ref. 5 provides an excellent review of the FMO method. In general, the system is 

divided into fragments (monomers) in a chemically sensible way, for example, using 

common functional groups. Then, the energy of each monomer is calculated in a 

Coulomb field due to the other monomers. Since the field depends on the electron density 

of the monomers, the Coulomb field is converged self-consistently. This level of theory is 

called FMO1. After it has converged, the dimer (pair of fragments) and trimer (set of 

three fragments) energy may be computed in the self-consistently converged monomer 

Coulomb field as well. The monomer, dimer, and possibly trimer energies are added 

together to obtain the total energy for the system. The computational expense increases 

when one adds all dimers (FMO2) and (especially) trimers (FMO3) to the monomer 

calculations.    

The total FMO2 energy can be written as 

A

fragments

∑ EA +
A>B

fragments

∑ EAB − EA − EB( )  

(3.1) 

EA and EAB are the energies of the monomers and dimers, respectively. Approximations to 

the dimer energies can be used to decrease the computational cost. An additional 

advantage of the FMO method is that it is naturally parallelizable. The FMO method is 

parallelized with the general distributed data interface (GDDI)17. Because the FMO 

method is a generally applicable approach to dividing a system into smaller pieces, it can 

be combined with any electronic structure method. The usual notation is FMO/A, where 
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A is a specific quantum chemistry method, such as second order perturbation theory 

(MP2).  

3.2 The Effective Fragment Potential (EFP) Method 

The EFP method was initially developed to model aqueous solvent effects2. In the 

EFP method, the system is split into solute and solvent molecules. In this context the 

solute molecules are typically calculated using an ab initio electronic structure method. 

The one-electron term in the solute Hamiltonian is modified by an explicit EFP solvent 

model potential. An EFP is generated by performing a single ab initio calculation on a 

solvent molecule, and then using the wavefunction to generate the input for the potential. 

Thus, it contains no empirical or fitted parameters. EFP internal geometries are rigid.  

More broadly, the EFP method can be used to explore intermolecular (non-covalent) 

interactions, without the need for an ab initio component. In this case, the system is 

divided into fragments that are modeled with EFPs. The EFP only (no ab initio solute) 

method is considered in this work.  

The EFP method decomposes the interaction energy of a system into the Coulomb 

energy, exchange repulsion energy, dispersion energy, charge-transfer energy, and many-

body polarization energy terms. All terms are pairwise additive except for the 

polarization energy. The energy can be written as: 

EAB
EFP = EAB

Coul + EAB
rep + EAB

disp + EAB
ct

Etotal
EFP =

A>B

fragments

∑ EAB
EFP + Etotal

pol

 

(3.2) 

The EFMO method uses the interaction energy calculations, so they are 

considered in more detail below. Since the gradient involves taking the derivative of the 
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energy terms, it is important to first consider the details of the energy expressions. The 

charge-transfer term is not considered here. 

3.2.1 Coulomb term 

The Coulomb energy can be thought of as the energy produced from the 

interaction of the static charge density of two molecules. In the EFP method, the 

Coulomb energy is based on a Taylor series expansion of Coulomb’s law, and a 

distributed multipole moment expansion using the Stone distributed multipole analysis 

(DMA)18. Multipole moment expansion sites are distributed across each fragment in the 

system. The Coulomb contribution to the interaction energy between two EFP fragments 

is the sum of the interaction energy between all pairs of multipole moments. 

EAB
Coul =

I

A

∑
J

B

∑
qJqIT IJ − qJ

α

x ,y,z

∑ µα
I Tα

IJ + 1
3

qJ

α ,β

x ,y,z

∑ Θαβ
I Tαβ

IJ + µα
J

α

x,y,z

∑ qITα
IJ

− µα
J

α ,β

x ,y,z

∑ µβ
ITαβ

IJ + 1
3

µα
J

α ,β ,γ

x ,y,z

∑ Θβγ
I Tαβγ

IJ + ...



















 

 

(3.3) 

In Eq. (3.3) EAB
Coul is the Coulomb interaction energy between fragments A and B, I (J) runs 

over all multipole moment expansion points in A (B), qI is the monopole on site I, µ I is 

the dipole on site I, Θ I is the quadrupole on site I, Tαβ ...ν
IJ = ∇α∇β ...∇ν

1
RIJ

is the multipole 

interaction tensor for sites I and J, and RIJ is the distance between expansion points I and 

J. 
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The multipole moments on each site are calculated using the DMA. This is 

described in more detail in the Supporting Information. The multipole moments can be 

expressed as: 

qI = ZI −
µν

AO∈A

∑ Pµν ′Put u | t
ut  nearest I

PG  u∈µ
PG  t∈ν

∑

µx
I = −

µν

AO∈A

∑ Pµν ′Put u | (x − xI ) | t
ut  nearest I

PG  u∈µ
PG  t∈ν

∑
...

 

(3.4) 

where xI is the location of expansion center I and ′Put  is the primitive Gaussian cross term 

that contains the product of the contraction coefficients for PG u and t. 

To account for charge penetration between interacting fragments A and B, an 

overlap-based damping term is computed, and added to the Coulomb interaction energy 

term17. The expression for this term is: 

EAB
chgpen =

l

LMO∈A

∑
m

LMO∈B

∑ −2Slm
2

Rlm

1
−2ln Slm







 

(3.5) 

where Rlm is the distance between the LMO centroids of l and m, and l | x | l  is the 

centroid in the x-direction for LMO l. 

 

3.2.2 Exchange repulsion term 

The exchange repulsion energy is a quantum mechanical contribution to the 

interaction energy that arises due to the Pauli exclusion principle. It is derived from 

approximations to the overlap of the wavefunctions of two isolated molecules20. The 
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exchange repulsion interaction energy between fragments A and B and can be expressed 

as  

EAB
rep = −2 2

m

LMO  ∈B

∑
l

LMO∈A

∑ −2 ln Slm

π
Slm

2

Rlm

− 2 Slm Fln
A

n

LMO∈A

∑ Snm + Fmn
B

n

LMO∈B

∑ Snl − 2Tlm




m

LMO∈ B

∑
l

LMO∈A

∑

+2 Slm
2 −

ZJ

RlJJ

nuclei∈B

∑ + 2
1

Rlnn

LMO∈B

∑ −
ZI

RImI

nuclei∈A

∑ + 2
1

Rnmn

LMO∈A

∑ −
1

Rlm











m

LMO  ∈B

∑
l

LMO∈A

∑
 

(3.6) 

RlJ is the distance between MO centroid l and atom J, Tlm is the kinetic energy integral 

between l and m, and Fln
A is the Fock matrix element between l and n on fragment A.  

 

3.2.3 Polarization term 

The polarization energy (sometimes referred to as the induction interaction since 

it arises from multipole-induced multipole interactions) can be thought of as the 

interaction energy that occurs due to the change in the charge distribution of one 

molecule by the electric field due to the charge distribution of the other molecule.  

In the EFP method, the polarization energy is calculated by placing localized 

molecular orbital dipole polarizability tensors, αβγ , on the LMO centroids of each 

fragment. The electric field of the other fragments (due to both the static multipole field 

and the induced dipoles on the other fragments) acts on the polarizability tensors and self-

consistently generates induced dipoles, p, on the LMO centroids of the fragment21.  

The induced dipole on LMO centroid l in the β  direction in fragment A, pl ,β
A , is:  

pl ,β
A =

γ

{x ,y,z}

∑ α l ,βγ El ,γ
tot ,A 

(3.7) 
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where α l,βγ is the dipole polarizability tensor on LMO l, γ ,κ are field directions, and

 
El ,γ

tot ,A is the total field in the γ  direction at LMO l. Since El ,γ
tot ,A  can be written in terms of 

a static electric field, El ,γ
0,A , and a field due to induced dipoles, Eq. (3.7) can be rewritten 

as: 

pl ,β
A =

γ

{x ,y,z}

∑ α l ,βγ El ,γ
0,A +

B≠A

fragments

∑
κ

{x ,y,z}

∑ Tγκ
lm pm,κ

B

m

LMO∈B  

∑





 

(3.8)

 

where Tγκ
lm is the dipole moment interaction tensor for sites l and m. El ,γ

0,A is the electric 

field at site l on fragment A due to the static DMA-calculated multipole moments, 

qI ,  µβ
I ,  Θβγ

I  , on all multipole expansion points I on fragments other than A in the 

system:  

El,γ
0,A =

B≠A

fragments

∑
I

B

∑ElI ,γ
0 =

B≠A

fragments

∑
I

B

∑ qITγ
lI + µα

I

α

{x ,y,z}

∑ Tγα
lI + 1

3
Θαβ

I

αβ

{x ,y,z}

∑ Tγαβ
lI




  

(3.9) 

As in the Coulomb term, in this work, the expansion sites are only on the nuclei.
 

Collecting the terms containing the induced dipoles, Eq. (3.7)  can be written as 

 
 

pl ,β
A =

B

fragments

∑
m

LMO∈B

∑
α

{x ,y,z}

∑ (D−1 )lm,βα Em,α
0,B

 
(3.10) 

where:
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Dll ,βγ = (α l )
−1

βγ

Dlm ,βγ = 0 (when l  and m are on the same fragment)

= −Tβγ
lm (when l  and m are on different fragments) 

 

After generating the converged induced dipoles, the polarization energy can be 

calculated as 

E pol =
A

fragments

∑ − 1
2 n

LMO∈A

∑
α

{x ,y,z}

∑ En,α
0,A pn,α

A









=
A

fragments

∑ − 1
2 n

LMO∈A

∑
α

{x ,y,z}

∑ En,α
0,A

B

fragments

∑
m

LMO∈B

∑
β

{x,y,z}

∑ (D−1 )nm,αβ Em,β
0,B









 

(3.11) 

The dipole polarizability tensors on the LMO centroids of each fragment are calculated 

by decomposing the total dipole polarizability tensor for each fragment into contributions 

from each LMO22,23. The dipole polarizability tensor on LMO centroid n on fragment A 

is:  

α n,βγ = −4 Lnj
a

vir∈A

∑
jk

occ
CMO∈A

∑ LnkUaj
γ A a | β | k  

(3.12) 

In Eq. (3.12) γ is a field perturbation. 

The multipole interaction tensors are multiplied by a damping function, 

Fdamp,lI
pol = 1− exp −RlI

2 fg( ) 1+ RlI
2 fg( ).24 (The terms f and g are constants usually set to 

0.6.) The damped multipole interaction tensors can be written asTαβ ...ν
lI ,damped = Fdamp,lI

pol Tαβ ...ν
lI . 

Substituting the damped multipole interaction tensors into the static electric field, the 

damped static electric fields become 
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El,γ
0,A,damped =

B≠A

fragments

∑
I

B

∑ElI ,γ
0,damped =

B≠A

fragments

∑
I

B

∑ qITγ
lI ,damped + µα

I

α

{x ,y,z}

∑ Tγα
lI ,damped + 1

3
Θαβ

I

αβ

{x,y,z}

∑ Tγαβ
lI ,damped





 

 

(3.13) 

and the damped induced dipoles, pl ,β
A,damped , can be written as: 

pl ,β
A,damped =

γ

{x ,y,z}

∑ α l ,βγ El ,γ
0,A,damped +

B≠A

fragments

∑
κ

{x,y,z}

∑ Tγκ
lm,damped pm,κ

B,damped

m

LMO∈B  

∑





  

(3.14) 

  

3.2.4 Dispersion term 

The dispersion energy can be thought of as the energy that arises from the 

interaction between induced multipoles on two molecules. The dispersion energy can be 

derived from Rayleigh-Schrodinger perturbation theory, starting from the sum of the 

Hamiltonians for two noninteracting molecules18.  The second order correction to the 

energy contains the dispersion energy. 

The dispersion energy between fragments A and B can be written in terms of 

inverse powers of the distance between the molecules.  

EAB
disp =

C6,AB

RAB
6 +

C7,AB

RAB
7 +

C8,AB

RAB
8 + ... 

(3.15) 

In the EFP method, the dispersion energy is calculated by distributing isotropic 

dynamic polarizabilty tensors on the LMO centroids of each fragment. For this work, the 

total dispersion energy between fragments A and B is approximated as25 
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EAB
disp =

C6,AB

RAB
6 + 1

3
C6,AB

RAB
6 , where all terms with higher order than the R-6 term have been 

approximated as 1
3

C6,AB

RAB
6 . The R-7 term has recently been derived and implemented,26,27 

but is not used in this work.  

The dispersion energy between fragments A and B can then be written in atomic 

units as  

EAB
disp = 4

3
− 3
π l

LMO∈A

∑
m

LMO∈B

∑ 1
Rlm

6 α l (iω )α m (iω )dω
0

∞

∫














   

(3.16) 

where α l = 1
3 β

{x,y,z}

∑ αββ
l (iω )  , and αβγ

l (iω ) is the distributed dynamic polarizability at 

LMO l for a frequency iω . 

Using a 12-point Gauss-Legendre quadrature and substitution of variables, the 

integral can be rewritten as a sum: 

EAB
disp = 4

3
− 3
π l

LMO∈A

∑
m

LMO∈B

∑ 1
Rlm

6 wf
2v0

(1− t f )2 α
l (iω f )α m (iω f )






f

12

∑








  

(3.17) 

where wf ,v0,  and t f are constants used in the numerical quadrature. 

The distributed dynamic polarizability on a fragment at LMO l for a frequency 

iω , αβγ
l (iω ), can be calculated as follows:  

αβγ
l (iω ) = −2

j

occ
CMO

∑ a | β | j Llj











a

vir

∑
i

occ
CMO

∑Zai
γ (iω )Lli












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(3.18) 

 

where Zai
γ (iω ) is the response vector that is calculated from solving the dynamic analog 

of the CPHF equations (time-dependent coupled perturbed Hartree-Fock theory)28, and γγγγ 

is a field perturbation. The TD CPHF equations are: 

 

(3.19) 

 are virtual and occupied orbital energies, respectively.  

The EFP method contains a multiplicative damping factor for the dispersion 

term24. Incorporating the damping term, the dispersion energy becomes:  

EAB
disp,damped = 4

3
− 3
π l

LMO∈A

∑
m

LMO∈B

∑ Flm
disp,damp 1

Rlm
6 α l (iω )α m (iω )dω

0

∞

∫














  

(3.20) 

In the EFMO method, the damping function is an overlap-based formula  

Flm
disp,damp = 1− Slm

2

n=0

6

∑ −2ln Slm

n!






n/2

       

(3.21) 

The damping function in Eq. (3.21) is a recent improvement on the original EFP 

damping function29. 
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3.3 General EFMO energy expression 

The EFMO energy expression is a many-body expansion, similar to the FMO 

energy expression. As with the FMO method, the EFMO method begins by dividing the 

system into fragments. However, the monomer and dimer energy calculations differ: the 

EFMO method contains a many-body EFP polarization term, generated from all of the 

fragments and does not require the self-consistent convergence of the monomer Coulomb 

field. Importantly, the EFMO method inherits the GDDI parallelization of the FMO 

method. 

The general EFMO energy expression is: 

EEFMO = EA
0

A

fragments

∑ + (∆EAB
0 − EAB

pol )
A>B

RA ,B≤Rcut

∑ + (EAB
EFP )

A>B

RA ,B>Rcut

∑ + Etot
pol

   
 

(3.22) 

EA
0 is the gas phase energy of fragment A 

∆EAB
0 = EAB

0 − EA
0 − EB

0  (the dimer 2-body interaction energy) 

EAB
EFPis the long-range EFP energy between fragments A and B 

Etot
pol is the EFP polarization energy for the entire system 

EAB
pol is the EFP polarization energy for fragments A and B 

 

EFMO dimer calculations are performed with the chosen ab initio method (e.g., 

MP2) unless the two fragments in the dimer are farther apart than a predetermined cutoff 

Rcut. In the latter case, the dimer calculation is done using the EFP method. The inter-

fragment distance RA,B = min I∈A,J∈B
| rI − rJ |
VI +VJ

 is the relative minimum interatomic distance 
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between atoms I on fragment A and atoms J on fragment B, weighted by the sum of the 

van der Waals radii, VI and VJ. RA,B  is compared to Rcut to determine if the EFP method is 

to be used to calculate the dimer energy.
 
 

The EFMO energy is calculated by summing the gas phase ab initio energy of 

each monomer (fragment). Then, one loops over all pairs of monomers, and the dimer 

energy is added to the monomer energy. If the distance between two monomers is less 

than Rcut, the dimer energy is calculated with the chosen gas phase ab initio method 

(subtracting out the EFP polarization energy of the dimer to avoid double counting). If 

the distance is greater than Rcut, the dimer energy is approximated by the EFP interaction 

energy. The EFP polarization energy of the entire system is then added to the dimer and 

monomer energies. 

For this work, the long-range EFP energy is: 

EAB
EFP = EAB

Coul + EAB
rep + EAB

disp  

(3.23) 

The charge-transfer term is not included in this work.  As noted above, the charge 

transfer term is the most computationally expensive component of the EFP energy, and it 

is usually the smallest term in the EFP interaction energy. Charged systems are an 

exception.24  Additionally, since charge transfer is a short-range interaction18, most of the 

charge transfer interaction energy will be captured by the ab initio dimer interaction. 

Therefore, it is not necessary to have charge transfer in the long-range EFP interaction 

energy.  

Substituting Eq. (3.23) into Eq. (3.22), the energy expression becomes: 
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EEFMO = EA
0

A

fragments

∑ + (∆EAB
0 − EAB

pol )
A>B

RA ,B≤Rcut

∑ + (EAB
Coul + EAB

rep + EAB
disp )

A>B

RA ,B>Rcut

∑ + Etot
pol  

(3.24) 

This can be written as  

EEFMO = Eab  initio
EFMO + EEFP

EFMO  

(3.25) 

where Eab  initio
EFMO = EA

0

A

fragments

∑ + ∆EAB
0

A>B

RA ,B≤Rcut

∑ and 

EEFP
EFMO = −EAB

pol( )
A>B

RA ,B≤Rcut

∑ + (EAB
Coul + EAB

rep + EAB
disp )

A>B

RA ,B>Rcut

∑ + Etot
pol  

 

Analytic EFMO gradient 

The expression for the EFMO gradient is: 

∂EEFMO

∂xK

= ∂EA
0

∂xK

+
A

fragments

∑ ∂∆EAB
0

∂xK

− ∂EAB
pol

∂xK





A>B

RA ,B≤Rcut

∑ + ∂EAB
Coul

∂xK

+ ∂EAB
rep

∂xK

+ ∂EAB
disp

∂xK






+ ∂Etot

pol

∂xKA>B

RA ,B>Rcut

∑  

(4.1) 

Each term in Eq. (3.24) is differentiated with respect to the x-coordinate of atom 

K (xK). The EFMO energy expression is a combination of gas phase ab initio energy 

terms ( EA
0 ,∆EAB

0 ) and EFP interaction energy terms ( EAB
pol ,EAB

Coul ,EAB
rep ,EAB

disp ,Etot
pol ). Thus, the 

EFMO gradient is derived from ab initio gradient terms and EFP interaction energy 

gradient terms. 

To make the different types of terms clear, Eq. (3.25) can be used to write Eq. 

(4.1) as: 
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∂EEFMO

∂xK

= ∂Eab  initio
EFMO

∂xK

+ ∂EEFP
EFMO

∂xK

 

(4.2) 

4.1 Gas phase gradient terms 

 Two ab initio gas phase terms ( ∂EA
0

∂xK

, ∂∆EAB
0

∂xK

) are computed using standard 

methodology30, so they are not discussed here. Note that if the gas-phase ab initio method 

chosen has response terms (e.g., MP2), response equations for the monomers and dimers 

must be solved. For the monomer terms, the responses can be added to the response 

equations that arise from the EFP interaction energy gradient terms (formulated in later 

sections) and solved without additional cost. For the dimer terms, the response equations 

are solved separately, and added into the gradient. 

 

4.2 EFP interaction energy gradient terms 

The gradient terms for the EFP method were derived and implemented 

previously2. However, the EFP gradient terms cannot be used in EFMO directly, because 

the EFP method has rigid fragments while the EFMO method has flexible fragments. In 

the EFMO method, the internal geometry can change during a geometry optimization or 

molecular dynamics simulation, so the gradient must take this flexibility into account.  

For each term in the EFP interaction energy, a general formula for the nuclear 

gradient is presented below. The EFP terms in the EFMO gradient and the EFP 

translational gradient in the EFP method can both be derived from the general formula for 

the EFP nuclear gradient. After presenting the general formula for the nuclear gradient, 

the terms needed for the EFP method will be briefly discussed, since they are already 
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implemented and can be reused in the EFMO method. Then, the remaining terms needed 

for the EFMO method will be discussed. 

To compare the EFP and EFMO gradient terms, it is useful to note the following 

points:  

1) The translational gradient of the EFP interaction energy between fragments A 

and B with respect to the coordinates of fragment A can be derived by summing over the 

nuclear gradient of the EFP interaction energy with respect to the coordinates of each 

atom on fragment A: 

∂(EAB
EFP )

∂xA

=
K

A

∑ ∂(EAB
EFP )

∂xK∈A

  

(4.3) 

where xA  is the translational motion of fragment A in the x-direction. 

2) The derivative of an LMO centroid appears in the exchange-repulsion, 

polarization, and dispersion gradient terms. The derivative of an LMO centroid with 

respect to the translational motion of a rigid fragment is a delta function. That is, when a 

fragment translates, the LMO centroids move with it. 

K

A

∑ ∂ l | β | l
∂xK

= δβx :   β = x, y, z  

(4.4) 

If bond midpoints are used as multipole expansion points, a similar expression applies for 

the derivative of the position of the bond midpoints. 

3) Since the EFMO fragments are not rigid, the gradient with respect to each atom 

is calculated.  
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Each EFP interaction energy gradient term between fragments A and B in the 

EFMO method can be written in the form 

∂
∂xK∈A

EAB
X = NRAB,xK

X + Uai
xK A

a

vir ∈A

∑ LX ,ai
A,B

i

 occ
CMO∈A

∑ + Uij
xK ALX ,ij

A,B

ij

 occ
CMO∈A

∑ + Uab
xK ALX ,ab

A,B

ab

 vir∈A

∑

+ vmi
xK AM X ,ml

A,B

m

LMO∈A

∑
l

LMO∈A

∑ +
β

{x ,y,z}

∑ ∂Uai
βA

∂xKa

vir ∈ A

∑
i

 occ
CMO∈ A

∑ NX ,ai
β ,A,B

+
β

{x ,y,z}

∑
a

vir∈A

∑
i

 occ
CMO∈ A

∑
∂Zai

βA(iω f )
∂xK∈Af

12

∑ NX ,ai
β ,ω f ,A,B

 

(4.5) 

In Eq. (4.5) the superscript/subscript X represents one of the EFP components 

Coul, rep, pol, or disp, corresponding to Coulomb, exchange-repulsion, polarization or 

dispersion. NRAB,xK

X  contains all “non-response” terms that do not contain a first- or 

second-order CMO response or a localization response. The response matrices (

U xK A /U βA ,vxK A ,Z βA(iω )) are defined in Sections 2.4, 2.6, and 3.2.4, respectively. The 

superscript A indicates response matrices for fragment A. 

Using the Z-vector method (see Appendix A), the last three terms in Eq. (4.5) can 

be replaced with non-response terms and terms involving the canonical MO response 

matrix. The CMO response term can then be obtained using the Z-vector method. 

Throughout the following, the gradient for each term will be written in a manner that is 

consistent with Eq. (4.5).  

Since the EFP terms are based on MOs obtained from a separate gas phase ab 

initio calculation on a particular monomer, the response equations for each monomer 

depend only on that monomer. Thus, in contrast to the FMO method31, there is no 

response equation with the dimension of the entire system.  
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4.2.1. Coulomb gradient term 

The gradient of the Coulomb interaction energy between fragments A and B can 

be written as 

∂EAB
Coul

∂xK∈A

=
I

A

∑
J

B

∑ qJ ∂ qIT IJ( )
∂xK∈A

− qJ ∂ µα
I Tα

IJ( )
∂xK∈Aα

x ,y,z

∑ + 1
3

qJ ∂ Θαβ
I Tαβ

IJ( )
∂xK∈Aα ,β

x ,y,z

∑






+ µα
J ∂ qITα

IJ( )
∂xK∈Aα

x ,y,z

∑ − µα
J ∂ µβ

ITαβ
IJ( )

∂xK∈Aα ,β

x,y,z

∑ + 1
3

µα
J
∂ Θβγ

I Tαβγ
IJ( )

∂xK∈Aα ,β ,γ

x ,y,z

∑ + ...






 

(4.6) 

Each term in Eq.(3.3)  is differentiated with respect to the x-coordinate of atom K 

in fragment A. The multipole moments on fragment B are constant with respect to atoms 

on fragment A, so those terms are not included in the derivative. For this work, the 

expansion in Eq. (4.6) is terminated at the quadrupole-quadrupole term, and multipole 

expansion points are only on atomic centers. 

The gradient terms are derivatives of products, so the product rule can be used. 

Then, Eq. (4.6) can be written as:  

∂EAB
Coul

∂xK∈A

= FAB
Coul ({

∂Tαβ ...γ
IJ

∂xK∈A

},{mI },{mJ })+ FAB
Coul ({Tαβ ...γ

IJ },{ ∂mI

∂xK∈A

},{mJ }) 

(4.7) 

where mI is an arbitrary multipole moment, Tαβ ...γ
IJ is a multipole moment interaction 

tensor of the appropriate rank, 
 
FAB

Coul ({
∂Tαβ ...γ

IJ

∂xK∈A

},{mI },{mJ }) is the sum of all terms 

involving derivatives of interaction tensors, and FAB
Coul ({Tαβ ...γ

IJ },{ ∂mI

∂xK∈A

},{mJ }) is the sum 
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of all terms involving the derivative of multipole moments. These terms are expanded in 

Appendix B.  

For the EFP method, the gradient of the EFP Coulomb term was derived by Day 

et al.2. In the EFP method, only the first term in Eq. (4.7) is included in the translational 

gradient, since the multipole moments depend only on the internal geometry of the 

fragment, and do not change as the fragment translates. The net Coulomb translational 

gradient on the fragment is calculated by summing the derivatives of the Coulomb energy 

with respect to each atom center on the fragment. The EFP implementation of the first 

term in Eq. (4.7) can be reused for the EFMO gradient, with the gradient stored 

separately for each atom.  

As shown in Eq. (3.4), the multipole moments are a sum of the product of a 

density matrix and a Gaussian function integral. The gradient of a multipole moment can 

therefore be calculated using the product rule. Consequently, each multipole moment 

derivative gives rise to a term involving AO-derivatives and a term involving the CMO 

response matrix.  

The final EFMO Coulomb gradient can be written as  

∂EAB
Coul

∂xK∈A

= NRAB,xK

Coul + Uai
xK A

a

vir∈A

∑
i

occ
CMO  ∈A

∑ LCoul ,ai
A,B

 

(4.8) 

The details of the non-response term, NRAB,xK

Coul  , and the coefficient of the CMO response 

matrix, LCoul ,ai
A,B  ,  are presented in Appendix B. 
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In Section 4.3, Eq. (4.8) will be combined with the other EFP interaction energy 

gradient terms, and the Z-vector method will be applied to give the form of the EFMO 

gradient that was implemented in GAMESS.  

Coulomb damping term 

The derivative of Eq. (3.5) can be easily added to the exchange repulsion gradient, 

so it is briefly discussed in the following subsection. 

4.2.2 Exchange repulsion energy term 

The gradient of the EFMO exchange repulsion term can be expressed by taking 

the nuclear derivative of each term in Eq. (3.6), as follows.  

∂E
AB

rep

∂x
K∈A

= −2
∂S

lm

∂x
Km

LMO∈B

∑
l

LMO∈A

∑

S
lm

R
lm

−
2

−π ln S
lm

+ 4
−2 ln S

lm

π






+ 2 F

nl

A

n

LMO∈A

∑ S
nm
+ 2 F

nm

B

n

LMO∈B

∑ S
nl
− 2T

lm

−2S
lm

(−
Z

J

R
lJJ

nuclei∈B

∑ + 2
1

R
lnn

LMO∈B

∑ −
Z

I

R
ImI

nuclei∈A

∑ + 2
1

R
nmn

LMO∈A

∑ −
1

R
lm

)



















−2
∂F

lm

A

∂x
Km

LMO∈A

∑
l

LMO∈A

∑ S
ln

n

LMO∈B

∑ S
mn






− 2

∂T
lm

∂x
Km

LMO∈B

∑
l

LMO∈A

∑ −2S
lm

[ ] + 2
∂R

lm

∂x
Km

LMO∈B

∑
l

LMO∈A

∑
2

−2 ln S
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π

S
lm

2

R
lm

2
+

S
lm

2

R
lm

2

+ −
n

LMO∈B

∑ 2
S

ln

2

R
lm

2
+ −

n

LMO∈A

∑ 2
S

nm

2

R
lm

2



















+2
∂R

lJ
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KJ

nuclei∈B

∑
l

LMO∈A

∑ S
lm

2

m

LMO∈B

∑
Z

J

R
lJ

2






+ 2

∂R
Im
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Km

LMO∈B

∑
I

nuclei∈A

∑ S
nm

2

n

LMO∈A

∑
Z

I

R
Im

2


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
  

(4.9) 

Each term in Eq.(4.9) is differentiated with respect to the x-coordinate of atom K 

in fragment A. This means that gradient terms that depend only on the geometry of 

fragment B will be zero. 

In the EFP method, the internal geometries of the fragments do not change when 

the fragments translate, so the MO coefficients and Fock matrices do not change, and the 

LMO centroids move with the fragments. Thus, the kinetic energy and overlap integral 
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derivatives (the first and third terms in Eq. (4.9)) are computed by only taking the 

derivative of the AO integrals (ignoring the MO coefficient derivatives), and the Fock 

matrix derivative is not computed. Since the net translational gradient is calculated by 

summing over the nuclear gradients of the exchange repulsion energy with respect to 

each atom on the fragment, by Eq. (4.4) there is no need to explicitly calculate the 

derivative of each LMO centroid. The implementation of the first, third, fourth, fifth, and 

sixth terms in Eq. (4.9) for the EFP method can be reused for the EFMO gradient, but 

with additional terms added for the derivative of the LMO centroids and the canonical 

MO coefficients, and with the gradient stored separately for each atom.   

For the EFMO gradient, the LMO centroid derivatives in the fourth and fifth 

terms of Eq. (4.9) can be collected. The explicit expressions are shown in Appendix C. 

Eq. (4.9) can then be written as:  

 

∂EAB
rep

∂xK∈A

= −2 ∂Slm

∂xKm

LMO∈B

∑
l

LMO∈A

∑ Wlm
S  − 2 ∂Flm

A

∂xKm

LMO∈A

∑
l

LMO∈A

∑ Sln
n

LMO∈B

∑ Smn










−2 ∂Tlm

∂xKm

LMO∈B

∑
l

LMO∈A

∑ Wlm
T + 2

α

{x ,y,z}

∑ < ∂l
∂xK

|α | l >
l

LMO∈A

∑ Wlα
R 

+2 (xK − < l | x | l >)
l

LMO∈B

∑ Sml
2

m

LMO∈A

∑ ZK

RKl
3











 

(4.10) 

where Wlm
S holds all the terms in the coefficient of ∂Slm

∂xK

, Wlm
T holds all the terms in the 

coefficient of ∂Tlm

∂xK

, and Wlα
Rholds all the terms in the coefficient of < ∂l

∂xK

|α | l > .  
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It is important to note that the MO coefficient derivatives are derivatives of LMO 

coefficients, so the derivative results in a term with a canonical MO response matrix and 

a term with a localization response matrix, as shown in Eq. (2.3). Appendix C provides 

the details that lead from Eq. (4.10) to Eq. (4.11). 

Combing all non-response terms into NRAB
rep, and writing out the response terms 

one obtains 

∂EAB
rep

∂xK∈A

= NRAB,xK

rep

+ Uai
xK A

a

vir∈A

∑
i

occ
CMO∈A

∑ Lrep,ai
A,B + U ji

xK AOrep, ji
A,B

i, j

occ
CMO∈A

∑ + vml
xK A

m

LMO∈A

∑
l

LMO∈A

∑ M rep,ml
A,B

 

(4.11) 

In Section 4.3 Eq. (4.11) will be combined with the other EFP terms and the Z-

vector method will be applied to give the form of the EFMO gradient that was 

implemented. 

Coulomb damping function 

The derivative of Eq. (3.5) can easily be added to the exchange repulsion term, 

since it only involves LMO dipole and overlap integrals. Since the derivative is derived 

in a similar manner to the exchange repulsion gradient, it is not shown here. 

 

4.2.3 Polarization energy term 

The EFMO polarization energy gradient can be derived beginning with Eq. (26) 

in Ref. 21 (written in the notation of this paper):  
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(4.12) 

The derivative in Eq. (4.12) is taken with respect to atom K on fragment A. As in 

Ref. 21,  

. All other terms are defined in Section 3.2.3.  

The dimer polarization energy term, ∂EAB
pol

∂xK∈A

, can be derived in a similar fashion, so the 

details are only shown for the total polarization energy term. 

 

The static electric field in the first term in Eq. (4.12) is represented by the 

multipole moment expansion as in the Coulomb term. The derivative is handled in a 

similar manner here as in the Coulomb term: It is split into a term with the sum of all 

multipole moment interaction tensors ( FA
P ({

∂Tαβ ...γ
nI

∂xK∈A

},{mI },{pn}) ) and a term with the 

sum of all multipole moment derivatives ( FA
P ({Tαβ ...γ

nI },{ ∂mI

∂xK∈A

},{pn}) ). The second term 

in Eq. (4.12) can be expanded using the definition in Eq. (3.10). 

The expansion of Eq. (4.12) is shown in more detail in Appendix D. Then, Eq. 

(4.12) can be written as: 
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(4.13) 

The EFP polarization gradient for the EFP method was derived by Li et al.21 and 

Day et al.2. As in the Coulomb and exchange-repulsion gradient, the net polarization 

translational gradient with respect to fragment A can be calculated by summing the 

nuclear derivatives with respect to each atom on fragment A. Only the first, second, and 

fifth terms in Eq. (4.13) are needed for the EFP translational gradient. The third and 

fourth terms have derivatives of the multipole moments and the dipole polarizability 

tensor, respectively, which depend only on the internal geometry. As with the exchange 

repulsion term, the terms in Eq. (4.13) that contain derivatives of the LMO centroids can 

be expressed without explicitly calculating ∂ l | β | l
∂xK

, by using Eq. (4.4) instead. The 

EFP implementation of the first, second, and fifth terms can be used for the EFMO 

method, with additional terms added for the derivative of the LMO centroids, and the 

gradient stored separately for each atom.  

The LMO centroid derivatives in Eq. (4.13) can be combined. The third term can 

be replaced with two terms arising from the derivative of the multipole moments, as in 
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the Coulomb term. Since this involves the derivative of the canonical MO density matrix, 

a canonical MO response matrix term is necessary.  

The fourth term in Eq. (4.13) can be manipulated using matrix derivative 

operations21 and the defintion in Eq. (3.7) 

 

(4.14) 

where  

The LMO dipole polarizability tensor in Eq. (4.14) is expanded as22 

 

(4.15) 

The RHS of Eq. (4.15) results in three terms: one term with the derivative of the 

LMO transforms, one term with the derivative of the canonical MO field response 

∂
∂xK∈A

Uaj
γ A





, and one term with the derivative of the dipole ∂
∂xK∈A

a | β | k






. Once Eq. 

(4.15) has been expanded in terms of non-response terms, localization transform 

derivative terms, and second order canonical MO field response terms, the polarization 

energy gradient can be rewritten as 
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∂Etot
pol

∂xK∈A

= NRA,tot ,xK

pol + Uai
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A,tot + Uij
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ij
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∑ + Uab
xK AVpol ,ab
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vir∈A
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+ vml
xK A

l

LMO∈A

∑
m

LMO∈A

∑ M pol ,ml
A,tot +

β

{x ,y,z}

∑ ∂Uai
βA

∂xKa

vir∈A

∑
i

occ
CMO∈A

∑ N pol ,ai
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(4.16) 

The terms in Eq. (4.16) (such as NRA,tot ,xK

pol ,  Lpol ,ai
A,tot ,  Opol ,ij

A,tot ,  Vpol ,ab
A,tot ,  M pol ,ml

A,tot ,  N pol ,ai
β ,A,tot ) 

are similar to those in Eq. (4.5), but with a tot superscript/subscript instead of a B 

superscript/subscript, to denote that this is a gradient contribution from the total 

polarization energy instead of a gradient contribution from a dimer interaction energy 

between fragments A and B. The canonical MO response terms and the localization 

response terms can also be removed using the Z-vector method. This will be done in 

Section 4.3 for all EFP interaction energy terms. 

Polarization damping function 

The polarization energy derivative can be modified to include damping. The 

damping term is a function of the distance between two LMO centroids or an LMO 

centroid and an atom center, so the derivative is straightforward. Using the expression for 

polarization damping in Section 3.2.3: 

∂Tαβ ...γ
lm,damped

∂x
=
∂Fdamp,lm

pol

∂x
Tαβ ...γ

lm + Fdamp,lm
pol ∂Tαβ ...γ

lm

∂x
 

(4.17) 

All multipole interaction tensor derivatives can be replaced with the above, and 

the gradient can be evaluated in the same way. 

4.2.4 Dispersion energy term 
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The EFMO dispersion gradient can be expressed by taking the derivative of Eq. 

(3.17). 

∂EAB
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(4.18) 

The first term in Eq. (4.18) can be written in terms of an LMO centroid derivative as in 

the polarization energy gradient. Eq. (4.18) can then be expressed as: 
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


 

(4.19) 

In the EFP method, only the first term in Eq. (4.19) is needed for the translational 

gradient. As in the exchange repulsion and polarization terms, there is no need to 

calculate the nuclear derivative of the LMO centroids explicitly to get the EFP 

translational dispersion gradient. The second term contains the derivative of the dynamic 

polarizability tensor, which only depends on the internal geometry of the fragment, and 

does not change as the fragment translates. For the EFMO gradient, the first term in Eq. 

(4.19) can be calculated using the implementation from the EFP method, but with 

additional terms added for the derivative of the LMO centroids, and the gradient stored 

separately for each atom. 
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The first term in Eq. (4.19) is a LMO centroid derivative. The LMO centroid 

derivative has been discussed in the subsections on the exchange-repulsion and 

polarization gradient previously. The second term in Eq. (4.19) contains the derivative of 

the dynamic polarizability tensor. This is derived in a similar manner as the derivative of 

the static polarizability tensor, and is discussed in Appendix E, Section 2.  

The dispersion energy gradient can then be written as 
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(4.20) 

As shown in Section 4.3, Eq. (4.20) can be combined with the other EFMO 

gradient terms, and the Z-vector method can be used to calculate the canonical MO 

response terms and the localization response terms. 

Dispersion damping function 

The damping function, shown in Eq. (3.21) adds a factor that depends only on the 

overlap. The energy and gradient then become 
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(4.21) 
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The damping function only depends on the overlap, and the damping function 

gradient can be computed in a similar manner to the LMO overlap derivatives in the 

exchange-repulsion energy term. 

4.3 The Combined Gradient 

The terms in Eq. (4.1) (and likewise, Eq. (4.2)) that are EFP interaction energy 

derivatives can be expressed using Eq. (4.8), (4.11), (4.16), and (4.20): 

∂EEFP
EFMO

∂xK

=
A>B

RA ,B≤Rcut

∑ −NRAB,xK

pol( ) +
A>B

RA ,B>Rcut

∑ NRAB,xK

Coul + NRAB,xK

rep + NRAB,xK

disp( ) + NRA,tot ,xK

pol

+ Uai
xK A

a

vir∈A

∑
i

occ
CMO∈A

∑
A>B

RA ,B≤Rcut

∑ −Lpol ,ai
A,B( ) +

A>B

RA ,B>Rcut

∑ (LCoul ,ai
A,B + Lrep,ai

A,B + Ldisp,ai
A,B )+ Lpol ,ai

A,tot






+ Uij
xK A

A>B

RA ,B≤Rcut

∑ −Opol ,ij
A,B( ) +

A>B

RA ,B>Rcut

∑ (Orep,ij
A,B +Odisp,ij

A,B )+Opol ,ij
A,tot




ij

occ
CMO∈A

∑

+ Uab
xK A

A>B

RA ,B≤Rcut

∑ −Vpol ,ab
A,B( ) +

A>B

RA ,B>Rcut

∑ (Vdisp,ab
A,B )+Vpol ,ab

A,tot




ab

vir∈A

∑

+ vml
xK A

m

LMO∈A

∑
l

LMO∈A

∑
A>B

RA ,B≤Rcut

∑ −M pol ,ml
A,B( ) +

A>B

RA ,B>Rcut

∑ (M rep,ml
A,B + M disp,ml

A,B )+ M pol ,ml
A,tot






+
β

{x,y,z}

∑
a

vir∈A

∑
i

occ
CMO∈A

∑
∂Zai

βA(iω f )
∂xK∈A A>B

RA ,B>Rcut

∑ Ndisp,ai
β ,ω f ,A,B




f

12

∑

+
β

{x ,y,z}

∑ ∂Uai
βA

∂xKa

vir∈A

∑
i

occ
CMO∈A

∑
A>B

RA ,B≤Rcut

∑ −N pol ,ai
β ,A,B( ) + N pol ,ai

β ,A,tot






 

 

 

(4.22) 

where the derivative is taken with respect to atom K on fragment A.  

Then, the non-response terms and the coefficients of the response terms can be 

collected and combined into terms with the superscript/subscript tot, as shown below: 
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(4.23) 

The Z-vector method can be used to replace the term that involves the derivative 

of the canonical MO response (the last term in Eq. (4.23)), the derivative of the time-

dependent response term (the second to last term in Eq. (4.23)), and the localization 

response term (the third to last term in Eq. (4.23)). After solving the Z-vector equations, 

the second order canonical response term, second order time-dependent response term, 

and localization response term are replaced with first order canonical response terms and 

non-response terms. The first order canonical response terms can then be collected with 

the other first order canonical response terms. Using details given in Appendix D, Section 

3, Appendix E, Section 1, and Appendix A, Section 8, Eq. (4.23) can be written as:  

∂EEFP
EFMO

∂xK

= NRA,xK

tot ,3 + Uai
xK A Lai ,tot

A,3( )
a

vir  ∈A

∑
i

occ
CMO∈A

∑ + Uij
xK A Lij ,tot

A,3( )
ij

occ
CMO∈A

∑ + Uab
xK A Lab,tot

A,2( )
ab

 vir∈A

∑  

(4.24) 

NRA,xK

tot ,3 is a non-response term resulting from the Z-vector methods, and Lai,tot
A,3 ,  Lij ,tot

A,3  are 

the coefficients of the occ-occ and vir-occ CMO response matrices after the terms from 

the Z-vector methods have been added in. 
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Next, the terms that involve the vir-vir and occ-occ parts of the canonical MO 

response matrix are considered. More details are provided in Appendix A, Section 6. Eq. 

(4.24) becomes  

 

(4.25) 

′Akj ,ai ,  Bji
xK A and  are defined in Eq. (A.1).  

The non-response terms in Eq. (4.25) can be combined, and then Eq. (4.25) becomes:  

 

(4.26) 

where NRA,xK

tot ,4  is the sum of the non-response terms in Eq. (4.25). 

 

Finally, all canonical MO response terms are collected, and the Z-vector method 

can be used to replace the canonical MO response matrices. This gives the EFP 

interaction energy part of the EFMO gradient: 



 53

 

 

(4.27) 

5. Implementation 

The EFMO gradient has been implemented in the GAMESS quantum chemistry 

software package33. The coefficients of the LMO centroid derivative term, Fock matrix 

derivative term, canonical MO response matrix term, localization response matrix term, 

and second-order response matrix terms are collected separately. The Z-vector equation 

for the localization response, second-order canonical MO response, and second-order 

time-dependent canonical MO response are solved. The Z-vectors that result from solving 

the Z-vector equations are summed with a non-response term and a term that involves the 

canonical MO response matrix. Since the application of the Z-vector method to the 

localization response, second-order canonical MO response, and second-order time-

dependent canonical MO response terms contributes to the coefficient of the canonical 

MO response matrix, these Z-vector equations must be solved first. Then the Z-vector 

equation for the canonical MO response matrix is solved. 

6. Test Calculations 

To evaluate the accuracy of the gradient, two methods were used. First, the 

analytic gradient was compared to the numeric gradient for several systems (Section 6.1). 

Second, the EFMO method and analytic gradient were used in MD simulations to test 

energy conservation in a Velocity-Verlet NVE ensemble34,8 (Section 6.2). Again, note 
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that neither the energy expression used in the numeric gradient nor the analytic gradient 

contain the EFP charge-transfer term. Although the charge-transfer term might make a 

significant contribution to the ionic liquid dimer, it is stressed that this section is meant 

only to assess the accuracy of the analytic gradient.   

 

6.1 Analytic to numeric comparison 

For the comparisons, the analytic gradient was computed for several systems and 

compared to the numeric gradient. A 6-31++G(d,p) basis set was used for all 

calculations, and Rcut was set to 0.3, forcing all dimer interaction energies to be evaluated 

as EFP interaction energies. The multipole moments are only expanded through the 

quadrupole-quadrupole term, and all multipole moment expansion points are exclusively 

on atomic centers, in contrast to the EFP method in which bond midpoints are also 

expansion centers. The numeric gradient was calculated using a two-point formula. 

 

For the three systems, the maximum absolute difference and root mean square deviation 

(RMSD) are presented. The RMSD, for N gradient elements, is calculated as 

i

N

∑ analytic gradient element i − numeric gradient element i( )2

N
 

(6.1) 

The max interaction gradient value is the maximum contribution to the analytic 

gradient from the EFP interaction energy gradient. The interaction gradient is calculated 

by subtracting the one-body (ab initio) gradient from the total gradient for each gradient 

element.  
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6.1.1. 64 water molecules 

The numeric gradient for the system of 64 water molecules (shown in Fig.1) was 

calculated using a 0.005 Å step size. Table 1 shows the maximum interaction analytic 

gradient value, the maximum analytic gradient value, the RMSD, and the maximum 

absolute difference between the numeric and analytic gradients. 

Table 1: Comparison of analytic and numeric gradient (Hartree/Bohr) for a system of 64 
water molecules 

Max 
interaction 

analytic 
gradient 

value 

Max 
absolute 
analytic 
gradient 

value 

RMSD 
Max 

absolute 
difference 

0.026037 0.025670 8.1*10-6 3.7*10-5 
 

 

The RMSD and maximum absolute difference values are small and comparable to 

the RMSDs for other analytic gradients.31,34 The values in Table 1 demonstrate that the 

gradient is accurate for the system of 64 water molecules.   

6.1.2. Five dimethyl sulfoxide (DMSO) molecules, five methanol molecules, and 10 water 

molecules 

The numeric gradient for the system of five dimethyl sulfoxide (DMSO) 

molecules, five methanol molecules, and 10 water molecules (shown in Fig. 2) was 

calculated using a 0.005 Å step size and a 0.001 Å step size.  

Using a 0.005 Å step size for the numeric gradient resulted in instances for which 

the forward and backward steps in the two energy calculations for each numeric gradient 

element had slightly different allocations of charge density in the multipole moment 

calculation. That is, some charge density components were allocated to different 
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expansion centers. In some cases, this led to large enough energy differences in the 

calculation of the numeric gradient that the numeric and analytic gradient elements 

differed by ~10-3 Hartree/Bohr. These differences, which are not observed for the water 

cluster discussed in the previous subsection, are too large to be considered accurate.  

Reducing the step size to 0.001 Å removed all of the instances in which the 

forward and backward energy calculations allocated charge density to different expansion 

points. The analytic and numeric gradients match well, as shown in Table 2. These results 

show that the analytic gradient is accurate. 

 

Table 2: Comparison of analytic and numeric gradient (Hartree/Bohr) for a system of five 
dimethyl sulfoxide (DMSO) molecules, five methanol molecules, and 10 water molecules 

Max 
interaction 

analytic 
gradient 

value 

Max 
absolute 
analytic 
gradient 

value 

RMSD 
Max 

absolute 
difference 

0.213522 0.208892 2.8*10-7 1.2*10-6 
 

6.1.3 Ionic liquid dimer 

The numeric gradient for the system of two hexafluorophosphate (PF6)- anions 

and two 1-N-butyl-3-methylimidazolium (bmim)+ cations (shown in Fig. 3) was 

calculated using a 0.005, 0.001, 0.0005, 0.0001, and 0.00005 Å step size.  

The differences between elements of the numeric and analytic gradient are large 

(10-2 to 10-4) until the step size is decreased to 0.0001 Å or below. Using a 0.0001 or 

0.00005 Å step size results in fewer instances in which the numeric gradient forward and 

backward steps have density components allocated to different expansion points. Once 

the step size decreases to 0.0001 Å, the RMSD and maximum gradient difference 
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between the numeric and analytic gradient were both on the order of 10-6 or 10-7 

Hartree/Bohr. Similar to the previous case, this suggests that there may be discontinuities 

in the potential energy surface. Small step sizes in numeric gradients can be suspect, so in 

this case, the there is not an accurate numeric to analytic gradient comparison. However, 

when the multipole moment allocation algorithm is modified to always allocate to the 

same expansion points1, the RMSD between the numeric and analytic gradient is on the 

order of 10-6 Hartree/Bohr and the maximum gradient difference between the numeric 

and analytic gradient is on the order of 10-5 Hartree/Bohr, both in the acceptable range. 

6.1.4 Discussion of potential energy surface 

In two of the above cases, the numeric and analytic gradients did not match until 

the step size was decreased or when the allocation algorithm for the multipole moments 

was changed to always allocate density components to the same expansion point for 

forward and backward displacements. This can be understood by considering how the 

multipole moments are calculated. To calculate the multipole moments, the nearest-site 

allocation algorithm is used to place multipole moments on expansion centers. The 

nearest-site allocation algorithm involves evaluating multipole moments at every 

Gaussian basis function overlap center (that is, at each piece of charge density), and then 

shifting the multipole moments to the nearest expansion center. In the EFMO method, all 

expansion centers are atom centers. If, during a MD simulation or geometry optimization, 

atoms in a single fragment move in such a way that the multipole moments at a Gaussian 

basis function overlap center are suddenly closer to a different atom center, then the 

                                                 
1 This was done by modifying the nearest-site allocation algorithm to choose not the 
nearest atom, but rather the nearest of the two atoms upon which the two Gaussian 
basis functions that comprise the piece of charge density are centered. 
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multipole moments on the atoms are calculated differently, and thus the final energy is 

different. If the energy is significantly different, the PES will not be smooth. As noted 

above, one way to solve this problem is to require the energy calculations to use the same 

set of expansion centers. Although this is useful for testing the gradient, this is not an 

ideal solution since it changes the energy calculation. Alternatively, it is possible that 

including bond midpoints as expansion centers in the EFMO multipole expansion (as is 

done in the EFP method) might decrease or eliminate the problem. This possibility will 

be explored. 

 

Currently, for the systems studied, the maximum difference between the numeric 

and analytic gradient is on the order of 10-5 Hartree/Bohr or less, and the RMSD is on the 

order of 10-6 Hartree/Bohr or less once the numeric gradient step size is small enough or 

if the allocation algorithm is modified so that the same expansion points are always used 

for the forward and backward steps in the numerical gradient procedure. The small 

differences between the analytic and numerical gradients imply that the analytic gradient 

is accurate. In addition, for small molecules such as water, displacing the atoms by 0.005 

Å in the forward and backward directions generally uses the same expansion points. The 

problem discussed here is most likely to arise for larger molecules.  
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Figure 1: Geometry of 64 water molecules used in the numeric and analytic gradient 

comparison. Hydrogen atoms are light gray and oxygen atoms are red. 
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Figure 2: Geometry of a cluster of 5 DMSO, 5 methanol, 10 water molecules used in the 

numeric and analytic gradient comparison. Hydrogen atoms are light gray, carbon atoms 

are dark gray, oxygen atoms are red, and sulfur atoms are yellow. 
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Figure 3: Geometry of 2[bmim]PF6 used in the numeric and analytic gradient 

comparison. Hydrogen atoms are light gray, carbon atoms are dark gray, nitrogen atoms 

are blue, and fluorine atoms are green. 

6.2 MD simulations 

A system of 32 water molecules was equilibrated before each production run, as 

summarized below. For several of the steps, a Nose/Hoover thermostat that randomly 

reassigns the velocities to a Maxwell-Boltzman distribution every N fs, denoted 

Nose/Hoover (N) was used. The details of the simulations are as follows: 
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1. The initial configuration was generated by randomly placing 32 water molecules in a 

box with a volume that matches the density of water at 300 K. 

2. A 6 ps NVT classical MD simulation of the water molecules was performed with the 

EFP method. The temperature was set to 300K and the time step size to 0.5 fs. A 

Nose/Hoover (500) thermostat was used to regulate the temperature.  

3. The last configuration of the previous run was used as the initial configuration for a 

500 fs NVT equilibration run performed with the EFMO method, with a 1.0 fs time step 

size and a Nose/Hoover (100) thermostat, at 300 K. The 6-31++G(d,p) basis set and 

Rcut=0.3 was used.  

This set of equilibration runs was done to match previous MD simulations used to check 

energy conservation8.  Periodic boundary conditions were not used, since this work is a 

test of the gradient, not a production simulation.  

As discussed by Nakata et al.34 and Brorsen et al. 8, the energy conservation in an 

NVE simulation using the Velocity-Verlet algorithm can be tested by comparing the 

RMSD(E) to the time step size. The RMSD(E), for M steps, is calculated as 

j

M

∑ Energy at step j − Average energy of all steps( )2

M
 

(6.2) 

For the Velocity-Verlet algorithm the relationship between the MD simulation time step 

size and the RMSD(E) for NVE ensembles should be 

RMSD E( )∝ (time step size)2  

(6.3) 
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Eq. (6.3) can be rewritten as: 

log(RMSD E( ))∝ 2log(time step size) 

(6.4) 

Thus, a log-log plot should show a straight line with a slope of about 2. 

To check that the EFMO MD simulation using the analytic energy gradient 

closely follows Eq. (6.3), seven NVE EFMO MD simulations were run for 50 fs each. 

The initial configuration and velocity were taken from the last step of the equilibration 

runs. The seven runs had time step sizes of 0.1, 0.2, 0.25, 0.35, 0.5, 0.6, and 0.75 fs and 

Rcut=0.3. Figure 4 shows a log-log plot of the time step size vs. the RMSD(E) for the 7 

runs. The plot shows a straight line with a slope of about 2.03, close to that which is 

expected when the energy is conserved. This suggests that for the seven time step sizes, 

EFMO MD simulations using the analytic gradient properly conserve energy in NVE 

ensembles.  
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Figure 4: A log-log plot of six EFMO MD simulations of a 32-water cluster in the NVE 

ensemble using six different time step sizes vs. the RMSD(E) of the energy.  

7. Timings 

Timing comparisons between EFMO/MP2 and FMO2/MP2 gradient calculations, 

with the 6-31++G(d,p) basis set are presented in Table 3. All calculations were done on 4 

compute nodes. Each compute node has two quad-core 3.0 GHz Intel Xenon E5450 

CPUs connected by Mellanox 4X DDR Infiniband. Multi-level parallelism with GDDI 

was used to split each calculation into 4 groups. The timings were done for Rcut=1 and 

Rcut=2. 
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Table 3: Timing comparison for EFMO/MP2 and FMO2/MP2 gradient calculations on 
water clusters 

 

 Rcut=1   Rcut=2   

 EFMO wall 
clock time (s) 

FMO wall 
clock time 

(s) 

FMO 
time/ 

EFMO 
time 

EFMO wall 
clock time (s) 

FMO 
wall 
clock 

time (s) 

FMO 
time/ 

EFMO 
time 

20 water 
molecules 20.00 33.00 1.65 35.90 61.30 1.71 

30 water 
molecules 30.20 52.20 1.73 62.60 122.50 1.96 

40 water 
molecules 42.30 69.80 1.65 74.20 138.30 1.86 

64 water 
molecules 64.40 101.50 1.58 134.90 277.60 2.06 

 

As can be seen in the table, the EFMO/MP2 method gives a speed up ranging 

from 1.58x to 2.06x compared to FMO2/MP2. Recall that EFMO includes explicit many-

body interactions via the self-consistent EFP polarizability, whereas FMO2 does not.  

As seen in Ref. 7, EFMO can attain the same level as accuracy as FMO but with a 

smaller Rcut value. Thus it is possible that the speed up might be greater.  

As mentioned above, the dimension of the largest response equation is the 

dimension of the largest monomer. In this work, the timings were obtained for systems in 

which the largest monomer is a water molecule. Since the dimension of the largest 

response equation in one iteration of the self-consistent Z-vector method in the FMO 

gradient31 is also the dimension of the largest monomer, the comparison should hold for 

larger molecules. 

Conclusions 

As shown in Section 6, the current implementation of the EFMO gradient is fully 

analytic for the Coulomb, exchange-repulsion, polarization, and dispersion terms. For the 
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EFP interaction energy part of the gradient, response equations must be solved, but the 

response equations are separable, so there is no response equation with the dimension of 

the full system. That is, for the EFP interaction energy part of the gradient, the dimension 

of the largest response equation is the dimension of the largest monomer. If the gradient 

of the chosen ab initio method has response terms, then the gas phase monomer and 

dimer energy gradients will have response terms. The monomer response terms can be 

combined with the EFP interaction energy response terms, but the dimer response terms 

must be solved separately. As demonstrated in Section 7, the EFMO gradient is up to 

2.06x faster than the FMO gradient. 

In testing the analytic gradient, it was discovered that the allocation of charge 

density in the multipole moment calculation during a numeric gradient calculation for a 

large molecule can differ for the forward and backward steps, thereby causing the 

numeric and analytic gradient to differ by too much. It is anticipated that adding bond-

midpoints as expansion points should decrease the impact of the allocation difference. 

This will be explored in a future paper. Future work will also include the derivation and 

implementation of the gradient of the charge-transfer term.  
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Appendix and Supporting Information 

Appendix Section A: Response Equations, discussion of responses, and the Z-vector 

method 

 

A1: Coupled Perturbed Hartree-Fock Equation 

Since the molecular orbital coefficients are calculated using a variational minimization, 

the derivative of the molecular orbital coefficients can be calculated using the derivative 

of the variational conditional. For the RHF SCF equation, the variational condition is that 

Fia = Fai = 0where i is an occupied orbital and a is virtual orbital.  

For canonical molecular orbitals, the variational condition becomes Fpq = Fqp = 0 where 

p ≠ q . This is described in detail previously9, and results in the Coupled Perturbed 

Hartree-Fock Equation: 

Apq,ck
k

occ

∑
c

vir

∑ Uck
x = Bpq

x  

(A.1) 

where 

 
and is the orbital energy of MO q. 

Only the virtual-occupied block of the response matrix is uniquely defined. For 

the RHF energy, unitary transformations between occupied-occupied (occ-occ) and 

virtual-virtual (vir-vir) MOs do not change the energy (but must still follow the 
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orthonormality constraint on orbitals), and are not uniquely defined. They are often 

referred to as “non-independent”, while the vir-occ block is “independent”9. 

If it is assumed that the canonical MOs are used ( where i is an 

occupied orbital and j is an occupied orbital), then the occ-occ part of the response matrix 

can be written as 

 

(A.2) 

although it is undefined when there is a degeneracy in orbital energy. 

Alternately, if the energy expression is invariant to unitary transformations among 

the CMO occupied orbitals or the virtual orbitals then35,36 

 
Uij

x = − 1
2

Sij
(x )

Uab
x = − 1

2
Sab

(x )
  

(A.3) 

for the occ-occ or vir-vir part of the response matrix. This can only be used in certain 

formulations of gradients. For example, Eq. (A.3) is valid if the gradient is directly 

derived from an energy formula that does not assume a particular unitary transform of the 

MOs.  

The CPHF equation can be solved for each canonical response matrix element. In 

practice, this is avoided, as described in the Z-vector method. 
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A2: Derivative of the orthonormality constraint with respect to a nuclear perturbation 

Spq = δ pq implies U pq
x +Uqp

x = −Spq
(x )  when x is a nuclear perturbation (and the basis 

set depends on nuclear coordinates). For a field perturbation, α , U pq
α +Uqp

α = 0 since the 

basis set does not depend on the field. 

 

A3: Coupled Perturbed Localization (CPL) Equation 

Since the LMO transform matrix is determined using the localization condition 

(which depends on the localization method used), the derivative of the LMO transform 

matrix can be determined from the derivative of the localization expression. (This is 

similar to how the CPHF equations are derived, where the MO coefficients are 

determined from the variational condition, and the derivative of the MO coefficients can 

be determined from the derivative of the variational condition). For this work, only Boys 

localization10 has been considered. Other localization methods can be used, but the CPL 

equation would be different. 
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First, Eq. (2.3) is written in more detail: 

∂cµl
L

∂x
= ∂

∂xi

occ
CMO

∑ Llicµi( )

= ∂Lli

∂xi

occ
CMO

∑ cµi + Lli
i

occ
CMO

∑
∂cµi

∂x

= ∂Lli

∂xi

occ
CMO

∑ cµi + Lli
i

occ
CMO

∑ Uqi
x

q

occ+vir
CMO

∑ cµq

= ∂Lli

∂x
Lni

n

LMO

∑
i

occ
CMO

∑ cµn
L + Lli

i

occ
CMO

∑ Uqi
x

q

occ+vir
CMO

∑ cµq

= cµn
L

n

LMO

∑ Lni
i

occ
CMO

∑ ∂Lli

∂x














+ Lli

i

occ
CMO

∑ Uqi
x

q

occ+vir
CMO

∑ cµq

= cµn
L

n

LMO

∑ vnl
x + Lli

i

occ
CMO

∑ Uqi
x

q

occ+vir
CMO

∑ cµq

 

 

As previously known16, the localization condition for Boys LMOs is  

rlm ⋅(rll − rmm ) = 0  

(A.4) 

where rlm = (rlm,x ,rlm,y ,rlm,z )  and  rlm,α  =  < l  |  α  | m >  . 

for all l,m pairs of localized occupied orbitals. The bold notation indicates that the term is 

a vector. 

Eq. (A.4) must be true at any geometry, so 

 
∂ rlm ⋅(rll − rmm )( )

∂x
= 0  

(A.5) 
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This is the starting point for the Boys CPL equation.  Other studies have presented 

the derivation of the equation for Boys (or similar localization methods) in detail13,15,16,37, 

so the result is presented here. An overview of the derivation used in the code 

implemented for this study is below. 

Eq. (A.5) is expanded and rearranged to form an equation for the localization 

response matrix (as is similarly done in the CPHF equation derivation). 

The derivative of the LMO coefficient as shown in Eq. (2.3) is used throughout. Note 

also that vnl
x is antisymmetric. Using 

∂l
∂x

|α | m = vnl
x

n

LMO

∑ rnm,α + Lli
i

occ
CMO

∑ Uqi
x

q

all
CMO

∑ rqm,α + cµl
L

µ

AO

∑ ∂µ
∂x

|α | m , the left-hand side of Eq. 

(A.5) becomes 

 

(A.6) 

After rearranging, and separating out the response matrices, Eq. (A.6) can be written as 

 

(A.7) 
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By the localization condition, Eq. (A.4), 

 
rlm ⋅(rll − rmm ) = 0
−− >
rlm ⋅rll = rlm ⋅rmm

 

Using this, Eq. (A.7) can be rewritten: 

 

(A.8) 

To simplify Eq. (A.8), the terms in front of the response matrices v and U can be 

collected into terms Ccpl and Bcpl, respectively. The remaining terms can be combined into 

the term Acpl. Then Eq. (A.8) can be written as 

vno
x Clm,no

cpl

o<n

LMO

∑ = −Alm
cpl + − Uqj

x

q

occ+vir
CMO

∑
j

occ
CMO

∑ Blm,qj
cpl  

(A.9) 

Above is the CPL equation. If the canonical MO response matrix (Ux) is known, 

Eq. (A.9) can be solved for each vx. In practice, this is avoided, as shown in the Z-vector 

section. 
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A4: Second order Coupled Perturbed Hartree-Fock Equation 

The variational condition for the RHF SCF equation is Fia = Fai = 0. This must be 

zero regardless of the fragment geometry. This means that ∂2 Fia

∂x1 ∂x2

= ∂2 Fai

∂x1 ∂x2

= 0  (where 

x1 and x2 are coordinates of two arbitrary atoms). 

For this work, a nuclear derivative of the canonical response matrix to a field 

perturbation is needed. That is, 
∂Uα

∂x
where α is an electric field in the x-, y-, or z- 

direction, and x is the coordinate of an atom. An expression for 
∂Uα

∂x
can be derived as 

shown below:  

∂

∂x

∂F
ia

∂α( ) = 0 =
∂

∂x
F

ia

(α )( ) + ∂U
ai

α

∂x
F

aa
+

b

vir

∑ U
bi

α ∂F
ba

∂x( ) + ∂U
ia

α

∂x
F

ii
+

j

occ

∑ U
ja

α
∂F

ji

∂x




 +

b

vir

∑
j

occ

∑
∂U

bj

α

∂x
′A
ia ,bj

+U
bj

α
∂ ′A

ia ,bj

∂x







 

(A.10) 

Using
 

∂Upj
α

∂x
= −

∂U jp
α

∂x






 and Fia

(α ) = i |α | a 8 (since α is a field derivative), Eq. 

(A.10) can be rewritten as: 

∂Uai
α

∂x
(Fii − Faa )−

b

vir

∑
j

occ

∑
∂Ubj

α

∂x
′Aai,bj








= ∂
∂x

i |α | a( ) +
b

vir

∑ Ubi
α ∂Fba

∂x





+

j

occ

∑ U ja
α ∂Fji

∂x





+

b

vir

∑
j

occ

∑ Ubj
α ∂ ′Aai,bj

∂x






 

(A.11) 

Eq. (A.11) only solves for the vir-occ block of 
∂Uα

∂x
, but that is all that is needed for this 

work. 
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A5: Second-order Time-Dependent Coupled Perturbed Hartree-Fock Equation 

The second-order time-dependent coupled perturbed Hartree-Fock equation can 

be derived in a manner similar to the first order equation38,39,28. 

The first order TD CPHF equation can be derived by using time dependent 

Hartree-Fock theory and time dependent variational conditions. The interaction between 

a molecule and a time-dependent oscillating electric field with frequency ω and direction 

γ is considered, and the MO coefficients, Fock matrix, and energy can be expanded in 

terms of the perturbation. This can be written as 

 

a |γ | i +
b

vir

∑
j

occ

∑[2(ai | bj)− (ab | ij)]Ubj
γ (±ω )+

b

vir

∑
j

occ

∑[2(ai | bj)− (aj | ib)]Ubj
γ (�ω )

+
p

MO

∑Upi
γ (±ω )Fpa −

p

MO

∑Uap
γ (±ω )Fpi ±ωUai

γ = Fai
γ (±ω )

 

(A.12) 

The variational condition is Fai
γ (±ω ) = 0, resulting in the first order TD CPHF 

equations. If the definition Zai
γ (ω ) ≡Uai

γ (ω )+Uai
γ (−ω )is used, and canonical MOs are 

assumed, then this can be rewritten as Eq. (3.19). 

Since Fai
γ (±ω ) = 0 regardless of the geometry, ∂

∂x
Fai

γ (±ω ) = 0 . Then the second-

order TD CPHF equation can be derived by taking the nuclear derivative of Eq. (A.12), 

and using the variational condition. The resulting equation can be written as 
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j
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∑
b
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∑
k

occ
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∂x
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∑
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vir

∑ Hai,bj
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∂x
+ −
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vir

∑
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(2) Zck
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∂x

+ −
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∑
j
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(2) Zcj

γ (iω ) ∂Fbc

∂x
+

b

vir

∑
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∑Hai,bj
(2) Zbk

γ (iω )
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+ −
b

vir
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(1) Zck
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∑ 2 a |γ | j +
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k
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∑Haj ,ck
(1) Zck

γ (iω )








∂Fij

∂x

 

(A.13) 

A6: The occupied-occupied and virtual-virtual canonical response matrix 

The exchange repulsion, polarization, and dispersion EFP energy expressions 

involve sums over LMOs. As shown in Section 4, the use of LMOs results in gradient 

terms involving the occ-occ canonical response matrix due to the occ-occ canonical 

response matrix that is in the last term of Eq. (2.3). 

If all occupied molecular orbitals are localized, then the energy is invariant to 

unitary transformations of the molecular orbitals that are used to initiate the localization 

procedure. This is not strictly true when the LMOs are not unique (e.g., the π orbitals in 

benzene)41 but is true for all cases tested. Since the energy is invariant to rotations among 

the canonical molecular orbitals (which are the molecular orbitals that are used to initiate 

the localization procedure), Eq. (A.3) can be used to replace the occ-occ and vir-vir 

portion of the response matrix with a non-response term. 
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However, the EFP method by default is implemented with frozen chemical core 

occupied molecular orbitals. Thus, only the active (non chemical core) occupied 

molecular orbitals are localized, and used in the energy calculation. If only the active 

occupied MOs are localized, then the energy is only invariant to unitary rotations among 

the active occupied molecular orbitals. The act-act and core-core blocks of the response 

matrix can be replaced using Eq. (A.3), but the act-core part of the response matrix 

cannot. It can, however, be calculated using Eq. (A.2). This means that there could be 

singularities if a chemical core orbital energy and an active occupied orbital energy are 

the same. As noted in a derivation of the frozen core second order MP2 gradient40, 

usually the chemical core orbital energies and active occupied orbital energies should not 

be degenerate. 

Additionally, one can think of the Z-vector contributions to the final Lagrangian 

in Eq. (4.24) as contributions that correct for non-variational character42 to make the 

expression appear variational in terms of orbital rotations.  

The virtual-virtual block of the canonical response matrix is replaced with Eq. 

(A.3) as well.  The difference between using Eq. (A.3) and using Eq. (A.2) is negligible 

for all cases tested. The final implementation uses Eq. (A.3) for the relevant blocks of the 

response matrix to avoid singularities. 

A7: Z-Vector method 

Once all terms with response matrices in them have been collected, the Z-vector 

method is used to avoid solving for all nuclear perturbations9. As an example, let 

Uai
x

a

vir

∑
i

occ

∑ Lai  be one term of the gradient. By Eq. (A.1), Apq,ai
i

occ

∑
a

vir

∑ Uai
x = Bpq

x . Then the 

contribution to the gradient can be rewritten as shown below. 
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Uai
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−1

j

occ

∑
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vir

∑ Bcj
x




a

vir
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occ

∑ Lai

= Bcj
x (A)ai,cj

−1

i

occ

∑
a

vir

∑ Lai
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


j
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∑
c

vir

∑

 

(A.14) 

Defining Z as the solution to Lai = Acj ,ai
j

occ

∑
c

vir

∑ Zcj , then Uai
x

a

vir

∑
i

occ

∑ Lai = Bcj
x

j

occ

∑
c

vir

∑ Zcj . 

 

A8: Applying the Z-Vector method to the localization response term 

This section discusses the details of using the Z-vector technique on the 

localization response term in Eq. (4.40) 

First, the localization response matrix term can be modified, noting that vml
XK ,A  is 

antisymmetric, and defining M ml ,tot
A,2 = M ml,tot

A − Mlm,tot
A as shown below  

vml
xK A

m

LMO∈A

∑
l

LMO∈A

∑ M ml ,tot
A = vml

xK A

l<m

LMO∈A

∑ M ml ,tot
A − Mlm ,tot

A( )

= vml
xK A

l<m

LMO∈A

∑ M ml ,tot
A,2

 

(A.15) 

Then, using Sections A3 and A7, 

 

vml
xK A

l<m

LMO∈A

∑ M ml ,tot
A,2 = Zml

cpl ,A −Aml
cpl ,A + − Uqi

xK A

q

occ+vir  
CMO  ∈A

∑
i

occ
CMO∈A

∑ Bml ,qi
cpl ,A











l<m

LMO∈A

∑

 

(A.16) 

where Z comes from solving the Z-vector equation, Cml ,no
cpl ,AZml

cpl ,A

o<n

LMO

∑ = M ml ,tot
A,2 .  
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Terms in Eq. (A.16) can be rearranged and combined with Eq. (4.40) to result in Eq. 

(4.24). 

 

Appendix Section B: Coulomb gradient derivation details 

To simplify subsequent equations, define a function, FAB
Coul ({Tαβ ...γ

IJ },{mI },{mJ }). 

Given a set of multipole moments on fragment A, multipole moments on fragment B, and 

multipole moment interaction tensors between all pairs of multipole moments on 

fragments A and B, FAB
Coul ({Tαβ ...γ

IJ },{mI },{mJ }) contains the EFP Coulomb energy as in 

Eq. (3.3):  

 FAB
Coul ({Tαβ ...γ

IJ },{mI },{mJ }) ≡
I

A

∑
J

B

∑
qJqIT IJ − qJ

α

x ,y,z

∑ µα
I Tα

IJ + 1
3

qJ

α ,β

x ,y,z

∑ Θαβ
I Tαβ

IJ + µα
J

α

x,y,z

∑ qITα
IJ

− µα
J

α ,β

x ,y,z

∑ µβ
ITαβ

IJ + 1
3

µα
J

α ,β ,γ

x ,y,z

∑ Θβγ
I Tαβγ

IJ + ...



















 

(B.1) 

{Tαβ ...γ
IJ }represents the set of all multipole moment tensors on the RHS of Eq. (B.1). 

{mI }represents the set of all the multipole moments on A on the RHS of Eq. (B.1) and 

{mJ }represents the set of all the multipole moments on B on the RHS of Eq. (B.1).  

Noting that the multipole moments are products of a density matrix and a integral 

involving primitive Gaussians, Eq. (4.7) can be rewritten as 

∂EAB
Coul

∂xK∈A

= FAB
Coul ({

∂Tαβ ...γ
IJ

∂xK∈A

},{mI },{mJ })+ FAB
Coul ({Tαβ ...γ

IJ },{mPG−deriv
I ,xK },{mJ })

+FAB
Coul ({Tαβ ...γ

IJ },{mdensity−deriv
I ,xK },{mJ })

 

(B.2) 
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Where mPG−deriv
I ,xK  is the contribution from the PG integral derivatives and mdensity−deriv

I ,xK is the 

contribution from the density matrix derivatives. 

The second term in Eq. (B.2) involves only derivatives of Gaussian integrals, 

which depend explicitly on the atom positions, and can be implemented in a 

straightforward manner. Care must be taken to properly account for the derivative of the 

expansion point in the dipole and quadrupole terms. 

The third term in Eq. (B.2) involves the derivative of the density matrix, which 

has an implicit dependence on the atom positions. The third term is expanded: 

 

FAB
Coul ({Tα ...

IJ },{mdensity−deriv
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J∈B
∑

I∈A
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(B.3) 

where α −α I and Θ̂αβ − Θ̂αβ ,I denote that the integral is being calculated around I, and KIJ 

contains the terms that are summed over PGs. 

The derivatives of the MO coefficients are replaced with expansions in terms of 

the canonical MO response matrix. The terms involving the response matrix are separated 

into the occupied-occupied terms and the virtual-occupied terms. The definitions in 

Section 2 and Appendix A are used. 
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(B.4) 

Then, noting the definition of Kut
IJ , eq. (B.4) can be written as 

= Uai
xK A

a

vir∈A

∑
i

occ∈A

∑ FCoul ({Tαβ ...γ
IJ },{mU−weighted ,ai

I },{mJ }) ai
+ FCoul ({Tαβ ...γ
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I ,xK },{mJ }) 

(B.5) 

where {mU−weighted ,ai
I } ≡ {qU−weighted ,ai
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I } with 
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 81

Then, using Eq. (B.5),  

FAB
Coul ({Tα ...

IJ },{mdensity−deriv
I ,xK },{mJ }) =

µν

AO∈A

∑
∂Pµν

∂xK∈A

Kut
IJ 

ut  nearest I

PG  u∈µ
PG  t∈ν

∑
J∈B
∑

I∈A
∑

= Uai
xK A

a

vir∈A

∑
i

occ∈A

∑ FCoul ({Tαβ ...γ
IJ },{mU−weighted ,ai

I },{mJ }) ai

+FCoul ({Tαβ ...γ
IJ },{mocc-weighted

I ,xK },{mJ })

 

(B.6) 

Eq. (B.6) can be combined with Eq. (B.2) to produce Eq. (B.7). 
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Appendix Section C: Exchange-repulsion gradient derivation details 

This section presents the details of the derivation between Eq. (4.9) and Eq. 

(4.11). Expanding each derivative in Eq. (4.9) generates six terms (A-F)) that correspond 

to the six terms in Eq. (4.9):  
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∂xK

=
µ
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v
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L
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(C.1) 

′Alm,µi is defined in Eq. (A.1). For the EFP method, the gradient of the EFP 

exchange repulsion term was derived by Li et al.32 (See Eq. (2) in Ref. 32 in particular). 

The expansions in Eq. (C.1) can be substituted into Eq. (4.9) to rewrite the expression as 

Eq. (4.10).  
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The AO-derivative terms in Eq. (4.10), shown below, are straightforward to 

compute: 
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(C.2) 

The MO-coefficient derivatives in Eq. (4.10) can be expressed as 
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(C.3) 

where the Fock matrix derivative is expanded9. Eq. (C.3) can be rewritten using Eq. (2.3) 

to expand LMO coefficient derivatives into terms with localization and canonical MO 

response matrices: 
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(C.4)

 

The fifth term can be simplified using Section A2 to remove the occ-occ canonical 

response matrix. 
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Combining Eq. (C.5), Eq. (C.2), and the last term in Eq. (4.10) results in Eq. (4.11). Note 

that since vxK A is antisymmetric, certain terms can be simplified. 

 

Appendix Section D: Polarization gradient derivation details 

D1: Eq. (4.12) is expanded to the form in Eq. (4.13): 

Eq. (4.12) can be rewritten by splitting the first term into a sum over the LMOs on 

fragment A and a sum over the LMOs on all the other fragments; using Eq. (3.10), En,α
0,B

can be expanded. 

Then, the first term in Eq. (4.12) is:  

 

(D.1) 

In the first term in Eq. (D.1), EnI ,α
0  is a function of the LMO centroid n on A, the 

atom center I ∈B , and the multipole moments on I. Since the derivative is with respect 

to an atom in fragment A, and B ≠ A , the derivative only affects EnI ,α
0 through the LMO 

centroid n on A. The LMO centroid n, n | β | n , is a function of the atom position 

through the LMO coefficients (with an implicit dependence) and the AO integrals (with 

an explicit dependence). Since EnI ,α
0 is a function of LMO centroid n, and LMO centroid 

n is a function of the atom position, the chain rule can be used to obtain the derivative of 

EnI ,α
0

 with respect to the atom position, as shown in the first term in Eq. (D.2) below. 
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In the second term in Eq. (D.1), EnI ,α
0  is a function of the LMO centroid n on B, 

the atom center I ∈C , and the multipole moments on I. The derivative is with respect to 

an atom on A, so the only nonzero term will be for C=A. Then Eq. (D.1) can be rewritten 

as:  

 

(D.2) 

The second term in Eq. (D.2) can be expanded in a similar fashion as the gradient 

of the Coulomb term in Section 4.3.1. That is, 

 

(D.3) 

To simplify Eq. (D.3), let 
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As in Eq. (B.1), {Tαβ ...γ
nI }represents the set of all multipole moment tensors on the 

RHS of the above expression. {mI }represents the set of all the multipole moments on A 

on the RHS of the above expression and {pn}represents the set of all the induced dipoles 

on in the RHS of the above expression. 

 

Then, Eq. (D.3) can be written as: 

 

(D.4) 

The second term in Eq. (4.12) can be expanded and split into terms involving the 

derivative of LMO centroids and a term involving the dipole polarizability tensor: 

 

 (D.5) 

 

Eq. (D.5) can be rewritten in terms of LMO centroid derivatives and dipole polarizability 

tensor derivatives, as shown below. 
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(D.6) 

D2: Details of the expansion of the three terms in Eq. (4.15) 

The LMO transform derivative can be written as 

 
(D.7) 

where D is a term containing the coefficient of v. 

The MO field response term can be written as 

 

(D.8) 
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The dipole derivative term can be written as 

 

 

(D.9) 

whereWβ ,a,k
dip contains the coefficients of the dipole derivative. Using the definition of the 

derivative of a CMO, Eq. (D.9) can be written as: 
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(D.10) 
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Combining Eq. (D.7), (D.8), and (D.10), the last term in Eq. (4.22) can be expanded. The 

polarization energy gradient can then be rewritten as in Eq. (4.16). 

 

D3: Z-vector method applied to second-order CPHF 

The Z-vector method can be used to replace the term involving the derivative of 

the canonical MO response. This method replaces the second order canonical response 

with first order canonical response terms. The first order canonical response terms can be 

collected with the other canonical response terms. 

Following the Z-vector method technique in Section A7, and using Section A4, 

the second-order response term in Eq. (4.23) is written as  
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(D.11) 

where Zscphf,A is the solution of the Z-vector equation 
bj
∑Aai ,bj  Zai,β

scphf ,A = Nbj ,tot
β ,A . 

The right hand side of Eq. (D.11) can then be re-written as: 
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(D.12) 
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where U ja
β = −Uaj

β  9is used to put the known response matrices in the form (vir, occ). 

There are three derivatives in Eq. (D.12): A dipole integral derivative, A’ (defined in 

Appendix A1) integral derivative, and a Fock matrix derivative. Using algebra and 

standard quantum chemistry techniques, Eq. (D.12) can be written as:  
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(D.13) 

where NRA,tot ,xK

pol ,2   is the sum of the non-response contributions, Ltot
scphf  is the coefficient of 

the CMO responses, separated into occupied-occupied, virtual-virtual, and occupied-

virtual blocks. See the Supporting Information for more details. 

 

Appendix Section E: Dispersion gradient derivation details 

E1: Using the Z-vector method to replace second-order response term 

The Z-vector method can be used to remove the derivative of the time-dependent 

response term, and replace it with terms involving the canonical MO response. This is 

similar to how the second-order canonical MO response was replaced in Appendix D 

(with further details in the Supporting Information). 

Following the Z-vector method,  

j

occ
CMO∈A

∑
b

vir∈A

∑
k

occ
CMO∈A

∑(
c

vir∈A

∑ Hai ,bj
(1) Hbj ,ck

(2) Zck ,ω ,β
stdcphf ,A )− (iω )2 Zai,ω ,β

stdcphf ,A = Nai,tot
β ,ω ,A  

(E.1) 

Eq. (E.1) is solved for Zω ,β
stdcphf ,A .  
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 Then, using Section A5, the fourth term in Eq. (4.23) is replaced with 

β

{x,y,z}

∑
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∑
i
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∑
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βA(iω f )
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

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(E.2) 
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Then, the integrals are separated out, as shown below: 
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(E.3) 

where Zbj
β (iω ) = −Z jb

β (iω ) 28 has been used to put the response matrix in (vir, occ) order.  

There are four derivatives in Eq. (E.3): A dipole integral derivative similar to the 

one in the polarization gradient, an A’ integral derivative similar to the one in the 

polarization gradient, a Fock matrix derivative similar to the one in the polarization 

gradient, and a second two-electron derivative. These can be expanded using similar 

techniques as in the polarization gradient. Then, Eq. (E.3) can be written as: 

β

{ x ,y ,z }

∑
a

vir∈A

∑
i

 occ
CMO∈ A

∑
∂Zai

β (iω f )
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ki

occ  
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(E.4) 



 94

where NRA,tot ,xK

disp,2   is the sum of the non-response contributions, Ltot
stdcphf  is the coefficient of 

the CMO responses, separated into occupied-occupied, virtual-virtual, and occupied-

virtual blocks. 

 

E2: Dynamic polarizability derivative term 

The second term in Eq. (4.19) is expanded using Eq. (3.16) and Eq. (3.18): 
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(E.5) 

Eq. (E.5) has the same form as Eq. (4.15), and can be calculated in an analogous manner, 

with Z β (iω ) in place of U γ . (Appendix D2 presents a more detailed expansion for the 

polarization gradient, which is very similar.) 

 

Supporting Information 

Supporting Information Section 1: Information about the Distributed Multipole Analysis 

In the EFP method, the molecular charge density of the fragment is written in 

terms of a sum of a density times the product of two Gaussian functions, which is itself a 

Gaussian. The new Gaussian is centered at a point referred to here as the Gaussian 

function overlap center.  Each product function can be considered to be one piece of the 

charge density. For EFP fragment A, the charge density can thus be written as: 
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ρ(r) = Pµν
µν

AO∈A

∑
u

PG∈µ

∑
t

PG∈ν

∑ ′Putgu (r − rI ,αu )gt (r − rJ ,α t )

=
µν

AO∈A

∑
u

PG∈µ

∑
t

PG∈ν

∑ Pµν ′Put gut (r − rK ,(αu +α t )) 

 

(S1.1) 

In Eq. (S1.1) gu (r − rI ,αu )is a primitive Gaussian (PG) centered on atom I with 

contraction exponent α u , ′Put  is the primitive Gaussian cross term that contains the 

product of the contraction coefficients for PG u and t, and rK =
αurI +α trJ

αu +α t

.  

Each piece of charge density (the quantity in square brackets in Eq. (S.1)) can be 

expressed in terms of a series of multipole moment integrals. The multipole moment 

integrals are then shifted to the nearest expansion point (that is, a nearest-site allocation 

algorithm is used). Shifting the multipole moment integrals to the selected expansion 

point is accomplished by calculating the multipole moment integrals for each piece of 

charge density around the nearest expansion point. In this work, the expansion sites are 

only on the nuclei. 

 

Supporting Information Section 2: Details about the polarization derivative 

Fock matrix derivatives: 

Let  
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scphf ,A },{Ubi
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(S2.2) 
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After rearranging, using the definition of the Fock matrix, and that the unperturbed 

orbitals are canonical, Eq. (S2.2) can be written as 
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(S2.3) 

After rearranging and using Section A2, Eq. (S2.3) can be written as 
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(S2.4) 
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Eq. (S2.4) can be simplified, as shown below:  

FF(β ,{Zai ,β

scphf ,A },{Ubi
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(S2.5) 

where NRA,xK

pol ,F  holds all the non-response terms and LF holds the coefficients of the 

response matrices. 

 

A’ derivative: 
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(S2.6) 
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The second term on the RHS of Eq. (S2.6) can be rearranged using Section A2 as:  
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∑
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CMO∈A

∑ ′Aak ,bj

β

{ x ,y,z}
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βA
















+

a
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∑
k
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CMO∈A
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−
b
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∑
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β

{ x ,y,z}
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scphf ,AUbj
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




+
b
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β
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










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







 

(S2.7) 

This can be written in the AO basis. First, consider 
b

vir∈A

∑
j

occ
CMO∈A

∑ ′Api,bj
β

{x,y,z}

∑ Zai,β
scphf ,AUbj

βA





in Eq. 

(S2.7) since it shows up in multiple terms: 

b

vir∈A

∑
j

occ
CMO∈A

∑ ′Api ,bj
β

{x,y,z}

∑ Zai,β
scphf ,AUbj

βA





=

=
β

{x,y,z}

∑ Zai ,β
scphf ,A

µν

AO∈A

∑ 4 pi | µν( )− pµ | iν( )− pν | iµ( )( )
b

vir∈A

∑
j

occ
CMO∈A

∑ cµbcν jUbj
βA













=
β

{x,y,z}

∑ Zai ,β
scphf ,A

µν

AO∈A

∑ 4 1
2 b

vir∈A

∑
j

occ
CMO∈A

∑ cµbcν jUbj
βA + 1

2 b

vir∈A

∑
j

occ
CMO∈A

∑ cvbcujUbj
βA













pi | µν( )− 1
2

pµ | iν( )





=
β

{x,y,z}

∑ Zai ,β
scphf ,A

µν

AO∈A

∑ 4Nµν
β pi | µν( )− 1

2
pµ | iν( )





 
(S2.8) 

where Nµν
β ≡ 1

2 b

vir∈A

∑
j

occ
CMO∈A

∑ cµbcν jUbj
βA + 1

2 b

vir∈A

∑
j

occ
CMO∈A

∑ cvbcujUbj
βA













. Simplifying more, this can be 

written as shown below. 
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b

vir∈A

∑
j

occ
CMO∈A

∑ ′Api,bj
β

{x,y,z}

∑ Zai,β
scphf ,AUbj

βA





=

β

{x ,y,z}

∑ Zai,β
scphf ,ACpi

N ,β  

(S2.9) 

where Cpi
N ,β ≡

µν

AO∈A

∑ 4Nµν
β pi | µν( )− 1

2
pµ | iν( )





 

 

Eq. (S2.9) can be substituted into Eq. (S2.7), so the second term in Eq. (S2.6) can be 

written as: 

 

ab

virt MOs

∑
ij

occ
CMO∈A

∑
p

MO∈A

∑U pa

xK A ′Api ,bj +
p

MO∈A

∑U pi

xK A ′Aap ,bj





 β

{ x ,y ,z }

∑ Zai ,β

scphf ,AUbj

βA




=

a

vir∈A

∑
p

MO∈A

∑ Sap
(xK ) −

i

occ
CMO∈A

∑
β

{x,y,z}

∑ Zai,β
scphf ,ACpi

N ,β











+

a

vir∈A

∑
c
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∑Uac
xK A −

i
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CMO∈A

∑
β

{x ,y,z}

∑ Zai,β
scphf ,ACci

N ,β












+
i
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CMO∈A

∑
k
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CMO∈A

∑ Uki
xK A

a

vir∈A

∑
β

{x ,y,z}

∑ Zai,β
scphf ,ACak

N ,β






+
a
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∑
k
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∑ Uak
xK A −

i
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CMO∈A

∑
β

{x,y,z}

∑ Zai,β
scphf ,ACki

N ,β +
k

occ
CMO∈A

∑
β

{x,y,z}

∑ Zck ,β
scphf ,ACca

N ,β












 

(S2.10) 

Then, note that the third term in Eq. (S2.6) can be expanded in a similar way to the 

second term. The result is shown below. 
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ab

vir∈A

∑
ij
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CMO∈A

∑
p

MO∈A

∑Upa
xK A ′Api,bj +

p

MO∈A
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xK A ′Aap,bj






 β

{x,y,z}

∑ Zbj ,β
scphf ,AUai

βA





=

=
a

vir∈A

∑
p

MO∈A

∑ Sap
(xK ) −

i
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CMO∈A

∑
β

{x ,y,z}

∑ Uai
βACpi

M ,β











+

a

vir∈A

∑
c

vir∈A

∑Uac
xK A −

i
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∑
β

{x,y,z}
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M ,β












+
i
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CMO∈A

∑
k
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CMO∈A

∑ Uki
xK A

a

vir∈A

∑
β

{x,y,z}
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βACak

M ,β






+
a

vir∈A

∑
k
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CMO∈A

∑ Uak
xK A −

i
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CMO∈A

∑
β

{x ,y,z}

∑ Uai
βACki

M ,β +
k

occ
CMO∈A

∑
β

{x,y,z}

∑ Uck
βACca

M ,β












 

(S2.11) 

where Cpi
M ,β ≡

µν

AO∈A

∑ 4M µν
β pi | µν( )− 1

2
pµ | iν( )





 

 and M µν
β ≡ 1

2 b

vir∈A

∑
j

occ
CMO∈A

∑ cµbcν jZbj ,β
scphf ,A + 1

2 b

vir∈A

∑
j
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CMO∈A

∑ cvbcujZbj ,β
scphf ,A













     

Then, Eq. (S2.11) and Eq. (S2.10) can be substituted into Eq. (S2.6):  
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vir∈A

∑
ij
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CMO∈A

∑
∂ ′Aai ,bj

∂xK β

{ x ,y ,z }

∑ Zai ,β
scphf ,AUbj

βA




=
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vir∈A

∑
ij
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CMO∈A

∑ ′Aai ,bj

( xK )( )
β

{ x ,y ,z }

∑ Zai ,β
scphf ,AUbj

βA





+
a

vir∈A

∑
p

MO∈A
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( xK ) −
i
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CMO∈A

∑
β

{ x ,y ,z}

∑Uai

βACpi

M ,β + −
i

occ
CMO∈A

∑
β

{ x ,y ,z}

∑ Zai ,β

scphf ,ACpi

N ,β













+
a

vir∈A

∑
c

vir∈A

∑Uac

xK A −
i
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CMO∈A

∑
β

{ x ,y ,z }

∑Uai

βACci

M ,β −
i
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CMO∈A

∑
β

{ x ,y ,z }

∑ Zai ,β
scphf ,ACci

N ,β













+
i
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CMO∈A

∑
k
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CMO∈A

∑Uki

xK A

a

vir∈A

∑
β

{ x ,y ,z }

∑Uai

βACak

M ,β +
a

vir∈A

∑
β

{ x ,y ,z}

∑ Zai ,β
scphf ,ACak

N ,β





+
a

vir∈A

∑
k
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CMO∈A

∑Uak

xK A −
i

occ
CMO∈A

∑
β

{ x ,y ,z }

∑Uai

βACki

M ,β +
k

occ
CMO∈A

∑
β

{ x ,y ,z }

∑Uck

βACca

M ,β −
i
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CMO∈A

∑
β

{ x ,y ,z }

∑ Zai ,β

scphf ,ACki

N ,β +
k
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CMO∈A

∑
β

{ x ,y ,z}

∑ Zck ,β

scphf ,ACca

N ,β













  

(S2.12) 
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The non-response terms can be combined, and the coefficients of the response matrices 

can be combined as shown below: 

ab

vir∈A

∑
ij

occ
CMO∈A

∑
∂ ′Aai,bj

∂xK β

{x ,y,z}

∑ Zai ,β
scphf ,AUbj

βA






= NRA,xK

pol , ′A  +
ab

vir∈A

∑Uab
xK ALab

′A +
a

vir∈A

∑
k

occ
CMO∈A

∑ Uak
xK ALak

′A +
ki

occ
CMO∈A

∑ Uki
xK ALki

′A

 

(S2.13) 

where NRA,xK

pol , ′A  is the collection of all non-response terms, and LA’ is the coefficient of the 

response matrices. 

Dipole derivative: 

β

{x ,y,z}

∑ Zai ,β
scphf ,A ∂

∂xK

a | β | i( )
a

vir∈A

∑
i
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CMO∈ A

∑

=
β
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∑ Zai,β
scphf ,A

p
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p

MO∈A

∑Upi
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




a

vir∈A

∑
i
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CMO∈ A

∑

+
νµ

AO∈A

∑
β
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∑ ∂
∂xK

µ | β |ν cµacνiZai,β
scphf ,A

a
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∑
i
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∑

=
b

vir∈A

∑Uba
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β
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∑ Zbi,β
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∑











+

a
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∑
p

MO∈A

∑ Spa
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β
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CMO∈ A

∑










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+
i
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∑
b
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xK A

a

vir  ∈ A

∑
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∑ Zai,β
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β

{x,y,z}
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j
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CMO∈ A

∑












+
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∑ U ji
xK A

a
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∑
β
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∑ Zai,β
scphf ,A j | β | a







+
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∑
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a
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∑
i
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∑

 

(S2.14) 

The coefficients of the response matrices can be combined, and the non-response terms 

can be combined to simplify the term, as shown below.  
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β

{x ,y,z}

∑ Zai,β
scphf ,A ∂

∂xK

a | β | i( )
a

vir∈A

∑
i

 occ
CMO∈ A

∑

= NRA,xK

pol ,dipole +
ab

vir∈A

∑Uab
xK ALab

dipole +
a

vir∈A

∑
k
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CMO∈A

∑ Uak
xK ALak

dipole +
ki

occ  
CMO  ∈A

∑ Uki
xK ALki

dipole

 

(S2.15) 

where NRA,xK

pol ,dipole contains all the non-response terms and Ldipole holds the coefficients of 

the response matrices.  

 

Supporting Information Section 3: Details of the dispersion derivative 

Fock derivatives: 

The terms involving the Fock derivatives in the dispersion derivative are the same 

as the terms involving the Fock derivatives for the polarization derivative in Appendix 

D3, with different coefficients. The term in the polarization derivative was written as

FF(β ,{Zai,β
scphf ,A},{Ubi

βA}). Then, the terms in the dispersion derivative can be written as 

FF(f *β,{−

2 a | β | i

+
c

vir∈A

∑
k

occ
CMO∈A

∑ Hai,ck
(1) Zck

βA(iω f )
















},{Zbi,ω f ,β

stdcphf ,A})

+FF(f *β,{−
k

occ
CMO∈A

∑
c

vir∈A

∑ Hck ,ai
(2) Zck ,ω f ,β

stdcphf ,A},{Zbi
βA (iω f )})

=NRA,xK

disp,F  + 
ab

vir∈A

∑Uab
xK ALab

disp,F +
p

vir∈A

∑
k

occ
CMO∈A

∑ Upk
xK ALpk

disp,F +
ij

occ
CMO∈A

∑ Uij
xK ALij

disp,F

 

(S3.1) 
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A’ derivative: 

These are the same as the derivatives in Section D3, with different coefficients. 

The term in the polarization derivative was written as AD(β,{Zai,β
scphf ,A},{Ubj

βA}). Then, the 

terms in the dispersion derivative can be written as: 

AD(f *β,{−
k

occ
CMO∈A

∑
c

vir∈A

∑ Hck ,ai
(2) Zck ,ω f ,β

stdcphf ,A},{Zbj
βA(iω f )})

=NRA,xK

disp, ′A  +
ab

vir∈A

∑Uab
xK ALab

disp, ′A +
a

vir∈A

∑
k

occ
CMO∈A

∑ Uak
xK ALak

disp, ′A +
ki

occ
CMO∈A

∑ Uki
xK ALki

disp, ′A

 

(S3.2) 

Dipole integral derivative: 

These are the same as the derivatives in Appendix D Section 3, with different 

coefficients. 

β

{x ,y ,z}

∑ ∂
∂xK

a | β | i( )2 −
f
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∑
j

occ
CMO∈ A

∑
b
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∑ Hbj ,ai
(2 ) Zbj ,ω f ,β

stdcphf ,A










a

vir ∈ A

∑
i
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CMO∈ A

∑

= NRA,xK

disp,dipole +
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vir∈A

∑Uab
xK ALab

disp,dipole +
a

vir∈A

∑
k

occ
CMO∈A

∑ Uak
xK ALak

disp,dipole +
ki

occ  
CMO  ∈A

∑ Uki
xK ALki

disp,dipole

  

(S3.3) 

where NRA,xK

disp,dipole  contains all the non-response terms and Ldisp,dipole holds the coefficients 

of the response matrices. 

 

 

 

 

 



 104

(aj|bi)-(ab|ij) derivative: 

This is similar to the A’ derivative.  

ab

vir∈A

∑
ij

occ
CMO∈A

∑
∂

∂xK

((aj | bi) − (ab | ij))
β

{ x ,y ,z}

∑
f
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
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


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
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MO∈A

∑U pa

xK ( pj | bi) − ( pb | ij)( )

+
p

MO∈A
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
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


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

 

(S3.4) 

where the integral derivative has been expanded, and the coefficient of Zstdcphf,A defined as 

Dbj , fβ
stdcphf ,A ≡ − 2 b | β | j +

c

vir∈A

∑
k

occ
CMO∈A

∑ Hbj ,ck
(1) Zck

βA (iω f )














 

The relationships in Section A2 can be used to manipulate the response matrices, 

and the terms can be expanded in the AO basis, in a similar manner to how the A’ 

derivative was expanded. Eq. (S3.4) can then be written as shown below. 
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
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
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
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+
c

vir∈A
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β
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N ,D ,β f




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






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







+
i

occ
CMO∈A

∑
k

occ
CMO∈A

∑ Uki
xK A

a

vir∈A

∑
β

{x ,y ,z}

∑
f

12

∑ Dai , fβ
stdcphf ,ACak

M ,Z ,β f +
a

vir∈A

∑
β

{x ,y,z}

∑
f

12

∑ Zai ,ω f ,β
stdcphf ,ACak

N ,D ,β f
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(S3.5) 

 

where 
Cci

M ,Z ,β f ≡
ξσ

AO∈A

∑ cξccσ i
µν

AO∈A

∑ (ξν | µσ )M µν
Z ,β f

Cci
N ,D,β f ≡

ξσ

AO∈A

∑ cξccσ i
µν

AO∈A

∑ (ξν | µσ )Nµν
D,β f

 

and 

M µν
Z ,β f ≡

b

vir∈A

∑
j

occ
CMO∈A

∑ cµbcν jZbj ,ω f ,β
stdcphf ,A −

b
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∑
j

occ
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∑ cνbcµ jZbj ,ω f ,β
stdcphf ,A













Nµν
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b
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∑
j

occ
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∑ cµbcν j Dbj , f ,β
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b

vir∈A

∑
j
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∑ cνbcµ j Dbj , f ,β
stdcphf ,A












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To simplify Eq. (S3.5), the non-response terms are combined, and the coefficients of the 

response matrices are combined, as shown below: 

ab

vir∈A

∑
ij

occ
CMO∈A

∑ ∂
∂xK

((aj | bi)− (ab | ij))
β

{x,y,z}

∑
f

12

∑ − 2 b | β | j +
c

vir∈A

∑
k

occ
CMO∈A

∑ Hbj ,ck
(1) Zck

βA(iω f )




























Zai ,ω f ,β
stdcphf ,A














=

= NRA,xK

disp,H ( 2 )
 +

ab

vir∈A

∑Uab
xK ALab

H (2 )
+

a

vir∈A

∑
k

occ
CMO∈A

∑ Uak
xK ALak

H ( 2 )
+

ki

occ
CMO∈A

∑ Uki
xK ALki

H (2 )

 

(S3.6) 

where NRA,xK

disp,H ( 2 )
 is the collection of all non-response terms, and LH(2) is the collection of 

the coefficients of the response matrices. 

 

Supporting Information Section 4: Details about the product rule used in the Coulomb 

derivative 

In the Coulomb gradient, the product rule can be expressed as: 

∂ mITαβ ...γ
IJ( )

∂xK∈A

= mI ∂Tαβ ...γ
IJ

∂xK∈A

+Tαβ ...γ
IJ ∂mI

∂xK∈A







 

(S4.1) 

where mI is an arbitrary multipole moment and Tαβ ...γ
IJ is a multipole moment interaction 

tensor of the appropriate rank. After substituting Eq. (S4.1) into Eq. (4.6): 

∂EAB
Coul

∂xK∈A

=
I

A

∑
J

B

∑ qJ ∂ qI( )
∂xK∈A

T IJ + qJqI ∂ T IJ( )
∂xK∈A

− qJ ∂ µα
I( )

∂xK∈A

Tα
IJ

α

x ,y,z

∑ − qJµα
I ∂ Tα

IJ( )
∂xK∈A

+ ...
α

x ,y,z

∑











 

(S4.2) 
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CHAPTER 3. MULTIPOLE MOMENTS IN THE EFFECTIVE FRAGMENT 

POTENTIAL METHOD 

A paper to be submitted for publication at a later date 

Colleen Bertoni, Alston J. Misquitta, Lyudmila V. Slipchenko, Mark S. Gordon 

 

Abstract 

In the effective fragment potential (EFP) the Coulomb potential is represented 

using a set of multipole moments generated by the distributed multipole analysis (DMA) 

method. Misquitta and Stone recently developed the basis space-iterated stockholder 

atom (BS-ISA+DF) method to generate multipole moments. This study benchmarks the 

accuracy of the EFP interaction energies using sets of multipole moments generated from 

the BS-ISA+DF method, and several versions of the DMA method (such as analytic and 

numeric grid-based), and with varying basis sets. Both methods lead to reasonable 

results, although using certain implementations of the DMA method can result in large 

errors. With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error 

(MUE) of the EFP method for the S22 data set using BS-ISA+DF –generated multipole 

moments and DMA-generated multipole moments (using a small basis set and the 

analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. The MUE accuracy is 

on the same order as MP2 and SCS-MP2. The MUEs are lower than in a previous study 

benchmarking the EFP method without the EFP charge transfer term, demonstrating that 

the charge transfer term increases the accuracy of the EFP method. Regardless of the 

multipole moment method used, it is likely that much of the error is due to an insufficient 
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short-range electrostatic term (i.e. charge penetration term), as shown by comparisons 

with symmetry-adapted perturbation theory. 

1. Introduction 

A main goal of quantum chemistry is to perform fast and accurate calculations on 

challenging systems, such as solvated proteins or reactions occurring in solution, and to 

provide insight into the interactions between molecules. Although there are methods that 

give highly accurate results for small molecules, it is difficult to extend these methods to 

larger species and still retain their accuracy. Thus, there has been considerable effort to 

develop more computationally efficient methods. In particular, interaction energy 

methods have had success in describing non-covalent interactions of large systems in a 

computationally efficient manner. Interaction energy methods have their roots in the 

splitting of a system into non-interacting fragments (usually molecules), and then using 

perturbation theory to calculate the interaction energy between the fragments. For long-

range interactions, like Coulomb, polarization, and dispersion, the perturbation between 

the fragments is the Coulomb operator. The first order perturbation energy is the 

Coulomb energy, while polarization and dispersion are each part of the second order 

energy. The Coulomb field is typically used in calculating the Coulomb energy, and can 

also be used in other terms, like the polarization term. Since the Coulomb field can be 

used in multiple terms, it is essential to represent it accurately and in a computationally 

inexpensive manner.  

To represent the Coulomb field, many interaction energy methods use a multipole 

moment expansion, which arises from a Taylor expansion of the classical Coulomb 

energy expression. However, using a multipole moment expansion in which each 
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fragment has a single monopole, dipole, quadrupole, etc., has poor convergence 

properties. That is, if the fragments are too close together, the expansion no longer 

converges. Additionally, if the fragments are close, there is an attractive charge 

penetration energy that is not accounted for in the multipole moment expansion. To solve 

the convergence problem, a distributed multipole moment expansion can be used, where 

there is a monopole, dipole, quadrupole, etc., for an arbitrary number of sites distributed 

throughout each fragment. Then, the issue is how to calculate the distributed multipole 

moments themselves. Calculating the distributed multipoles typically depends on 

partitioning the molecular charge density among atom centers, bond midpoints, or other 

sites in the fragment. There has been much work on how to assign electronic charge 

densities to atoms. Several examples are: Mulliken charges1, the Stone distributed 

multipole moment analysis (DMA) 2, the atoms-in-molecules method by Bader3, the 

Hirschfeld-Stockholder method4, the iterated Hirschfeld method5, the atoms-in-molecules 

method by Popelier6, the iterated Stockholder atom method by Lillestonen and 

Wheately7, and the recently developed basis-space Iterated Stockholder Atoms with 

density fitting 8  (BS-ISA+DF) method by Misquitta and Stone.  

The Effective Fragment Potential (EFP) method is an interaction energy method 

that has been extensively developed. 9 10 Several terms in the EFP method (Coulomb 

energy, polarization energy, charge transfer energy) use a set of multipole moments to 

represent the Coulomb field. Thus, an accurate set of multipole moments is important to 

ensure that the total interaction energy is accurate. Currently, the multipole moments are 

calculated with the Stone DMA. As discussed later, the DMA method can be unstable 

depending on the basis set, although a numerical version has been developed to overcome 
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this problem. 11 The BS-ISA+DF method has been shown to be accurate and have 

promising convergence properties, and it is worthwhile to explore how the EFP method 

performs if the multipole moments generated by the BS-ISA+DF method are used.  

In this work, the EFP energy with BS-ISA+DF-generated multipole moments 

(referred to here as EFP/ISA) and the EFP energy with DMA-generated multipole 

moments (referred to here as EFP/DMA) are compared. The structure of this paper is: 

Section 2 discusses the theory behind EFP, DMA, and BS-ISA+DF; Section 3 discusses 

the computational details used in the comparisons; and Section 4 discusses the 

comparison and results. 

 

2. Theoretical Background 

This section summarizes the EFP method, with a particular emphasis on the terms 

that use multipole moments, and background on the DMA and the BS-ISA+DF methods. 

2.1 The Effective Fragment Potential method 

The EFP method calculates the intermolecular interaction energy between 

molecules. In the EFP method, molecules are modeled with potentials with functional 

forms derived from first principles, and parameters that are generated from an ab initio 

calculation. 

There are five terms in the Effective Fragment Potential: Coulomb, polarization, 

exchange repulsion, dispersion, and charge transfer. As shown in the equation below, 

polarization is a many-body term, while the other four terms are pairwise additive.  

 
EAB

EFP = EAB
Coul + EAB

exchange-repulsion + EAB
dispersion + EAB

charge-transfer

Etotal
EFP = EAB

EFP

A>B
∑ + Etotal

polarization   (1) 
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Each of the five terms depends on parameters generated from an ab initio 

calculation. The Coulomb, polarization, and charge transfer energy terms depend on a set 

of multipole moments to describe the electrostatic potential of the molecule. The 

polarization energy also depends on a set of distributed polarizability tensors generated 

from the Coupled Perturbed Hartree-Fock (CPHF) equation, which are distributed 

throughout the molecule using a set of localized molecular orbitals (LMOs). In addition 

to the multipole moments, the charge transfer energy depends on the basis set, the Fock 

matrix and a set of canonical virtual orbitals or valence virtual orbitals (VVOs).12 13 The 

exchange-repulsion energy depends on the set of LMOs, the basis set, and the Fock 

matrix. The dispersion energy depends on a set of distributed dynamic polarizability 

tensors generated from the dynamic analog of the CPHF equation and are distributed 

throughout the molecule using a set of LMOs.  

An EFP energy calculation requires two steps. The first is an ab initio calculation 

on an isolated molecule performed to generate the parameters for the molecule of interest. 

Then, these parameters are used in the EFP energy terms. 

The next three sections consider the three EFP terms that depend explicitly on the 

set of multipole moments (Coulomb, polarization, and charge transfer). 

 

2.1.1 Coulomb energy term 

The Coulomb interaction energy term between two molecules A and B can be 

calculated by a distributed multipole moment expansion, as shown below. 
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 EAB
Coul =

I

A

∑
J

B

∑

qJqIT IJ − qJ

α

x ,y,z

∑ µα
I Tα

IJ + 1
3

qJ

α ,β
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∑ Θαβ
I Tαβ

IJ − 1
15

qJ

α ,β ,γ

x ,y,z

∑ Ωαβγ
I Tαβγ

IJ

+ µα
J

α

x,y,z

∑ qITα
IJ − µα

J

α ,β

x ,y,z

∑ µβ
ITαβ

IJ + 1
3

µα
J

α ,β ,γ

x ,y,z

∑ Θβγ
I Tαβγ

IJ

+ 1
3

Θαβ
J qITαβ

IJ − 1
3

Θαβ
J µγ

ITαβγ
IJ + 1
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Θαβ

J

α ,β ,γ ,δ
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∑ Θγδ
I Tαβγδ

IJ

α ,β ,γ
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∑
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∑

+ 1
15
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J qITαβγ

IJ
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































  (2) 

I (J) runs over all multipole moment expansion points in A (B), qI  is the monopole on 

site I, µ I  is the dipole on site I, Θ I  is the quadrupole on site I, Ω I is the octopole on site 

I and Tαβ ...ν
IJ = ∇α∇β ...∇ν

1
RIJ

 is the multipole interaction tensor for sites I and J. RIJ is the 

distance between sites I and J, where RIJ=RJ-RI in vector notation. 

 

Charge penetration for the Coulomb energy term 

Since the multipole moment expansion does not take into account the energy 

lowering when the charge densities of fragments overlap, a charge penetration term or a 

damping term is added.  There are two types of damping for the Coulomb energy in the 

EFP method.14 One is an exponential damping term, which is not used here, so is not 

considered further. The second is based on the overlap of LMOs on the two fragments, 

and is used to calculate an approximation to the charge-penetration energy. The charge-

penetration energy for fragments A and B is calculated as shown below.  
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 EAB
chgpen =

l

LMO∈A

∑
m

LMO∈B

∑ −2Slm
2

Rlm

1
−2 ln Slm







  (3) 

where Slm is the overlap integral between l and m, and Rlm is the distance between the 

LMO centroid of l ( l x l  for the x-position) and the LMO centroid of m ( m x m for 

the x-position). 

 

2.1.2 Polarization energy term 

The polarization energy is a many-body energy term that is due to the generation 

of induced dipoles on all of the fragments in the total electric field (static and induced 

fields) of all the other fragments. The polarization interaction energy term is modeled by 

placing dipole polarizability tensors on LMO centroids. Then, in the presence of the static 

and induced electric field on the other fragments, the dipole polarizability tensors 

generate induced dipoles. The induced dipoles are iterated to self-consistency, and then 

used in the calculation of the polarization energy. The static electrostatic field is modeled 

by the same distributed multipole moment expansion as in the Coulomb term.  

The induced dipole on fragment A on LMO centroid l in the  direction can be 

written as: 

 pl ,β
A =

γ

{x ,y,z}

∑ α l ,βγ El ,γ
0,A +

B≠A

fragments

∑
κ

{x ,y,z}

∑ Tγκ
lm pm,κ

B

m

LMO∈B  

∑





  (4) 

where  

 Tγκ
lm is the dipole-dipole interaction tensor for sites l and m 

α l,βγ  is the dipole polarizability tensor on LMO l  

El ,γ
0,A is the static electric field on fragment A on LMO centroid l in the  direction 

β

γ
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The static electric field is expressed using the same distributed multipole moments as in 

the Coulomb energy term: 

 El,γ
0,A =

B≠A

fragments

∑
I

B

∑ElI ,γ
0 =

B≠A

fragments

∑
I

B

∑ qITγ
lI + µα

I

α

{x ,y,z}

∑ Tγα
lI + 1

3
Θαβ

I

αβ

{x ,y,z}

∑ Tγαβ
lI





  (5) 

where I runs over the multipole moment expansion points in fragment B. 

The polarization interaction energy term is shown below: 

 E pol =
A

fragments

∑ − 1
2 n

LMO∈A

∑
α

{x ,y,z}

∑ En,α
0,A pn,α

A







   (6) 

Damping for the polarization energy term 

The polarization energy is damped by a Tang-Toennies style Gaussian formula14 

15. The damping is accomplished by multiplying the multipole interaction tensors by a 

damping function, and then rewriting the induced dipoles in terms of the damped 

multipole interaction tensors. The damping function is

Fdamp,lI
pol = 1− exp −RlI

2 fg( ) 1+ RlI
2 fg( ), where the terms f and g are constants usually set 

to 0.6. The damped polarization energy equations are similar to the non-damped version 

but with damped multipole moment interaction tensors replacing regular multipole 

moment interaction tensors. Defining Tαβ ...ν
lI ,damped ≡ Fdamp,lI

pol Tαβ ...ν
lI , the damped static electric 

field can be written as: 

 El,γ
0,A,damped =

B≠A

fragments

∑
I

B

∑ElI ,γ
0,damped =

B≠A

fragments

∑
I

B

∑ qITγ
lI ,damped + µα

I

α

{x ,y,z}

∑ Tγα
lI ,damped + 1

3
Θαβ

I

αβ

{x,y,z}

∑ Tγαβ
lI ,damped





 

 (7) 
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Following the same substitution, the damped induced dipoles, pl ,β
A,damped , can then be 

written as: pl ,β
A,damped =

γ

{x ,y,z}

∑ α l ,βγ El ,γ
0,A,damped +

B≠A

fragments

∑
κ

{x,y,z}

∑ Tγκ
lm ,damped pm ,κ

B,damped

m

LMO∈B  

∑





 

 

2.1.3 Charge transfer energy term 

The charge transfer energy can be thought of as a stabilizing energy due to the 

interaction of the occupied orbitals on one molecule with the virtual orbitals on another 

molecule.13 16 The EFP charge transfer term was derived using a second-order 

perturbative approach beginning with an antisymmetrized wavefunction at the Hartee-

Fock level of theory. 

In the derivation, approximations are used to simplify the second-order energy 

expression. One approximation is to represent the electrostatic potential as a multipole 

moment expansion, using the same mulitpole moments as in the Coulomb and 

polarization terms. The EFP charge transfer energy of molecule A induced by molecule B 

is:

 

CT A(B) = 2
i

occ 
CMO∈A

∑
n

vir∈B

∑ 1

1−
m

all 
MOs∈A

∑ Snm
2

Vin
EFB −

m

all 
MOs ∈A

∑ SnmVim
EFB

Fii
A −Tnn( ) × Vin

EFB −
m

all
MOs∈A

∑ SnmVim
EFB +

j

occ
CMO∈B

∑ Sij Tnj −
m

all
MOs∈A

∑ SnmTmj





























 

(8) 

where Tnj  is the kinetic energy integral between orbitals n and j, Fii
A  is the diagonal Fock 

matrix element at orbital i in the canonical MO basis for fragment A, and Vin
EFPB is the 
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matrix element of the molecular electrostatic potential of fragment B between orbitals i 

and n. This can written as: 

 

Vin
EFPB =

I

B

∑ i qIT̂ I −
β

{x ,y,z}

∑ µβ
I T̂β

I + 1
3 βγ

{x,y,z}

∑ Θβγ
I T̂βγ

I





n

=
I

B

∑ dr1∫ χ i * r1( ) qIT Ir1 −
β

{x ,y,z}

∑ µβ
ITβ

Ir1 + 1
3 βγ

{x,y,z}

∑ Θβγ
I Tβγ

Ir1






χn r1( )

  (9) 

where I runs over the multipole moment expansion points in fragment B, r1(= x1, y1, z1) is 

the position of the electron, χ i (ri ) is molecular orbital i written out explicitly. The right 

hand side of Eq. (9) is evaluated in a similar manner to the standard nuclear attraction 

integral. 

While there is not unanimous agreement regarding the importance of the charge 

transfer interaction energy 10 17, the EFP method predicts relatively large charge transfer 

contributions for polar and ionic complexes, and systems with hydrogen bonds13. 18 

 

2.2 Multipole moment methods 

 2.2.1 Distributed Multipole Analysis 

In the DMA method, the molecular charge density is partitioned, and each piece 

of charge density is represented by its own multipole moment expansion. The partitioning 

can be done in basis function space or real space. Basis function space DMA is denoted 

here as DMA0 or analytical DMA. 

For restricted Hartee-Fock (RHF), the molecular charge density can be written in 

terms of primitive Gaussians: 
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ρ(r) = Pµν
µ ,ν

AOs

∑ χµ (r − rI )χν (r − rJ )

= Pµν
µ ,ν

AOs

∑ ′Put gu (r − rI ,αu )
t

PG∈µ

∑
u

PG∈ν

∑ gt (r − rJ ,α t )

= Pµν ′Put gut (r − rK ,(αu +α t )) 
t

PG∈µ

∑
u

PG∈ν

∑
µ ,ν

AOs

∑

  (10) 

where χµ (r − rI )  is a basis function composed of a sum of primitive Gaussians (PGs) 

centered on atom I, gu (r − rI ,αu )  is a primitive Gaussian centered on atom I with 

contraction exponent α u , ′Put  is the primitive Gaussian cross term that contains the 

product of the contraction coefficients for PGs u and t, Pµν is the RHF density matrix 

element for AOs µ and ν, and rK = αurI +α trJ

α u +α t

 . 

As shown in the last equality in Eq. (10), the charge density is a sum over pieces 

of charge density (the term in the brackets) centered at the Gaussian overlap point rk.  

Each piece of charge density can be described by a set of multipole moment integrals at 

the overlap point associated with the piece of charge density. A certain number of 

expansion sites are chosen in the molecule, such as all atom centers or all atom centers 

and bond midpoints. Then, the origins of the multipole moment integrals are shifted to 

the nearest expansion site.  

It is well known that the DMA0 multipole moments are unstable with respect to 

expanding the basis set11. Although the multipole moments from different basis sets 

should produce similar electrostatic potentials, the values for the multipole moments 

themselves can be basis set dependent. Consequently, the appropriate termination of the 

multipole expansion (e.g., at quadrupoles or octopoles) may depend on the basis set used. 

Thus, even though the electrostatic potential should be the same, the error due to the 
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multipole truncation can vary. This is especially the case for basis sets with diffuse 

functions or with high angular momenta, since these functions tend to make a larger 

contribution to the higher moments and therefore the truncation point is important.19 2 

Because of the instability with respect to basis set size, real space DMA was developed.  

Real space DMA involves modifying the DMA0 algorithm such that if the 

exponent of a product of primitives (e.g., αu +α t ) is smaller than a chosen cutoff, a grid-

based numerical integration scheme is used to partition the contribution to the multipole 

moments. If the exponent is greater than the cutoff, DMA0 is used to partition the 

contribution to the multipole moments. Ref. 11 recommends a cutoff value of 4, and so the 

method is referred to here as DMA4. 

It is also important to note that when the molecules are too close to each other, the 

multipole moment expansion of the Coulomb energy between them can diverge. How 

close the molecules can get to each other before the expansion diverges depends on the 

allocation algorithm mentioned above, and on the expansion points chosen. The greater 

the number of expansion points, the more accurately the multipole expansion mimics the 

correct quantum density. So, the fewer the number of expansions points used, the more 

likely it is that the expansion will diverge at a given distance.   

 

2.2.2 BS-ISA+DF 

 In the implementation of the BS-ISA+DF method used in this work, the molecular 

charge density is partitioned among the atoms, and a set of multipole moments is 

calculated for each atom. Instead of directly partitioning the density as in Eq. (10), the 
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BS-ISA+DF approach is to first define atoms so that the atoms are as spherical as 

possible.  

The BS-ISA+DF method has its origins in the Hirschfeld stockholder method for 

calculating atomic densities. In the Hirschfeld stockholder method, the charge density for 

each atom a is given as: 

 ρ a(r) = ρ(r) wa(r)

b

atoms

∑wb(r)
  (11) 

where ρ(r) is the total molecular density and wa (r)  is a function that describes the shape 

of the atom a. The form of the shape function wa (r)  varies by method. An insight by 

Lillestolen and Wheately was to use the spherical average of the atomic density as the 

shape function, which avoids creating a shape function for each atom, and results in an 

equation that must be solved iteratively.7 The BS-ISA+DF method follows an analogous 

iteration scheme, but in basis space. That is, in the BS-ISA+DF method, the terms in Eq. 

(11) are expanded in a basis, as shown below.  

 
ρ a (r) = ck

a

k
∑ ζ k

a (r)

wa (r) = ck
a

k∈s−func
∑ ζ k ,s

a (r)
  (12) 

where ck
a  is a coefficient associated with atom a and is determined in the iterative 

procedure, ζ k
a(r) is a basis function centered on atom a, k runs over all basis functions, 

ζ k ,s
a (r)  is an s-type function on atom a, and k ∈s  runs over all s-functions in the basis.  

To determine the atomic density, the coefficients are calculated using an iterative 

procedure that minimizes a BS-ISA+DF functional. The functional and minimization 

algorithm have been developed to make the procedure stable, accurate, and reliably 
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convergent. Additionally, to ensure that the tail regions of the atomic densities are well-

described, the shape functions are modified so that they decay exponentially. 

Once the atomic densities are obtained, multipole moment integrals can be 

computed. BS-ISA+DF has many appealing properties, such as having a more systematic 

convergence with respect to multipole moment rank than DMA0 or DMA4. However, the 

DMA methods are more computationally efficient and algorithmically simpler. 8 

 

3. Computational Details 

As mentioned in the Background section, the EFP method has several parameters 

determined from an ab initio MAKEFP calculation. For the EFP/ISA and EFP/DMA 

calculations, all parameters except for the multipole moments are the same. That is, the 

static polarizability tensors, dynamic polarizability tensors, basis set, localized molecular 

orbitals, Fock matrix elements, and virtual molecular orbital coefficients are the same for 

the EFP/ISA and EFP/DMA calculations. All parameters except the multipole moments 

were generated using the 6-311++G(3df,2p) basis set. The EFP calculations, and 

MAKEFP calculations were done with the GAMESS20 21 package. Several integral 

cutoffs were changed from the default values (ITOL was set to 24, ICUT to 12), and the 

SCF density convergence was tightened to 10-7. Overlap-based damping was used to 

account for charge-penetration effects in the Coulomb energy. The localization method 

used was Boys22, 23 and the set of all canonical virtual orbitals was used for the charge 

transfer term. 

The ISA multipole moments were generated with CamCASP 5.8.24 The main 

basis set was aug-cc-pVTZ25 26, the aux/ISA basis set was RI-MP2 aug-cc-pVTZ with 
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ISA-set28 for s-functions (except for ethyne, which used RI-MP2 aug-cc-pVQZ with 

ISA-set2 for s-functions), and the ISA algorithm used was A+DF with ζ=0.1. Densities 

were from the PBE0 functional/AC. The asymptotic correction (AC) is the Casida-

Salahub version of AC present in NWChem27 with default (un-optimized) shift. 

NWChem was used for these calculations.  

To consider the effects of basis set and the different DMA algorithms, the DMA 

multipole moments were generated in four different ways: 

1. Following a previous paper that measured the accuracy of EFP against 

other force field methods28, the DMA multipole moments were generated 

using HF/6-31+(d) for non-aromatic molecules (ammonia, ethene, ethyne, 

formamide, formic acid, hcn, methane, water), and HF/6-31(d) for 

aromatic molecules (2-aminopyridine, 2-pyridoxine, adenine, benzene, 

indole, phenol, pyrazine, thymine, uracil). The original analytic DMA 

procedure (DMA0) was used. This method is referred to as EFP/DMA0-

small, since it uses a smaller basis set to generate the multipole moments. 

2. DMA0 multiple moments were computed using HF/6-311++G(3df,2p). 

This method is referred to as EFP/DMA0. 

3. DMA4 multiple moments were computed using the HF/6-

311++G(3df,2p). This method is referred to as EFP/DMA4. 

4. The DMA multipole moments were computed using HF/6-

311++G(3df,2p), with DMA0 for non-aromatic molecules and DMA4 for 

aromatic molecules. This method is referred to as EFP/DMA-mixed. 



 128

The geometries at which ISA multipole moments and EFP potentials were 

generated are from the S22 dataset complexes. The geometry for ammonia, ethene, 

formic acid, phenol, pyrazine, water, and formamide is the geometry of the first monomer 

in the S22 dataset dimer for that molecule. The geometry of uracil is the geometry of the 

first monomer in the uracil H-bonded dimer. The geometry of benzene is the geometry of 

the first monomer in the benzene dimer T-shaped complex. The geometry of indole is the 

geometry of the indole in the benzene-indole T-shaped complex. The geometry of 

methane is the geometry of the methane in the benzene-methane dimer. The other 

molecules show up only once in the S22 dataset, and the S22 geometries are used for 

those molecules. Since the geometry of adenine and thymine in the Watson-Crick 

complex and the stacked complex differ significantly, the ISA multipole moments and 

EFP potentials were generated at both geometries, and used in the corresponding EFP 

calculations. 

The DMA method can use the set of all atom centers or the set of all atoms 

centers and bond midpoints as expansion points for the multipole moments. For 

EFP/DMA0-small, calculations were done with the set of all atom centers (denoted as 

EFP/DMA0-small-atoms) and with the set of all atom centers and bond midpoints as 

expansion points (denoted as EFP/DMA0-small). For all other EFP calculations using 

DMA, the expansion points are the set of all atom centers and bond midpoints. That is, 

six types of calculations are compared: EFP/ISA, EFP/DMA0-small, EFP/DMA0-small-

atoms, EFP/DMA0, EFP/DMA4, and EFP/DMA-mixed.   
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4. Results 

To test the accuracy of and compare the methods, several comparisons are 

presented here. To compare predicted geometries, the S22 complexes were geometry-

optimized using all methods. The resulting geometries are compared to the corresponding 

S22 geometries to assess the quality of geometry prediction. Since the EFP fragments are 

internally frozen, the geometry optimization changes only the angles and the distances 

between fragments. Next, the total interaction energy at each optimized geometry is 

compared to the CCSD(T)/CBS binding energy at the standard S22 geometry to assess 

the quality of the interaction energy calculation for each method. In addition, the EFP 

energy components that depend on the multipole moments (Coulomb energy, polarization 

energy, and charge transfer energy) are compared to the corresponding SAPT2+(3)/aug-

cc-pVTZ (referred to as “SAPT” in this work) energy components. For this comparison, 

the EFP and SAPT calculations were done at the S22 geometries. The SAPT values are 

from the Addition/Correction to Ref. 28. 

The equivalent SAPT terms used in the comparison are [See Ref. 29 and 30 for the 

notation]:  

 

ESAPT
Coulomb = Eelst, resp

(10) + Eelst, resp
(12) + Eelst, resp

(13)

ESAPT
exchange-repulsion = Eexch

(10) + Eexch
(11) + Eexch

(12)

ESAPT
induction = Eind, resp

(20) + Eexch-ind, resp
(20) + t Eind

(22) + t Eexch-ind
(22) +δEHF

(2)

ESAPT
dispersion = Edisp

(20) + Edisp
(30) + Edisp

(21) + Edisp
(22) + Eexch-disp

(20)

  (13) 

 

The sum of the EFP polarization and charge transfer energy is compared to the SAPT 

induction energy.  
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To help gain insight into the differences in the dimers in the S22 dataset, the 

dimers are split into hydrogen bonding, dispersion dominated, and mixed types, 

following a previous EFP study. 28 

 

Predicted Geometries of the S22 Complexes 

 In the S22 dataset, the T-shaped benzene dimer is constrained to C2V symmetry, 

so this prescription is followed for the EFP methods. Table 1 shows the differences 

relative to the S22 values for specific atom-atom distances. The mean unsigned error 

(MUE) is also given in the table. In Table 1, X…RD denotes the distance between the 

atom X and the center of the plane made by the benzene ring. (The plane is calculated 

using the first three atoms of the benzene in the dimer.) R1 and R2 are the vertical and 

horizontal distances between the planes of the rings, respectively. (See Figure 1.) The 

notation in Table 1 is similar to that in Ref. 28.  

 

Figure 1. A definition of the R1 and R2 values.  
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Table 1: Differences (Å) in distance between the ab initio S22 geometry and the EFP 

geometries after optimization  

  distancea ∆EFP/IS
A 

∆EFP/DMA0
-small 

∆EFP/DMA
0-small-
atoms 

∆EFP/DMA0 ∆EFP/DMA
4 

∆EFP/D
MA-

mixed 
Hydrogen-

Bonded 
Complexes 

  

ammonia 
dimer N1···N5 -0.02 -0.1 -0.17 0 0.16 0 

water dimer O1···O4 0 -0.07 -0.12 0.05 0.04 0.05 
formic acid 

dimer O2···O8 0.11 0.05 -0.04 0.09 0.2 0.09 

formamide 
dimer O2···N9 0.1 -0.03 -0.03 0.04 0.2 0.04 

uracil H-
bonded dimer 

N1···O2
3 0.08 0.04 0.01 0.02 0.18 0.18 

2-pyridoxine 2-
aminopyridine 

N1···N1
5 0.04 -0.18 -b -0.06 0.22 0.22 

adenine–
thymine WC 

N1···N2
0 0 -0.18 -b -0.06 0.23 0.23 

MUE for 
Hydrogen-

Bonded 
Complexes 

  0.05 0.09  0.07e 0.05 0.18 0.12 

Dispersion-
Dominated 
Complexes  

methane dimer C1···C6 -0.12 -0.08 -0.12 -0.12 0.04 -0.12 

ethene dimer C1···C7 -0.07 -0.09 -0.16 -0.1 0.1 -0.1 
benzene–
methane C1···RDc 0.21 0.23 0.21 -0.11 0.21 0.28 

benzene stack R1/R2d 0.43/-0.42 0.44/-0.3 0.41/-0.15 0.44/0.11 0.48/-0.59 0.48/-
0.59 

pyrazine dimer R1/R2 d 0.28/-0.11 0.3/-0.23 0.27/-0.12 0.35/-0.32 0.33/-1.04 0.33/-
1.04 

uracil stack R1/R2 d 0.18/-0.02 0.14/-0.02 0.13/-0.01 0.06/0.92 0.19/0.03 0.19/0.03 

indole–benzene 
stack R1/R2 d 0.38/0 0.35/0.28 0.33/0.26 -b 0.44/-0.36 0.44/-

0.36 

adenine–
thymine stack R1/R2 d 0.24/-0.2 0.22/-0.07 0.2/0 0.02/0.18 0.22/-0.22 0.22/-

0.22 

MUE for 
Dispersion-
Dominated 
Complexes 

  0.20 0.21 0.18 0.25e 0.33 0.34 
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Table 1 continued 
Mixed 

Complexes     

ethene–ethyne C8···C2 0.16 0.07 0.08 0.06 0.19 0.06 
benzene–water O1···RDc 0.1 0.07 -0.04 -0.02 0.16 0.19 

benzene–
ammonia N···RDc 0.15 0.17 0.11 -0.02 0.16 0.01 

benzene–HCN C14···R
Dc 0.24 0.15 0.09 0.17 0.21 0.25 

benzene dimer 
T-shaped 

C1··· 
RDc 0.30 0.30 0.30  0.25 0.30 0.30 

indole–benzene 
T-shaped 

N21···R
Dc 0.23 0.21 0.15 -0.05 0.26 0.26 

phenol dimer O7···O2
0 0.07 0.03 -0.01 0.07 0 0 

MUE for 
Mixed 

Complexes 
  0.18 0.14 0.11 0.06 0.14 0.11 

Overall MUE  0.16 0.16 0.14 e 0.15 e 0.25 0.23 
 

aAtoms are numbered as in Ref. 28. bThe geometry optimization did not complete, since 

the induced dipole procedure failed to converge. c The distance between the atom X and 

the center of the plane made by the benzene ring, where the plane is calculated using the 

first three atoms of the benzene.d R1 and R2 are the vertical and horizontal distances 

between the planes of the rings, respectively. e The MUE is computed without the cases 

where the induced dipole procedure does not converge. 

 

∆X is the difference between method X and the ab initio result. The values of the 

distances are in Section 1 of the Supporting Information. 

Among the hydrogen-bonding complexes, the error for all methods is less than 

0.25 Å, which is in good agreement with the S22 geometries. The EFP/ISA, EFP/DMA4, 

and EFP/DMA-mixed methods have mostly positive differences, meaning that they 

overestimate the intermolecular separation. The methods that used a smaller basis set to 

calculation the multipole moments, the EFP/DMA0-small and EFP/DMA0-small-atoms 

methods, mostly have negative differences, meaning that they underestimate the 
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intermolecular distance. A previous study used EFP/DMA0-small without charge transfer 

to optimize the S22 set, and found that the intermolecular separations were 

overestimated. Thus the effect of including the EFP charge transfer is to decrease the 

distances, which is expected, since charge transfer is typically an attractive interaction. 

Use of the smaller basis set might make the interaction too attractive, since the distance is 

underestimated. The induced dipole procedure did not converge when using the 

EFP/DMA0-small-atoms method for two aromatic complexes, possibly because there are 

not enough expansion points.  

In the dispersion-dominated complexes, the distances in the methane and ethene 

dimers are underestimated by all methods except for EFP/DMA4, which overestimates 

the distance. All of these errors are less than 0.3 A, which is in good agreement with the 

S22 geometries. In the aromatic ring complexes, all methods overestimate the distance 

between the ring planes, which implies that at least the sign of this distance is not 

dependent on the multipole moments used. For the EFP/ISA method and the methods that 

used a smaller basis set for the DMA multipole moments, the parallel shift of the ring 

planes (R2) is underestimated for all complexes except for indole-benzene. The induced 

dipole procedure did not converge when using the EFP/DMA0 method for the indole-

benzene stack complex. Although overall the error is low, the methods using DMA 

multipole moments generated from large basis sets performed the worst for the aromatic 

complexes. The EFP/DMA4 and EFP/DMA-mixed methods (which are the same in this 

case), predict the R2 value for pyrazine dimer to be about 1 Å different from the S22 

geometry, and the EFP/DMA0 method predicts the R2 value for the uracil dimer 0.9 Å 

different from the S22 geometry.  
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In the mixed complexes, the EFP/ISA, EFP/DMA0-small, EFP/DMA4, and 

EFP/DMA4-mixed methods slightly overestimate the distance for all complexes. The 

EFP/DMA0 and EFP/DMA0-small-atoms methods underestimate the distance for certain 

complexes and underestimate the distance for others. Overall, all methods are in good 

agreement with the S22 dataset, with the maximum error not exceeding 0.3 Å.  

 For all three interaction energy types and for all methods studied here, the overall 

mean unsigned error is under 0.35 Å. In two of the methods, EFP/DMA0-small-atoms 

and EFP/DMA0 the self-consistent induced-dipole procedure does not converge during 

one step of the geometry optimization for at least one complex. The possible causes for 

the divergence will be discussed in a later section. As can be seen in Section 1 of the SI, 

there were several geometries that differed from the S22 geometry by a small rotation, 

but the difference in the CCSD(T) energy between the different rotations are also very 

small. 

  

Total interaction energies of the S22 Complexes 

The total interaction energies of the methods at the optimized geometries are 

compared to CCSD(T)/CBS values 31,28 to test the accuracy of the energy calculations. 

The total EFP energy values are provided in Section 2 of the Supporting Information. 

Figures 2, 3, and 4 show the differences in interaction energies between each 

method and CCSD(T)/CBS for each category of interaction energy. Note that if geometry 

optimization failed due to non-convergence of the induced dipole procedure, the 

corresponding interaction energies are not shown in the figures. To summarize the 

results, the MUE for each method is shown in Table 2.  
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Table 2: MUE for all methods with respect to CCSD(T)/CBS (kcal/mol) 

  
EFP/ISA EFP/DMA-

mixed 
EFP/DMA0-
small-atoms EFP/DMA0 EFP/DMA

4 

EFP/D
MA0-
small 

MUE(HB)  1.297 2.771 2.854* 0.715 3.741 1.672 
MUE(DISP)   0.429 0.666 0.279 0.957* 0.555 0.331 

MUE(MIXED
)   0.668 0.282 0.413 0.752 0.195 0.199 

MUE(overall)  0.781 1.214 0.970* 0.808* 1.454 0.716 
* The cases for which the induced dipole procedure does not converge are omitted 

 

For the hydrogen-bonding complexes, the EFP/DMA0 method has the smallest 

MUE, while the EFP/DMA0-small-atoms has the lowest MUE for the dispersion-

dominated species. The smallest MUE for the mixed system is obtained with both the 

EFP/DMA0-small and the EFP/DMA4 methods. For the dispersion-dominated species 

and the mixed species, all of the MUEs are below 1 kcal/mol, so all methods work very 

well for these two types of dimers. The errors in interaction energies for the hydrogen 

bonded species range from 0.7 kcal/mol (DMA0) to 3.7 kcal/mol (DMA4).  The EFP/ISA 

and EFP/DMA4 methods consistently overestimate the energy, while the EFP/DMA0-

small and EFP/DMA0-small-atoms methods consistently underestimate the energy. The 

EFP/DMA0 method underestimates and overestimates the energy for various complexes. 

The EFP/DMA-mixed method also shows positive and negative differences.  The 

EFP/DMA4 and EFP/DMA-mixed methods have the largest individual errors, 

overestimating the energy by up to 6.8 kcal/mol on the adenine-thymine Watson-Crick 

complex in particular. As noted above, the optimized geometries for the EFP/DMA4 and 

EFP/DMA-mixed methods also overestimate the distances between all the dimers. 

Overall, the hydrogen bonding complexes are the major source of error for most 

methods. For the EFP/DMA0-small-atoms and EFP/DMA0 methods a small number of 
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the induced dipoles do not converge during the optimizations. The divergence is likely 

due to the multipole moment expansion being truncated too soon, which is easily 

remedied by adding additional multipole moments.  

 

EFP energy components at S22 geometry 

To gain insight into the interaction energy errors, the EFP energy decomposition 

at the initial S22 geometry for each method is compared to the SAPT energy 

decomposition at the S22 geometry. Tables 3, 4, and 5 present the MUEs for the 

Coulomb term, the sum of the polarization and charge transfer terms, and the total 

interaction energy term, respectively. Figures 5, 6, and 7 show the energy differences 

between each method and the SAPT energies. Section 2 of the Supporting Information 

contains the SAPT and EFP interaction energy components for the S22 complexes. 

 

Table 3: MUE for the EFP Coulomb term (kcal/mol) 

  
EFP/ISA EFP/DMA-

mixed 
EFP/DMA0-

small-atoms EFP/DMA0 EFP/DM
A4 

EFP/DMA0-
small 

MUE(HB)  2.485 3.596 1.806 0.863 5.453 1.631 

MUE(DISP
)   2.560 1.487 2.431 3.105 1.514 2.475 

MUE(MIX
ED)  0.960 0.897 0.614 0.806 0.816 0.553 

MUE(over
all)   2.027 1.970 1.654 1.677 2.545 1.595 
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Overall, the three EFP/DMA0 methods have the smallest MUEs, all within 0.1 

kcal/mol of each other and below 2 kcal/mol. The EFP/ISA and EFP/DMA-mixed 

methods have MUEs that are only slightly larger, and the MUE for the EFP/DMA4 

method is about 0.5 kcal/mol larger than the others. The latter is still reasonable. For the 

hydrogen-bonded dimers, the general trend for all methods is to overestimate the 

Coulomb term. The EFP/DMA0 method has the lowest MUE, with a value less than 0.9 

kcal/mol. The error in the Coulomb energy could be from the multipole moment 

expansion or the charge penetration term. The largest errors are likely due to the charge 

penetration term not accounting for all charge penetration, especially for particularly 

strong interactions. However, the EFP/DMA4 and EFP/DMA-mixed methods have very 

large positive errors. .  

For the dispersion-dominated dimers, all methods have errors of less than 0.9 

kcal/mol for the complexes without ring systems, agreeing well with SAPT. However, all 

methods have large positive errors for the ring systems. For most of the methods and 

complexes, the positive error can be explained by an insufficient charge penetration term. 

Although the multipole moment expansion part of the EFP Coulomb term is often 

positive, the SAPT Coulomb energy is negative, so the charge penetration term is 

necessary to change the sign of the EFP Coulomb energy. The largest individual error is 

that for the indole-benzene stacked structure, with the EFP/DMA0 method. As mentioned 

above, during the geometry optimization of the benzene-indole stacked structure using 

the EFP/DMA0 method, the induced dipole procedure did not converge. A reason for the 

non-convergence could be the large error in the Coulomb term seen here. 
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 For the mixed complexes, the EFP Coulomb energy is similar to the SAPT 

Coulomb energy, with the MUE for all methods less than 1 kcal/mol. The Coulomb 

energies are relatively small for the mixed complexes. 

There are several interesting comparisons to make. As may be seen by comparing 

the EFP/DMA0-small and EFP/DMA0-small-atoms methods, having expansion points on 

only atoms results in similar Coulomb energies to having expansion points on atoms and 

bond midpoints. The numeric EFP/DMA4 method has similar or smaller errors than the 

EFP/DMA0 method, except for the hydrogen-bonded complexes, for which the reverse is 

true. The EFP/ISA method consistently slightly overestimates the Coulomb energy, 

which points towards a consistent error due to a lack of charge penetration.  
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Table 4: MUE for the EFP Polarization and Charge transfer term (kcal/mol) 

  
EFP/ISA EFP/DMA-

mixed 

EFP/DMA0
-small-
atoms 

EFP/DMA0 EFP/DMA4 EFP/DMA0
-small 

MUE(HB)  2.098 2.416 0.871 1.641 3.366 0.705 

MUE(DISP
)   0.395 0.916 0.177 1.097 0.973 0.366 

MUE(MIX
ED) 0.313 0.494 0.228 0.418 0.639 0.196 

MUE(over
all)  0.911 1.259 0.414 1.054 1.628 0.420 

 
Now, consider the polarization + charge transfer (P+CT) term (Table 4). Overall, 

the MUEs for the EFP/ISA, EFP/DMA0-small-atoms and EFP/DMA0-small methods are 

all less than 1 kcal/mol, and the MUE for the EFP/DMA0 method is only slightly larger 

than 1 kcal/mol. For the hydrogen-bonded complexes, all the methods except 

EFP/DMA0-small and EFP/DMA0-small-atoms generally overestimate the P+CT 

interaction energy. This could be due to an underestimation of the charge penetration 

energy. Since the polarization term uses the static electric field generated by the 

multipole moments, and since the multipole moment expansion is not accurate at short 

distances, the error might be due to the multipole moment expansion not properly 

describing short-range interactions. While the EFP Coulomb term includes a charge 

penetration term to offset this problem, the EFP polarization term includes a 

multiplicative damping term, and the EFP charge transfer term does not include any 

damping. It is possible that the polarization damping term does not account for all of the 

effects of charge penetration and that the lack of CT damping results in an 
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underestimation of the energy. Almost all methods have large errors for the formic acid 

dimer, with EFP/DMA4 having the largest error.  This might be due to the multipole 

expansion produced by DMA4 being truncated too soon. The potential could easily be 

improved by including higher-rank multipoles. 

For the dispersion-dominated dimers, all methods are in good agreement with the 

SAPT induction term for the complexes without ring systems, with the error being less 

than 0.5 kcal/mol for all methods. The errors are larger for the ring-systems.  

All methods agree very well with the SAPT induction energy for the mixed 

complexes. The errors are generally small, less than 1.2 kcal/mol for all methods and 

complexes. 

Overall, all methods have relatively small errors when compared to the SAPT 

induction term, with the MUEs less than 1.7 kcal/mol for all methods. As in the previous 

section, there are several interesting comparisons to make. For example, the EFP/DMA0-

small method gives consistently better results than EFP/DMA0, which might be due to a 

basis set effect, as mentioned above, or due to the multipole moment expansion for 

EFP/DMA0 being truncated too soon. The EFP/ISA method has consistent small 

overestimations, unlike any of the other methods.  
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Table 5: MUE for the total EFP energies (kcal/mol) 

  
EFP/ISA EFP/DMA-

mixed 
EFP/DMA0-
small-atoms EFP/DMA0 EFP/DMA4 

EFP/DM
A0-

small 

MUE(HB) 1.939 3.773 2.105 0.612 6.215 1.315 

MUE(DIS
P)   2.109 1.619 1.852 2.069 1.504 2.022 

MUE(MI
XED) 1.272 1.308 0.399 0.825 0.998 0.535 

MUE(over
all)  1.788 2.205 1.470 1.210 2.842 1.324 

 
As described in Ref. 28, the exchange-repulsion term is generally underestimated, 

partially cancelling out the overestimation of the Coulomb and polarization term. The 

dispersion interaction energy is generally similar to the SAPT dispersion energy. The 

EFP/DMA4 method has the largest errors, mostly due to overestimating the interaction 

energy in the Coulomb and induction terms in the hydrogen-bonded dimers. The 

EFP/DMA0 method has the lowest overall MUE, partially due to error cancelation. Most 

methods have the largest errors in the hydrogen-bonded and dispersion-dominated 

complexes, suggesting problems with the electrostatic potential, either in the charge 

penetration term or in the multipole moment expansion.  

 

5. Conclusion 

An important strength of the EFP method is that, because there are no empirically 

fitted parameters, the method can systematically be improved. As demonstrated in this 

work, it is straightforward to use a different set of multipole moments in the calculation, 

and still get accurate and reasonable results. As long as a set of multipole moments is 
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provided that describes the electrostatic potential of a molecule reasonably well, the EFP 

method will provide reasonable results. 

Of the methods considered here, the EFP/ISA and EFP/DMA0-small methods 

have the lowest overall error compared to the CCSD(T)/CBS results. The MUE for the 

S22 complexes is 0.78 and 0.72 kcal/mol for EFP/ISA and EFP/DMA0-small, 

respectively. The MUEs are similar to the MUEs for MP2 and SCS-MP2 when compared 

to CCSD(T)/CBS (0.88 and 0.8 kcal/mol, respectively). A similar study of the 

EFP/DMA0-small accuracy in which the charge transfer term was not included had a 

MUE of 0.9 kcal/mol, so including charge transfer increased the accuracy. 28  

Using a larger basis set to calculate the multipole moments with the DMA0 or 

DMA4 method results in a higher MUE than the DMA0-small method, but overall 

provides reasonable results, with MUEs of 0.808, 1.454, and 1.214 kcal/mol compared to 

the CCSD(T)/CBS results for the EFP/DMA0, EFP/DMA4, and EFP/DMA-mixed 

methods, respectively. In the case of the EFP/DMA0 method, the induced dipole 

procedure did not converge during the course of the indole-benzene stack geometry 

optimization. This is thought to be because the DMA0 multipole moment expansion is 

truncated too soon for indole or benzene with the basis set used. This is easy to remedy 

by including a higher multipole moment rank in the multipole moment expansion.  

Computing the multipole moments using the smaller basis set and expansion 

points only on atom centers (EFP/DMA0-small-atoms) results in a similar MUE to using 

bond midpoints and atom centers as expansion points, but in two cases results in the 

induced dipole procedure not converging during the geometry optimization. Fewer 

expansion points leads can lead to divergence of the multipole moment expansion at short 
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ranges. Although the EFP/ISA method also only uses atom centers as expansion points, it 

does not have induced dipole procedure divergence. Thus, the convergence of the 

multipole moments in the ISA procedure seems to be more robust than in DMA, as noted 

in Ref. 8. 

Overall, EFP/ISA method is a promising method. As noted in Ref. 8, the ISA 

multipole moments tend to systematically converge the multipole moment expansion at a 

lower term than DMA methods, which is likely why the EFP/ISA method has low errors, 

and consistently slightly overestimates the SAPT components. The main downside to 

using ISA multipole moments is that the procedure to generate them is much more 

computationally expensive than the procedure used to generate the DMA multipole 

moments.  

Analyzing the energy components at the S22 geometry shows that many of the 

methods predict that the energies are too repulsive. Thus, it is clear that the short-range 

penetration effects (charge penetration term, the electric field damping) might be 

underestimated in the EFP method. Additionally, for certain molecules, the multipole 

moment expansion generated with DMA0 or DMA4 for the larger basis sets does not 

seem to be converged for the level of truncation used. Additional multipole moments can 

be straightforwardly included in the multipole moment expansion. 
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Supporting Information 
 
Supporting Information Section 1: Distance information for optimized S22 geometries 

 
As mentioned in the main text, some geometries differed from the S22 geometry 

by a small rotation. The minimum energy geometry found for the benzene-methane dimer 

using EFP/DMA0 has the three C-H bonds on the methane pointing at the center of the 

benzene ring (“tridentate” geometry), which is qualitatively different from the S22 

geometry, which only has one C-H bond pointing at the center of the benzene ring 

(“monodentate”).32 The difference between tridentate and monodentate is a rotation of the 

methane. The minimum energy geometry for benzene-ammonia using EFP/DMA-mixed 

has two hydrogen atoms on the ammonia pointing at the center of the benzene ring, 

which is also different than the monodentate ab initio S22 geometry. The difference in 

the CCSD(T) energy at the basis set limit between the monodentate and bidentate 

geometries is 0.15 kcal/mol, which is very small.33 

 
Table S1: Distances in ab initio and EFP-optimized S22 geometries, Å 

  distance ab initio  EFP/IS
A 

EFP/DMA0
-small 

EFP/DMA0
-small-
atoms 

EFP/DMA
0 EFP/DMA4 EFP/DM

A-mixed 

Hydrogen-
Bonded 

Complexes 
                

ammonia 
dimer N1···N5 3.16 3.14 3.06 2.99 3.16 3.32 3.16 
water 
dimer O1···O4 2.91 2.91 2.84 2.79 2.96 2.95 2.96 
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Table S1 continued 
formic 

acid dimer O2···O8 2.67 2.78 2.72 2.63 2.76 2.87 2.76 

formamide 
dimer O2···N9 2.86 2.96 2.83 2.83 2.9 3.06 2.9 

uracil H-
bonded 
dimer 

N1···O2
3 2.8 2.88 2.84 2.81 2.82 2.98 2.98 

2-
pyridoxine 

2-
aminopyri

dine 

N1···N1
5 2.9 2.94 2.72 -- 2.84 3.12 3.12 

adenine–
thymine 

WC 

N1···N2
0 2.86 2.86 2.68 -- 2.8 3.09 3.09 

Dispersion
-

Dominated 
Complexes 

  

methane 
dimer C1···C6 3.72 3.6 3.64 3.6 3.6 3.76 3.6 

ethene 
dimer C1···C7 3.84 3.77 3.75 3.68 3.74 3.94 3.74 

benzene–
methane C1···RD 3.72 3.93 3.95 3.93 3.61 3.93 4 

benzene 
stack R1/R2 3.36/1.7 3.79/1,2

8 3.8/1,4 3.77/1.55 3.8/1.81 3.84/1.11 3.84/1.11 

pyrazine 
dimer R1/R2 3.3/1.22 3.58/1.1

1 3.6/0.99 3.57/1.1 3.65/0.9 3.63/0.18 3.63/0.18 

uracil 
stack R1/R2 3.12/0.54 3.3/0.52 3.26/0.52 3.25/0.53 3.18/1.46 3.31/0.57 3.31/0.57 

indole–
benzene 

stack 
R1/R2 3.26/1.27 3.64/1.2

7 3.61/1.55 3.59/1.53 -- 3.7/0.91 3.7/0.91 

adenine–
thymine 

stack 
R1/R2 3.15/0.34 3.39/0.1

4 3.37/0.27 3.35/0.34 3.17/0.52 3.37/0.12 3.37/0.12 

Mixed 
Complexes 

   
  

ethene–
ethyne C8···C2 3.88 4.04 3.95 3.96 3.94 4.07 3.94 

benzene–
water O1···RD 3.41 3.51 3.48 3.37 3.39 3.57 3.6 

benzene–
ammonia N···RD 3.57 3.72 3.74 3.68 3.55 3.73 3.58 

benzene–
HCN 

C14···R
D 3.39 3.63 3.54 3.48 3.56 3.6 3.64 
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Table S1 continued 
benzene 
dimer T-
shaped 

C1··· RD 3.51 3.81 3.81 3.81 3.76 3.81 3.81 

indole–
benzene T-

shaped 

N21···R
D 3.24 3.47 3.45 3.39 3.19 3.5 3.5 

phenol 
dimer 

O7···O2
0 2.89 2.96 2.92 2.88 2.96 2.89 2.89 

 
Supporting Information Section 2: Interaction energies for optimized geometries and S22 

geometries 

Table S2: Comparison of CCSD(T) energies and EFP energies for optimized geometries 
(kcal/mol) 

 CCSD(T) EFP/ISA EFP/DMA0-
small 

EFP/DMA0-
small-atom EFP/DMA0 EFP/DMA4 

EFP/D
MA-

mixed 
Ammonia 

dimer -3.15 -2.91 -4.15 -4.69 -3.08 -2.21 -3.08 

Water 
Dimer -5.07 -4.86 -7.11 -7.65 -4.96 -4.98 -4.96 

Formic Acid -18.81 -16.91 -21.85 -23.94 -19.24 -15.18 -19.24 
Formamide 

dimer -16.11 -14.87 -19.76 -19.78 -17.68 -11.80 -17.68 

uracil-hbond -20.69 -18.93 -21.44 -22.03 -22.35 -16.36 -16.36 
2-pyridoxine 

2-
aminopyridi

ne 

-17 -15.21 -17.62 - -18.07 -10.97 -10.97 

Adenine-
Thymine 

WC 
-16.74 -14.78 -17.35 - -16.83 -9.88 -9.88 

Methane 
dimer -0.53 -0.63 -0.63 -0.62 -0.70 -0.47 -0.70 

ethene-
dimer -1.48 -1.94 -2.06 -2.48 -2.16 -1.31 -2.16 

Benzene 
methane -1.45 -1.39 -1.36 -1.40 -1.81 -1.43 -1.16 

Benzene 
dimer stack -2.62 -2.70 -2.34 -2.44 -3.32 -2.49 -2.49 

pyrazine-
dimer -4.2 -4.21 -4.25 -4.26 -4.01 -5.48 -5.48 
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Table S2 continued 
uracil-stack -9.74 -8.41 -9.26 -9.51 -9.83 -10.17 -10.17 

Indole 
benzene 

stack 
-4.59 -4.50 -4.11 -4.17 - -4.51 -4.51 

Adenine 
thymine 

stack 
-11.66 -10.37 -11.07 -11.46 -16.18 -13.92 -13.92 

ethene-
ethyne -1.5 -1.16 -1.58 -1.52 -1.59 -1.27 -1.59 

Benzene 
water -3.29 -2.68 -3.53 -4.09 -4.12 -3.58 -2.83 

Benzene 
ammonia -2.32 -1.92 -2.21 -2.45 -2.70 -2.33 -2.14 

benzene-hcn -4.55 -3.75 -4.95 -5.54 -4.21 -4.88 -3.82 
Benzene 
dimer t-
shaped 

-2.71 -2.24 -2.36 -2.39 -2.92 -2.81 -2.81 

Indole 
benzene t-

shape 
-5.62 -4.94 -5.51 -5.99 -8.40 -5.22 -5.22 

Phenol 
Dimer -7.09 -5.72 -6.98 -7.34 -6.44 -7.07 -7.07 

 
Table S3: Comparison of SAPT and EFP Coulomb energy (kcal/mol) 

 SAPT EFP/ISA EFP/DMA0-
small 

EFP/DMA
0-small-

atom 
EFP/DMA0 EFP/DMA4 

EFP/D
MA-

mixed 
Ammonia 

dimer -4.89 -3.85 -5.10 -5.22 -4.27 -3.50 -4.27 

Water 
Dimer -8.1 -7.24 -9.29 -9.29 -7.91 -7.40 -7.91 

Formic Acid -32.22 -28.73 -31.66 -31.18 -31.42 -25.52 -31.42 
Formamide 

dimer -25.36 -22.37 -24.55 -23.90 -24.21 -18.39 -24.21 

uracil-hbond -29.79 -26.76 -27.23 -26.24 -28.70 -23.48 -23.48 
2-pyridoxine 

2-
aminopyridi

ne 

-26.91 -23.63 -23.57 -23.93 -25.42 -18.94 -18.94 
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Table S3 continued 
Adenine-
Thymine 

WC 
-26.58 -23.86 -23.84 -24.49 -25.88 -18.44 -18.44 

Methane 
dimer -0.15 0.00 -0.04 0.03 -0.10 0.05 -0.10 

ethene-
dimer -1.13 -0.70 -0.79 -1.00 -0.89 -0.25 -0.89 

Benzene 
methane -0.96 -0.41 -0.39 -0.41 -0.29 -0.64 -0.08 

Benzene 
dimer stack -2.54 0.05 0.39 0.40 0.50 0.24 0.24 

pyrazine-
dimer -4.27 -1.66 -1.73 -1.59 -1.64 -2.80 -2.80 

uracil-stack -8.52 -3.86 -4.54 -4.68 -3.52 -6.34 -6.34 
Indole 

benzene 
stack 

-4.31 -0.25 0.37 0.34 6.58 -0.51 -0.51 

Adenine 
thymine 

stack 
-10.66 -5.24 -6.01 -6.16 -7.97 -10.17 -10.17 

ethene-
ethyne -1.77 -1.61 -2.08 -1.95 -2.10 -1.87 -2.10 

Benzene 
water -2.71 -2.04 -2.96 -3.32 -3.23 -3.60 -2.51 

Benzene 
ammonia -1.74 -1.19 -1.61 -1.80 -1.84 -1.97 -1.30 

benzene-hcn -3.84 -3.15 -4.03 -4.67 -3.03 -4.26 -2.60 
Benzene 
dimer t-
shaped 

-2 -1.01 -1.09 -1.13 -1.53 -1.50 -1.50 

Indole 
benzene t-

shape 
-4.25 -3.00 -3.52 -3.82 -6.10 -3.63 -3.63 

Phenol 
Dimer -8.57 -6.15 -7.21 -7.25 -7.01 -5.61 -5.61 
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Table S4: Comparison of SAPT induction energy and the sum of EFP polarization and 
charge transfer energy (kcal/mol) 

 SAPT EFP/ISA EFP/DMA0-
small 

EFP/DMA
0-small-

atom 
EFP/DMA0 EFP/DMA4 

EFP/D
MA-

mixed 
Ammonia 

dimer -0.91 -0.99 -0.95 -1.26 -0.77 -0.50 -0.77 

Water 
Dimer -2.45 -2.41 -2.58 -2.95 -1.85 -1.49 -1.85 

Formic 
Acid -18.94 -14.34 -16.56 -19.47 -14.07 -11.14 -14.07 

Formamide 
dimer -11.26 -9.03 -12.23 -12.93 -10.50 -7.40 -10.50 

uracil-
hbond -14.01 -11.01 -13.21 -15.04 -12.86 -10.04 -10.04 

2-
pyridoxine 

2-
aminopyrid

ine 

-12.65 -10.26 -12.41 -13.90 -11.25 -9.39 -9.39 

Adenine-
Thymine 

WC 
-11.88 -9.54 -11.50 -12.66 -9.31 -8.58 -8.58 

Methane 
dimer -0.03 -0.04 0.00 -0.05 0.00 0.06 0.00 

ethene-
dimer -0.23 -0.07 -0.07 -0.18 -0.06 0.16 -0.06 

Benzene 
methane -0.31 -0.19 -0.14 -0.20 -0.32 0.00 -0.17 

Benzene 
dimer stack -0.93 -0.56 -0.42 -0.64 -0.18 -0.12 -0.12 

pyrazine-
dimer -1.02 -0.37 -0.23 -0.59 -0.69 0.15 0.15 

uracil-stack -1.75 -1.02 -1.20 -1.33 -1.67 -0.19 -0.19 
Indole 

benzene 
stack 

-1.48 -1.02 -1.18 -1.41 -5.71 -0.34 -0.34 

Adenine 
thymine 

stack 
-2.49 -1.82 -2.06 -2.52 -5.67 -0.17 -0.17 

ethene-
ethyne -0.57 -0.33 -0.36 -0.42 -0.34 -0.15 -0.34 

Benzene 
water -1.00 -1.03 -0.99 -1.26 -0.62 -0.27 -0.52 
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Table S4 continued 
Benzene 
ammonia -0.53 -0.47 -0.42 -0.57 -0.42 -0.08 -0.31 

benzene-
hcn -1.91 -1.35 -1.98 -2.07 -2.23 -1.47 -1.99 

Benzene 
dimer t-
shaped 

-0.70 -0.30 -0.36 -0.43 -0.52 -0.13 -0.13 

Indole 
benzene t-

shape 
-1.95 -1.85 -1.99 -2.45 -2.64 -1.27 -1.27 

Phenol 
Dimer -3.22 -2.41 -2.63 -3.01 -2.19 -2.03 -2.03 

 
Table S5: Comparison of SAPT and EFP total interaction energy (kcal/mol) 

 SAPT EFP/ISA EFP/DMA0-
small 

EFP/DMA
0-small-

atom 
EFP/DMA0 EFP/DMA4 

EFP/D
MA-

mixed 
Ammonia 

dimer -3.06 -2.81 -4.01 -4.44 -2.99 -1.97 -2.99 

Water 
Dimer -4.81 -4.80 -7.01 -7.38 -4.90 -4.03 -4.90 

Formic 
Acid -19.67 -16.21 -21.35 -23.78 -18.62 -9.79 -18.62 

Formamide 
dimer -16.44 -14.30 -19.68 -19.74 -17.62 -8.70 -17.62 

uracil-
hbond -21.38 -18.51 -21.19 -22.03 -22.30 -14.26 -14.26 

2-
pyridoxine 

2-
aminopyrid

ine 

-17.34 -14.85 -16.93 -18.79 -17.64 -9.29 -9.29 

Adenine-
Thymine 

WC 
-17.21 -14.85 -16.68 -18.48 -16.53 -8.36 -8.36 

Methane 
dimer -0.53 -0.62 -0.62 -0.60 -0.68 -0.46 -0.68 

ethene-
dimer -1.46 -1.92 -2.02 -2.34 -2.11 -1.26 -2.11 

Benzene 
methane -1.46 -1.18 -1.11 -1.19 -1.19 -1.22 -0.83 

Benzene 
dimer stack -2.67 -0.31 0.17 -0.05 0.51 0.31 0.31 

pyrazine-
dimer -4.47 -1.79 -1.71 -1.93 -2.08 -2.41 -2.41 
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Table S5 continued 
uracil-stack -10.72 -8.29 -9.15 -9.43 -8.61 -9.94 -9.94 

Indole 
benzene 

stack 
-4.83 -1.00 -0.54 -0.80 1.13 -0.58 -0.58 

Adenine 
thymine 

stack 
-13.12 -8.38 -9.39 -10.00 -14.96 -11.66 -11.66 

ethene-
ethyne -1.48 -1.07 -1.56 -1.50 -1.57 -1.14 -1.57 

Benzene 
water -3.30 -2.27 -3.15 -3.79 -3.05 -3.08 -2.24 

Benzene 
ammonia -2.33 -1.55 -1.91 -2.25 -2.16 -1.94 -1.50 

benzene-
hcn -4.86 -3.19 -4.69 -5.43 -3.92 -4.40 -3.26 

Benzene 
dimer t-
shaped 

-2.90 -1.52 -1.66 -1.77 -2.25 -1.84 -1.84 

Indole 
benzene t-

shape 
-5.79 -4.19 -4.85 -5.61 -8.07 -4.24 -4.24 

Phenol 
Dimer -7.20 -5.16 -6.44 -6.87 -5.80 -4.25 -4.25 
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CHAPTER 4. THE MELTING TEMPERATURE OF WATER WITH THE EFFECTIVE 

FRAGMENT MOLECULAR ORBITAL METHOD 

1. Introduction 

 Water is one of the most common solvents, both in nature and in experimental 

chemistry. Understanding water-water and water-solute interactions is vital to 

understanding the role water plays in chemical reactions. Because of this, water has been 

studied extensively theoretically, and much effort has been put into developing accurate 

and computationally efficient force fields for water. Since much of chemistry happens in 

water or a solvent, it is important to be able to model the solvents accurately in 

simulations.  

 An important benchmark of a force field is how well it predicts the phase diagram 

of water. For example, knowing the predicted melting temperature of ice enables one to 

run simulations using the proper phase of water. Many methods have been used to 

calculate the melting temperature of ice-Ih as a benchmark and to be sure that simulations 

are run in the right phase. Density functional theory (DFT) tends to predict melting 

temperatures (Tm) for ice-Ih that are too high. DFT with the PBE functional predicts a 

melting temperature of 417 ± 3 K, DFT/BLYP predicts a melting temperature of 411 ± 4 

K, and DFT-BLYP with dispersion corrections predicts a melting temperature of 360 ± 2 

K. 1 2. Many classical force fields underestimate the melting temperature. For instance, 

the melting temperatures predicted by TIP3P3, SPC/E4,  TIP4P 3, and TIP4P-Ew 5 are 

145.6 K, 215.0 K, 245.5 K, respectively.6 Other classical force fields predict a very 

accurate melting temperature, often because the method is explicitly parameterized to do 

so. The TIP4P/Ice method 7 predicts a melting temperature of 272.2 K.  
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 There has been much effort to increase the accuracy of force fields by using 

parameters and functional forms generated from ab initio calculations. For instance, the 

TTM3-F 8, iAMEOBA 9, and Sum of Interactions Between Fragments Ab initio 

computed (SIBFA)10 methods have been developed to include parameterization from ab 

initio calculations. The methods of interest in this study are the Effective Fragment 

Potential (EFP) and the Effective Fragment Molecular Orbital (EFMO) methods. The 

EFP method is a rigid-body model that is derived from first principles and employs no 

empirically fitted parameters. An EFP is generated from ab initio calculations. The EFP 

method provides interaction energies among fragments, based on five interaction energy 

terms: two-body Coulomb, dispersion, charge-transfer, and exchange-repulsion, and 

many-body polarization. The general expression for the EFP interaction energy can be 

written as follows: 

EEFP =
A<B

fragments

∑ EAB
Coulomb + EAB

dispersion + EAB
charge-transfer + EAB

exchange-repulsion( ) + Epolarization

 

(1) 

The Coulomb term relies on multipole moments generated from the charge 

density of an ab initio calculation. The exchange-repulsion term relies on a set of 

localized molecular orbitals (LMOs), the Fock matrix, and the basis set used in the ab 

initio calculation. The charge transfer term relies on the Fock matrix, the basis set, and a 

set of canonical virtual orbitals or valence virtual orbitals (VVOs). The dispersion term 

relies on a set of dynamic polarizability tensors calculated from the time-dependent 

couple perturbed Hartree-Fock equation and distributed onto the centroids of the LMOs. 

The polarization term relies on a set of static polarizability tensors calculated from the 

coupled perturbed Hartree-Fock equations and distributed onto the centroids of the LMOs 
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and a set of multipole moments. More details can be found in Refs. 11 and 12. 

Importantly, an EFP can be generated easily and for any molecule since there are no 

fitted parameters. 

The EFP method predicts the melting temperature of ice to be approximately 381 

K.13 Thus, the predicted temperature is about 100 K larger than the experimental value. 

There are at least two possible reasons why the melting temperature is too low. One is 

that the EFP method uses rigid fragments, and another is that it does not account for 

nuclear quantum effects.14  

 The EFMO method integrates the Fragment Molecular Orbital (FMO) 15 and EFP 

methods. The EFMO method can be thought of as an extension of the FMO method, in 

which fragment-fragment interactions are accounted for by the EFP method when the two 

fragments are sufficiently far apart. Therefore, the EFMO method allows for flexible EFP 

fragments.16 17 The flexible fragment EFMO energy can be written as 

EEFMO = EA
0

A

fragments

∑ + (EAB
Coulomb + EAB

dispersion + EAB
charge-transfer + EAB

exchange-repulsion )
A>B

fragments

∑ + Etot
polarization  

(2) 

where EA
0 is the gas phase ab initio energy of a fragment. Note that typically the EFMO 

energy equation contains a term in which close dimers are computed with an ab initio 

method. However, for the purpose of this paper, Eq. (2) can be used. 

In the EFMO method, the parameters needed in the EFP method are re-generated 

on every time step, so that the method is fully flexible. The analytic gradient for the 

Coulomb, polarization, dispersion, and exchange-repulsion terms in EFMO has been 

derived and implemented. 18 The goal of the present study is to ascertain the effect of 

flexibility on the predicted melting temperature by comparing the melting temperatures 
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of ice-Ih predicted by the EFP and EFMO methods. Since the gradient for the EFMO 

charge transfer term has not been derived, the EFP and EFMO simulations are run 

without charge transfer. 

 Computer simulations can be used to calculate the predicted melting temperature 

of a material in multiple ways.19 One commonly employed method uses Gibbs-Duhem 

integration and the fact that at the melting temperature, Tm, the Gibbs free energy of the 

solid and liquid are equal ( Gliquid (P,T )T =Tm
= Gsolid (P,T )T =Tm

). The procedure used in the 

present work is the method of direct coexistence. In the direct coexistence method, the 

liquid-solid interface is directly simulated by molecular dynamics (MD) calculations. 

That is, one uses a box in which half of the box is occupied by an equilibrated solid and 

half is occupied by an equilibrated liquid, and the total system is allowed to equilibrate. 

The direct coexistence method can be implemented in various ensembles, such as NVE, 

NVT, NPT, and NPH. Each type of ensemble has particular advantages and 

disadvantages. This study uses the NPH ensemble, since it has the advantage (with 

respect to NVT and NVE) that the volume of the box can change, allowing the solid and 

liquid halves of the system to relax, and that the temperature can spontaneously adjust 

until the Gibbs free energy of the liquid and solid phases are equal. 

 

2. Computational Methods 

All simulations were done using the GAMESS software package.20 21 For the EFP 

calculations, the basis set used to generate the potential was 6-31++G(d,p). Since the 

gradient for the EFMO method does not contain terms needed for the use of bond 

midpoints in the EFP Coulomb term, only atom centers are used in generating the 
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multipole moments for the EFP potential. The gradient for the EFMO method also only 

contains terms in the multipole moment expansion through quadrupole-quadrupole. As 

mentioned above, charge transfer was not included. Thus, the EFP used here differs from 

the standard EFP used in Ref. 13, and will be referred to here as EFP-small-noct. 

Likewise, the EFMO used here will be referred to as EFMO-small-noct. Unless otherwise 

noted, all simulations in this study used a 0.35 fs time step and the Velocity-Verlet 

algorithm. 

Since the phase diagram of EFP-noct and EFMO-noct is not known, first an 

appropriate pressure is calculated by performing NVT MD simulations with 192 water 

molecules at T=250 K and a density of 1 g/ml. A 4 ps NVT simulation was performed, 

where the average pressure of the last 2 ps was ~3167 bar for the EFP-small-noct method 

and ~5149 bar for the EFMO-small-noct method. Thus, the use of 4000 bar and 6000 bar 

should be reasonable choices for calculating the melting temperature for the EFP-small-

noct and EFMO-small-noct, respectively. The pressure value is chosen so that it is at a 

higher value than the pressure at the triple point, with the rough assumption that the 

temperature at the triple point is near 250 K. As long as an ice-liquid coexistence is stable 

at the pressure, the melting temperature can be computed. 

For reference, the pressure used for calculating the melting temperature with 

DFT-BLYP and DFT-PBE was 9869.23 bar and 2467.31 bar, respectively.1 In Ref. 13, a 

pressure of 1.01 bar was used. 

 To perform the direct coexistence simulation, a box was prepared with 192 

waters, 96 in the liquid state and 96 in the solid state. The 96 liquid state water molecules 

were prepared by equilibrating 96 waters in a 13.52 × 15.61 × 14.72 Å box using an NVT 



 167

simulation for 100 ps. The 96 solid state waters were prepared according to Bernal–

Fowler rules.22 The system is prepared to match the previous EFP study that determined 

the melting temperature of ice-Ih. 13 

 To ensure that the ice-liquid interface has relaxed, and to prepare initial 

conditions for the NPH simulations, three 500 fs anisotropic NPT simulations were 

performed at T=250K, T=300K, and T=400K. The resulting geometries and velocities 

were then used as starting conditions for three NPH simulations. For the EFP-small-noct 

method, the three NPH simulations were run for ~30 ps, and for the EFMO-small-noct 

method, the three NPH simulations were run for ~10 ps.  

3. Results and Discussion 

For the EFP-small-noct method, the temperature change during the three NPH 

simulations is shown in Figure 1. All simulations were assumed to converge after 15 ps, 

and the last ~15 ps were used to calculate the average and standard deviation of the 

temperature. The averaged temperatures are 311 ± 11 K, 337 ± 13 K, 424 ± 15 K for 

simulation with initial conditions from the 250K, 300K, and 400K NPT ensembles, 

respectively. None of the temperatures agree within a standard deviation. The causes for 

the disagreement could be that the initial NPT simulations did not equilibrate, resulting in 

stress that causes the ice to melt too quickly, that the basis set differs enough from that 

used in Ref. 13 that there is no liquid-ice coexistence between 250K and 400K and a 

pressure of 4000 bar, or that it is necessary to include the charge transfer term for the 

melting temperature to be in the 250K to 400K range.  



 168

 

Figure 1: Temperature change as the EFP NPH simulations evolve, starting 
from initial conditions generated from a 250K, 300K, and 400K NPT ensembles.    

 

The temperature change during the three NPH simulations using the EFMO-

small-noct method is shown in Figure 2. As in the EFP-small-noct method, the 

simulations run at different initial temperatures did not equilibrate to the same 

temperature. 
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Figure 2: Temperature change as the EFMO NPH simulations evolve, 

starting from initial conditions generated from a 250K, 300K, and 400K NPT 
ensembles.    

 

As mentioned above, it is possible that the melting temperature was not found due 

to the small basis set used. Thus, the next step is to try the calculations with a bigger basis 

set. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

 

Much of chemistry happens in solvated systems, or with large molecules. Overall, 

the goal of this dissertation has been to work towards accurate but computationally 

inexpensive calculations on large systems. The two main ways discussed here of 

decreasing computational expense without losing too much accuracy have been 

fragmentation methods and intermolecular interaction methods.  

Central to every chapter is the Effective Fragment Potential (EFP) method, a 

sophisticated ab initio-based interaction energy method. 

Chapter 2 discussed the derivation and implementation of the gradient for the 

Effective Fragment Molecular Orbital (EFMO) method. The fully analytic gradient for 

the EFMO method differs from the gradient for the (EFP) method in that the geometry of 

each EFMO fragment is flexible. The EFMO gradient requires multiple response terms, 

arising from the derivative of the ab-initio-calculated parameters in the EFP terms. The 

accuracy of the EFMO gradient was tested by comparing the analytic gradient to the 

numeric gradient and by confirming that energy was conserved during an NVE ensemble 

molecular dynamics simulation. The gradient was parallelized using multi-level 

parallelization. Discontinuities in the potential energy surface due to cutoffs were 

discussed. 

In Chapter 3, the accuracy of the EFP interaction energies was benchmarked 

using several sets of multipole moments. The multipole moments considered were the 

basis space-based and numeric grid-based Stone Distributed Multipole Analysis (DMA), 

with varied basis sets, and the basis space-iterated stockholder atom (BS-ISA+DF) by 
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Misquitta and Stone. Both sets of multipole moments led to reasonable results. The mean 

unsigned errors with respect to the CCSD(T)/CBS interaction energies are 0.78 and 0.72 

kcal/mol for the BS-ISA+DF and DMA-generated (using a smaller basis set and the 

analytic DMA procedure) multipole moments, respectively. The MUEs are on the same 

order of accuracy as the MUEs for the MP2 and SCS-MP2 methods.  

Chapter 4 discussed computing the melting temperature of ice Ih using the EFMO 

method. The direct coexistence method using the NPH ensemble was used to calculate 

the melting temperature. A previous study determined that the melting temperature of ice 

Ih using the EFP method is ~ 380K, which is about 100 K different from the experimental 

melting temperature. However, the direct coexistence method did not find a melting 

temperature for the range of temperatures (250 to 400 K) considered in the current study. 

One potential issue is that the current study performed EFMO and EFP calculations using 

parameters generated from a smaller basis set than in the previous study. A next step is to 

try the EFMO calculations with a larger basis set.


