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CHAPTER 1. GENERAL INTRODUCTION
General Overview

Computational chemistry uses the theoretical advances of quantum mechanics and
the algorithmic and hardware advances of computer science to give insight into chemical
problems. It is currently possible to do highly accurate quantum chemistry calculations,
but the most accurate methods are very computationally expensive. Thus it is only
feasible to do highly accurate calculations on small molecules, since typically more
computationally efficient methods are also less accurate. The overall goal of my
dissertation work has been to try to decrease the computational expense of calculations
without decreasing the accuracy. In particular, my dissertation work focuses on
fragmentation methods, intermolecular interactions methods, analytic gradients, and
taking advantage of new hardware.

Fragmentation methods can decrease the computational cost of an ab initio
method drastically and retain accuracy.! Fragmentation methods typically begin by
splitting a large chemical system into many smaller parts (monomers). Using a many-
body expansion approach, one can split the total energy for the system into the sum of the
monomer energies, the sum of the dimer energies, the sum of the energies of each set of
three monomers, and so on. Thus, the energy (or any other property) for the total system
is computed by calculating energies (or properties) for monomers, dimers, etc., and
recombining the results. A calculation on the total system is never required, so the
computational cost is dramatically decreased. Additionally, fragmentation methods are

naturally parallelizable, since each monomer/dimer/etc calculation can be done



separately. Two fragmentation methods are the Fragment Molecular Orbital (FMO)
method and the Effective Fragment Molecular Orbital (EFMO) method? 3 4,

Intermolecular interaction methods usually are much less computationally
expensive than ab initio methods since molecules are typically expressed as potentials
and not wavefunctions.’ Intermolecular interaction methods can be used to provide
interaction energies and are often also used to shed light onto non-covalent interactions
and how molecules are interacting with each other. Despite the fact the non-covalent
interactions are weak compared to covalent bonds, non-covalent interactions are
responsible for hydrogen-bonding in water, the double helix in DNA, and are a potential
explanation for how geckos cling to glass walls®. Intermolecular interaction methods
range in functional form, accuracy, and computational cost. One intermolecular
interaction method is the Effective Fragment Potential (EFP) method.’

Gradients are important and necessary for any energy method. Geometry
optimizations, transition state searches, molecular dynamics simulations, response
properties, and reaction path following all rely on the derivative of the energy with
respect to the geometry. A numeric finite-difference method can be used to calculate a
gradient. However, in a numeric finite-difference procedure, each gradient element
involves doing at least two energy calculations. Thus, it is important to derive and
implement analytic gradients for a method so that more information can be calculated
from an energy method without using a computationally expensive numeric finite-
difference procedure.

All of the above methods are limited by the computational resources available,

and quantum chemistry would not be where it is today without computers. The ability to



solve a self-consistent field calculation was made possible by the efforts to build
computers in the twentieth century. However, computers have finite resources, and the
size of a feasible energy or property calculation is bounded by the resources and
hardware available and by the ability of the software to use the resources efficiently.
When there have been advances in computer hardware, there have been advances in
quantum chemistry, but only because chemists have written software to take advantage of
the available computing power. As an example, as computers moved from uniprocesser
to multiprocessor, parallel chemistry programs were written to take advantage of the
hardware, allowing larger calculations to be run. Currently, the scientific computing
platform is typically a cluster of multiprocessors connected with a network. The number
of cores and memory on the nodes varies extensively. However, additional hardware can
be incorporated, such as Graphical Processing Units and Remote Area RAM, which can
ideally be used to speed up a calculation. As one designs chemistry software, it is
important to consider what the future of scientific computing will look like, and see how
new hardware trends can be incorporated.

Together, all of the foregoing considerations support the goal of accurate and

computationally inexpensive calculations.

Dissertation Organization

Chapter 1 of the thesis provides a general overview of the parts of quantum
chemistry and the methods that are relevant to the rest of the chapters. Chapter 2
discusses the derivation and implementation of the gradient for the Effective Fragment

Molecular Orbital (EFMO) method. Chapter 3 Chapter benchmark different sets of



multipole moments in the Effective Fragment Potential (EFP) method, and Chapter 4

discusses using the EFMO method to calculate the melting temperature of ice.

Theoretical Background and Methods

Before describing the work in this dissertation, some background on quantum
chemistry is necessary. In particular, background is provided on the Schrodinger
equation, Hartree-Fock method, many-body expansions and perturbation theory, and
response and gradient theory.

In classical mechanics, the dynamics of a system—the manner in which particles
in a system progress over time—is described by Newton’s second law, F'=ma.
However, in the late 1800s and early 1900s, scientists discovered that classical mechanics
and Maxwell’s electromagnetism equations couldn’t properly describe physical
phenomena, such as how the intensity of radiation emitted from a blackbody varies with
frequency, or how the kinetic energy of an electron emitted from a metal varies with the
frequency of the incoming light that causes the electron emission. Thus, it was discovered
that microscopic “particles” have both wave-like and particle-like properties, that there
are theoretical limits on how well the position and velocity of a wave-particle can be
simultaneously known, and that classical mechanics is not applicable to microscopic
particles. A different type of mechanics, called quantum mechanics, was developed. In
quantum mechanics, the motion of a particle is governed by the time-dependent
Schrodinger equation® ?, shown in Eq. (1):

oY) -
o AreD 1)
=(T + K)¥(x,1)




W(x,?) 1s the wavefunction, or state function that contains all of the possible information

about the particle. In classical mechanics, the “state” would specify the position and
velocity of all particles in a system, and the forces acting on the particles. As mentioned
above, in quantum mechanics one cannot know with infinite precision both the position
and velocity of a particle. Thus, the wavefunction does not specify the classical “state”.

Instead, the Born density of the wavefunction gives the probability at time ¢ of finding the
particle between x and x+dx. H is the Hamiltonian operator, which is the sum of the

kinetic and potential energy operators ( Kand T , respectively). The kinetic energy

2
operator is —2—V2, where V? is the Laplacian operator, m is the mass of the particle,
m

and 7 is Planck’s constant divided by 2. The form of the potential energy operator

depends on the system.

If 7 is independent of time, then Eq. (1) can be separated into a time-dependent
equation and a time-independent equation. Most of computational chemistry works with
potential energy operators that are assumed not to change much with time. Thus, the
time-independent form of the Schrodinger equation is what most computational chemists

work with. The time-independent equation can be written as

Hy (x)= Ey(x) 2)
where W/(x) is the time-independent wavefunction, and E is the total energy of the

system.

For a molecular system, with electrons and nuclei, the Hamiltonian (in atomic units) is

electrons 1 nuclei 1 electrons nuclei electrons electrons 1 nuclei nuclei Z Z
A~B
r
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where M , is the ratio of the mass of nucleus 4 to the mass of an electron, Z,is the
atomic number of nucleus 4, r is a position vector, and r, = |rx — rv‘ The first two terms

in Eq. (3) are the kinetic energy operators for the electrons and nuclei, respectively, and
the last three terms are the Coulomb potential energy operators between electrons and
nuclei, electrons and electrons, and nuclei and nuclei, respectively.

Nuclei are much heavier than electrons, and their velocities are much smaller.
Thus, a good approximation to Eq. (3) is to assume the nuclei are stationary (have no
kinetic energy), and only solve for the electronic part of the wavefunction. This
assumption is called the Born-Oppenheimer (BO) approximation.'® Applying the Born-

Oppenheimer approximation, the Hamiltonian becomes
R electrons 1 electrons nuclei Z electrons electrons 1
- 2 4
Hyo== 2, V= 2 24+ 2 2 — 4)
2 r

i i 4 Ty i j<i Ty

and the electronic wavefunction and energy can be solved as:

Helec Welec = Eelec l//elec (5)

The energy can also be computed as an expectation value of the wavefunction:

Y

H elec

Ey = <V/ezec V/ezec> (6)
where the wavefunction is normalized. An important consequence of the BO

approximation is that, since the nuclei are stationary, ¥, . (referred to just as y from

now on) depends explicitly on the electronic coordinates, and implicitly (parametrically)

on the nuclear coordinates.

In the Born-Oppenheimer approximation, the total energy is:

nuclei nuclei
3y Lt

4 B<d Tup

E

tot

=F

elec

(7



The function E, ,, which depends explicitly on the nuclear coordinates in the second term

on the right-hand side of Eq. (7), and parametrically on the nuclear coordinates in the first
term on the right-hand side of Eq. (7), can be thought of as the potential energy surface
that the nuclei move on. Unfortunately, Eq. (5) can only be solved exactly for systems
with one electron, because the electron-electron repulsion term in the Born-Oppenheimer
electronic Hamiltonian (Eq. (4)) is not separable. Thus, approximate methods are
necessary to solve for the electronic wavefunction of molecules with multiple electrons.
One of the most common approximate methods is the Hartree-Fock method.® The
Hartree-Fock method uses several key concepts: one-electron spin-orbitals, the
antisymmetry principle, and the variational principle. In the Hartree-Fock method, the
wavefunction is an antisymmetrized product of one-electron functions (spin-orbitals). A
spin-orbital is a product of a molecular orbital and a spin function. The wavefunction
must be antisymmetrized, since electrons are fermions (the antisymmetry principle). One
way of ensuring that the wavefunction is antisymmetric is by writing it in terms of Slater
determinants. A further approximation is made that the wavefunction is a single Slater

determinant. Using Eq. (6) and Eq. (7), the energy of a Slater determinant is

N

£ =Xlolilo)+5 X (0

i i
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K,

1

j
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where };,- is a one electron operator arising from the kinetic energy of the

electrons and the Coulombic potential energy of the electrons with the nuclei, J and K
are two-electron operators that arise from the electron-electron repulsion term, V,  is the
nuclear repulsion term, and N is the number of electrons. The variational principle states

that given any arbitrary wavefunction (which is normalized, well-behaved, and satisfies



appropriate boundary conditions), the expectation value of the Hamiltonian with the
arbitrary wavefunction will be less than or equal to the lowest-energy eigenvalue (ground
state energy) of the Hamiltonian.’

Since the Slater determinant is a trial wavefunction, the variational principle can
be applied to it. Thus, Eq. (8) is minimized with respect to the spin-orbitals so that the
energy is as close to the true ground state energy as possible. A standard way of carrying
out the minimization is by using Lagrange multipliers to minimize Eq. (8) under the

constraint that the spin-orbitals remain orthonormal. Rearranging the Lagrange multiplier

equations leads to the Hartree-Fock pseudo-eigenvalue equations:

F¢, = qu(p}. )

J
where F'is the Fock operator and ¢;is a Lagrange multiplier.

The Fock operator is:
F)=h(1)+ Z(jja)—]%j(l)) (10)

Eq. (9) is the variational condition for the Hartree-Fock method. That is, if the
orbitals are chosen such that they minimize the total energy, then Eq. (9) must be true.
Since a unitary transformation of the spin-orbitals does not change the expectation value
of a single-determinant wavefunction, the Lagrange multipliers can be chosen to be
diagonal, as shown below.
Fo,(1)=€0,(1) (11)
The set of Lagrange multipliers that are diagonal, as shown in Eq. (11), are

referred to as the canonical eigenvalues, and the orbitals that produce them are referred to



as the canonical orbitals. The canonical eigenvalues are interpreted as “orbital energies”.
Multiplying on the left side of Eq. (11) by orbital j and integrating gives
<¢j|F|¢i> = <¢j|€i|¢i>

=¢(0,|0,) (12)
= ei5ij

Note that Eq. (12) is equivalent to Eq. (11), and is thus a different way of writing the

variational condition. The orbital energies are the diagonal elements of the Fock operator:

Ei:<¢i|F|¢i> (13)
Eq. (11) is a pseudo-eigenvalue equation because the Fock operator depends on all spin-
orbitals, not just orbital i. To compute orbital i, all other orbitals must be known, and thus
an iterative method, called a self-consistent field (SCF) calculation, is used to solve the
set of Hartree-Fock equations. The above equations are written in terms of spin-orbitals,
which consist of a spatial molecular orbital and a spin function. It is often possible to
integrate out the spin functions. For example, if the desired system has an even number of
electrons and a singlet wavefunction, and if there are no spin-dependent terms in the
Hamiltonian, the spin functions can be integrated out, and Eq. (8) rewritten terms of only
spatial orbitals. A wavefunction as described above (with an even number of electrons
and a singlet wavefunction) is referred to as a Restricted Hartree-Fock (RHF)

wavefunction. The RHF energy can be written as

N2 N2 (

E,. = 2Z<¢i|/%-I¢i>+ZL2<@(1>¢,-(2)|éla(l)qo,.(z»—<<o,-(1>¢,-(2>lé|(pj(lxo,.(z)) | (14)

-

where @, is a spatial molecular orbital.
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To make solving the Hartee-Fock equations more computationally feasible, the
Linear Combination of Atomic Orbitals (LCAO) approximation is used. In the LCAO
approximation, each molecular orbital is expanded in a set of atomic basis functions, as

shown below:

basis functions

o= .. )

7

where r is the electronic coordinate, ¢, is the coefficient of atomic basis function 4 in
the ith molecular orbital, and y, is basis function 4 . Re-writing the Hartee-Fock

equations with the LCAO approximation leads to the Roothaan-Hall equations, where the
coefficients of the atomic basis functions are solved for.!!

Once the wavefunction is obtained, there is often still information desired. For
instance, one might want to find the geometry of a molecule with the lowest energy, or
see how the electronic density changes when perturbed by an electric field. To see how
the wavefunction changes in the presence of a perturbation, gradients must be computed.
The analytic gradient is composed of derivatives of the orbitals and derivatives of the
operators. By Eq. (15), the orbitals are a sum of products of basis functions and
coefficients that are calculated in the SCF procedure. The basis functions are typically
Gaussian functions, so the derivatives of the basis functions should be straightforward.
The derivatives of the coefficients are slightly more complicated, since they are solved
variationally. If the derivative is with respect to nuclear geometry, then it is clear that the
molecular orbital coefficients depend implicitly on the nuclear geometry. The molecular
orbital derivative is typically expanded in the basis of the unpertubed molecular orbital

coefficients:'?

(15)
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a c molecular orbitals

_'ui: Ua'c 16
= X Ui (16)

The U“ matrix is called the response matrix. If the response matrix is known, the
derivative of the molecular orbitals can be computed. Thus, the response matrix needs to
be calculated somehow. Since the molecular orbital coefficients are determined
variationally, the derivative of the molecular orbital coefficients can be determined by the
derivative of the variational condition. For canonical Hartree-Fock orbitals, the
variational condition is Eq. (12)—that the Fock matrix must be diagonal. Taking the
derivative of Eq. (12) leads to a set of equations called the Coupled-Perturbed Hartree-
Fock (CPHF) equations, which can be solved to compute the response matrix, and thus
the derivative of the molecular orbital coefficients. For RHF wavefunctions, and other
variational wavefunctions, the response matrix is not needed for the first-order derivative,
since the variational condition (and for RHF, the orthonormal orbital constraint) can be
used to remove the term with the response matrix in it. 1

The Hartree-Fock method does not take into account electron correlation, since it
is a single-determinant method. However, methods that include electron correlation are
often much more computationally expensive than Hartree-Fock. For example, when N is
the size of the basis set, Hartree-Fock calculations scale as ~ O(N*). That is, doubling the
basis set leads to the time to solution increasing by 16 (2%) times. MP2, a method that
includes electron correlation through Raleigh-Schrodinger perturbation theory, scales as
O(N?). Coupled-cluster singles and doubles with perturbative triples, a method that
includes multiple determinants and is often considered the “gold-standard” of
computational chemistry, scales as O(N’). There are multiple ways of dealing with the

computational cost. One way is simply to improve the algorithm or hardware. Another
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way is to simplify the energy method somehow. There are a few common ways of
simplifying the energy method. One way includes starting from the ab initio expressions
and then simplifying extensively so that there is no longer a wavefunction to be solved
for. Force fields and intermolecular interaction methods often involve deriving a
simplified functional form for the energy, and then fitting parameters to it. Certain
intermolecular interaction methods, such as Sum of Interaction Between Fragments Ab
initio computed (SIBFA)!® * and the EFP method, have functional forms that are derived
from quantum chemistry and also have parameters that are computed from ab initio
calculations. Another way of decreasing computational cost is by fragmentation methods,
such as FMO. ! !* The EFP and FMO methods are discussed briefly below.

In the EFP method, the interaction energy between the monomers in a system is

computed. The general form for the EFP interaction energy is:

EEFP _ magn:grs(E;j;ulomb + Eji;persion + Ezl;arge»transfer + Ez)échange—repulsion) + Epolarization (17)
A<B

The Coulomb, polarization, and dispersion terms are considered “long-range” terms and

can be derived from perturbation theory. The charge transfer and exchange repulsion

terms are considered “short-range” terms, and can be derived by considering the

intermolecular overlap. For the long-range terms, consider the interaction energy between

two monomers A and B. A non-perturbed Hamiltonian is constructed by summing the

individual Hamiltonians for A and B. The perturbation is the Coulomb interaction

between A and B. The Coulomb interaction is typically written using a multipole moment

expansion. Then, the first-order interaction energy is the Coulomb interaction energy.

The second order energy is a sum of the polarization and dispersion energies. Since the
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interaction energy is calculated from a simplified functional form, it is much less
computationally expensive than an SCF calculation.

The FMO method begins with a many-body expansion. The system is first
divided into monomers (fragments). The total energy is then written as a many-body

expansion:

E= Y E+ Y (E,-E,—E,)
A A>B

monomers

+ Z [(EABC_EA _EB_EC)_(EAB_EA _EB)_(EBC_EB_EC)_(ECA _EA _EC):|+"'

A>B>C
(18)

Eq. (18) adds the energy of the monomers, the interaction energy of the dimers (two-body
energy), the interaction energy of the trimers (three-body energy), and so on. In the FMO
method, the many-body expansion is typically truncated at the two-body or three-body
term. The monomer energies are computed in the presence of a Coulomb electrostatic
potential (ESP) of all the other monomers in the system. Since the electrostatic potential
depends on the monomer charge densities, the monomer energies must be iterated to selt-
consistency. The dimer and trimer energies are calculated in the ESP, but are not iterated.
The FMO method is a “nearly-linear” scaling method.'®

Fragmentation methods lend themselves to efficient multi-level parallelization.
Multi-level parallelization is important, since by itself, the speed-up due to parallelization
is limited by the serial part of the code and communication overhead. With multi-level
parallelization, if the problem is split up into many pieces that can be run in parallel, and

each piece is parallelized itself, then scalability can be recovered. In FMO, multi-level
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parallelization is formulated using the Generalized Distributed Data Interface (GDDI)

library!7 1819,
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CHAPTER 2. ANALYTIC GRADIENTS FOR THE EFFECTIVE FRAGMENT
MOLECULAR ORBITAL METHOD
A paper published in
Journal of Chemical Theory and Computation 2016, 12 (10), 4743-4767

Colleen Bertoni and Mark S. Gordon

Abstract

The analytic gradient for the Coulomb, polarization, exchange-repulsion, and
dispersion terms of the fully integrated effective fragment molecular orbital (EFMO)
method is derived and the implementation is discussed. The derivation of the EFMO
analytic gradient is more complicated than that for the effective fragment potential (EFP)
gradient, because the geometry of each EFP fragment is flexible (not rigid) in the EFMO
approach. The accuracy of the gradient is demonstrated by comparing the EFMO analytic
gradient with the numeric gradient for several systems, and by assessing the energy
conservation during an EFMO NVE ensemble molecular dynamics simulation of water
molecules. In addition to facilitating accurate EFMO geometry optimizations, this allows
calculations with flexible EFP fragments to be performed.
Introduction

Many interesting chemical systems involve large molecules (such as protein-
ligand complexes and enzyme catalysis) or many molecules (such as chemical reactions
in solution). However, it is computationally expensive to perform ab initio calculations
on large systems. Several methods have been developed to make such calculations

feasible. These include using parameterized classical force fields to model interactions
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between molecules, hybrid quantum mechanics (QM)/molecular mechanics (MM)
methods, and fragmentation schemes that perform ab initio calculations on fragments of a
system and then combine the fragment results.'

The effective fragment molecular orbital (EFMO) method was developed to
combine the sophisticated semi-classical effective fragment potential (EFP) method? with
the fragment molecular orbital (FMO) method?, in order to take advantage of the
computational efficiency of both*. The FMO method is a fragmentation method based on
a many-body expansion of the energy that has been applied extensively to molecular
clusters and biological systems.’ The EFP method is a sophisticated model potential
method that is derived from first principles, with no empirically fitted parameters.
Fragment geometries in the EFP method are rigid. The EFP method decomposes the
interaction energy into five terms: Coulomb, polarization, exchange-repulsion,
dispersion, and charge-transfer. It has enabled many studies of intermolecular
interactions, including solvent effects on chemical processes.® The original EFMO
method combined the fragmentation scheme of the FMO method with just the Coulomb
and polarization interaction energy terms of the EFP method. An approximate gradient
for the original EFMO method was reported.*

The EFMO method has recently been greatly improved, by incorporating the EFP
dispersion, exchange-repulsion, and charge-transfer interaction terms.” This improved
method was called the fully integrated effective fragment molecular orbital (FIEFMO)
method in Ref. 7. The gradient for the additional terms was not derived or implemented.

Hereinafter the FIEFMO method will be referred to simply as the EFMO method, and the
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original method with just the Coulomb and polarization terms will be referred to as the
original EFMO method.

There are many motivations for the development of fully analytic gradients.
Geometry optimizations of molecules are typically much more accurate, numerically
stable and less time consuming with analytic, rather than numeric gradients. Transition
state searches and reaction path following are enabled by analytic gradients, and fully
analytic gradients are essential for molecular dynamics (MD) simulations.®

This work presents the derivation and implementation of the gradient terms that
are needed to make the original EFMO gradient fully analytic, and the Coulomb,
exchange-repulsion, polarization, and dispersion terms that are needed to make the fully
integrated EFMO gradient fully analytic. The gradient of the charge-transfer term,
usually the least important and most computationally demanding component of the EFP
interaction energy,* has not been derived or implemented, as discussed further in Section
3.3. Since the EFMO analytic gradient involves EFP interaction energy derivatives
without assuming the fragments are rigid, an added benefit of the derivation presented
here is that it provides insight regarding which EFP interaction energy terms are most
important with regard to fragment flexibility.

This paper is organized as follows. Section 2 introduces the notation used; Section
3 gives a brief overview of the EFMO energy expression; Section 4 presents the
derivation of the EFMO gradient while noting the differences with the EFP gradient;
Section 5 discusses the implementation of the EFMO analytic gradient; Section 6
presents test calculations on a variety of systems (a cluster of water molecules, a cluster

of water molecules, methanol molecules, and dimethyl sulfoxide molecules, and an ionic
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liquid pair) and discusses the consequent potential energy surfaces; Section 7 presents
timing comparisons to FMO gradients. The final section concludes.

Notation and definitions

Much of the notation and definitions are adopted from Yamaguchi et al.” This work
assumes a basis set that contains both contracted and uncontracted Gaussian functions.
2.1 Indices

-- i,j,k denote occupied canonical molecular orbital (occ CMO) indices

-- [,m,n,o0 denote localized molecular orbital (LMO) indices

-- a,b,c denote virtual molecular orbital (vir) indices

-- p,q.7,s denote any canonical molecular orbital (occ or vir) indices

-- t,u denote primitive Gaussian (PG) indices

-- 1,v,&,0 denote atomic orbital (AO) indices

-- A,B,C denote fragment indices

-- [.J,K denote nuclei indices or multipole expansion points

- a,,7,k denote directions x, y, or z

2.2 Definitions

Z; 1s the nuclear charge on atom /

Sps 1s the overlap integral between orbitals p and s

¢, 1s the canonical or virtual MO coefficient of AO uin MO p

cﬁl is the localized MO coefficient of AO gin LMO [

P, [: chﬂicwj is the restricted Hartree-Fock (RHF) density matrix element for AOs u

and v
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2.3 Superscript Notation

A variable with a superscript in parentheses, e.g., S;j;), denotes that the derivative with

respect to x is taken only of the AO terms, and any molecular orbital coefficients are
considered to be constant. A variable with a fragment index as a superscript denotes the
variable for that fragment. However, if the appropriate fragment is clear by context, the
superscript might be omitted.

2.4 Derivative of a canonical MO coefficient with respect to a perturbation

The derivative of an MO coefficient can be written in terms of the orbital response

matrix’ U*:

% _ cMO )
ax ; qucﬂq

(2.1)
U" is the orbital response matrix to a perturbation x. In this work, there are nuclear
perturbations, which will be denoted by an x, and field perturbations, which will be
denoted by a Greek letter. U is an Nmo X Nwmo matrix, where Nmo is the number of
molecular orbitals. It is convenient to think about the response matrix in terms of sub-
matrices; i.e., the occupied orbital-occupied orbital (occ-occ) block, virtual orbital-virtual
orbital (vir-vir) block, and virtual orbital-occupied orbital (vir-occ) block.
2.5 Localized molecular orbital notation and definitions

Localized MOs |/) are related to canonical MOs by a unitary transformation L:
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occ
CMO

|l>=ZilLﬁ|i>

occ

CMO

L _
c,ul - Z Llic,ui
i

(2.2)

LMO
L is a unitary transformation matrix (Z L, L, =0,)calculated by a localization method,

m

such as the Boys method!®, which was originally proposed by Edmiston and

Ruedenberg'!12,

2.6 Derivative of a localized MO coefficient with respect to a nuclear perturbation,
written in terms of the canonical response matrix and localization response matrix
Following previous studies that considered perturbed localized molecular

13,14,15,16

orbitals, the nuclear derivative of the LMO coefficient is split into a term that

includes a localization response matrix (which describes how the localization transform
changes with geometry) and a term that includes the canonical response matrix (which

describes how the canonical molecular orbitals change with geometry):

occ occ occ+vir
a L CMO LMO CMO CMO
Cu

P Z,: BT(LHC’”) = ; cfmv,f, + Z,: L, Zq: U,.c,,
(2.3)
where v, is the localization transform response matrix.
The EFMO method
The EFMO method is an integration of the FMO and EFP methods, designed to

take advantage of the speed and accuracy of the two methods. The FMO and EFP
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methods are described briefly in Sections 3.1 and 3.2, respectively. Since the EFMO
method has been described previously’#, only a brief overview is given in Section 3.3.
3.1 The Fragment Molecular Orbital (FMO) Method

Ref. 5 provides an excellent review of the FMO method. In general, the system is
divided into fragments (monomers) in a chemically sensible way, for example, using
common functional groups. Then, the energy of each monomer is calculated in a
Coulomb field due to the other monomers. Since the field depends on the electron density
of the monomers, the Coulomb field is converged self-consistently. This level of theory is
called FMOI1. After it has converged, the dimer (pair of fragments) and trimer (set of
three fragments) energy may be computed in the self-consistently converged monomer
Coulomb field as well. The monomer, dimer, and possibly trimer energies are added
together to obtain the total energy for the system. The computational expense increases
when one adds all dimers (FMO?2) and (especially) trimers (FMO3) to the monomer
calculations.

The total FMO2 energy can be written as

fragments fragments
Z Ey+ Z (EAB_EA_EB)
A A>B

(3.1)

E4 and E 43 are the energies of the monomers and dimers, respectively. Approximations to
the dimer energies can be used to decrease the computational cost. An additional
advantage of the FMO method is that it is naturally parallelizable. The FMO method is
parallelized with the general distributed data interface (GDDI)!”. Because the FMO
method is a generally applicable approach to dividing a system into smaller pieces, it can

be combined with any electronic structure method. The usual notation is FMO/A, where
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A is a specific quantum chemistry method, such as second order perturbation theory
(MP2).
3.2 The Effective Fragment Potential (EFP) Method

The EFP method was initially developed to model aqueous solvent effects’. In the
EFP method, the system is split into solute and solvent molecules. In this context the
solute molecules are typically calculated using an ab initio electronic structure method.
The one-electron term in the solute Hamiltonian is modified by an explicit EFP solvent
model potential. An EFP is generated by performing a single ab initio calculation on a
solvent molecule, and then using the wavefunction to generate the input for the potential.
Thus, it contains no empirical or fitted parameters. EFP internal geometries are rigid.
More broadly, the EFP method can be used to explore intermolecular (non-covalent)
interactions, without the need for an ab initio component. In this case, the system is
divided into fragments that are modeled with EFPs. The EFP only (no ab initio solute)
method is considered in this work.

The EFP method decomposes the interaction energy of a system into the Coulomb
energy, exchange repulsion energy, dispersion energy, charge-transfer energy, and many-
body polarization energy terms. All terms are pairwise additive except for the

polarization energy. The energy can be written as:

EFP __ 1~Coul rep disp ct
EAB _EAB +EAB +EAB +EAB
fragments

EEFP — Z Eng_'_Epol

total total
A>B

(3.2)
The EFMO method uses the interaction energy calculations, so they are

considered in more detail below. Since the gradient involves taking the derivative of the
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energy terms, it is important to first consider the details of the energy expressions. The
charge-transfer term is not considered here.
3.2.1 Coulomb term

The Coulomb energy can be thought of as the energy produced from the
interaction of the static charge density of two molecules. In the EFP method, the
Coulomb energy is based on a Taylor series expansion of Coulomb’s law, and a
distributed multipole moment expansion using the Stone distributed multipole analysis
(DMA)'8. Multipole moment expansion sites are distributed across each fragment in the
system. The Coulomb contribution to the interaction energy between two EFP fragments

is the sum of the interaction energy between all pairs of multipole moments.

X,0,2 1 X V,Z X,V.Z
J Il J, Al J! IJ J Il
4 B qu _Zq :uaTa +§Zq GaﬁTaﬁ+Zﬂaq Ta
Coul __ (24 af o
EQ'=221 ..

X,z
Ly s iy, L Iyl Tl
—Z,ua,u Taﬁ+§ Z Ho® Ty + -
a.p a.py

(3.3)
In Eq. (3.3) Ef;“l is the Coulomb interaction energy between fragments 4 and B, / (J) runs

over all multipole moment expansion points in 4 (B), ¢'is the monopole on site 7, x'is

the dipole on site 7, ©'is the quadrupole onsite 7, T,y , =V V, .V, Riis the multipole
J

interaction tensor for sites / and J, and R;; is the distance between expansion points / and

J.
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The multipole moments on each site are calculated using the DMA. This is
described in more detail in the Supporting Information. The multipole moments can be

expressed as:

PG ueu
AOeA PG tev
I _
q'=2,- 2 Py 2, Pilult)
y7i% ut nearest /
PG ueu
AOeA PG tev

_ZP,uv Z ut u|(x x1)|t>

ut nearest /

(3.4)
where x,is the location of expansion center / and P/ is the primitive Gaussian cross term
that contains the product of the contraction coefficients for PG « and ¢.

To account for charge penetration between interacting fragments 4 and B, an
overlap-based damping term is computed, and added to the Coulomb interaction energy

term!”. The expression for this term is:

LMOeALMOeB _252

7 R

m Im

chgpen __
E AB

(3.5)
where Ry is the distance between the LMO centroids of / and m, and (/| x |[) is the

centroid in the x-direction for LMO /.

3.2.2 Exchange repulsion term
The exchange repulsion energy is a quantum mechanical contribution to the
interaction energy that arises due to the Pauli exclusion principle. It is derived from

approximations to the overlap of the wavefunctions of two isolated molecules®°. The
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exchange repulsion interaction energy between fragments 4 and B and can be expressed

as

LMOeA LMO €B _2 lnS S2 LMOeA LMOe B LMOeA LMOeB
DI ST S I N DI e R
1 m 1 m n n

Im

LMOeA LMO €B |: nucleie B Z LMOeB 1 nucleie4 Z LMOeA 1 1 :|

+2 Sil=> —+L+2) —- —L4+2 ) ———
ZZ’ 2 R zR R R

J J n In 1 Im n nm Im

(3.6)
Ry is the distance between MO centroid / and atom J, Ty is the kinetic energy integral

between / and m, and F'is the Fock matrix element between / and n on fragment 4.

3.2.3 Polarization term

The polarization energy (sometimes referred to as the induction interaction since
it arises from multipole-induced multipole interactions) can be thought of as the
interaction energy that occurs due to the change in the charge distribution of one
molecule by the electric field due to the charge distribution of the other molecule.

In the EFP method, the polarization energy is calculated by placing localized

molecular orbital dipole polarizability tensors, ,,, on the LMO centroids of each

fragment. The electric field of the other fragments (due to both the static multipole field
and the induced dipoles on the other fragments) acts on the polarizability tensors and self-

consistently generates induced dipoles, p, on the LMO centroids of the fragment?!.
The induced dipole on LMO centroid / in the /£ direction in fragment 4, pfﬂ, 1s:

{7}

A _ tot, A
Pip= Z al,ﬂ7El,7
4

(3.7)
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where ¢, 5 is the dipole polarizability tensor on LMO /, 7,k are field directions, and
E,’"is the total field in the y direction at LMO /. Since £’ can be written in terms of

a static electric field, £ ,0 ’yA , and a field due to induced dipoles, Eq. (3.7) can be rewritten

as:

{x,y,z} fragments LMOeB {x,y,z}
0, A Im __B
plﬁ Zalﬁ}/ E z z ZT}«pm,K

B#A4 m K

(3.8)

where T },l,'(" is the dipole moment interaction tensor for sites / and m. E 10 ’yA is the electric

field at site / on fragment A due to the static DM A-calculated multipole moments,

q, ,u,;, 9,157 , on all multipole expansion points / on fragments other than 4 in the

system:
fragments B fragments B {x,p,z} {x, 0,2} \
0,4__ i u I il
El,}'_ Z Z iy = LqT +zﬂaT 3 z@aﬂTwﬁJ
BzA I B¢A off
(3.9)
As in the Coulomb term, in this work, the expansion sites are only on the nuclei.
Collecting the terms containing the induced dipoles, Eq. (3.7) can be written as
fragments LMOeB {x,y,z}
A -1 0,B
Pip= Z Z Z (D )lm,ﬁaEm,a
B m a
(3.10)

where:
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—1
Dll,ﬂy =(a)) By

D, , =0 (when!/ and m are on the same fragment)

Im,By

=-Ty o , (when [ and m are on different fragments)

After generating the converged induced dipoles, the polarization energy can be

calculated as

fragments [ 1 LMO€eA {x,y,z}

P Sy ZE,?;p:a}

A L 2 n o
fragments_ 1 LMOeA{x,y,z} fragments LMOeB {x,y,z}
0,4 0,B
=X |5 X XEL X X Z (Do B
A n a B m

(3.11)
The dipole polarizability tensors on the LMO centroids of each fragment are calculated
by decomposing the total dipole polarizability tensor for each fragment into contributions
from each LMO??2*. The dipole polarizability tensor on LMO centroid 7 on fragment 4
is:

oce
CMOeA vired

= _4 Z Z Ln]LnkUyA |IB| k>

(3.12)
In Eq. (3.12) yis a field perturbation.

The multipole interaction tensors are multiplied by a damping function,

damp Il

Fr o =1- exp(—Rj fg)(l +R; fg).24 (The terms f'and g are constants usually set to

0.6.) The damped multipole interaction tensors can be written as 7, ;;;f“vmp “ = Fr il 01{2, -

Substituting the damped multipole interaction tensors into the static electric field, the

damped static electric fields become
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fragments B fragments B {x, 0,2} {xyzI \
0,4,damped __ 0 damped Il ,damped 1 , damped 1 1 , damped
D IDY D Y (LT WS R
B#4 B#4
(3.13)
and the damped induced dipoles, pA amed can be written as:
{x.p,z} fragments LMOeB {x,y,z}
A damped 0,4,damped Im,damped __B,damped
2 | B 2 2 LT
B#4 m K
(3.14)

3.2.4 Dispersion term

The dispersion energy can be thought of as the energy that arises from the
interaction between induced multipoles on two molecules. The dispersion energy can be
derived from Rayleigh-Schrodinger perturbation theory, starting from the sum of the
Hamiltonians for two noninteracting molecules!®. The second order correction to the
energy contains the dispersion energy.

The dispersion energy between fragments 4 and B can be written in terms of
inverse powers of the distance between the molecules.

C6 AB C7 AB CS AB
6 7 )
RAB RAB RAB

disp __
EAB -

(3.15)
In the EFP method, the dispersion energy is calculated by distributing isotropic
dynamic polarizabilty tensors on the LMO centroids of each fragment. For this work, the

total dispersion energy between fragments A and B is approximated as®’
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C C
% + l%, where all terms with higher order than the R® term have been
RAB 3 RAB

disp __
EAB -

CG,AB
6
AB

. 1 . '
approximated as — . The R”7 term has recently been derived and implemented,?®?’

but is not used in this work.

The dispersion energy between fragments 4 and B can then be written in atomic

units as
a4l 3 LMOeALMOeB
EW = EL_; ZI: Ua (io)a" (za))da)U
(3.16)
1 A
where @' = Z aﬂﬂ(lw) and aﬂy(za)) is the distributed dynamic polarizability at

LMO [ for a frequency i .
Using a 12-point Gauss-Legendre quadrature and substitution of variables, the

integral can be rewritten as a sum:

} 4( 3 LMOSALMOSE | 2 2v, \
E® =—| -= — = (iw,)a" (io,
jt 3(%2%1%;,;(%1)()( J
(3.17)
where w/,v,, and 7 are constants used in the numerical quadrature.

The distributed dynamic polarizability on a fragment at LMO / for a frequency

iw, Otgy(ia)), can be calculated as follows:

vir %3;0 \ (%3\5[0 \

aﬁyow)——zztz al 1) I,J[ZZ%-(M)L”J

J
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(3.18)

where Z’ (iw) is the response vector that is calculated from solving the dynamic analog

of the CPHF equations (time-dependent coupled perturbed Hartree-Fock theory)®®, and y

is a field perturbation. The TD CPHF equations are:

occ occ occ
vir CMO vir CMO vir CMO

Z 22 Ek, (HE)H L ZE (10)) - (i0) Z] (o) = —22 ZH(Z) blyl;j)

ai h]

Hff)bj =(aj | bi)—(ablij)+ (e, — € )6ab6ij

Hf;)bj =4(ailbj)—(aj | bi)—(abl ji)+ (e, —¢€ )5[,b51.j

(3.19)

€,.€ are virtual and occupied orbital energies, respectively.
The EFP method contains a multiplicative damping factor for the dispersion
term?*. Incorporating the damping term, the dispersion energy becomes:
4 ( 3 LMOEALMOEB

Ejgp,damped — Ek__ Z Z dep damp ;n (Io_ﬂ (iw)o” (la))da)B

T ! m

(3.20)

In the EFMO method, the damping function is an overlap-based formula

n/2

. o 21n|S
Fizsp,damp |
(3.21)
The damping function in Eq. (3.21) is a recent improvement on the original EFP

damping function®.
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3.3 General EFMO energy expression

The EFMO energy expression is a many-body expansion, similar to the FMO
energy expression. As with the FMO method, the EFMO method begins by dividing the
system into fragments. However, the monomer and dimer energy calculations differ: the
EFMO method contains a many-body EFP polarization term, generated from all of the
fragments and does not require the self-consistent convergence of the monomer Coulomb
field. Importantly, the EFMO method inherits the GDDI parallelization of the FMO
method.

The general EFMO energy expression is:

fragments Ry pSR., Ry >Ry
EFMO _ 0 0 ppol EFP pol
E Z ES+ Y (A, —Erhy+ Y (EXT)4EX
A>B A>B

(3.22)
Eis the gas phase energy of fragment A

AE',= E,,— E| — E, (the dimer 2-body interaction energy)

E"I"is the long-range EFP energy between fragments 4 and B

E"'is the EFP polarization energy for the entire system

E"™!'is the EFP polarization energy for fragments 4 and B

EFMO dimer calculations are performed with the chosen ab initio method (e.g.,
MP2) unless the two fragments in the dimer are farther apart than a predetermined cutoff

Reu. In the latter case, the dimer calculation is done using the EFP method. The inter-

|r,—r, |

fragment distance R, , =min,_, , ,———— is the relative minimum interatomic distance
1 J



34

between atoms / on fragment 4 and atoms J on fragment B, weighted by the sum of the

van der Waals radii, Vrand V. R

.5 18 compared to R to determine if the EFP method is
to be used to calculate the dimer energy.

The EFMO energy is calculated by summing the gas phase ab initio energy of
each monomer (fragment). Then, one loops over all pairs of monomers, and the dimer
energy is added to the monomer energy. If the distance between two monomers is less
than R..;, the dimer energy is calculated with the chosen gas phase ab initio method
(subtracting out the EFP polarization energy of the dimer to avoid double counting). If
the distance is greater than R..;, the dimer energy is approximated by the EFP interaction
energy. The EFP polarization energy of the entire system is then added to the dimer and
monomer energies.

For this work, the long-range EFP energy is:

B = S+ By Ely
(3.23)

The charge-transfer term is not included in this work. As noted above, the charge
transfer term is the most computationally expensive component of the EFP energy, and it
is usually the smallest term in the EFP interaction energy. Charged systems are an
exception.”* Additionally, since charge transfer is a short-range interaction'®, most of the
charge transfer interaction energy will be captured by the ab initio dimer interaction.
Therefore, it is not necessary to have charge transfer in the long-range EFP interaction
energy.

Substituting Eq. (3.23) into Eq. (3.22), the energy expression becomes:
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fragments RA B SRcut RA B >Rcut
EFMO __ 0 0 pol Coul rep disp pol
E - Z EA + Z (AEAB _EAB )+ Z (EAB +EAB +EAB )+Etot
A A>B A>B
(3.24)
This can be written as
EFMO __ 17EFMO EFMO
E - Eab initio + EEFP
(3.25)
fragments Ry <Ry
EFMO 0 0
where E " = z E, + z AE;and
A A>B
Ry p<R.y Ry >Ry
EFMO __ __prpol Coul rep disp pol
EEFP = z ( EAB )+ Z (EAB +EAB +EAB )+Etot
A>B A>B

Analytic EFMO gradient

The expression for the EFMO gradient is:

EFMO fragments 0 RypSR. 0 pol Ry >Ry Coul rep disp pol
QEFMO OE) “&(9AES, 9ER) . Z (QES: L OEL | OE; \+ OE™

2

ox, < ox, <= Uox, ox < L ox,  Ox,  Ox, ox,
4.1)
Each term in Eq. (3.24) is differentiated with respect to the x-coordinate of atom
K (xx). The EFMO energy expression is a combination of gas phase ab initio energy
terms (E},AE?,) and EFP interaction energy terms ( £ ZZZ,EEE”I,EQZ,EZZP ,El’o’t”l ). Thus, the
EFMO gradient is derived from ab initio gradient terms and EFP interaction energy

gradient terms.

To make the different types of terms clear, Eq. (3.25) can be used to write Eq.

(4.1) as:
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EFMO EFMO EFMO
aE — aEab initio + aE'EFP

ox, 0x, ox,

(4.2)

4.1 Gas phase gradient terms

0E| JAES,
ox,  0x,

Two ab initio gas phase terms ( ) are computed using standard

methodology®”, so they are not discussed here. Note that if the gas-phase ab initio method
chosen has response terms (e.g., MP2), response equations for the monomers and dimers
must be solved. For the monomer terms, the responses can be added to the response
equations that arise from the EFP interaction energy gradient terms (formulated in later
sections) and solved without additional cost. For the dimer terms, the response equations

are solved separately, and added into the gradient.

4.2 EFP interaction energy gradient terms

The gradient terms for the EFP method were derived and implemented
previously®. However, the EFP gradient terms cannot be used in EFMO directly, because
the EFP method has rigid fragments while the EFMO method has flexible fragments. In
the EFMO method, the internal geometry can change during a geometry optimization or
molecular dynamics simulation, so the gradient must take this flexibility into account.

For each term in the EFP interaction energy, a general formula for the nuclear
gradient is presented below. The EFP terms in the EFMO gradient and the EFP
translational gradient in the EFP method can both be derived from the general formula for
the EFP nuclear gradient. After presenting the general formula for the nuclear gradient,

the terms needed for the EFP method will be briefly discussed, since they are already
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implemented and can be reused in the EFMO method. Then, the remaining terms needed
for the EFMO method will be discussed.

To compare the EFP and EFMO gradient terms, it is useful to note the following
points:

1) The translational gradient of the EFP interaction energy between fragments 4
and B with respect to the coordinates of fragment A can be derived by summing over the
nuclear gradient of the EFP interaction energy with respect to the coordinates of each

atom on fragment 4:

(EEFP) z EEFP

0Xyey

(4.3)
where x , is the translational motion of fragment 4 in the x-direction.
2) The derivative of an LMO centroid appears in the exchange-repulsion,
polarization, and dispersion gradient terms. The derivative of an LMO centroid with
respect to the translational motion of a rigid fragment is a delta function. That is, when a

fragment translates, the LMO centroids move with it.

zallﬂll Spi B=xnz

© o 0xg
(4.4)
If bond midpoints are used as multipole expansion points, a similar expression applies for
the derivative of the position of the bond midpoints.
3) Since the EFMO fragments are not rigid, the gradient with respect to each atom

1s calculated.
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Each EFP interaction energy gradient term between fragments 4 and B in the

EFMO method can be written in the form

oce oce
a CMOe€A vir eA CMOeA vireA

X _ X xgA T A,B XA TA,B Z XA TA.B
a EAB - NRAB,XK + Z Z Uai LX,ai + Z (]ij LX,lj + Uab LX,ab
XKea i a i ab

oce
LMOeA LMOeA {x,y,2} CMOe€ A vir e A aUﬂA

2 X vaMun+ 2L 2L XL =N
! " B i a Xy

occ
12 {x,y,z}vircACMOe A 4
aZai

+z Z z ﬂ B.ws,4.B

B a i 0xy o
(4.5)
In Eq. (4.5) the superscript/subscript X represents one of the EFP components

Coul, rep, pol, or disp, corresponding to Coulomb, exchange-repulsion, polarization or

dispersion. NR'}, ., contains all “non-response” terms that do not contain a first- or

second-order CMO response or a localization response. The response matrices (
Ut |UP* vy« 7P (iw)) are defined in Sections 2.4, 2.6, and 3.2.4, respectively. The

superscript 4 indicates response matrices for fragment 4.

Using the Z-vector method (see Appendix A), the last three terms in Eq. (4.5) can
be replaced with non-response terms and terms involving the canonical MO response
matrix. The CMO response term can then be obtained using the Z-vector method.
Throughout the following, the gradient for each term will be written in a manner that is
consistent with Eq. (4.5).

Since the EFP terms are based on MOs obtained from a separate gas phase ab
initio calculation on a particular monomer, the response equations for each monomer
depend only on that monomer. Thus, in contrast to the FMO method?!, there is no

response equation with the dimension of the entire system.
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4.2.1. Coulomb gradient term

The gradient of the Coulomb interaction energy between fragments 4 and B can

be written as

a( ITIJ) x,y,qu a(ﬂ;Téj) +lzq a(@;ﬁTOfé)

axKeA 0Xyey « 0Xyey 3 a.p 0Xy,
o ldr) ) 1 oy
+> i «)_ J By~ s A A ]y
g a axKeA azﬁ a axKeA 3 a,ﬁ,ylu axKeA

(4.6)
Each term in Eq.(3.3) is differentiated with respect to the x-coordinate of atom K
in fragment 4. The multipole moments on fragment B are constant with respect to atoms
on fragment A4, so those terms are not included in the derivative. For this work, the
expansion in Eq. (4.6) is terminated at the quadrupole-quadrupole term, and multipole
expansion points are only on atomic centers.

The gradient terms are derivatives of products, so the product rule can be used.

Then, Eq. (4.6) can be written as:

aE o ou aTDfJ ou, 1

= P (520 ' ) i )+ F (T, { b, {m’})
ox 0x

KeAd Kedq KeA

(4.7)

where m’ is an arbitrary multipole moment, T 0%’7 is a multipole moment interaction

IJ

tensor of the appropriate rank, FAC”"I({ > L. — =Ly m'}, {m”’}) is the sum of all terms
Xkea

involving derivatives of interaction tensors, and F;" ({T,; .}, { } {m’}) is the sum
KeA
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of all terms involving the derivative of multipole moments. These terms are expanded in
Appendix B.

For the EFP method, the gradient of the EFP Coulomb term was derived by Day
et al.2. In the EFP method, only the first term in Eq. (4.7) is included in the translational
gradient, since the multipole moments depend only on the internal geometry of the
fragment, and do not change as the fragment translates. The net Coulomb translational
gradient on the fragment is calculated by summing the derivatives of the Coulomb energy
with respect to each atom center on the fragment. The EFP implementation of the first
term in Eq. (4.7) can be reused for the EFMO gradient, with the gradient stored
separately for each atom.

As shown in Eq. (3.4), the multipole moments are a sum of the product of a
density matrix and a Gaussian function integral. The gradient of a multipole moment can
therefore be calculated using the product rule. Consequently, each multipole moment
derivative gives rise to a term involving AO-derivatives and a term involving the CMO
response matrix.

The final EFMO Coulomb gradient can be written as

oce

aECoul CMO €A vireAd
AB Coul xgA 7 A,B
ax - NRAB,XK + z UaiK LCoul,ai
Ked i a
(4.8)
The details of the non-response term, NRS%K , and the coefficient of the CMO response
matrix, L, ., are presented in Appendix B.
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In Section 4.3, Eq. (4.8) will be combined with the other EFP interaction energy
gradient terms, and the Z-vector method will be applied to give the form of the EFMO
gradient that was implemented in GAMESS.

Coulomb damping term

The derivative of Eq. (3.5) can be easily added to the exchange repulsion gradient,
so it is briefly discussed in the following subsection.

4.2.2 Exchange repulsion energy term

The gradient of the EFMO exchange repulsion term can be expressed by taking

the nuclear derivative of each term in Eq. (3.6), as follows.

S 2 _2 ln S LMOeA LMOeB
Im Im A B
—[—\/ + 4\/ j +2D F'S +2D F'S -2T,

d £ L}OeA LYOSH S, le —lnS m T
DI

B

LMOeA 1

9 ~ T ox, o | g
= K 25, (- z L Z—+2Z———

lllll m

2 _2 ln Slm Slfn Shzu
[2ms. s 5.
LMOeA LMOeA LMOeB LMOeA LMOeB LMOeA LMOeB 1{2 Ie2
SOOI DIRENEEN B EIE H I
! m 1 m X K

>SS

, B ox LMO<B Sz LMOeA SZ

LMO€A nucleic B R LMOeB €4 LMOeB aR LMOeA Z
RS TR S LY S 5 L]
(4.9)
Each term in Eq.(4.9) is differentiated with respect to the x-coordinate of atom K

in fragment 4. This means that gradient terms that depend only on the geometry of

fragment B will be zero.
In the EFP method, the internal geometries of the fragments do not change when
the fragments translate, so the MO coefficients and Fock matrices do not change, and the

LMO centroids move with the fragments. Thus, the kinetic energy and overlap integral
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derivatives (the first and third terms in Eq. (4.9)) are computed by only taking the
derivative of the AO integrals (ignoring the MO coefficient derivatives), and the Fock
matrix derivative is not computed. Since the net translational gradient is calculated by
summing over the nuclear gradients of the exchange repulsion energy with respect to
each atom on the fragment, by Eq. (4.4) there is no need to explicitly calculate the
derivative of each LMO centroid. The implementation of the first, third, fourth, fifth, and
sixth terms in Eq. (4.9) for the EFP method can be reused for the EFMO gradient, but
with additional terms added for the derivative of the LMO centroids and the canonical
MO coefficients, and with the gradient stored separately for each atom.

For the EFMO gradient, the LMO centroid derivatives in the fourth and fifth
terms of Eq. (4.9) can be collected. The explicit expressions are shown in Appendix C.

Eq. (4.9) can then be written as:

Erep LMOeA LMOEB LMO€eA LMOeA a FA LMOeB
DI ARSI DT

LMOeA LMOeB LMOeA {x,y,z}

22 Z W, J+2 Z<—|a|l>[ ‘]

o

LMOeB LMOeA Z
+2 Z (xK—<l|x|l>){ Z RK}

Kl

(4.10)

where WS holds all the terms in the coefficient of 3S W holds all the terms in the
Xk

Xy X
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It is important to note that the MO coefficient derivatives are derivatives of LMO
coefficients, so the derivative results in a term with a canonical MO response matrix and
a term with a localization response matrix, as shown in Eq. (2.3). Appendix C provides

the details that lead from Eq. (4.10) to Eq. (4.11).

Combing all non-response terms into NR'/?, and writing out the response terms

one obtains

a Erep
AB rep
- NRAB X
X KeA
oce oce
CMOeA vireA CMOeA LMO€eA LMO€eA

xxd 74,B xxd A4,B z Z xxd 3 £4,B
+ Z z U Lrep ai Z U Orep Ji + le Mrep ml
i i / m

(4.11)
In Section 4.3 Eq. (4.11) will be combined with the other EFP terms and the Z-
vector method will be applied to give the form of the EFMO gradient that was
implemented.
Coulomb damping function
The derivative of Eq. (3.5) can easily be added to the exchange repulsion term,
since it only involves LMO dipole and overlap integrals. Since the derivative is derived

in a similar manner to the exchange repulsion gradient, it is not shown here.

4.2.3 Polarization energy term
The EFMO polarization energy gradient can be derived beginning with Eq. (26)

in Ref. 21 (written in the notation of this paper):

a E pol fragments LMOeB {x.y,z} a E’? .B pn + pn l fragments LMOeB LMO<C {x,y.z} nm aﬁ R
T 2 2 2 o o A R 2 2 2 Z(I)na a Pup

0Xyen B n o\ 0xg 2 2 % Xkea
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(4.12)
The derivative in Eq. (4.12) is taken with respect to atom K on fragment 4. As in

Ref. 21,

fragments LMOeB{x,y z

b 5= 2 2 2 (D™ pa B - All other terms are defined in Section 3.2.3.

pol

8 can be derived in a similar fashion, so the
X
KeA

The dimer polarization energy term,

details are only shown for the total polarization energy term.

The static electric field in the first term in Eq. (4.12) is represented by the
multipole moment expansion as in the Coulomb term. The derivative is handled in a

similar manner here as in the Coulomb term: It is split into a term with the sum of all

nl

multipole moment interaction tensors ( F| (=22 {m'}, { p,})) and a term with the
Ked

[
sum of all multipole moment derivatives ( F, ({7, (;‘é R { +.{p,}) ). The second term
KeA

in Eq. (4.12) can be expanded using the definition in Eq. (3.10).
The expansion of Eq. (4.12) is shown in more detail in Appendix D. Then, Eq.

(4.12) can be written as:
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aE,z(t[ B _LMOEA{X.y,:} a<n | ﬁ | 7’l> {x,y,z}fragments B aE,(,),,a p:a +I~)';:a
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{ 13 7} {m'}, {pn})}

W {Ty },{pm}

KEA

1 RN A
wZ;wMJ%J

1 MOe n I y | }’l> fragments LMOeB{x.y.z} A [ aDnm op ] [ aDmn B J M
+| = (p,,a) EYEETRY pm (pma) EYETTIRY pVL
ST o ) s

(4.13)

The EFP polarization gradient for the EFP method was derived by Li et al.?! and
Day et al.. As in the Coulomb and exchange-repulsion gradient, the net polarization
translational gradient with respect to fragment 4 can be calculated by summing the
nuclear derivatives with respect to each atom on fragment 4. Only the first, second, and
fifth terms in Eq. (4.13) are needed for the EFP translational gradient. The third and
fourth terms have derivatives of the multipole moments and the dipole polarizability
tensor, respectively, which depend only on the internal geometry. As with the exchange

repulsion term, the terms in Eq. (4.13) that contain derivatives of the LMO centroids can

ol1 A1)
9

Xk

be expressed without explicitly calculating , by using Eq. (4.4) instead. The

EFP implementation of the first, second, and fifth terms can be used for the EFMO
method, with additional terms added for the derivative of the LMO centroids, and the
gradient stored separately for each atom.

The LMO centroid derivatives in Eq. (4.13) can be combined. The third term can

be replaced with two terms arising from the derivative of the multipole moments, as in
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the Coulomb term. Since this involves the derivative of the canonical MO density matrix,
a canonical MO response matrix term is necessary.
The fourth term in Eq. (4.13) can be manipulated using matrix derivative

operations®! and the defintion in Eq. (3.7)

| LM0eA (x .2} 0 0(;1 | LMOeA (xy ) e, y
Py Z 2 (ﬁ:ﬁ)[ ( ,BY)JP:,;/=_E 2 ZE:;;;A( ( .ﬁY)]Eno,y.A

2 n By a KeA n By axKeA
(4.14)
{x.y.2}
where E" = > s D
K
The LMO dipole polarizability tensor in Eq. (4.14) is expanded as®?
_lLﬂfA {.x,y,z}Emt’A a(a",ﬁ}’) Emr,A
2 Pl ox i
n By KeA
1 LMOeA{x,y.z} glfIOeA vireA
=7 > > EeS a —4 2 > L,LU™alBlk)||E"!
n By Xkea a
(4.15)

The RHS of Eq. (4.15) results in three terms: one term with the derivative of the

LMO transforms, one term with the derivative of the canonical MO field response

(9

axKeA

U“ ( | 5] k}} . Once Eq.

(4.15) has been expanded in terms of non-response terms, localization transform
derivative terms, and second order canonical MO field response terms, the polarization

energy gradient can be rewritten as
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occe occe
a E pol CMOeA vireA CMOeA vireA

_—tot pol x.A 7 A,tot xgA M)A tot Z xg A1/ A.tot
- NRA Jfot xx + Z Z U Lpul ai Z U Opul i U I/pul ab
i i ab

axKeA

occ
LMOeA LMOeA z} CMO€eA vireA aUﬂA

X,YsZ
xKA A tot Z Z Z .4, tot
Z V pol,ml a Npol,ai
B i a Xk

(4.16)

The terms in Eq. (4.16) (such as NR2% — [Aor =gt jydior = ppdiot = nrfidiory

Aot x> polais Ypolijs ¥ polabs ™M pol.mi> 1V pol ai

are similar to those in Eq. (4.5), but with a tof superscript/subscript instead of a B
superscript/subscript, to denote that this is a gradient contribution from the total
polarization energy instead of a gradient contribution from a dimer interaction energy
between fragments 4 and B. The canonical MO response terms and the localization
response terms can also be removed using the Z-vector method. This will be done in
Section 4.3 for all EFP interaction energy terms.
Polarization damping function

The polarization energy derivative can be modified to include damping. The
damping term is a function of the distance between two LMO centroids or an LMO
centroid and an atom center, so the derivative is straightforward. Using the expression for

polarization damping in Section 3.2.3:

Im ,damped pol Im
aTaﬂ v aF;amp Im Tlm Fpol aTaﬂ...}/
a X ax of..y damp,Im ax

(4.17)
All multipole interaction tensor derivatives can be replaced with the above, and
the gradient can be evaluated in the same way.

4.2.4 Dispersion energy term
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The EFMO dispersion gradient can be expressed by taking the derivative of Eq.

(3.17).

h Ejil;vp ~ h ( 4 LMOSALMOSE | 12(

2v, “
L__ 2 X EZL =1,y >0 (io,)a" (’wf)U

7 / m f

axKeA a‘xKeA

LMOeA LMOEB a( )( 4 2

=2 2

m

)
a (za)f)a (za)f)U

Ixpe, \ 75 f(l—,)

LMOed 12 37! (le)( 4[ 2v, \LMOeB

3
D20 Ve v = Warmrs ) DR L)

+

(4.18)
The first term in Eq. (4.18) can be written in terms of an LMO centroid derivative as in

the polarization energy gradient. Eq. (4.18) can then be expressed as:

disp  LMOed {x,y,7} (Lmoes _ _ ( 12 \
OEy, _ 3 ol BI1) 3 6(<1|p|1> 8<m|mm>) _iz W, 2v, a(lw/)a (lw/
Xy, I B Xy, m R, L Ty (1_ g
LMOeA 12 Nl (i ( \LM{)eB 3
N o (im,) 4( w, 2v, J z 1 (zw,J
T T Xy (1- lf)

(4.19)

In the EFP method, only the first term in Eq. (4.19) is needed for the translational
gradient. As in the exchange repulsion and polarization terms, there is no need to
calculate the nuclear derivative of the LMO centroids explicitly to get the EFP
translational dispersion gradient. The second term contains the derivative of the dynamic
polarizability tensor, which only depends on the internal geometry of the fragment, and
does not change as the fragment translates. For the EFMO gradient, the first term in Eq.
(4.19) can be calculated using the implementation from the EFP method, but with
additional terms added for the derivative of the LMO centroids, and the gradient stored

separately for each atom.
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The first term in Eq. (4.19) is a LMO centroid derivative. The LMO centroid
derivative has been discussed in the subsections on the exchange-repulsion and
polarization gradient previously. The second term in Eq. (4.19) contains the derivative of
the dynamic polarizability tensor. This is derived in a similar manner as the derivative of
the static polarizability tensor, and is discussed in Appendix E, Section 2.

The dispersion energy gradient can then be written as

occ occ

a Edisp CMOeA vir eA CMOeA vire4
AB  __ disp xxA 7 A,B Z xgA A,B Z xxA174,B
a - NRAB,XK + Z Z Uai Ldisp,ai + Uij Odisp,lj + Uab I/disp,ab
Xked i a ji ab
occ
LMOeA LMOeA 12 {x,y,2} vireACMOeA pA -
dZ, (lwf) B.w;.A,B

+ Z Z vfnl;AM(jI;[lj,ml+Z Z Z Z disp,ai
/ m f '} a i

OXyeq
(4.20)

As shown in Section 4.3, Eq. (4.20) can be combined with the other EFMO
gradient terms, and the Z-vector method can be used to calculate the canonical MO
response terms and the localization response terms.
Dispersion damping function
The damping function, shown in Eq. (3.21) adds a factor that depends only on the
overlap. The energy and gradient then become

LMOeA LMO<B
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The damping function only depends on the overlap, and the damping function
gradient can be computed in a similar manner to the LMO overlap derivatives in the
exchange-repulsion energy term.

4.3 The Combined Gradient
The terms in Eq. (4.1) (and likewise, Eq. (4.2)) that are EFP interaction energy

derivatives can be expressed using Eq. (4.8), (4.11), (4.16), and (4.20):

aEEFMO RA B SRCUI RA B >Rcul
L -NR% )+ D) (NRG“ +NRZ . +NR%Y )+ NR”
a ABxy AB xy AB ,xy AB ,xy A tot xy
Xk A>B A>B
occ
CMOeA vired RA B<R(ut Ry >Ry \
xKA A,B Z A,B A,B A tot
+ Z Z Uai L ( Lpul ai (LCoul ai + Lrep ai + Ldlsp ai ) + Lpul,aiJ
i a A>B A>B
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CMOeA RA B—th RA.B>Rcut \
xKA A,B z A,B A,B A, tot
U L ( Opol ij ) (Orep ij Odzvp ij ) + Opol yJ
A>B A>B
vired RA B<le Ry >R \\
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+ z Uab L ( V;ml ab (VYde ab V;ml abJ
ab A>B A>B
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12 {Xyz}verACMOEA pA Ry g>Roy
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B a i Xged A>B
oce
{x.p,2} CMOed vire4 BA [ Ry SRy
+ z aUai ( z NﬁA B NﬁA tot\
a L pol,ai pol,ai J
B i a Xy A>B

(4.22)
where the derivative is taken with respect to atom K on fragment 4.
Then, the non-response terms and the coefficients of the response terms can be

collected and combined into terms with the superscript/subscript fot, as shown below:
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(4.23)

The Z-vector method can be used to replace the term that involves the derivative
of the canonical MO response (the last term in Eq. (4.23)), the derivative of the time-
dependent response term (the second to last term in Eq. (4.23)), and the localization
response term (the third to last term in Eq. (4.23)). After solving the Z-vector equations,
the second order canonical response term, second order time-dependent response term,
and localization response term are replaced with first order canonical response terms and
non-response terms. The first order canonical response terms can then be collected with
the other first order canonical response terms. Using details given in Appendix D, Section

3, Appendix E, Section 1, and Appendix A, Section 8, Eq. (4.23) can be written as:

oce oce
a EEFMO CMOeA vir €A CMOeA vireA
EFP tot,3 XA A3 xxA A,3 z xxA A2
a NR + z Z U (Lal tot ) z U (Ll/ tot ) Uab Lab Jfot
xK ij ab

(4.24)

ai,tot? i, tot

NR”” ° is a non-response term resulting from the Z-vector methods, and L’

the coefficients of the occ-occ and vir-occ CMO response matrices after the terms from

the Z-vector methods have been added in.
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Next, the terms that involve the vir-vir and occ-occ parts of the canonical MO

response matrix are considered. More details are provided in Appendix A, Section 6. Eq.

(4.24) becomes
occ core act A3 A3
EFMO CMO€A vir eA CMOEACMOEA( A’ , ’ .
aEEFP — NRZMS + 2 Z U;,'KA Lz,'jm, + 2 z Akj ,aiij Jot + Ajk,aiij,tot
K L
Xk i a k j (Ej_ek) (Gk—Ej)
core act

CMO€eA 1 ] CMO€eA 1 vireA 1 ]
I EEE CAR S CARD E T 8
ij ab

i

core act AAS ArA3
CMOcACMO€eA Xy B X >
Bij Lij Jot Bji Lji,wt
+ +
i

j (Ej_ei) (6i_6j)

(4.25)

A,:,-,a,-, B;."A and ¢, are defined in Eq. (A.1).
The non-response terms in Eq. (4.25) can be combined, and then Eq. (4.25) becomes:

occ core act

EFMO CMOE€A vireA CMOeACMOeA ’ A3 ’ A3
aEEFP — NRt:z;t + 2 z U:iKA Li{im + 2 2 Akj,aiij Jtot + Ajk,aiij Jfot
K of _ _
Xk i a k ; (€ T 6 ) (e, —€ ; )

(4.26)

where NR"" is the sum of the non-response terms in Eq. (4.25).

Finally, all canonical MO response terms are collected, and the Z-vector method
can be used to replace the canonical MO response matrices. This gives the EFP

interaction energy part of the EFMO gradient:
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oce
aEEFMO CMO€A vireA
EFP

— NRZAUZ 3 + 2 2 BxKA A cphf
0x,
core  act
vireAocceA CMOeACMO€eA LA 3 A/ LA 3
A cphf k] ai’—kj tot Jk ai™ jk tot
where ZAb, 2™ = Lt 2 Z
b (€, — fk) (& —€))

(4.27)

5. Implementation

The EFMO gradient has been implemented in the GAMESS quantum chemistry
software package®. The coefficients of the LMO centroid derivative term, Fock matrix
derivative term, canonical MO response matrix term, localization response matrix term,
and second-order response matrix terms are collected separately. The Z-vector equation
for the localization response, second-order canonical MO response, and second-order
time-dependent canonical MO response are solved. The Z-vectors that result from solving
the Z-vector equations are summed with a non-response term and a term that involves the
canonical MO response matrix. Since the application of the Z-vector method to the
localization response, second-order canonical MO response, and second-order time-
dependent canonical MO response terms contributes to the coefficient of the canonical
MO response matrix, these Z-vector equations must be solved first. Then the Z-vector
equation for the canonical MO response matrix is solved.
6. Test Calculations

To evaluate the accuracy of the gradient, two methods were used. First, the
analytic gradient was compared to the numeric gradient for several systems (Section 6.1).
Second, the EFMO method and analytic gradient were used in MD simulations to test

energy conservation in a Velocity-Verlet NVE ensemble**® (Section 6.2). Again, note
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that neither the energy expression used in the numeric gradient nor the analytic gradient
contain the EFP charge-transfer term. Although the charge-transfer term might make a
significant contribution to the ionic liquid dimer, it is stressed that this section is meant

only to assess the accuracy of the analytic gradient.

6.1 Analytic to numeric comparison

For the comparisons, the analytic gradient was computed for several systems and
compared to the numeric gradient. A 6-31++G(d,p) basis set was used for all
calculations, and R... was set to 0.3, forcing all dimer interaction energies to be evaluated
as EFP interaction energies. The multipole moments are only expanded through the
quadrupole-quadrupole term, and all multipole moment expansion points are exclusively
on atomic centers, in contrast to the EFP method in which bond midpoints are also

expansion centers. The numeric gradient was calculated using a two-point formula.

For the three systems, the maximum absolute difference and root mean square deviation

(RMSD) are presented. The RMSD, for N gradient elements, is calculated as

N
Z (analytic gradient element i — numeric gradient element i )2

i

N
(6.1)
The max interaction gradient value is the maximum contribution to the analytic
gradient from the EFP interaction energy gradient. The interaction gradient is calculated
by subtracting the one-body (ab initio) gradient from the total gradient for each gradient

element.
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6.1.1. 64 water molecules

The numeric gradient for the system of 64 water molecules (shown in Fig.1) was
calculated using a 0.005 A step size. Table 1 shows the maximum interaction analytic
gradient value, the maximum analytic gradient value, the RMSD, and the maximum
absolute difference between the numeric and analytic gradients.

Table 1: Comparison of analytic and numeric gradient (Hartree/Bohr) for a system of 64

water molecules

Max Max
interaction absolute Max
analytic analytic RMSD absolute
gradient gradient difference
value value
0.026037 0.025670 8.1%10°¢ 3.7%107

The RMSD and maximum absolute difference values are small and comparable to
the RMSDs for other analytic gradients.>'* The values in Table 1 demonstrate that the
gradient is accurate for the system of 64 water molecules.

6.1.2. Five dimethyl sulfoxide (DMSO) molecules, five methanol molecules, and 10 water
molecules

The numeric gradient for the system of five dimethyl sulfoxide (DMSO)
molecules, five methanol molecules, and 10 water molecules (shown in Fig. 2) was
calculated using a 0.005 A step size and a 0.001 A step size.

Using a 0.005 A step size for the numeric gradient resulted in instances for which
the forward and backward steps in the two energy calculations for each numeric gradient
element had slightly different allocations of charge density in the multipole moment

calculation. That is, some charge density components were allocated to different
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expansion centers. In some cases, this led to large enough energy differences in the
calculation of the numeric gradient that the numeric and analytic gradient elements
differed by ~107 Hartree/Bohr. These differences, which are not observed for the water
cluster discussed in the previous subsection, are too large to be considered accurate.
Reducing the step size to 0.001 A removed all of the instances in which the
forward and backward energy calculations allocated charge density to different expansion
points. The analytic and numeric gradients match well, as shown in Table 2. These results

show that the analytic gradient is accurate.

Table 2: Comparison of analytic and numeric gradient (Hartree/Bohr) for a system of five
dimethyl sulfoxide (DMSQO) molecules, five methanol molecules, and 10 water molecules

Max Max
interaction absolute Max
analytic analytic RMSD absolute
gradient gradient difference
value value
0.213522 0.208892 2.8%107 1.2%10°

6.1.3 Ionic liquid dimer

The numeric gradient for the system of two hexafluorophosphate (PFs)™ anions
and two 1-N-butyl-3-methylimidazolium (bmim)" cations (shown in Fig. 3) was
calculated using a 0.005, 0.001, 0.0005, 0.0001, and 0.00005 A step size.

The differences between elements of the numeric and analytic gradient are large
(102 to 10™#) until the step size is decreased to 0.0001 A or below. Using a 0.0001 or
0.00005 A step size results in fewer instances in which the numeric gradient forward and
backward steps have density components allocated to different expansion points. Once

the step size decreases to 0.0001 A, the RMSD and maximum gradient difference
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between the numeric and analytic gradient were both on the order of 10 or 107
Hartree/Bohr. Similar to the previous case, this suggests that there may be discontinuities
in the potential energy surface. Small step sizes in numeric gradients can be suspect, so in
this case, the there is not an accurate numeric to analytic gradient comparison. However,
when the multipole moment allocation algorithm is modified to always allocate to the
same expansion points', the RMSD between the numeric and analytic gradient is on the
order of 10 Hartree/Bohr and the maximum gradient difference between the numeric
and analytic gradient is on the order of 10~ Hartree/Bohr, both in the acceptable range.
6.1.4 Discussion of potential energy surface

In two of the above cases, the numeric and analytic gradients did not match until
the step size was decreased or when the allocation algorithm for the multipole moments
was changed to always allocate density components to the same expansion point for
forward and backward displacements. This can be understood by considering how the
multipole moments are calculated. To calculate the multipole moments, the nearest-site
allocation algorithm is used to place multipole moments on expansion centers. The
nearest-site allocation algorithm involves evaluating multipole moments at every
Gaussian basis function overlap center (that is, at each piece of charge density), and then
shifting the multipole moments to the nearest expansion center. In the EFMO method, all
expansion centers are atom centers. If, during a MD simulation or geometry optimization,
atoms in a single fragment move in such a way that the multipole moments at a Gaussian

basis function overlap center are suddenly closer to a different atom center, then the

1 This was done by modifying the nearest-site allocation algorithm to choose not the
nearest atom, but rather the nearest of the two atoms upon which the two Gaussian
basis functions that comprise the piece of charge density are centered.
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multipole moments on the atoms are calculated differently, and thus the final energy is
different. If the energy is significantly different, the PES will not be smooth. As noted
above, one way to solve this problem is to require the energy calculations to use the same
set of expansion centers. Although this is useful for testing the gradient, this is not an
ideal solution since it changes the energy calculation. Alternatively, it is possible that
including bond midpoints as expansion centers in the EFMO multipole expansion (as is
done in the EFP method) might decrease or eliminate the problem. This possibility will

be explored.

Currently, for the systems studied, the maximum difference between the numeric
and analytic gradient is on the order of 10~ Hartree/Bohr or less, and the RMSD is on the
order of 10" Hartree/Bohr or less once the numeric gradient step size is small enough or
if the allocation algorithm is modified so that the same expansion points are always used
for the forward and backward steps in the numerical gradient procedure. The small
differences between the analytic and numerical gradients imply that the analytic gradient
is accurate. In addition, for small molecules such as water, displacing the atoms by 0.005
A in the forward and backward directions generally uses the same expansion points. The

problem discussed here is most likely to arise for larger molecules.



Figure 1: Geometry of 64 water molecules used in the numeric and analytic gradient

comparison. Hydrogen atoms are light gray and oxygen atoms are red.
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Figure 2: Geometry of a cluster of 5 DMSO, 5 methanol, 10 water molecules used in the
numeric and analytic gradient comparison. Hydrogen atoms are light gray, carbon atoms

are dark gray, oxygen atoms are red, and sulfur atoms are yellow.



61

Figure 3: Geometry of 2[bmim]PF¢ used in the numeric and analytic gradient
comparison. Hydrogen atoms are light gray, carbon atoms are dark gray, nitrogen atoms
are blue, and fluorine atoms are green.
6.2 MD simulations

A system of 32 water molecules was equilibrated before each production run, as
summarized below. For several of the steps, a Nose/Hoover thermostat that randomly
reassigns the velocities to a Maxwell-Boltzman distribution every N fs, denoted

Nose/Hoover (N) was used. The details of the simulations are as follows:
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1. The initial configuration was generated by randomly placing 32 water molecules in a
box with a volume that matches the density of water at 300 K.
2. A 6 ps NVT classical MD simulation of the water molecules was performed with the
EFP method. The temperature was set to 300K and the time step size to 0.5 fs. A
Nose/Hoover (500) thermostat was used to regulate the temperature.
3. The last configuration of the previous run was used as the initial configuration for a
500 fs NVT equilibration run performed with the EFMO method, with a 1.0 fs time step
size and a Nose/Hoover (100) thermostat, at 300 K. The 6-31++G(d,p) basis set and
Reu=0.3 was used.
This set of equilibration runs was done to match previous MD simulations used to check
energy conservation®. Periodic boundary conditions were not used, since this work is a
test of the gradient, not a production simulation.

As discussed by Nakata et al.** and Brorsen et al. ¥, the energy conservation in an
NVE simulation using the Velocity-Verlet algorithm can be tested by comparing the

RMSD(E) to the time step size. The RMSD(E), for M steps, is calculated as

M
D (Energy at step j — Average energy of all steps)’

J

M
(6.2)
For the Velocity-Verlet algorithm the relationship between the MD simulation time step

size and the RMSD(E) for NVE ensembles should be
RMSD(E) o< (time step size)’

(6.3)
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Eq. (6.3) can be rewritten as:
log(RMSD(E)) o< 2 log(time step size)
(6.4)

Thus, a log-log plot should show a straight line with a slope of about 2.

To check that the EFMO MD simulation using the analytic energy gradient
closely follows Eq. (6.3), seven NVE EFMO MD simulations were run for 50 fs each.
The initial configuration and velocity were taken from the last step of the equilibration
runs. The seven runs had time step sizes of 0.1, 0.2, 0.25, 0.35, 0.5, 0.6, and 0.75 fs and
R..~=0.3. Figure 4 shows a log-log plot of the time step size vs. the RMSD(E) for the 7
runs. The plot shows a straight line with a slope of about 2.03, close to that which is
expected when the energy is conserved. This suggests that for the seven time step sizes,
EFMO MD simulations using the analytic gradient properly conserve energy in NVE

ensembles.
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Time step size vs. RMSD(E)
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Figure 4: A log-log plot of six EFMO MD simulations of a 32-water cluster in the NVE
ensemble using six different time step sizes vs. the RMSD(E) of the energy.
7. Timings

Timing comparisons between EFMO/MP2 and FMO2/MP2 gradient calculations,
with the 6-31++G(d,p) basis set are presented in Table 3. All calculations were done on 4
compute nodes. Each compute node has two quad-core 3.0 GHz Intel Xenon E5450
CPUs connected by Mellanox 4X DDR Infiniband. Multi-level parallelism with GDDI
was used to split each calculation into 4 groups. The timings were done for Reu=1 and

Rcut=2 .
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Table 3: Timing comparison for EFMO/MP2 and FMO2/MP2 gradient calculations on
water clusters

Reue=1 Reut=2
FMO FMO | FMO
EFMO wall f]l(\)/lcg :;’;l; time/ EFMO wall wall time/
clock time (s) ©) EFMO | clock time (s) clock | EFMO
time time (s) | time
20 water 20.00 33.00 1.65 35.90 61.30 1.71
molecules
30 water 30.20 52.20 1.73 62.60 122,50 | 1.96
molecules
40 water 42.30 69.80 1.65 74.20 138.30 | 1.86
molecules
64 water 64.40 101.50 1.58 134.90 277.60 | 2.06
molecules

As can be seen in the table, the EFMO/MP2 method gives a speed up ranging
from 1.58x to 2.06x compared to FMO2/MP2. Recall that EFMO includes explicit many-
body interactions via the self-consistent EFP polarizability, whereas FMO2 does not.

As seen in Ref. 7, EFMO can attain the same level as accuracy as FMO but with a
smaller R, value. Thus it is possible that the speed up might be greater.

As mentioned above, the dimension of the largest response equation is the
dimension of the largest monomer. In this work, the timings were obtained for systems in
which the largest monomer is a water molecule. Since the dimension of the largest
response equation in one iteration of the self-consistent Z-vector method in the FMO
gradient’! is also the dimension of the largest monomer, the comparison should hold for
larger molecules.

Conclusions

As shown in Section 6, the current implementation of the EFMO gradient is fully

analytic for the Coulomb, exchange-repulsion, polarization, and dispersion terms. For the
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EFP interaction energy part of the gradient, response equations must be solved, but the
response equations are separable, so there is no response equation with the dimension of
the full system. That is, for the EFP interaction energy part of the gradient, the dimension
of the largest response equation is the dimension of the largest monomer. If the gradient
of the chosen ab initio method has response terms, then the gas phase monomer and
dimer energy gradients will have response terms. The monomer response terms can be
combined with the EFP interaction energy response terms, but the dimer response terms
must be solved separately. As demonstrated in Section 7, the EFMO gradient is up to
2.06x faster than the FMO gradient.

In testing the analytic gradient, it was discovered that the allocation of charge
density in the multipole moment calculation during a numeric gradient calculation for a
large molecule can differ for the forward and backward steps, thereby causing the
numeric and analytic gradient to differ by too much. It is anticipated that adding bond-
midpoints as expansion points should decrease the impact of the allocation difference.
This will be explored in a future paper. Future work will also include the derivation and
implementation of the gradient of the charge-transfer term.
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Appendix and Supporting Information
Appendix Section A: Response Equations, discussion of responses, and the Z-vector

method

Al: Coupled Perturbed Hartree-Fock Equation

Since the molecular orbital coefficients are calculated using a variational minimization,
the derivative of the molecular orbital coefficients can be calculated using the derivative
of the variational conditional. For the RHF SCF equation, the variational condition is that
F,,=F_=0where iis an occupied orbital and a is virtual orbital.

For canonical molecular orbitals, the variational condition becomes Fp .= F; p = 0 where

p # q. This is described in detail previously’, and results in the Coupled Perturbed

Hartree-Fock Equation:

Z;quackUjk = B;q
(A.1)

where

A;q,ck = 4(pq I Ck)_(pc I qk)_(Pk I QC)
A = (6(1 —5 )6pc6qk -A

pq.ck pq.ck

occ

By, = F\ =S, = > S (2(pq | kj)— (pk 1 gj))
kj

and e is the orbital energy of MO g¢.

Only the virtual-occupied block of the response matrix is uniquely defined. For
the RHF energy, unitary transformations between occupied-occupied (occ-occ) and

virtual-virtual (vir-vir) MOs do not change the energy (but must still follow the
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orthonormality constraint on orbitals), and are not uniquely defined. They are often
referred to as “non-independent”, while the vir-occ block is “independent™.

If it is assumed that the canonical MOs are used (F; = F;, = §,,c,where i is an

occupied orbital and j is an occupied orbital), then the occ-occ part of the response matrix

can be written as

X ]‘ > RS ’ X X
U= — [2 ; A UL +B; )

(A.2)
although it is undefined when there is a degeneracy in orbital energy.
Alternately, if the energy expression is invariant to unitary transformations among

the CMO occupied orbitals or the virtual orbitals then>-3

X 1 (x)
U[j Z_ES’]

X 1 X
Ua =_ES($b)

(A.3)
for the occ-occ or vir-vir part of the response matrix. This can only be used in certain
formulations of gradients. For example, Eq. (A.3) is valid if the gradient is directly
derived from an energy formula that does not assume a particular unitary transform of the
MOs.

The CPHF equation can be solved for each canonical response matrix element. In

practice, this is avoided, as described in the Z-vector method.
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A2: Derivative of the orthonormality constraint with respect to a nuclear perturbation

_ . . X x _ o) . . .
S, = §pq implies U, +U,, =—S,’ when x is a nuclear perturbation (and the basis
set depends on nuclear coordinates). For a field perturbation, ¢, U;’q + UZ, =0 since the

basis set does not depend on the field.

A3: Coupled Perturbed Localization (CPL) Equation

Since the LMO transform matrix is determined using the localization condition
(which depends on the localization method used), the derivative of the LMO transform
matrix can be determined from the derivative of the localization expression. (This is
similar to how the CPHF equations are derived, where the MO coefficients are
determined from the variational condition, and the derivative of the MO coefficients can
be determined from the derivative of the variational condition). For this work, only Boys
localization'? has been considered. Other localization methods can be used, but the CPL

equation would be different.
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First, Eq. (2.3) is written in more detail:

occ

L CMO
Z ( i€ ﬂl)
occ occ
CMO CMO
E)L,l
- li
i
occ occ occ+vir
CMO CMO CMO
Z FRCAPIIPILY
occ occ occ+vir
CMO a L LMO CMO CMO
li
=25 Lkt Ll 2 U,
occ occ occ+vir
LMO CMO CMO CMO
— li
=2 ZLma DI
i i

occ occ+vir

LMO CMO CMO

_zcﬂn v+ Y L, Y Ule
i q

As previously known'é, the localization condition for Boys LMOs is
r, (r,-r,)=0
(A4)
where r,, = (1, .7, »7,.) and n, = <l | a |m >.
for all /,m pairs of localized occupied orbitals. The bold notation indicates that the term is
a vector.

Eq. (A.4) must be true at any geometry, so

a(rlm : (rll mm ))
ox =0

(A.5)
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This is the starting point for the Boys CPL equation. Other studies have presented
the derivation of the equation for Boys (or similar localization methods) in detail!*!>16-37,
so the result is presented here. An overview of the derivation used in the code
implemented for this study is below.

Eq. (A.5) is expanded and rearranged to form an equation for the localization
response matrix (as is similarly done in the CPHF equation derivation).

The derivative of the LMO coefficient as shown in Eq. (2.3) is used throughout. Note

also that v, is antisymmetric. Using

8[ LMO %3\;0 Iél]lMO AO 8#
<$ || m> = z Vihuma T Z L, Z Uilima + Zcfd <$ || m>, the left-hand side of Eq.
n i q u
(A.5) becomes

occ  occ+vir
LMO CMO CMO

40 o 40 oL
(r=1,)| 2 (vir, +viE)+ 2 D, U;]‘j(L,jrqm+Lmjrq,)+2cﬁ,<—laIm>+2cﬁm<—lall>
i " ox m 0x

n

occ  occtvir

LMO ] CMO CMO AO . a'u AO ., a/.l
+2rlm Z(vr-:lrnl_v-rtmrnm)-i- Z Z U;j(Lljrql _Lmjrqm)+zcul <$|a |l>_zcﬂm <$Ia |m> :0
n iog u U

(A.6)

After rearranging, and separating out the response matrices, Eq. (A.6) can be written as

AO a AO a AO a AO a
(r, —rmm)(;cﬁ1<£la Im>+;cﬁm<a—’ila Il>j+2r,m(;cﬁ,<£la Il>—2cﬁm<£la |m>]

u
+Lf) VX (5011'71”1 (rao - rmm ) + 5omrnl (rll - roo ) + 2rno (6o[rom - 60mr[0 ) ]
" _6n1r0m (rnn - rmm ) - 5nmral (rll - rnn ) - zron (5nlr - 5r1mrln)

o<n nm

occ  occ+vir
CMO CMO

+ 2 z U;. ((rl, -r,, )(L,jrqm + Lmjrq, ) +2r,, (L,jrql - Lmjrqm )) =0
J q

(A.7)
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By the localization condition, Eq. (A.4),

rlm (rll mm ) = 0
—>

r, r,=1,-r

Im mm

Using this, Eq. (A.7) can be rewritten:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

) s D oD
=(r-r) zc <—Ialm>+2¢ <—'ulall>)+2r (Ec;<—“Ia|l>—2c;<—'ulalm>
9 ’

x , ox ox ) dox

yyyyyy

(A.8)
To simplify Eq. (A.8), the terms in front of the response matrices v and U can be
collected into terms C%’ and B%, respectively. The remaining terms can be combined into

the term A’!. Then Eq. (A.8) can be written as

occ  occtvir
LMO CMO CMO

Y vECE = AT - Z Z ULBY,

(A9)
Above is the CPL equation. If the canonical MO response matrix (U) is known,
Eq. (A.9) can be solved for each v*. In practice, this is avoided, as shown in the Z-vector

section.
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A4: Second order Coupled Perturbed Hartree-Fock Equation

The variational condition for the RHF SCF equation is F,, = F/, = 0. This must be

2 2
zero regardless of the fragment geometry. This means that J F, o F, =0 (where

0x, 0x, - ~ Ox,0x,

x7and x> are coordinates of two arbitrary atoms).

For this work, a nuclear derivative of the canonical response matrix to a field

(24

U
ox

perturbation is needed. That is, where o is an electric field in the x-, y-, or z-

a

0x

direction, and x is the coordinate of an atom. An expression for can be derived as

shown below:

9 (9F, CIV = (L 9F) [ .o ]
— F' —F —F U =
dx \ da ax( )+ +Z( )+ +ZK )+ZZ ox
(A.10)
ou,  JU;
Using ( > -9 ;’ ) and F.“ =(i| & |a)® (since o is a field derivative), Eq.

(A.10) can be rewritten as:

vir occ (aUZ \

aU

a ii aa) ZZ a azb/J

_i . wr( . aE)a] occ( a%j vir occ[ aAL; b]j
_ax(<l|a|a>) Z Ubl dx +Z UJa dx +ZZ Ubj ox

b

(A.11)

a

Eq. (A.11) only solves for the vir-occ block of , but that is all that is needed for this

X

work.
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A5: Second-order Time-Dependent Coupled Perturbed Hartree-Fock Equation

The second-order time-dependent coupled perturbed Hartree-Fock equation can
be derived in a manner similar to the first order equation®®3%%,

The first order TD CPHF equation can be derived by using time dependent
Hartree-Fock theory and time dependent variational conditions. The interaction between
a molecule and a time-dependent oscillating electric field with frequency @ and direction

v is considered, and the MO coefficients, Fock matrix, and energy can be expanded in

terms of the perturbation. This can be written as

vir occ vir occ

{aly i)+ 2.2 [2(ai| )= (ab | )WV} (xw)+ 3D [2ai| )= (e | D)V} (D)
+§U T(fo)F, — fU o), t U], = F](to)

(A.12)

The variational condition is F” (@) = 0, resulting in the first order TD CPHF
equations. If the definition Z” (w)= U’ (w)+U! (—w)is used, and canonical MOs are

assumed, then this can be rewritten as Eq. (3.19).
. 0
Since F’(tw)=0 regardless of the geometry, a—F;(ia)) = 0. Then the second-
x

order TD CPHF equation can be derived by taking the nuclear derivative of Eq. (A.12),

and using the variational condition. The resulting equation can be written as
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vir %364'0 vir Z'(}\(/}O .
WY CHT L LD L
b J c k X
vir OCC].\f[O vir occ ’
:_22 ZHLZZZJ b|7|] 4 ZZH;?Z]Z; aAbj,ck
be  jk ax
- i”z“ﬂsfz,jza e &”z“ﬂgfz,,z )2
be j

+- ZZ{ (blylj +ZZHIS,1)Lka(W)}—((aJ |bi)=(ab | if)
vir vir occ aF
oS 20017100+ £ 2100 | L
occ ) vir occ @ aF
+z 2<a | }/|J>+ZZHW cka(la)) ax
c k

j
(A.13)
A6: The occupied-occupied and virtual-virtual canonical response matrix

The exchange repulsion, polarization, and dispersion EFP energy expressions
involve sums over LMOs. As shown in Section 4, the use of LMOs results in gradient
terms involving the occ-occ canonical response matrix due to the occ-occ canonical
response matrix that is in the last term of Eq. (2.3).

If all occupied molecular orbitals are localized, then the energy is invariant to
unitary transformations of the molecular orbitals that are used to initiate the localization
procedure. This is not strictly true when the LMOs are not unique (e.g., the © orbitals in
benzene)*! but is true for all cases tested. Since the energy is invariant to rotations among
the canonical molecular orbitals (which are the molecular orbitals that are used to initiate
the localization procedure), Eq. (A.3) can be used to replace the occ-occ and vir-vir

portion of the response matrix with a non-response term.
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However, the EFP method by default is implemented with frozen chemical core
occupied molecular orbitals. Thus, only the active (non chemical core) occupied
molecular orbitals are localized, and used in the energy calculation. If only the active
occupied MOs are localized, then the energy is only invariant to unitary rotations among
the active occupied molecular orbitals. The act-act and core-core blocks of the response
matrix can be replaced using Eq. (A.3), but the act-core part of the response matrix
cannot. It can, however, be calculated using Eq. (A.2). This means that there could be
singularities if a chemical core orbital energy and an active occupied orbital energy are
the same. As noted in a derivation of the frozen core second order MP2 gradient*,
usually the chemical core orbital energies and active occupied orbital energies should not
be degenerate.

Additionally, one can think of the Z-vector contributions to the final Lagrangian
in Eq. (4.24) as contributions that correct for non-variational character*? to make the
expression appear variational in terms of orbital rotations.

The virtual-virtual block of the canonical response matrix is replaced with Eq.
(A.3) as well. The difference between using Eq. (A.3) and using Eq. (A.2) is negligible
for all cases tested. The final implementation uses Eq. (A.3) for the relevant blocks of the
response matrix to avoid singularities.

A7: Z-Vector method

Once all terms with response matrices in them have been collected, the Z-vector

method is used to avoid solving for all nuclear perturbations’. As an example, let
Z UL, be one term of the gradient. By Eq. (A.1), Z ZAM,MU; =B, Then the

i a

contribution to the gradient can be rewritten as shown below.
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occ vir occ vir ( vir occ

.
ZZU; Lai = ZZLZ Z(A)ail,chchLai
i a i a ¢ J
= ZZBZ; [ZZ(A);Z'I,L]‘LM]
c a i

(A.14)
Defining Z as the solutionto L, = z Zch,aich” then z Z U.L,= z B.Z,.
c i a c

AS8: Applying the Z-Vector method to the localization response term
This section discusses the details of using the Z-vector technique on the
localization response term in Eq. (4.40)

First, the localization response matrix term can be modified, noting that v'x* is

. . . A2 g4 A
antisymmetric, and defining M, =M, — M,  asshown below
LMOeA LMOeA LMOeA

xxA A _ xxA A _ A
z vml Mml,tot - Z vml (Mml,tot Mlm,tot)
l m I<m
LMOeA
_ XA 4,2
- Z Vol Mml,tat
I<m

(A.15)
Then, using Sections A3 and A7,
( occ occ+vir \
LMOeA LMOeA CMOeA CMO €4
xxA A2 _ cpl,A cpl,A xxA pepl,A
Z vm[; Mml,tot - Z Zml _Aml +- Z Z quK Bml,qi
I<m I<m i q
(A.16)
LMO

where Z comes from solving the Z-vector equation, » | C#"*Z% = M2

ml,no“~"ml ml tot*
o<n
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Terms in Eq. (A.16) can be rearranged and combined with Eq. (4.40) to result in Eq.

(4.24).

Appendix Section B: Coulomb gradient derivation details
To simplify subsequent equations, define a function, Fy," ({T, Of‘//fmy}, (m'y, {m’}).

Given a set of multipole moments on fragment 4, multipole moments on fragment B, and

multipole moment interaction tensors between all pairs of multipole moments on

fragments 4 and B, ﬂC;ul (T, 0%}’

},{m"}, {m’}) contains the EFP Coulomb energy as in
Eq. (3.3):

X,V,Z 1 X,V,Z X,V,Z
e’ ”—Zq’ﬂiTé"+§ZﬂqJ@iﬁTJ/§+ZﬂiqlTOf"
E?ul({Té;-»»V}’{ml}’{mJ})EZI:ZJ: & g ey IS 1’ u
= T 3 DTy +...
a.p apy
(B.1)

{TU

5., Tepresents the set of all multipole moment tensors on the RHS of Eq. (B.1).

{m"'} represents the set of all the multipole moments on 4 on the RHS of Eq. (B.1) and

{m”’} represents the set of all the multipole moments on B on the RHS of Eq. (B.1).

Noting that the multipole moments are products of a density matrix and a integral

involving primitive Gaussians, Eq. (4.7) can be rewritten as
J

oE j,;ul Coul o7, op..y I J Coul u Lxg J
S A= EUS S ) D)+ L (T g b ot b Am” D)
KeAd KeAd

l ;
+F:f;“ ({TOZ;/}’ {m;e);z{:ity—deriv}’ {mj})

(B.2)
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Ixg

density—deriv 1S the

Where m,% is the contribution from the PG integral derivatives and m

contribution from the density matrix derivatives.

The second term in Eq. (B.2) involves only derivatives of Gaussian integrals,
which depend explicitly on the atom positions, and can be implemented in a
straightforward manner. Care must be taken to properly account for the derivative of the
expansion point in the dipole and quadrupole terms.

The third term in Eq. (B.2) involves the derivative of the density matrix, which
has an implicit dependence on the atom positions. The third term is expanded:

F (T Amigssy e} m” ) =

density—deriv

{xp,z} {x .z} {x. .2}

T (ule)+ 20 T ug(ule)+ D, T®u(ult)y= ) Tqu (ula-a; 1)

o a.B a
R u,,J 11! U qJ
40e4 5p pe et _Z Taﬂﬂ/,<u|0(—0(1|t>—§ Taﬁy®ﬂ7<u|a_a1|t>
ap a.By
= Zz Z ox - Z (_R‘;) 1 {x.p,7} 1 {x.p.2}
Ied JeB v Ked ut t/ A A A A
e S 3 1 (1180 =6 1)+ 5 3 T (118 ~00y 11
a.f a.py
1 R U J A A
+5 > 75.00(ul6,,-0,, 1)
L a.Byk

AOeA aPIuV Ilzg lueelﬁl U
DI SV

led JeB uv KeA ut nearest |

(B.3)
where -, and (:)aﬁ - é)aﬁ, , denote that the integral is being calculated around 7, and K

contains the terms that are summed over PGs.

The derivatives of the MO coefficients are replaced with expansions in terms of
the canonical MO response matrix. The terms involving the response matrix are separated
into the occupied-occupied terms and the virtual-occupied terms. The definitions in

Section 2 and Appendix A are used.
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PG ueu
AOeA PG tev
—ZZZ 2 LK
ut
le4d JeB uv KeA ut nearest /
PG ueu
AOeA occeA PG tev
=222 22.¢ 2 LK
- a ,uz Cyi ut
led JeB uv xKeA i ut nearest /
PG ueu
AOeA| occeAvireA PG tev
_ xgA J
=222, 21 2 DU Cuentene) | X K]
led JeB uv i ut nearest /
PG ueu
AO€A | occeA occeA PG tev
xxA xx A J
PN PISNLAELIA LRI L
Ied JeB uv i ut nearest /
PG ueu
occeAvireA PG tev
_ xgA U
=SS Y Y e tenen] 3 (K]
i a led JeB uv ut nearest /
PG ueu
AO€A | occeA occeA PG tev
(xg) J
PN DISNCLALIARIPINEE
led JeB uv i ut nearest /
(B.4)
Then, noting the definition of K”, eq. (B.4) can be written as
occeA vire4
_ xgA Coul I 1 J Coul i I xg J
- Z Z Uai I:F ({Ttxﬂ...y}’ {mU—weighted,ai}> {m }):Iai + F ({Ttxﬂ...y}’ {mocc-weighted}’ {m })
i a
(B.5)

O _ .\ with

I I 1
where {meweighted,ai } {quweighted,ai ’ luUfweighted,ai >~ U-weighted ,ai

AOed PGeuv

qu/—weighted,m = Z Z Z(Cﬂa Vl Va ;u) <1/l | t>

MV ut nearest [

Ixg — Ixg Ixyg Ixg .
and {maccfweighted } - {qoccfweighted ’ lLlOCC‘*WEI-thEd ’ eaccfweighted } with

PG ueu
AOed PG tev occed occeA

A e == 2, 2, | 2 Z (€ + €y N=SSE) Py (u | 2)

MV ut nearest / i
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Then, using Eq. (B.5),

PG ueu
AOeA aP PG tev

Coul 94 I, 94
E AT Ay an o Am D= 20 3 === 3 [K,]]
ledA JeB uv KeA ut nearest /

occeA vireA

= Z Z UXKA [FCOM[ TDZ? y} {mlll—weighted,ai}i{mJ}):Iai
+FC0“1({TDZ y} {m(f:z(weighted ’{mj})
(B.6)

Eq. (B.6) can be combined with Eq. (B.2) to produce Eq. (B.7).

v

aEC”“l ou aTa ou X “ou X,
axAB =F;59 1({ axﬂy}’{ml}’{m‘]})_{—&i’ 1({T0% }/} {mIIJ,'G,ideriv}?{mJ})—'—EfB l({Toz’ y} {mé;n,;ityfderiv}9{m‘]})
KeAd Ked

v

o7
= F U P ) TG 3 g om')
Ked

occ in A virtin A

2 v LEG T8 b A geaad D) |+ EG (Tl b Am S g b )

_chd({ {lﬂ 7} {m } {m })_{_FC;”I({TOZ’ y} {mIIJGVKderw irzkuezghted} {m })

axKeA

occ in A virtin A

T2 X U ES AT b st 7D

i a

(B.7)
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Appendix Section C: Exchange-repulsion gradient derivation details
This section presents the details of the derivation between Eq. (4.9) and Eq.
(4.11). Expanding each derivative in Eq. (4.9) generates six terms (A-F)) that correspond

to the six terms in Eq. (4.9):

AOeAAOeB aC

() "”—ZZ 3, Cm (V)48

occ

(B) aE’::AanCﬂIFA Aan ”mFA CAfAAfA i l,mﬂ, F;:(x)
o 0xg
AOeAAOeBa 2
(C) ’”’—ZZ e < : |v> T
OR 1 &P a<l|a|l>
D) —r=— <lla|l>-<m|o —_—
(D) 3 leg{( la|l>=<mlam>)—=
oR, 1 ' o<l|o|l>
E)y —Y=— <lla|l>-a,)——
(E) xR, Za: {( || 7) o,
(F) a]e[m:(xl_ m|X|m>)§
0x; R, x

(C.1)
A, 18 defined in Eq. (A.1). For the EFP method, the gradient of the EFP
exchange repulsion term was derived by Li et al.*? (See Eq. (2) in Ref. 32 in particular).

The expansions in Eq. (C.1) can be substituted into Eq. (4.9) to rewrite the expression as

Eq. (4.10).
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The AO-derivative terms in Eq. (4.10), shown below, are straightforward to

compute:

AOed AOeB a S { LMOeA LMOeB

Zﬂ: Sy Y [W;fnﬂ
Aan ;{ 2“%“ Lﬁf/‘c rgBSmSmﬂ

DIDI e DI I Con | Wi |
+A§A {f} <o | alv> FMZOZEA {f}cﬂ,cv,[ ]}

A0ed 40€B 9 T { LMOeA4 LMOeB }

(C.2)
The MO-coefficient derivatives in Eq. (4.10) can be expressed as
LMOe€A LMOeB AOeA4 AOeB aC
2 FEE S s
LMOeA LMOeA | AO€A acﬁl ) AOeAa f(m y (é(l:\(/:[OEAAOEA aC LMOeB
2 8 e S e S T, | Y s
l m u K u K n
LMOeA LMOeB AO€4 AOeB acﬂ] L ’
ARED I NPIPDIF rll T,.[ W]
LMO€eA {xyz}AOeAAOeAa L
+2 z z z z Su L<ﬂ|a|v>[ .
(C.3)

where the Fock matrix derivative is expanded’. Eq. (C.3) can be rewritten using Eq. (2.3)
to expand LMO coefficient derivatives into terms with localization and canonical MO

response matrices:
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occ+vir

LMOeA LMOeA LMOGB CMOEA CMOeA Y LMOeA LMOeB
SEDYDILD RN LIS 30 37Dy RN AV
i q m

! m

occ occ
LMOeA LMOeA LMOeA LMOEB CMOeA CMOeA LMOeA LMOeA LMOEB
' IR PIPIRLDY
_4 z Z V z mo Z ln on + 4 Z Z U Lh Jjm SlnSmn
+ o n
occ occ+vir
CMOeA CMOeA LMOeA LMOeA LMOeB
_ xxA
4200 DU D 2 A 2 SuS
i P

occ occtvir

LMOeA LMOeA |:LMOEB :| CMOeA CMOeA |:LM()EA LMOeB :|

+ z z et z T, W |+-2 z z U;[KA Z z LthmVV,,Tn
. i q Lo

LMOeA LMOeA X,p,Z
Z z vw{z <mlal|l>W, }

((ifj\c/}()eA ZLAC/}J;)\Z; LMOeA {xp.z}
xgA R
23 DU D LY <qlall>w)
L i q 1 o

(C4)
The fifth term can be simplified using Section A2 to remove the occ-occ canonical
response matrix.
occ occ+vir
LMOeA LMOeA LMOeB CMOeA CMOeA LMOeA LMOEB
_ xxA S xxA
=22 Lo XSalWilr2 X 2 U 2 X LS. Wa
n i q /
r occ occ 7]
LMOEA LMOeA LMOeA LMOEB CMOeA CMOeA LMOeA LMOeA LMOeB
xxA XA
Lo X B 2 SSa P4 X XU 2 2 L 2 SuS
i j / m
+
oce oce
CMOeA LMOeA LMOeA LMOeB CMOeA vired LMOeA LMOeA LMOeB
(xx) xxA
LS L 2 A 2SS T2 2 LU D D Al 2SS,
i,j i a n
B occ occ+vir
LMOeA LMOeA LMOeB CMOeA CMOeA LMOeA LMO<B
xxA T XA T
+ 2 z Z Vinl Z T Wi |+2 Z z quK z Z thTqu
n i q / m
LMOeA LMOeA {x,.2} T
DI D RIS
/ m
+ occ occ+vir
CMOeA CMOeA LMOeA {x.y,2}
20 DU D LY <qlali>wE
L i q / o i

(C.5)
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Combining Eq. (C.5), Eq. (C.2), and the last term in Eq. (4.10) results in Eq. (4.11). Note

that since v**"is antisymmetric, certain terms can be simplified.

Appendix Section D: Polarization gradient derivation details
Dl1: Eq. (4.12) is expanded to the form in Eq. (4.13):
Eq. (4.12) can be rewritten by splitting the first term into a sum over the LMOs on

fragment 4 and a sum over the LMOs on all the other fragments; using Eq. (3.10), E}?g

can be expanded.

Then, the first term in Eq. (4.12) is:

frafnlsﬂlﬁél?{hﬁ;}( aE,?’f ]( pf,a + ﬁfﬂ J _ _LI\ieA {:i,z}fra%e‘msitaEsm }(p:a + 13;,4,0, j

B n o axKeA 2 n o«  BzA I axKeA 2
fragments LMOeB {x,y,z} fragments C 0 B ~B
IS z["’E}[”"]

B e G T\ 0xey 2

(D.1)

In the first term in Eq. (D.1), E,?],a is a function of the LMO centroid n on 4, the
atom center / € B, and the multipole moments on /. Since the derivative is with respect
to an atom in fragment A4, and B # A4, the derivative only affects Efl’athrough the LMO
centroid n on A. The LMO centroid n, (n| | n), is a function of the atom position
through the LMO coefficients (with an implicit dependence) and the AO integrals (with
an explicit dependence). Since Ef,,ais a function of LMO centroid n, and LMO centroid
n is a function of the atom position, the chain rule can be used to obtain the derivative of

EO

1. With respect to the atom position, as shown in the first term in Eq. (D.2) below.
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In the second term in Eq. (D.1), Efm is a function of the LMO centroid # on B,

the atom center / € C, and the multipole moments on /. The derivative is with respect to

an atom on A4, so the only nonzero term will be for C=A4. Then Eq. (D.1) can be rewritten

as:

fragments LMOeB {x.v,2} 0.B 5 +pf
TS (2 )
= ~ o\ OXgey 2

g on B nlﬁln>[“i ZZ[ j[p;‘,a + P H

n B axKeA o BzA n I ﬁ | ” 2

f (sSLMO€B {xy.2} A ~
_raf'” Ze gZ[aEnl,a][pn,a-l_pn,aj
B#A o 1 axKeA 2

(D.2)
The second term in Eq. (D.2) can be expanded in a similar fashion as the gradient

of the Coulomb term in Section 4.3.1. That is,

fragments LMOeB {x,y,z} A aE,? a pfa +ﬁfo¢
DI el
a

B#A n a'X’-KEA 2
{x’y’Z}a ITnI B ~B {)CV }a 111
2 qi, pn,a+pn,oc + 2 'uﬁ pnzx+pna
fragments LMOeB A o axk’eA 2 of a‘xKeA 2
BzA I +l{x,y.z} a( ﬁyTO:g},)(pfﬂ + ﬁnB’a j
35 Xk, 2

(D.3)
To simplify Eq. (D.3), let

{x,y.2} . pn “ pn o b n Pn o pn o
fragments LMOeB A ; QITaI[ 2 ) z 'LlﬁT 1( \J
F{{Ty b m'yp = Y 2 D

B#A a1 1{”} I onl pna+pn.oc
z@ﬁyTaﬁV 2 '

aﬁy
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Asin Eq. (B.1), {T; } represents the set of all multipole moment tensors on the

aﬁ Y
RHS of the above expression. {m’} represents the set of all the multipole moments on 4
on the RHS of the above expression and {p, } represents the set of all the induced dipoles

on in the RHS of the above expression.

Then, Eq. (D.3) can be written as:

fragments LMOeB {x.y.z} A a EO T
DYDY 22( j{p”’J F{ (=20 im'y p, )

BzA  n axKeA 2 KeA

+F ({Ty5.,} { } .}

KeA
(D.4)
The second term in Eq. (4.12) can be expanded and split into terms involving the
derivative of LMO centroids and a term involving the dipole polarizability tensor:
1 fragments LMOeBLMO€eC {x.y .z} 9D, 05 8
DIICR K VR
BC m n KeA
1 LMOeA{x.,y,z} aD 8 1 fragments LMOeB LMOeA {x.,y .z} /3
~A nn.olf A nm 0 B
LSS G e |y LTSS |
n o.p KeA B#A m n o.p KeA
1 fragments LMOeA LMOeC {x,yz} ﬂ
mn Ko/ A
4 L X 20 P
2 C#A m n ax[(eA
(D.5)

Eq. (D.5) can be rewritten in terms of LMO centroid derivatives and dipole polarizability

tensor derivatives, as shown below.
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LMOeA{x.y.z} 0 a;l 1 fragments LMOeBLMOeA {x.y .z} _ {ayzh aDnma Hnlyl
=l z Z ﬁ:ﬁ)[wj A +— Z Z Z 2 (p:?,a ( Z a “ <n y n>j ,
Y

n p/nv
2T Xy T2 ;S noap <n|y|n> Xy, p
] fragments LMOEALMOEC {x.y.2} [ERET S Dnm " a( ml y|m>J .
+— (P ’ P,
c% ; 2 zl; (; (mlylm)  Oxe., g
1 LMOeA {x,y.z} _ a "
:5 z Z( jﬁ)[ ( By)]pny
n By KeA

n % axKeA B#A m a.p

1 LMOeA{xyz} a(n I ,y I I’l> fragments LMOeB{x.y.z} A aDnm o5 aDnm,ap \
+2 2 2 2 z Z (pn,a) a<n|y| > pmﬁ (pma) a<n|y|n> pnﬁ

(D.6)
D2: Details of the expansion of the three terms in Eq. (4.15)
The LMO transform derivative can be written as
LMOeA{xyz} Z’L;IOEAW;'GA a LM()eA{x,)',z}~ %a;OEAmeA
> En? 2 2 LU al BIKY (ESA+ Y, Y B Z D Ln] Ly — U (al BIk) |E"
n By a KE‘\ n By a a KeA
LMOeA(()sIfIOEA aL {x.y.2} E'LiﬁlOeAureA
=Y Y LN ERY ZLM(U’A (al BIE)+U (al B1))EY
n J a KeA By k
LMOeA ((,7(1‘&064 LMO€eA gclOeA vireA
=y 3 N Ly ZE”’“‘ Z ZL”A(U“ (| BIE)+U (al BIK))ELL
n J 1
LMOeA {xy.z} ?ZS\;OEAwreA
=Y ety E;”;A ZLU ,,k(mA {al /3|/<>+UVA<a|ﬁ|k))E;f;-A
nl By a
LMOeA
2 V)LKADIn
(D.7)

where D is a term containing the coefficient of v.

The MO field response term can be written as

oce oce
{x.y.2}CMO€EA vireA aUVA LMOeA{x Va2 CMOeA

I e B D D RIS

Y J a KeA

(D.8)
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The dipole derivative term can be written as

{x, z}%LI\iIOeAvne cA{x,y.z} g'cllilOEA
D IPHCCL {Lﬂi ZE[z > L,,]Lnkm] »A]
B

k a axKeA

{x.y zl(CLAL/IOEA VireA a I I k .
IR

S Oxgg,

(D.9)

where W;:’f,k contains the coefficients of the dipole derivative. Using the definition of the

derivative of a CMO, Eq. (D.9) can be written as:

occ occ

{x,y,2} CMO€A vireA a k CMOeA vired {x,y,z}
Y S ARy 1S e TS <arplis [
B k a a‘)CKEA ki a i)

vzreA {x,y,z} \
5> Z <a|Blb>[w;t, ]
CMO€eA vireA a
+ U,
; ; d %%OEA (r2) )
-2 2 <k|Blj>[w;L,]
occ
vireA CMOeA {x,y,z}
—2 U Y D <klBlo>[wk, ]
ab k B
oce
vireA MOeA CMOeA {x,y,z}
di
+2 2 (=Se) XX <kIBlp>[ Wik, ]
a P k B
{ < g\;o A
X,y €A vireA
©1B1Y)
+ Z z p) Z Z[Cﬂackaﬁdfk}
B uv Xkea

(D.10)
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Combining Eq. (D.7), (D.8), and (D.10), the last term in Eq. (4.22) can be expanded. The

polarization energy gradient can then be rewritten as in Eq. (4.16).

D3: Z-vector method applied to second-order CPHF

The Z-vector method can be used to replace the term involving the derivative of
the canonical MO response. This method replaces the second order canonical response
with first order canonical response terms. The first order canonical response terms can be
collected with the other canonical response terms.

Following the Z-vector method technique in Section A7, and using Section A4,

the second-order response term in Eq. (4.23) is written as

{x,y,2} CMO€A vireA pA
ur

pIDIPILCEEY

B i a K

{x.p, )Z(QOEA ire A ( ire A aF ?4;0“ . vireA CMOeA r. . \
DhRREEED MWWZMQQEXW'}ZZ@“WM

b K j K

(D.11)

scphf,A .4
Z =N,

where Z*?" is the solution of the Z-vector equation D A, Z.% [

b

The right hand side of Eq. (D.11) can then be re-written as:

occ occ

} CMOeA vired BU {x,y,2} CMO€eA vireA vireACMOeA aA/

bj “X)Z} scphf A A\\
ZZZ— = Z 2 L5 (aIﬂl )25 2 Z " ngx/ Uy |

( occe \\ occe oce
{x,y,2} CMOeA CMO=ACMO=A 5 F ( {x,p.2} vired

vireAvireA aF scph seph \
DIy DUDIEAE LDID Ny DIDIL A QD)
B Xl B i Xg

(D.12)
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where U fl =-U 5 %is used to put the known response matrices in the form (vir, occ).

There are three derivatives in Eq. (D.12): A dipole integral derivative, A’ (defined in
Appendix Al) integral derivative, and a Fock matrix derivative. Using algebra and

standard quantum chemistry techniques, Eq. (D.12) can be written as:

oce oce

occ
{x.y,2} CMO€A vired aU/J’.A vireA vireACMO€eA CMO €A
ai BA pol 2 Z xxA 7 scphf Z Z xgxA 1 scphf Z xgxA 1 scphf
Z Z Z P) Nm’.rar - NRA,tot,xK + Uab Lab,tot + Uak Lak,tot + Uki Lki,tot
B i a xK ab a k ki

(D.13)

where NR”’?  is the sum of the non-response contributions, L'*" is the coefficient of

Atot xg
the CMO responses, separated into occupied-occupied, virtual-virtual, and occupied-

virtual blocks. See the Supporting Information for more details.

Appendix Section E: Dispersion gradient derivation details
El: Using the Z-vector method to replace second-order response term

The Z-vector method can be used to remove the derivative of the time-dependent
response term, and replace it with terms involving the canonical MO response. This is
similar to how the second-order canonical MO response was replaced in Appendix D
(with further details in the Supporting Information).

Following the Z-vector method,

occ occ

vireA CMOeAvireA CMOeA

) (2) rpstdephf A . N2 —stdephf A _ nTB.0.4
Y > Y Y HY HEZE )~ (i) Z3 4 = N,
b j c k

(E.1)

Eq. (E.1) is solved for Z}5""".
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Then, using Section A5, the fourth term in Eq. (4.23) is replaced with

12 {x,y,z}vireAd CMOEA aZﬂA(lw ) 5
el e 4 w4

a ai tot
a i XK ed
occ occ
vired CMOe 4 vireACMOe A ’
) Z Z H® b | ﬂ|]> Z Z H® Z,BA aAbj,ck
ai bj ai,bj ck f a
K bc Jk ‘xK
oce oce
vireACMOe A vireACMOe A aF
_ @) P4 9, z z @) 7p4 ik
z z Httz LjZ (lw/ + Httz ij ( w/ a
bc J XK
oce oce oce
12 {x,y,z}vireACMOe 4 vireACMOe A vireACMOe A

I I I Sivirs —Z Z 2(b| 1))+ Z Z HY ZM o)) —((aJIbz) (ab|i)))
fB i

occ

vireA vireACMOe 4
2| 2Ab1Bl+ 2L 2 HipuZy o f)
c K
OCC&OE A vireA ZCJ‘&OE A aF
t 2| 2Aal Bl 2 2 HuZi! o) |5
J K

(E.2)
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Then, the integrals are separated out, as shown below:

oce oce
12 xyz}vzreACMOeA aZﬁA(la) ) {x,y,2} CMOE 4 vir e A 12 vired CMOe 4 \\
N =2 X Z ZZ 2 Hyu s
z z z a attot Z a‘ﬂ‘l> by ,ai b/w,
S B  a i Ked
occ occe
vireACMOe A aA 12 {x,y,z}( vir CMOe A \\ \\
T Taib 2) vtdcph/ A pA
+Z Z Z Z Z Z Hckm ck,o. B Z (lwf')
i Xk S8 ¢
occ occ
vireAvireA 12 {x,y,z}CMOe 4 ( vireACMOeA \\ \

a

DML Lz >y L IDWHESH J 2P 0,) J

oce oce

oce
CMOeACMO €A aF 12 {x,y. z}ureA( vired CMOe A \\ \

DIy LZ > ZL DD I J( Z% o, >)J

\U‘EA?ACJOEA 12 ;Xyz;. WVEAZC’C[OEA \\ \\
+Z Z a—«cy\bl) (aby))LZ ZL 2(b|B1j) +Z Z H,) 70 o)) Zj,’f’Zjh,’;*J
f B
wreAureA aF ( 12 {xyy z}zLﬁiIOeA vireAg\;OeA \\ \\
Lz > X L 20alpli)+ Y S HD 2P (o)) z;;f’;;':%;AJ
c k

thositiocs o | o westioes | R
+z 23 kz zL 2al| fli)+ z DIRACR (—Z;;‘f;ih,;A)J
f a
(E.3)

where Zl'g (iw)y=—-2 ﬁ, (iw)*® has been used to put the response matrix in (vir, occ) order.

There are four derivatives in Eq. (E.3): A dipole integral derivative similar to the
one in the polarization gradient, an A’ integral derivative similar to the one in the
polarization gradient, a Fock matrix derivative similar to the one in the polarization
gradient, and a second two-electron derivative. These can be expanded using similar

techniques as in the polarization gradient. Then, Eq. (E.3) can be written as:

occ occ occ
12 {x.3,7} vireACMOe 4 B ( ) vireA vired CMOeA CMOeA
dZ (iw N

disp 2 x A stdephf \ldcphf XA sldeh/
Z Z 22 N S NR QUL 2 QUL QU
m tot Aot x, ab ab tot ak tot k: tot

ab

(E.4)
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stdephf

W 1s the coefficient of

disp,2 . . .
where NR‘”>"  is the sum of the non-response contributions,

A tot xg
the CMO responses, separated into occupied-occupied, virtual-virtual, and occupied-

virtual blocks.

E2: Dynamic polarizability derivative term

The second term in Eq. (4.19) is expanded using Eq. (3.16) and Eq. (3.18):

LMOeA 12 807’(1‘60.)( 4( b \LMOeB 1 \

2
T 0Xyey 2 (1- tf) Im

occ

LMOeA 12 {x,y,z} a vire ACMOeA

(8( _ )
I 2 2 L eIBINZY o)) | T v T ) 2 (@) J

I B Xy | 5

(E.5)
Eq. (E.5) has the same form as Eq. (4.15), and can be calculated in an analogous manner,
with Z?(i®) in place of U”. (Appendix D2 presents a more detailed expansion for the

polarization gradient, which is very similar.)

Supporting Information

Supporting Information Section 1: Information about the Distributed Multipole Analysis
In the EFP method, the molecular charge density of the fragment is written in

terms of a sum of a density times the product of two Gaussian functions, which is itself a

Gaussian. The new Gaussian is centered at a point referred to here as the Gaussian

function overlap center. Each product function can be considered to be one piece of the

charge density. For EFP fragment A4, the charge density can thus be written as:
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AOeA PGeuPGev

p(r)= Y P, ZZ g, (r—1,0,)g,(r—r,,a,)

AOeAPGeuPGev
= Z Z Z [ utgut I'K,(Otu +at ))]
(SL.1)

In Eq. (S1.1) g (r-r,,,)is a primitive Gaussian (PG) centered on atom / with
contraction exponent ¢, P/ is the primitive Gaussian cross term that contains the

, : o, +ar
product of the contraction coefficients for PG u and ¢, and r, = ——1—-L.
o, +e,

Each piece of charge density (the quantity in square brackets in Eq. (S.1)) can be
expressed in terms of a series of multipole moment integrals. The multipole moment
integrals are then shifted to the nearest expansion point (that is, a nearest-site allocation
algorithm is used). Shifting the multipole moment integrals to the selected expansion
point is accomplished by calculating the multipole moment integrals for each piece of
charge density around the nearest expansion point. In this work, the expansion sites are

only on the nuclei.

Supporting Information Section 2: Details about the polarization derivative
Fock matrix derivatives:

Let

( oce \\ occ occ
iredvireA } CMOeA CMOeACMO e E)F

AR D RERE Bk DVl

(S2.2)
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After rearranging, using the definition of the Fock matrix, and that the unperturbed

orbitals are canonical, Eq. (S2.2) can be written as

( occ \\
vireAvireA {x,y,z} CMOeA

FR(BAZ "1 AU =Y Y (U;LfAF;ﬁUJfAEb)L > g J
a b B i

[ occ \ [ occ \\
AOeA MOeACMOeA Vir {A D2} CMOEA CMOeA {x,y,z}vired
X xgAd g7 scphf,A ﬂA sephf A (7P
+ z LF/”[/( + Z Z U i AﬂVkaL C,u z Zat/)’ U z ,u/ w ; zZai,,B ( Uaj )J
uv P ab i a

occ occ
CMOeACMO €A {x,y,z}vired

+2 X (U;KAF,-#U;K”‘E-/){ 2 X (U )}
i j B

a

(S2.3)

After rearranging and using Section A2, Eq. (S2.3) can be written as

FE(BAZ" "} UL b=

oce \\
vireAvireA {x,y,z2} CMOeA

DGR )L DI ij’}ﬁ’”Uﬁ”‘J

( oce oce \
AO€eA vireA {x,y,z} CMOeA CMOeA {x,y,z}vired

r2E | Senen B L 0 Tege, T L2 (0L)
uv a a
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CMOeA ( A()EA vireA {x,y,z} CMOeA CMOeA {x,y,z}vired
S(XK )

) LZALZ Y Lzt Yo 3 27 |

i

occ ( ( occ occ \\
vireACMOeA AOeA vired {x,y,z} CMOeA CMOeA {x,y,z}vired

occ occ

CMOeACMO e {x v.z}vired \
3 S - n) S S o)

J a

occ \ oc: \
vireA VlrEA {x y. z}(MOeA (MOEA CMO €A {x V,z} verA

( (
S‘KLZ FL Z;“”;“U;ff”‘J PIEDITS J,( 2z (- Uﬁ")}J

AOEA

a i

(S2.4)



97

Eq. (§2.4) can be simplified, as shown below:

occ occ
vireA vireACMO€eA CMOeA

FR(BAZ% "} U DANREE + Y UL + Y Y ULl + Y UL
ab k ij

(S2.5)

where NR’Z;;{F holds all the non-response terms and L” holds the coefficients of the

response matrices.

A’ derivative:

Let AD(B,{Z:7)" AU

( MOeA MOeA ‘\
A";ﬂ + 2 U‘AAA 7+ 2 U .
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The second term on the RHS of Eq. (S2.6) can be rearranged using Section A2 as:

virt MOsCMO€A [ MOeA MOeA v
55 (S S ) S
B

vireA CMO€A MOeA red CMOeA
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+ Z ZU tz Z [ ZZ scphf 4UI;AJJ +Z ZU b U[Tz/

J vireA CMOeA

2L (4 ,b,) 7 "”U‘“

(S2.7)
vzreAOCafIOEA {x,y,z \
This can be written in the AO basis. First, consider z z A, L z Z;j‘”;f U ﬁAJ in Eq.
(S2.7) since it shows up in multiple terms:
wreA%‘]‘&OEA ( x,p.z} "
scphf ,A A
zzApthL Z”U )_
{x,y,z AOeA (wreAglfIOeA \
Zﬁ:Zi?p/ﬁ’fA > (4(piluv)=(puliv)-(pv|iu )LZ > Cu V,U;fAJ
v J
{x,p.z} AOeA [ vtreAglffOEA w;eAglf[OeA \ 1
- Sz s 4{ pIPIEINCE D3 UJ[ il 1) =% (pa )|
{x,p,z} " AO€eA 1
Z Zim Z 4N ( (pi| uv) ——(p/lllV))
(S2.8)
( VU’GA %3\(40614 vireAd UC(]\iIOEA \

where va L Z Z cﬂchJUIij +— Z Z cvbculefj J . Simplifying more, this can be

written as shown below.
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vireACMOeA xyzI {x.p,z}
55 | Sz |- Sy
B
(S2.9)
AOeA 1
where CZ"BE Z 4N£V((pi|ﬂv)—5(p,u|iv)]
y7i%

Eq. (S2.9) can be substituted into Eq. (S2.7), so the second term in Eq. (S2.6) can be

written as:
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(S2.10)

Then, note that the third term in Eq. (S2.6) can be expanded in a similar way to the

second term. The result is shown below.
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AOeA

. 1 .
where Cff.’ﬂz Z 4va((pl |,uv)—5(p,u|zv))
uv

( occ occ \
wreA CMOeA vtreA CMOeA

and M), = L ) Zcbcv,zz;’% ) Zcbcu,zz;P;”J

Then, Eq. (S2.11) and Eq. (S2.10) can be substituted into Eq. (S2.6):
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The non-response terms can be combined, and the coefficients of the response matrices

can be combined as shown below:
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ab a k ki

(S2.13)

where NRZ”Q(A/ is the collection of all non-response terms, and L* " is the coefficient of the

response matrices.

Dipole derivative:
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(S2.14)
The coefficients of the response matrices can be combined, and the non-response terms

can be combined to simplify the term, as shown below.
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where NRﬁ?ﬁf’poze contains all the non-response terms and L4?°" holds the coefficients of

the response matrices.

Supporting Information Section 3: Details of the dispersion derivative
Fock derivatives:

The terms involving the Fock derivatives in the dispersion derivative are the same
as the terms involving the Fock derivatives for the polarization derivative in Appendix

D3, with different coefficients. The term in the polarization derivative was written as

FF(B, {Z;ffl’ﬁl’f MU gA }). Then, the terms in the dispersion derivative can be written as

2(a|Bli)
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(S3.1)
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A’ derivative:

These are the same as the derivatives in Section D3, with different coefficients.

The term in the polarization derivative was written as AD(f3, {Z;"Z’f MU ,f;A }). Then, the

terms in the dispersion derivative can be written as:
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* _ ) stdephf', A PA -
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c k
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NRA,XK +zUab Lab + Uak Lak + Uki Lki
ab a k ki
(S3.2)
Dipole integral derivative:
These are the same as the derivatives in Appendix D Section 3, with different
coefficients.
oce oce \
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Z 2 Z ~((al A17) L p» Z HyZse's J
occ occe
vireA vireACMO€eA CMO €A
_ disp dipole xgA ydisp,dipole xgA ydisp,dipole xg A ydisp,dipole
- NRA,XK + ZUab Lab + Z Z Uak Lak + Z Uki Lki
ab k ki
(S3.3)

where NRj’féd”’”k contains all the non-response terms and L7 P°% holds the coefficients

of the response matrices.
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(aj|bi)-(ablij) derivative:

This is similar to the A’ derivative.
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(S3.4)
where the integral derivative has been expanded, and the coefficient of Z°P/4 defined as

occ

vireACMOeA

Dy == 201 81i)+ X X HyuZi o))

The relationships in Section A2 can be used to manipulate the response matrices,
and the terms can be expanded in the AO basis, in a similar manner to how the 4’

derivative was expanded. Eq. (S3.4) can then be written as shown below.
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To simplify Eq. (S3.5), the non-response terms are combined, and the coefficients of the

response matrices are combined, as shown below:

wreAg‘LALlOEA 12 {x,p z} wreA(gA}OEA \\ \\
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(S3.6)
where Niji’ZH " is the collection of all non-response terms, and L@ is the collection of

the coefficients of the response matrices.

Supporting Information Section 4: Details about the product rule used in the Coulomb
derivative

In the Coulomb gradient, the product rule can be expressed as:

' Tpy) (0T, oy 9"
Oxy g L Ixgy o axKeAJ

(S4.1)

where m' is an arbitrary multipole moment and T, (;%y is a multipole moment interaction
tensor of the appropriate rank. After substituting Eq. (S4.1) into Eq. (4.6):
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CHAPTER 3. MULTIPOLE MOMENTS IN THE EFFECTIVE FRAGMENT
POTENTIAL METHOD
A paper to be submitted for publication at a later date

Colleen Bertoni, Alston J. Misquitta, Lyudmila V. Slipchenko, Mark S. Gordon

Abstract

In the effective fragment potential (EFP) the Coulomb potential is represented
using a set of multipole moments generated by the distributed multipole analysis (DMA)
method. Misquitta and Stone recently developed the basis space-iterated stockholder
atom (BS-ISA+DF) method to generate multipole moments. This study benchmarks the
accuracy of the EFP interaction energies using sets of multipole moments generated from
the BS-ISA+DF method, and several versions of the DMA method (such as analytic and
numeric grid-based), and with varying basis sets. Both methods lead to reasonable
results, although using certain implementations of the DMA method can result in large
errors. With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error
(MUE) of the EFP method for the S22 data set using BS-ISA+DF —generated multipole
moments and DMA-generated multipole moments (using a small basis set and the
analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. The MUE accuracy is
on the same order as MP2 and SCS-MP2. The MUE:s are lower than in a previous study
benchmarking the EFP method without the EFP charge transfer term, demonstrating that
the charge transfer term increases the accuracy of the EFP method. Regardless of the

multipole moment method used, it is likely that much of the error is due to an insufficient
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short-range electrostatic term (i.e. charge penetration term), as shown by comparisons
with symmetry-adapted perturbation theory.
1. Introduction

A main goal of quantum chemistry is to perform fast and accurate calculations on
challenging systems, such as solvated proteins or reactions occurring in solution, and to
provide insight into the interactions between molecules. Although there are methods that
give highly accurate results for small molecules, it is difficult to extend these methods to
larger species and still retain their accuracy. Thus, there has been considerable effort to
develop more computationally efficient methods. In particular, interaction energy
methods have had success in describing non-covalent interactions of large systems in a
computationally efficient manner. Interaction energy methods have their roots in the
splitting of a system into non-interacting fragments (usually molecules), and then using
perturbation theory to calculate the interaction energy between the fragments. For long-
range interactions, like Coulomb, polarization, and dispersion, the perturbation between
the fragments is the Coulomb operator. The first order perturbation energy is the
Coulomb energy, while polarization and dispersion are each part of the second order
energy. The Coulomb field is typically used in calculating the Coulomb energy, and can
also be used in other terms, like the polarization term. Since the Coulomb field can be
used in multiple terms, it is essential to represent it accurately and in a computationally
inexpensive manner.

To represent the Coulomb field, many interaction energy methods use a multipole
moment expansion, which arises from a Taylor expansion of the classical Coulomb

energy expression. However, using a multipole moment expansion in which each
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fragment has a single monopole, dipole, quadrupole, etc., has poor convergence
properties. That is, if the fragments are too close together, the expansion no longer
converges. Additionally, if the fragments are close, there is an attractive charge
penetration energy that is not accounted for in the multipole moment expansion. To solve
the convergence problem, a distributed multipole moment expansion can be used, where
there is a monopole, dipole, quadrupole, etc., for an arbitrary number of sites distributed
throughout each fragment. Then, the issue is how to calculate the distributed multipole
moments themselves. Calculating the distributed multipoles typically depends on
partitioning the molecular charge density among atom centers, bond midpoints, or other
sites in the fragment. There has been much work on how to assign electronic charge
densities to atoms. Several examples are: Mulliken charges', the Stone distributed
multipole moment analysis (DMA) 2, the atoms-in-molecules method by Bader®, the
Hirschfeld-Stockholder method*, the iterated Hirschfeld method’, the atoms-in-molecules
method by Popelier®, the iterated Stockholder atom method by Lillestonen and
Wheately’, and the recently developed basis-space Iterated Stockholder Atoms with
density fitting ® (BS-ISA+DF) method by Misquitta and Stone.

The Effective Fragment Potential (EFP) method is an interaction energy method
that has been extensively developed. ° '° Several terms in the EFP method (Coulomb
energy, polarization energy, charge transfer energy) use a set of multipole moments to
represent the Coulomb field. Thus, an accurate set of multipole moments is important to
ensure that the total interaction energy is accurate. Currently, the multipole moments are
calculated with the Stone DMA. As discussed later, the DMA method can be unstable

depending on the basis set, although a numerical version has been developed to overcome
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this problem. !' The BS-ISA+DF method has been shown to be accurate and have
promising convergence properties, and it is worthwhile to explore how the EFP method
performs if the multipole moments generated by the BS-ISA+DF method are used.

In this work, the EFP energy with BS-ISA+DF-generated multipole moments
(referred to here as EFP/ISA) and the EFP energy with DMA-generated multipole
moments (referred to here as EFP/DMA) are compared. The structure of this paper is:
Section 2 discusses the theory behind EFP, DMA, and BS-ISA+DF; Section 3 discusses
the computational details used in the comparisons; and Section 4 discusses the

comparison and results.

2. Theoretical Background

This section summarizes the EFP method, with a particular emphasis on the terms
that use multipole moments, and background on the DMA and the BS-ISA+DF methods.
2.1 The Effective Fragment Potential method

The EFP method calculates the intermolecular interaction energy between
molecules. In the EFP method, molecules are modeled with potentials with functional
forms derived from first principles, and parameters that are generated from an ab initio
calculation.

There are five terms in the Effective Fragment Potential: Coulomb, polarization,
exchange repulsion, dispersion, and charge transfer. As shown in the equation below,

polarization is a many-body term, while the other four terms are pairwise additive.

EFP __ y>Coul exchange-repulsion dispersion charge-transfer
EAB _EAB +EAB +EAB +EAB

EEFP — z Efgp + Epolaxization (1)

total total
A>B
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Each of the five terms depends on parameters generated from an ab initio
calculation. The Coulomb, polarization, and charge transfer energy terms depend on a set
of multipole moments to describe the electrostatic potential of the molecule. The
polarization energy also depends on a set of distributed polarizability tensors generated
from the Coupled Perturbed Hartree-Fock (CPHF) equation, which are distributed
throughout the molecule using a set of localized molecular orbitals (LMOs). In addition
to the multipole moments, the charge transfer energy depends on the basis set, the Fock
matrix and a set of canonical virtual orbitals or valence virtual orbitals (VVOs).'? !* The
exchange-repulsion energy depends on the set of LMOs, the basis set, and the Fock
matrix. The dispersion energy depends on a set of distributed dynamic polarizability
tensors generated from the dynamic analog of the CPHF equation and are distributed
throughout the molecule using a set of LMOs.

An EFP energy calculation requires two steps. The first is an ab initio calculation
on an isolated molecule performed to generate the parameters for the molecule of interest.
Then, these parameters are used in the EFP energy terms.

The next three sections consider the three EFP terms that depend explicitly on the

set of multipole moments (Coulomb, polarization, and charge transfer).

2.1.1 Coulomb energy term
The Coulomb interaction energy term between two molecules A and B can be

calculated by a distributed multipole moment expansion, as shown below.
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I (J) runs over all multipole moment expansion points in 4 (B), ¢’ is the monopole on

site I, 1" is the dipole on site 7, @ is the quadrupole on site 7, Q'is the octopole on site

land T,; ,=V V.V, — is the multipole interaction tensor for sites / and J. Ry is the
1J

distance between sites / and J, where Ri/=R-Ry in vector notation.

Charge penetration for the Coulomb energy term

Since the multipole moment expansion does not take into account the energy
lowering when the charge densities of fragments overlap, a charge penetration term or a
damping term is added. There are two types of damping for the Coulomb energy in the
EFP method.!* One is an exponential damping term, which is not used here, so is not
considered further. The second is based on the overlap of LMOs on the two fragments,
and 1s used to calculate an approximation to the charge-penetration energy. The charge-

penetration energy for fragments 4 and B is calculated as shown below.

(2)
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where Si» 1s the overlap integral between / and m, and Ry is the distance between the

LMO centroid of / (/| x|/) for the x-position) and the LMO centroid of m ({m|x|m)for

the x-position).

2.1.2 Polarization energy term

The polarization energy is a many-body energy term that is due to the generation
of induced dipoles on all of the fragments in the total electric field (static and induced
fields) of all the other fragments. The polarization interaction energy term is modeled by
placing dipole polarizability tensors on LMO centroids. Then, in the presence of the static
and induced electric field on the other fragments, the dipole polarizability tensors
generate induced dipoles. The induced dipoles are iterated to self-consistency, and then
used in the calculation of the polarization energy. The static electrostatic field is modeled
by the same distributed multipole moment expansion as in the Coulomb term.

The induced dipole on fragment 4 on LMO centroid / in the £ direction can be
written as:

(4)

{x.p,2} ( fragments LMOeB {x,y,z} ]

pl/,lﬁ: Zal,ﬁy El?f"’ z z ZT;:pi,,(
7

B#A m K
where

T yl,;” is the dipole-dipole interaction tensor for sites / and m

@, 5, 1s the dipole polarizability tensor on LMO /

E ,0 ;,A is the static electric field on fragment 4 on LMO centroid / in the ¥ direction
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The static electric field is expressed using the same distributed multipole moments as in

the Coulomb energy term:

fragments B fragments B {x V,Z}
0,4__ /i 1 I il
E/,7 N Z Z iy = Lq T T Z luaT T3 Z GaﬁTmﬁJ (5)
B#4 B;tA

where / runs over the multipole moment expansion points in fragment B.

The polarization interaction energy term is shown below:
fragments 1 LMOeA{x,y,z}
=Y |5 2 S B ©
A 2 n o
Damping for the polarization energy term
The polarization energy is damped by a Tang-Toennies style Gaussian formula'*
15 The damping is accomplished by multiplying the multipole interaction tensors by a

damping function, and then rewriting the induced dipoles in terms of the damped

multipole interaction tensors. The damping function is

damp Il

Fr o =1- exp(—Rj fg)(l +R; fg), where the terms f'and g are constants usually set

to 0.6. The damped polarization energy equations are similar to the non-damped version

but with damped multipole moment interaction tensors replacing regular multipole

Tl[ ,damped __

moment interaction tensors. Defining 7,5 E};Z; ul 01!2’ ,» the damped static electric

field can be written as:

fragments B fragments B 1 {x,y,z} \
0,4,damped _ 0 damped 1 1l damped Z I, damped |, ~ Z 1 1 , damped
Eiy Z ZEII}/ LCI T, + w1, Ty + 3 0,51 )
B#4 B¢A off

(7
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. S . . A.damped
Following the same substitution, the damped induced dipoles, p; ;" can then be
{x,0.2} fragments LMOeB {x,y,z}
: . A,damped __ 0,4,damped Im,damped __B,damped
witenas: it = S, (s ST S s
Y B#4 m K

2.1.3 Charge transfer energy term

The charge transfer energy can be thought of as a stabilizing energy due to the
interaction of the occupied orbitals on one molecule with the virtual orbitals on another
molecule.' 1 The EFP charge transfer term was derived using a second-order
perturbative approach beginning with an antisymmetrized wavefunction at the Hartee-
Fock level of theory.

In the derivation, approximations are used to simplify the second-order energy
expression. One approximation is to represent the electrostatic potential as a multipole
moment expansion, using the same mulitpole moments as in the Coulomb and
polarization terms. The EFP charge transfer energy of molecule A induced by molecule B
is:

all
MOs eA

oce EFB _ EFB all oce all
CMOeAVvireB Vin z Snm Vim MOseA CMOeB ( MOseA \
m

CTA(B):Z Z Z alll X V;EFB_ Z San;rEFB-i_ Z SIJLY-:I]_ z Sanij
i m J m

T MOseA (F.A -T )

2 i nn
1- > s,
m

(8)

where T, is the kinetic energy integral between orbitals n and j, F is the diagonal Fock

matrix element at orbital i in the canonical MO basis for fragment A4, and V™™ is the
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matrix element of the molecular electrostatic potential of fragment B between orbitals i
and n. This can written as:

)C

B R {x,z} Y.z}
ZAXT PLED W AS D e I
I 5
B * ( Tl {xy.z} i {xy z} , N
=2 Jdng(n) 4T = 2Ty +5 Z GﬁyTﬁ;Jzn(zq)
! B
where [ runs over the multipole moment expansion points in fragment B, r;(= xi, y1, z1) is

the position of the electron, y,(7;) is molecular orbital i written out explicitly. The right

hand side of Eq. (9) is evaluated in a similar manner to the standard nuclear attraction
integral.
While there is not unanimous agreement regarding the importance of the charge

10 17

transfer interaction energy , the EFP method predicts relatively large charge transfer

contributions for polar and ionic complexes, and systems with hydrogen bonds!?. 13

2.2 Multipole moment methods
2.2.1 Distributed Multipole Analysis

In the DMA method, the molecular charge density is partitioned, and each piece
of charge density is represented by its own multipole moment expansion. The partitioning
can be done in basis function space or real space. Basis function space DMA is denoted
here as DMAO or analytical DMA.

For restricted Hartee-Fock (RHF), the molecular charge density can be written in

terms of primitive Gaussians:

9)
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p(r)=> P, x,(r—r)x,(r-r,)

AOs PGev PGeu

=3P, Y > Pgr-r,a)r-r,a) (10)
y78Y u t

AOs PGev PGeu
=22 2 [PuPig.r-re(a,+a,)]
y78% t

u

where y, (r—r,) is a basis function composed of a sum of primitive Gaussians (PGs)

centered on atom /, g (r—r,,c,) is a primitive Gaussian centered on atom / with
contraction exponent ¢, , P/ is the primitive Gaussian cross term that contains the
product of the contraction coefficients for PGs u and 7, Puv is the RHF density matrix

art+ar,
o+,

element for AOs g and v, and r, =

As shown in the last equality in Eq. (10), the charge density is a sum over pieces
of charge density (the term in the brackets) centered at the Gaussian overlap point 7;.
Each piece of charge density can be described by a set of multipole moment integrals at
the overlap point associated with the piece of charge density. A certain number of
expansion sites are chosen in the molecule, such as all atom centers or all atom centers
and bond midpoints. Then, the origins of the multipole moment integrals are shifted to
the nearest expansion site.

It is well known that the DMAO multipole moments are unstable with respect to
expanding the basis set!!. Although the multipole moments from different basis sets
should produce similar electrostatic potentials, the values for the multipole moments
themselves can be basis set dependent. Consequently, the appropriate termination of the

multipole expansion (e.g., at quadrupoles or octopoles) may depend on the basis set used.

Thus, even though the electrostatic potential should be the same, the error due to the
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multipole truncation can vary. This is especially the case for basis sets with diffuse
functions or with high angular momenta, since these functions tend to make a larger
contribution to the higher moments and therefore the truncation point is important.'® 2
Because of the instability with respect to basis set size, real space DMA was developed.

Real space DMA involves modifying the DMAO algorithm such that if the

exponent of a product of primitives (e.g., ¢, + ¢,) is smaller than a chosen cutoff, a grid-

based numerical integration scheme is used to partition the contribution to the multipole
moments. If the exponent is greater than the cutoff, DMAO is used to partition the
contribution to the multipole moments. Ref. !' recommends a cutoff value of 4, and so the
method is referred to here as DMA4.

It is also important to note that when the molecules are too close to each other, the
multipole moment expansion of the Coulomb energy between them can diverge. How
close the molecules can get to each other before the expansion diverges depends on the
allocation algorithm mentioned above, and on the expansion points chosen. The greater
the number of expansion points, the more accurately the multipole expansion mimics the
correct quantum density. So, the fewer the number of expansions points used, the more

likely it is that the expansion will diverge at a given distance.

2.2.2 BS-ISA+DF
In the implementation of the BS-ISA+DF method used in this work, the molecular
charge density is partitioned among the atoms, and a set of multipole moments is

calculated for each atom. Instead of directly partitioning the density as in Eq. (10), the
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BS-ISA+DF approach is to first define atoms so that the atoms are as spherical as
possible.

The BS-ISA+DF method has its origins in the Hirschfeld stockholder method for
calculating atomic densities. In the Hirschfeld stockholder method, the charge density for

each atom a is given as:

w'(r)

p(r)=p(r) G (11)

2 w'(r)
b
where p(r) is the total molecular density and w*(r) is a function that describes the shape

of the atom a. The form of the shape function w*(r) varies by method. An insight by
Lillestolen and Wheately was to use the spherical average of the atomic density as the
shape function, which avoids creating a shape function for each atom, and results in an
equation that must be solved iteratively.” The BS-ISA+DF method follows an analogous
iteration scheme, but in basis space. That is, in the BS-ISA+DF method, the terms in Eq.
(11) are expanded in a basis, as shown below.

wm=§¢gm

W= 2 gl

kes—func

(12)

where ¢] is a coefficient associated with atom a and is determined in the iterative
procedure, ¢} (r) is a basis function centered on atom a, k runs over all basis functions,
¢ .(r) is an s-type function on atom g, and k € s runs over all s-functions in the basis.

To determine the atomic density, the coefficients are calculated using an iterative
procedure that minimizes a BS-ISA+DF functional. The functional and minimization

algorithm have been developed to make the procedure stable, accurate, and reliably
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convergent. Additionally, to ensure that the tail regions of the atomic densities are well-
described, the shape functions are modified so that they decay exponentially.

Once the atomic densities are obtained, multipole moment integrals can be
computed. BS-ISA+DF has many appealing properties, such as having a more systematic
convergence with respect to multipole moment rank than DMAO or DMA4. However, the

DMA methods are more computationally efficient and algorithmically simpler. 8

3. Computational Details

As mentioned in the Background section, the EFP method has several parameters
determined from an ab initio MAKEFP calculation. For the EFP/ISA and EFP/DMA
calculations, all parameters except for the multipole moments are the same. That is, the
static polarizability tensors, dynamic polarizability tensors, basis set, localized molecular
orbitals, Fock matrix elements, and virtual molecular orbital coefficients are the same for
the EFP/ISA and EFP/DMA calculations. All parameters except the multipole moments
were generated using the 6-311++G(3df,2p) basis set. The EFP calculations, and
MAKEFP calculations were done with the GAMESS?° 2! package. Several integral
cutoffs were changed from the default values (ITOL was set to 24, ICUT to 12), and the
SCF density convergence was tightened to 10”. Overlap-based damping was used to
account for charge-penetration effects in the Coulomb energy. The localization method

2223 and the set of all canonical virtual orbitals was used for the charge

used was Boys
transfer term.

The ISA multipole moments were generated with CamCASP 5.8.2* The main

basis set was aug-cc-pVTZ? 29, the aux/ISA basis set was RI-MP2 aug-cc-pVTZ with
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ISA-set2® for s-functions (except for ethyne, which used RI-MP2 aug-cc-pVQZ with

ISA-set2 for s-functions), and the ISA algorithm used was A+DF with (=0.1. Densities

were from the PBEO functional/AC. The asymptotic correction (AC) is the Casida-

Salahub version of AC present in NWChem?’ with default (un-optimized) shift.

NWChem was used for these calculations.

To consider the effects of basis set and the different DMA algorithms, the DMA

multipole moments were generated in four different ways:

1.

Following a previous paper that measured the accuracy of EFP against
other force field methods?®, the DMA multipole moments were generated
using HF/6-31+(d) for non-aromatic molecules (ammonia, ethene, ethyne,
formamide, formic acid, hcn, methane, water), and HF/6-31(d) for
aromatic molecules (2-aminopyridine, 2-pyridoxine, adenine, benzene,
indole, phenol, pyrazine, thymine, uracil). The original analytic DMA
procedure (DMAO) was used. This method is referred to as EFP/DMAO-
small, since it uses a smaller basis set to generate the multipole moments.
DMAO multiple moments were computed using HF/6-311++G(3df,2p).
This method is referred to as EFP/DMAJ.

DMA4 multiple moments were computed using the HF/6-
311++G(3df,2p). This method is referred to as EFP/DMAA4.

The DMA multipole moments were computed using HF/6-
311++G(3df,2p), with DMAO for non-aromatic molecules and DM A4 for

aromatic molecules. This method is referred to as EFP/DMA-mixed.
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The geometries at which ISA multipole moments and EFP potentials were
generated are from the S22 dataset complexes. The geometry for ammonia, ethene,
formic acid, phenol, pyrazine, water, and formamide is the geometry of the first monomer
in the S22 dataset dimer for that molecule. The geometry of uracil is the geometry of the
first monomer in the uracil H-bonded dimer. The geometry of benzene is the geometry of
the first monomer in the benzene dimer T-shaped complex. The geometry of indole is the
geometry of the indole in the benzene-indole T-shaped complex. The geometry of
methane is the geometry of the methane in the benzene-methane dimer. The other
molecules show up only once in the S22 dataset, and the S22 geometries are used for
those molecules. Since the geometry of adenine and thymine in the Watson-Crick
complex and the stacked complex differ significantly, the ISA multipole moments and
EFP potentials were generated at both geometries, and used in the corresponding EFP
calculations.

The DMA method can use the set of all atom centers or the set of all atoms
centers and bond midpoints as expansion points for the multipole moments. For
EFP/DMAO-small, calculations were done with the set of all atom centers (denoted as
EFP/DMAO0-small-atoms) and with the set of all atom centers and bond midpoints as
expansion points (denoted as EFP/DMAO-small). For all other EFP calculations using
DMA, the expansion points are the set of all atom centers and bond midpoints. That is,
six types of calculations are compared: EFP/ISA, EFP/DMAOQ-small, EFP/DMAOQ-small-

atoms, EFP/DMAO, EFP/DMA4, and EFP/DMA -mixed.
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4. Results

To test the accuracy of and compare the methods, several comparisons are
presented here. To compare predicted geometries, the S22 complexes were geometry-
optimized using all methods. The resulting geometries are compared to the corresponding
S22 geometries to assess the quality of geometry prediction. Since the EFP fragments are
internally frozen, the geometry optimization changes only the angles and the distances
between fragments. Next, the total interaction energy at each optimized geometry is
compared to the CCSD(T)/CBS binding energy at the standard S22 geometry to assess
the quality of the interaction energy calculation for each method. In addition, the EFP
energy components that depend on the multipole moments (Coulomb energy, polarization
energy, and charge transfer energy) are compared to the corresponding SAPT2+(3)/aug-
cc-pVTZ (referred to as “SAPT” in this work) energy components. For this comparison,
the EFP and SAPT calculations were done at the S22 geometries. The SAPT values are
from the Addition/Correction to Ref. %%,

The equivalent SAPT terms used in the comparison are [See Ref. 2° and * for the
notation]:

Eg:;;?mb — E(lO) +E(12) +E(l3)

elst, resp elst, resp elst, resp

Ecxchangc—rcpulsion — E(lO) +E(1l) +E(12)
SAPT

exch exch exch (1 3)
induction __ 7(20) (20) t(22) | t(22) 2)
E SAPT - E ind, resp + E exch-ind, resp + E ind + E exch-ind + 5E HF
dispersion __ 77(20) (30) (21) (22) (20)
ESAPT - Edisp + Edisp + Edisp + Edisp + Ecxch—disp

The sum of the EFP polarization and charge transfer energy is compared to the SAPT

induction energy.



130

To help gain insight into the differences in the dimers in the S22 dataset, the
dimers are split into hydrogen bonding, dispersion dominated, and mixed types,

following a previous EFP study. 8

Predicted Geometries of the S22 Complexes

In the S22 dataset, the T-shaped benzene dimer is constrained to Cov symmetry,
so this prescription is followed for the EFP methods. Table 1 shows the differences
relative to the S22 values for specific atom-atom distances. The mean unsigned error
(MUE) is also given in the table. In Table 1, X'"RD denotes the distance between the
atom X and the center of the plane made by the benzene ring. (The plane is calculated
using the first three atoms of the benzene in the dimer.) R1 and R2 are the vertical and
horizontal distances between the planes of the rings, respectively. (See Figure 1.) The

notation in Table 1 is similar to that in Ref, 28.
asb
O

Figure 1. A definition of the R; and R» values.

R
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Table 1: Differences (A) in distance between the ab initio S22 geometry and the EFP

geometries after optimization

AEFP/DMA AEFP/D
distance?| AEFP/IS AEFPIDMAO, O AEFP/DMAQ AEFP/DMA |y o
A -small 4 .
atoms mixed
Hydrogen-
Bonded
Complexes
AMMONIA | \1...N5|  -0.02 -0.1 0.17 0 0.16 0
dimer
water dimer |O1---O4 0 -0.07 -0.12 0.05 0.04 0.05
formicacid |, 5| 011 0.05 -0.04 0.09 0.2 0.09
dimer
formamide |, \o| ) -0.03 -0.03 0.04 0.2 0.04
dimer
uracil H- N1---02
bonded dimer | 3 0.08 0.04 0.01 0.02 0.18 0.18
2-pyridoxine 2| N1--N1) ) -0.18 b -0.06 0.22 0.22
aminopyridine 5
adenine- |NI---N2 b
thymine WC 0 0 -0.18 - -0.06 0.23 0.23
MUE for
Hydrogen- 0.05 0.09 0.07¢ 0.05 0.18 0.12
Bonded
Complexes
Dispersion-
Dominated
Complexes
methane dimer| C1---C6 | -0.12 -0.08 0.12 0.12 0.04 -0.12
ethene dimer | C1---C7| -0.07 -0.09 -0.16 0.1 0.1 0.1
benzene- || pned 021 0.23 0.21 0.11 0.21 0.28
methane
benzene stack | R1/R24 [0.43/-0.42| 0.44/-0.3 | 0.41/-0.15 | 0.44/0.11 | 0.48/-0.59 0(')4;39/'
pyrazine dimer| RI/R2¢ |0.28/-0.11| 0.3/-0.23 | 0.27/-0.12 | 0.35/-0.32 | 0.33/-1.04 01'334'
uracil stack | R1/R2¢ [0.18/-0.02| 0.14/-0.02 | 0.13/-0.01 | 0.06/0.92 | 0.19/0.03 [0.19/0.03
indole-benzene| pypya | 038/0 | 035028 | 033/026 b 0.44/-036 | 044
stack 0.36
adenine— | pypoa 02402 | 0.22/-0.07 0.2/0 0.02/0.18 | 0220022 | 922
thymine stack 0.22
MUE for
Dispersion- 0.20 021 0.18 0.25¢ 0.33 0.34
Dominated
Complexes




132

Table 1 continued

Mixed
Complexes
ethene—ethyne [ C8--C2| 0.16 0.07 0.08 0.06 0.19 0.06
benzene—water|O1---RD¢| 0.1 0.07 0.04 -0.02 0.16 0.19
benzene— |\ ppe| 0.5 0.17 0.11 -0.02 0.16 0.01
ammonia
benzene—HCN C14D'C"R 0.24 0.15 0.09 0.17 0.21 0.25

benzene dimer| Cl1:---

T-shaped RD* 0.30 0.30 0.30 0.25 0.30 0.30
indole—benzene| N21---R
T-shaped De 0.23 0.21 0.15 -0.05 0.26 0.26
phenol dimer 07'6'02 0.07 0.03 -0.01 0.07 0 0
MUE for
Mixed 0.18 0.14 0.11 0.06 0.14 0.11
Complexes
Overall MUE 0.16 0.16 0.14¢ 0.15¢ 0.25 0.23

aAtoms are numbered as in Ref. 28. °The geometry optimization did not complete, since
the induced dipole procedure failed to converge. ¢ The distance between the atom X and
the center of the plane made by the benzene ring, where the plane is calculated using the
first three atoms of the benzene.? R1 and R2 are the vertical and horizontal distances
between the planes of the rings, respectively. © The MUE is computed without the cases

where the induced dipole procedure does not converge.

AXis the difference between method X and the ab initio result. The values of the
distances are in Section 1 of the Supporting Information.

Among the hydrogen-bonding complexes, the error for all methods is less than
0.25 A, which is in good agreement with the S22 geometries. The EFP/ISA, EFP/DMA4,
and EFP/DMA-mixed methods have mostly positive differences, meaning that they
overestimate the intermolecular separation. The methods that used a smaller basis set to
calculation the multipole moments, the EFP/DMAO-small and EFP/DMAO0-small-atoms

methods, mostly have negative differences, meaning that they underestimate the
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intermolecular distance. A previous study used EFP/DMAO-small without charge transfer
to optimize the S22 set, and found that the intermolecular separations were
overestimated. Thus the effect of including the EFP charge transfer is to decrease the
distances, which is expected, since charge transfer is typically an attractive interaction.
Use of the smaller basis set might make the interaction too attractive, since the distance is
underestimated. The induced dipole procedure did not converge when using the
EFP/DMAO0-small-atoms method for two aromatic complexes, possibly because there are
not enough expansion points.

In the dispersion-dominated complexes, the distances in the methane and ethene
dimers are underestimated by all methods except for EFP/DMA4, which overestimates
the distance. All of these errors are less than 0.3 A, which is in good agreement with the
S22 geometries. In the aromatic ring complexes, all methods overestimate the distance
between the ring planes, which implies that at least the sign of this distance is not
dependent on the multipole moments used. For the EFP/ISA method and the methods that
used a smaller basis set for the DMA multipole moments, the parallel shift of the ring
planes (R2) is underestimated for all complexes except for indole-benzene. The induced
dipole procedure did not converge when using the EFP/DMAO method for the indole-
benzene stack complex. Although overall the error is low, the methods using DMA
multipole moments generated from large basis sets performed the worst for the aromatic
complexes. The EFP/DMA4 and EFP/DMA-mixed methods (which are the same in this
case), predict the R2 value for pyrazine dimer to be about 1 A different from the S22
geometry, and the EFP/DMAO method predicts the R2 value for the uracil dimer 0.9 A

different from the S22 geometry.
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In the mixed complexes, the EFP/ISA, EFP/DMAO0-small, EFP/DMAA4, and
EFP/DMA4-mixed methods slightly overestimate the distance for all complexes. The
EFP/DMAO and EFP/DMA0-small-atoms methods underestimate the distance for certain
complexes and underestimate the distance for others. Overall, all methods are in good
agreement with the S22 dataset, with the maximum error not exceeding 0.3 A.

For all three interaction energy types and for all methods studied here, the overall
mean unsigned error is under 0.35 A. In two of the methods, EFP/DMAO0-small-atoms
and EFP/DMAQO the self-consistent induced-dipole procedure does not converge during
one step of the geometry optimization for at least one complex. The possible causes for
the divergence will be discussed in a later section. As can be seen in Section 1 of the SI,
there were several geometries that differed from the S22 geometry by a small rotation,
but the difference in the CCSD(T) energy between the different rotations are also very

small.

Total interaction energies of the S22 Complexes

The total interaction energies of the methods at the optimized geometries are
compared to CCSD(T)/CBS values *'?® to test the accuracy of the energy calculations.
The total EFP energy values are provided in Section 2 of the Supporting Information.

Figures 2, 3, and 4 show the differences in interaction energies between each
method and CCSD(T)/CBS for each category of interaction energy. Note that if geometry
optimization failed due to non-convergence of the induced dipole procedure, the
corresponding interaction energies are not shown in the figures. To summarize the

results, the MUE for each method is shown in Table 2.
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Table 2: MUE for all methods with respect to CCSD(T)/CBS (kcal/mol)

EFP/D
erpisa EFPDMA- [EFPDMAO- | EFPDMA| (T
mixed small-atoms 4

small

MUEHB) | 1297 | 2771 2.854% 0.715 3741 | 1.672
MUE(DISP) | 0429 | 0.666 0.279 0.057* | 0555 | 0331
MUEG;“XED 0.668 0.282 0.413 0.752 0.195 | 0.199
MUE(overall)| 0.781 1214 0.970* 0.808* 1454 | 0.716

* The cases for which the induced dipole procedure does not converge are omitted

For the hydrogen-bonding complexes, the EFP/DMAO method has the smallest
MUE, while the EFP/DMAO0-small-atoms has the lowest MUE for the dispersion-
dominated species. The smallest MUE for the mixed system is obtained with both the
EFP/DMAO-small and the EFP/DMA4 methods. For the dispersion-dominated species
and the mixed species, all of the MUEs are below 1 kcal/mol, so all methods work very
well for these two types of dimers. The errors in interaction energies for the hydrogen
bonded species range from 0.7 kcal/mol (DMAO) to 3.7 kcal/mol (DMA4). The EFP/ISA
and EFP/DMA4 methods consistently overestimate the energy, while the EFP/DMAO-
small and EFP/DMAO-small-atoms methods consistently underestimate the energy. The
EFP/DMAO method underestimates and overestimates the energy for various complexes.
The EFP/DMA-mixed method also shows positive and negative differences. The
EFP/DMA4 and EFP/DMA-mixed methods have the largest individual errors,
overestimating the energy by up to 6.8 kcal/mol on the adenine-thymine Watson-Crick
complex in particular. As noted above, the optimized geometries for the EFP/DMA4 and
EFP/DMA-mixed methods also overestimate the distances between all the dimers.

Overall, the hydrogen bonding complexes are the major source of error for most

methods. For the EFP/DMAOQ-small-atoms and EFP/DMAQ methods a small number of




136

the induced dipoles do not converge during the optimizations. The divergence is likely
due to the multipole moment expansion being truncated too soon, which is easily

remedied by adding additional multipole moments.

EFP energy components at S22 geometry

To gain insight into the interaction energy errors, the EFP energy decomposition
at the initial S22 geometry for each method is compared to the SAPT energy
decomposition at the S22 geometry. Tables 3, 4, and 5 present the MUEs for the
Coulomb term, the sum of the polarization and charge transfer terms, and the total
interaction energy term, respectively. Figures 5, 6, and 7 show the energy differences
between each method and the SAPT energies. Section 2 of the Supporting Information

contains the SAPT and EFP interaction energy components for the S22 complexes.

Table 3: MUE for the EFP Coulomb term (kcal/mol)

crpis| EFP/DMA- | EFP/DMAO- | oo oo o [EFP/DM|EFP/DMAO-
mixed small-atoms A4 small
MUE(HB) | 2.485 3.596 1.806 0.863 | 5.453 1.631
MUEgDISP 2.560 1.487 2.431 3.105 | 1.514 | 2475
MUIE]%“X 0.960 | 0.897 0.614 0.806 | 0.816 | 0.553
MUiS’VGr 2.027 1.970 1.654 1.677 | 2.545 1.595
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Overall, the three EFP/DMAO methods have the smallest MUEs, all within 0.1
kcal/mol of each other and below 2 kcal/mol. The EFP/ISA and EFP/DMA-mixed
methods have MUEs that are only slightly larger, and the MUE for the EFP/DMA4
method is about 0.5 kcal/mol larger than the others. The latter is still reasonable. For the
hydrogen-bonded dimers, the general trend for all methods is to overestimate the
Coulomb term. The EFP/DMAO method has the lowest MUE, with a value less than 0.9
kcal/mol. The error in the Coulomb energy could be from the multipole moment
expansion or the charge penetration term. The largest errors are likely due to the charge
penetration term not accounting for all charge penetration, especially for particularly
strong interactions. However, the EFP/DMA4 and EFP/DMA-mixed methods have very
large positive errors. .

For the dispersion-dominated dimers, all methods have errors of less than 0.9
kcal/mol for the complexes without ring systems, agreeing well with SAPT. However, all
methods have large positive errors for the ring systems. For most of the methods and
complexes, the positive error can be explained by an insufficient charge penetration term.
Although the multipole moment expansion part of the EFP Coulomb term is often
positive, the SAPT Coulomb energy is negative, so the charge penetration term is
necessary to change the sign of the EFP Coulomb energy. The largest individual error is
that for the indole-benzene stacked structure, with the EFP/DMAO method. As mentioned
above, during the geometry optimization of the benzene-indole stacked structure using
the EFP/DMAO method, the induced dipole procedure did not converge. A reason for the

non-convergence could be the large error in the Coulomb term seen here.
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For the mixed complexes, the EFP Coulomb energy is similar to the SAPT
Coulomb energy, with the MUE for all methods less than 1 kcal/mol. The Coulomb
energies are relatively small for the mixed complexes.

There are several interesting comparisons to make. As may be seen by comparing
the EFP/DMAO-small and EFP/DMAO-small-atoms methods, having expansion points on
only atoms results in similar Coulomb energies to having expansion points on atoms and
bond midpoints. The numeric EFP/DMA4 method has similar or smaller errors than the
EFP/DMAO method, except for the hydrogen-bonded complexes, for which the reverse is
true. The EFP/ISA method consistently slightly overestimates the Coulomb energy,

which points towards a consistent error due to a lack of charge penetration.
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Table 4: MUE for the EFP Polarization and Charge transfer term (kcal/mol)

EFP/DMAO
EFpAsA [FEEPMATT il |EFP/DMAO|EFP/DMA4 [ EFP/DMAD
mixed -small
atoms
MUE(HB)| 2098 | 2416 | 0871 1.641 3366 | 0.705
MUEgDISP 0395 | 0916 | 0.177 1097 | 0973 0.366
MUIEI()I;’HX 0313 | 0494 | 0228 0.418 0.639 0.196
MUES’V“ 0.911 | 1.259 0.414 1.054 1.628 0.420

Now, consider the polarization + charge transfer (P+CT) term (Table 4). Overall,
the MUEs for the EFP/ISA, EFP/DMAO0-small-atoms and EFP/DMAO0-small methods are
all less than 1 kcal/mol, and the MUE for the EFP/DMAO method is only slightly larger
than 1 kcal/mol. For the hydrogen-bonded complexes, all the methods except
EFP/DMAO-small and EFP/DMAOQ-small-atoms generally overestimate the P+CT
interaction energy. This could be due to an underestimation of the charge penetration
energy. Since the polarization term uses the static electric field generated by the
multipole moments, and since the multipole moment expansion is not accurate at short
distances, the error might be due to the multipole moment expansion not properly
describing short-range interactions. While the EFP Coulomb term includes a charge
penetration term to offset this problem, the EFP polarization term includes a
multiplicative damping term, and the EFP charge transfer term does not include any
damping. It is possible that the polarization damping term does not account for all of the

effects of charge penetration and that the lack of CT damping results in an
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underestimation of the energy. Almost all methods have large errors for the formic acid
dimer, with EFP/DMA4 having the largest error. This might be due to the multipole
expansion produced by DMA4 being truncated too soon. The potential could easily be
improved by including higher-rank multipoles.

For the dispersion-dominated dimers, all methods are in good agreement with the
SAPT induction term for the complexes without ring systems, with the error being less
than 0.5 kcal/mol for all methods. The errors are larger for the ring-systems.

All methods agree very well with the SAPT induction energy for the mixed
complexes. The errors are generally small, less than 1.2 kcal/mol for all methods and
complexes.

Overall, all methods have relatively small errors when compared to the SAPT
induction term, with the MUEs less than 1.7 kcal/mol for all methods. As in the previous
section, there are several interesting comparisons to make. For example, the EFP/DMAO-
small method gives consistently better results than EFP/DMAO, which might be due to a
basis set effect, as mentioned above, or due to the multipole moment expansion for
EFP/DMAO being truncated too soon. The EFP/ISA method has consistent small

overestimations, unlike any of the other methods.
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Table 5: MUE for the total EFP energies (kcal/mol)

EFP/DM
EFp/sA | EFP/DMA- | EFPIDMAO- | b e a0l gFP/DMA4| - AO-
mixed small-atoms

small

MUE(HB)| 1.939 3.773 2.105 0.612 6215 | 1315

MUgDIS 2.109 1.619 1.852 2.069 1504 | 2.022
MUE(MI

XbDy | 1272 1308 0.399 0.825 0.998 | 0.535

MUSS)V“ 1788 2.205 1.470 1210 2842 | 1324

As described in Ref. 28, the exchange-repulsion term is generally underestimated,
partially cancelling out the overestimation of the Coulomb and polarization term. The
dispersion interaction energy is generally similar to the SAPT dispersion energy. The
EFP/DMA4 method has the largest errors, mostly due to overestimating the interaction
energy in the Coulomb and induction terms in the hydrogen-bonded dimers. The
EFP/DMAO method has the lowest overall MUE, partially due to error cancelation. Most
methods have the largest errors in the hydrogen-bonded and dispersion-dominated
complexes, suggesting problems with the electrostatic potential, either in the charge

penetration term or in the multipole moment expansion.

S. Conclusion

An important strength of the EFP method is that, because there are no empirically
fitted parameters, the method can systematically be improved. As demonstrated in this
work, it is straightforward to use a different set of multipole moments in the calculation,

and still get accurate and reasonable results. As long as a set of multipole moments is
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provided that describes the electrostatic potential of a molecule reasonably well, the EFP
method will provide reasonable results.

Of the methods considered here, the EFP/ISA and EFP/DMAO0-small methods
have the lowest overall error compared to the CCSD(T)/CBS results. The MUE for the
S22 complexes is 0.78 and 0.72 kcal/mol for EFP/ISA and EFP/DMAOQ-small,
respectively. The MUEs are similar to the MUEs for MP2 and SCS-MP2 when compared
to CCSD(T)/CBS (0.88 and 0.8 kcal/mol, respectively). A similar study of the
EFP/DMAO0-small accuracy in which the charge transfer term was not included had a
MUE of 0.9 kcal/mol, so including charge transfer increased the accuracy. 28

Using a larger basis set to calculate the multipole moments with the DMAO or
DMA4 method results in a higher MUE than the DM AO0-small method, but overall
provides reasonable results, with MUEs of 0.808, 1.454, and 1.214 kcal/mol compared to
the CCSD(T)/CBS results for the EFP/DMAO, EFP/DMA4, and EFP/DMA -mixed
methods, respectively. In the case of the EFP/DMAO method, the induced dipole
procedure did not converge during the course of the indole-benzene stack geometry
optimization. This is thought to be because the DMAO multipole moment expansion is
truncated too soon for indole or benzene with the basis set used. This is easy to remedy
by including a higher multipole moment rank in the multipole moment expansion.

Computing the multipole moments using the smaller basis set and expansion
points only on atom centers (EFP/DMAO0-small-atoms) results in a similar MUE to using
bond midpoints and atom centers as expansion points, but in two cases results in the
induced dipole procedure not converging during the geometry optimization. Fewer

expansion points leads can lead to divergence of the multipole moment expansion at short
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ranges. Although the EFP/ISA method also only uses atom centers as expansion points, it
does not have induced dipole procedure divergence. Thus, the convergence of the
multipole moments in the ISA procedure seems to be more robust than in DMA, as noted
in Ref. .

Overall, EFP/ISA method is a promising method. As noted in Ref. 8, the ISA
multipole moments tend to systematically converge the multipole moment expansion at a
lower term than DMA methods, which is likely why the EFP/ISA method has low errors,
and consistently slightly overestimates the SAPT components. The main downside to
using ISA multipole moments is that the procedure to generate them is much more
computationally expensive than the procedure used to generate the DMA multipole
moments.

Analyzing the energy components at the S22 geometry shows that many of the
methods predict that the energies are too repulsive. Thus, it is clear that the short-range
penetration effects (charge penetration term, the electric field damping) might be
underestimated in the EFP method. Additionally, for certain molecules, the multipole
moment expansion generated with DMAO or DM A4 for the larger basis sets does not
seem to be converged for the level of truncation used. Additional multipole moments can

be straightforwardly included in the multipole moment expansion.
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Supporting Information

Supporting Information Section 1: Distance information for optimized S22 geometries

As mentioned in the main text, some geometries differed from the S22 geometry
by a small rotation. The minimum energy geometry found for the benzene-methane dimer
using EFP/DMAQO has the three C-H bonds on the methane pointing at the center of the
benzene ring (“tridentate” geometry), which is qualitatively different from the S22
geometry, which only has one C-H bond pointing at the center of the benzene ring
(“monodentate”).’? The difference between tridentate and monodentate is a rotation of the
methane. The minimum energy geometry for benzene-ammonia using EFP/DMA-mixed
has two hydrogen atoms on the ammonia pointing at the center of the benzene ring,
which is also different than the monodentate ab initio S22 geometry. The difference in
the CCSD(T) energy at the basis set limit between the monodentate and bidentate

geometries is 0.15 kcal/mol, which is very small.’

Table S1: Distances in ab initio and EFP-optimized S22 geometries, A

. . ... |EFP/IS|EFP/DMAO( EFP/DMAG EFP/DMA EFP/DM
distance |ab initio -small- EFP/DMA4 .
A -small 0 A-mixed
atoms
Hydrogen-
Bonded
Complexes
ammonia
dimer NI1---N5| 3.16 3.14 3.06 2.99 316 330 316
water
dimer O1---04| 2091 291 2.84 2.79 596 595 596
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formic
acid dimer

02---08

2.67

2.78

2.72

2.63

2.76

2.87

2.76

formamide
dimer

02---N9

2.86

2.96

2.83

2.83

2.9

3.06

2.9

uracil H-
bonded
dimer

N1---O2
3

2.8

2.88

2.84

2.81

2.82

2.98

2.98

2-
pyridoxine
2-
aminopyri
dine

NI1---N1

2.9

2.94

2.72

2.84

3.12

3.12

adenine—
thymine
wC

NI---N2

2.86

2.86

2.68

2.8

3.09

3.09

Dispersion
Dominated
Complexes

methane
dimer

C1---Cé6

3.72

3.6

3.64

3.6

3.6

3.76

3.6

ethene
dimer

C1---C7

3.84

3.77

3.75

3.68

3.74

3.94

3.74

benzene—
methane

Cl--'RD

3.72

3.93

3.95

3.93

3.61

3.93

4

benzene
stack

R1/R2

3.36/1.7

3.79/1,2
8

3.8/1,4

3.77/1.55

3.8/1.81

3.84/1.11

3.84/1.11

pyrazine
dimer

R1/R2

3.3/1.22

3.58/1.1
1

3.6/0.99

3.57/1.1

3.65/0.9

3.63/0.18

3.63/0.18

uracil
stack

R1/R2

3.12/0.54

3.3/0.52

3.26/0.52

3.25/0.53

3.18/1.46

3.31/0.57

3.31/0.57

indole—
benzene
stack

R1/R2

3.26/1.27

3.64/1.2
7

3.61/1.55

3.59/1.53

3.7/0.91

3.7/0.91

adenine—
thymine
stack

R1/R2

3.15/0.34

3.39/0.1
4

3.37/0.27

3.35/0.34

3.17/0.52

3.37/0.12

3.37/0.12

Mixed
Complexes

ethene—
ethyne

C8---C2

3.88

4.04

3.95

3.96

3.94

4.07

3.94

benzene—
water

O1---RD

341

3.51

3.48

3.37

3.39

3.57

3.6

benzene—
ammonia

N---RD

3.57

3.72

3.74

3.68

3.55

3.73

3.58

benzene—
HCN

Cl14---R

3.39

3.63

3.54

3.48

3.56

3.6

3.64
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benzene
dimer T-
shaped

RD

3.51

3.81

3.81

3.81

3.76

3.81

3.81

indole—
benzene T-
shaped

N21---R

D

3.24

3.47

3.45

3.39

3.19

3.5

3.5

phenol
dimer

07---02

0

2.89

2.96

2.92

2.88

2.96

2.89

2.89

Supporting Information Section 2: Interaction energies for optimized geometries and S22

geometries

Table S2: Comparison of CCSD(T) energies and EFP energies for optimized geometries

(kcal/mol)
EFP/D
CCSD(T) | EFP/ISA EFP/DMAOQ-EFP/DMAO- pn by | EFP/DMA4| MA-
small small-atom .
mixed
Ammonia | ;s 291 415 -4.69 -3.08 221 -3.08
dimer
Water -5.07 -4.86 711 -7.65 -4.96 -4.98 -4.96
Dimer
Formic Acid| -18.81 | -16.91 21.85 23.94 -19.24 1518 | -19.24
Formamide | ;0\ | _j4¢7 -19.76 -19.78 -17.68 11.80 | -17.68
dimer
uracil-hbond| -20.69 | -18.93 21.44 22.03 22.35 1636 | -16.36
2-pyridoxine
e BT, -15.21 -17.62 ; -18.07 1097 | -10.97
aminopyridi
ne
Adenine-
Thymine | -16.74 | -14.78 -17.35 ; -16.83 9.88 -9.88
wC
Methane |, 5, -0.63 0.63 -0.62 -0.70 0.47 -0.70
dimer
ethene- -1.48 -1.94 2.06 248 2.16 131 2.16
dimer
Benzene -1.45 -1.39 -1.36 -1.40 -1.81 143 -1.16
methane
Benzene |, o, 2.70 234 .44 3.32 22.49 2.49
dimer stack
pyrazine- -, 5 421 425 426 401 -5.48 -5.48
dimer
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uracil-stack| -9.74 | -8.41 9.26 9.51 -9.83 -10.17 | -10.17
Indole
benzene -4.59 -4.50 -4.11 -4.17 - -4.51 -4.51
stack
Adenine
thymine | -11.66 | -1037 | -11.07 -11.46 -16.18 1392 | -13.92
stack
ethene- 1 45 | 116 | -158 152 159 127 | -1.59
ethyne
Benzene | 559 | 268 -3.53 -4.09 4.12 358 | -2.83
water
Benzene | -, 3 | 92 | 221 2.45 2.70 233 | 214
ammonia
benzene-hen| -4.55 -3.75 -4.95 -5.54 -4.21 -4.88 -3.82
Benzene
dimer t- | -2.71 .24 236 -2.39 2.92 2.81 2.81
shaped
Indole
benzene t- | -5.62 | -4.94 -5.51 -5.99 -8.40 -5.22 -5.22
shape
Phenol
: 7.09 | -5.72 -6.98 -7.34 -6.44 -7.07 -7.07
Dimer
Table S3: Comparison of SAPT and EFP Coulomb energy (kcal/mol)
EFP/DMA EFP/D
SAPT |EFp/sA |FFP S/nlzgﬁAo' 0-small- | EFP/DMAO |EFP/DMA4| MA-
atom mixed
Ammonia | 4o | 3¢5 -5.10 5.22 427 350 | 427
dimer
Water 81 | -7.24 9.29 -9.29 -7.91 740 | -7.91
Dimer
Formic Acid| -32.22 | -28.73 31.66 31.18 31.42 2552 |-31.42
Formamide | 550 | 537 -24.55 -23.90 2421 1839 |-24.21
dimer
uracil-hbond| -29.79 | -26.76 2723 -26.24 -28.70 2348 |-23.48
2-pyridoxine
2| 2691 | -23.63 -23.57 -23.93 -25.42 -18.94 |-18.94
aminopyridi
ne
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Adenine-
Thymine | -26.58 | -23.86 | -23.84 | 2449 | -25.88 -18.44  |-18.44
wC
Methane |15 | 0.00 -0.04 0.03 -0.10 0.05 | -0.10
dimer
ethene-1 13 | 070 0.79 -1.00 -0.89 025 | -0.89
dimer
Benzene [ 56 | 041 -0.39 -0.41 -0.29 0.64 | -0.08
methane
Benzene | 554 | 0.05 0.39 0.40 0.50 024 | 024
dimer stack
PYRAZING™ | 427 | -1.66 -1.73 -1.59 -1.64 2.80 | -2.80
dimer
uracil-stack| -8.52 | -3.86 4.54 -4.68 3.52 634 | 634
Indole
benzene | -431 | -0.25 0.37 0.34 6.58 051 | -051
stack
Adenine
thymine | -10.66 | -5.24 -6.01 -6.16 -7.97 1017 {-10.17
stack
ethene- 1 27 | .16l -2.08 -1.95 -2.10 -1.87 | -2.10
ethyne
Benzene |, 21 | 204 -2.96 -3.32 323 3.60 | -2.51
water
Benzene |, 24 | 19 -L.61 -1.80 -1.84 197 | -130
ammonia
benzene-hen| -3.84 -3.15 -4.03 -4.67 -3.03 -4.26 -2.60
Benzene
dimer t- 2 -1.01 -1.09 -1.13 -1.53 150 | -1.50
shaped
Indole
benzene t- | -4.25 | -3.00 3.52 -3.82 -6.10 3.63 | -3.63
shape
Phenol 1 ¢57 | w615 | 721 7.25 7.01 561 | 561

Dimer
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Table S4: Comparison of SAPT induction energy and the sum of EFP polarization and

charge transfer energy (kcal/mol)

EFP/DMA EFP/D
SAPT | EFP/ISA EFPS/EXIAO' 0-small- | EFP/DMAO |EFP/DMA4| MA-
atom mixed
Ammonia | o, -0.99 -0.95 -1.26 20.77 2050 | -0.77
dimer
Water .45 241 258 2.95 -1.85 2149 | -1.85
Dimer
Formic | ,co4 | 1434 -16.56 -19.47 -14.07 1114 |-14.07
Acid
Formamide| ,, ,¢ -9.03 -12.23 -12.93 -10.50 740 |-10.50
dimer
uracil- -14.01 -11.01 1321 -15.04 -12.86 -10.04  |-10.04
hbond
2_
pyridoxine
2- 12,65 | -10.26 -12.41 -13.90 -11.25 939 | -939
aminopyrid
ine
Adenine-
Thymine | -11.88 -9.54 -11.50 -12.66 2931 858 | -8.58
wC
Methane | -0.04 0.00 0.05 0.00 0.06 0.00
dimer
ethene- 20.23 20.07 20.07 20.18 -0.06 0.16 -0.06
dimer
Benzene 2031 -0.19 -0.14 20.20 0.32 0.00 0.17
methane
Benzene | os -0.56 -0.42 -0.64 -0.18 012 | -012
dimer stack
pyrazine- |-y 45 2037 0.23 -0.59 -0.69 0.15 0.15
dimer
uracil-stack| -1.75 -1.02 -1.20 -1.33 -1.67 0.19 | -0.19
Indole
benzene -1.48 -1.02 -1.18 -1.41 571 034 | -0.34
stack
Adenine
thymine | -2.49 -1.82 2.06 2.52 5.67 017 | -0.17
stack
ethene- 0.57 -0.33 -0.36 -0.42 0.34 -0.15 -0.34
ethyne
Benzene -1.00 -1.03 -0.99 -1.26 0.62 027 | -052

water
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Benzene | 53 | 947 -0.42 -0.57 -0.42 008 | -031
ammonia
benzene- | o) -1.35 -1.98 -2.07 -2.23 147 | -1.99
hen
Benzene
dimert- | -070 | -030 -0.36 -0.43 0.52 013 | -0.13
shaped
Indole
benzene t- -1.95 -1.85 -1.99 -2.45 -2.64 -1.27 -1.27
shape
Phenol | = 5325 | 241 2.63 3.01 2.19 203 | -2.03
Dimer
Table S5: Comparison of SAPT and EFP total interaction energy (kcal/mol)
EFP/DMA EFP/D
SAPT | EFP/ISA EFPS/EXIAO' 0-small- | EFP/DMAO |EFP/DMA4| MA-
atom mixed
Ammonia | 36 | g1 4.01 -4.44 -2.99 197 | 299
dimer
Water ) 481 | -4.80 7.01 7.38 -4.90 403 | -4.90
Dimer
Formic | 1967 | 1621 | 2135 -23.78 -18.62 979 |-18.62
Acid
Formamide| ¢4 | 1430 | -1968 | -1974 | -17.62 870 |-17.62
dimer
uracil- 1 5138 | .81 | 2119 -22.03 -22.30 1426 |-14.26
hbond
2.
pyridoxine
2- 1734 | -1485 | -1693 | -1879 | -17.64 929 | 929
aminopyrid
ine
Adenine-
Thymine | -17.21 | -1485 | -16.68 | -1848 | -16.53 836 | -8.36
WC
Methane | 53 | 062 0.62 -0.60 -0.68 046 | -0.68
dimer
ethene- | 146 | -1.92 2.02 234 2.11 126 | 211
dimer
Benzene |y 46| 118 111 -1.19 -1.19 122 | -0.83
methane
Benzene | 567 | -031 0.17 -0.05 0.51 031 | 031
dimer stack
PYRAZING™ | 447 | -1.79 -1.71 -1.93 -2.08 241 | 241

dimer
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Table S5 continued

uracil-stack| -10.72 -8.29 -9.15 -9.43 -8.61 -9.94 -9.94

Indole
benzene -4.83 -1.00 -0.54 -0.80 1.13 -0.58 -0.58
stack

Adenine
thymine -13.12 -8.38 -9.39 -10.00 -14.96 -11.66 -11.66
stack

ethene-

-1.48 -1.07 -1.56 -1.50 -1.57 -1.14 -1.57
ethyne

Benzene

-3.30 -2.27 -3.15 -3.79 -3.05 -3.08 -2.24
water

Benzene

. -2.33 -1.55 -1.91 -2.25 -2.16 -1.94 -1.50
ammonia

benzene-

-4.86 -3.19 -4.69 -5.43 -3.92 -4.40 -3.26
hen

Benzene
dimer t- -2.90 -1.52 -1.66 -1.77 -2.25 -1.84 -1.84
shaped

Indole
benzene t- -5.79 -4.19 -4.85 -5.61 -8.07 -4.24 -4.24
shape

Phenol
Dimer

-7.20 -5.16 -6.44 -6.87 -5.80 -4.25 -4.25
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CHAPTER 4. THE MELTING TEMPERATURE OF WATER WITH THE EFFECTIVE
FRAGMENT MOLECULAR ORBITAL METHOD
1. Introduction

Water is one of the most common solvents, both in nature and in experimental
chemistry. Understanding water-water and water-solute interactions is vital to
understanding the role water plays in chemical reactions. Because of this, water has been
studied extensively theoretically, and much effort has been put into developing accurate
and computationally efficient force fields for water. Since much of chemistry happens in
water or a solvent, it is important to be able to model the solvents accurately in
simulations.

An important benchmark of a force field is how well it predicts the phase diagram
of water. For example, knowing the predicted melting temperature of ice enables one to
run simulations using the proper phase of water. Many methods have been used to
calculate the melting temperature of ice-In as a benchmark and to be sure that simulations
are run in the right phase. Density functional theory (DFT) tends to predict melting
temperatures (Tm) for ice-In that are too high. DFT with the PBE functional predicts a
melting temperature of 417 £ 3 K, DFT/BLYP predicts a melting temperature of 411 £ 4
K, and DFT-BLYP with dispersion corrections predicts a melting temperature of 360 + 2
K. ! 2, Many classical force fields underestimate the melting temperature. For instance,
the melting temperatures predicted by TIP3P?, SPC/E*, TIP4P 3, and TIP4P-Ew ° are
145.6 K, 215.0 K, 245.5 K, respectively.® Other classical force fields predict a very
accurate melting temperature, often because the method is explicitly parameterized to do

so. The TIP4P/Ice method 7 predicts a melting temperature of 272.2 K.
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There has been much effort to increase the accuracy of force fields by using
parameters and functional forms generated from ab initio calculations. For instance, the
TTM3-F 8, iAMEOBA °, and Sum of Interactions Between Fragments Ab initio
computed (SIBFA)!? methods have been developed to include parameterization from ab
initio calculations. The methods of interest in this study are the Effective Fragment
Potential (EFP) and the Effective Fragment Molecular Orbital (EFMO) methods. The
EFP method is a rigid-body model that is derived from first principles and employs no
empirically fitted parameters. An EFP is generated from ab initio calculations. The EFP
method provides interaction energies among fragments, based on five interaction energy
terms: two-body Coulomb, dispersion, charge-transfer, and exchange-repulsion, and
many-body polarization. The general expression for the EFP interaction energy can be

written as follows:

fragments
_ Coulomb dispersion charge-transfer exchange-repulsion polarization
EEFP - z (EAB +EAB +EAB +EAB +E

A<B
(1)
The Coulomb term relies on multipole moments generated from the charge
density of an ab initio calculation. The exchange-repulsion term relies on a set of
localized molecular orbitals (LMOs), the Fock matrix, and the basis set used in the ab
initio calculation. The charge transfer term relies on the Fock matrix, the basis set, and a
set of canonical virtual orbitals or valence virtual orbitals (VVOs). The dispersion term
relies on a set of dynamic polarizability tensors calculated from the time-dependent
couple perturbed Hartree-Fock equation and distributed onto the centroids of the LMOs.
The polarization term relies on a set of static polarizability tensors calculated from the

coupled perturbed Hartree-Fock equations and distributed onto the centroids of the LMOs



164

and a set of multipole moments. More details can be found in Refs. 11 and 12.
Importantly, an EFP can be generated easily and for any molecule since there are no
fitted parameters.

The EFP method predicts the melting temperature of ice to be approximately 381
K.!3 Thus, the predicted temperature is about 100 K larger than the experimental value.
There are at least two possible reasons why the melting temperature is too low. One is
that the EFP method uses rigid fragments, and another is that it does not account for
nuclear quantum effects.!

The EFMO method integrates the Fragment Molecular Orbital (FMO) '* and EFP
methods. The EFMO method can be thought of as an extension of the FMO method, in
which fragment-fragment interactions are accounted for by the EFP method when the two
fragments are sufficiently far apart. Therefore, the EFMO method allows for flexible EFP

fragments.'® 7 The flexible fragment EFMO energy can be written as

fragments fragments
EFMO __ 0 Coulomb dispersion charge-transfer exchange-repulsion polarization
E - z EA+ Z (EAB +EAB +EAB +EAB )+Etot
A A>B

(2)
where Egis the gas phase ab initio energy of a fragment. Note that typically the EFMO
energy equation contains a term in which close dimers are computed with an ab initio
method. However, for the purpose of this paper, Eq. (2) can be used.

In the EFMO method, the parameters needed in the EFP method are re-generated
on every time step, so that the method is fully flexible. The analytic gradient for the
Coulomb, polarization, dispersion, and exchange-repulsion terms in EFMO has been
derived and implemented. '® The goal of the present study is to ascertain the effect of

flexibility on the predicted melting temperature by comparing the melting temperatures
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of ice-I predicted by the EFP and EFMO methods. Since the gradient for the EFMO
charge transfer term has not been derived, the EFP and EFMO simulations are run
without charge transfer.

Computer simulations can be used to calculate the predicted melting temperature
of a material in multiple ways.!® One commonly employed method uses Gibbs-Duhem
integration and the fact that at the melting temperature, T, the Gibbs free energy of the

solid and liquid are equal (G,,.,(P,T);-; = G,,;y(P,T);_; )- The procedure used in the

present work is the method of direct coexistence. In the direct coexistence method, the
liquid-solid interface is directly simulated by molecular dynamics (MD) calculations.
That is, one uses a box in which half of the box is occupied by an equilibrated solid and
half is occupied by an equilibrated liquid, and the total system is allowed to equilibrate.
The direct coexistence method can be implemented in various ensembles, such as NVE,
NVT, NPT, and NPH. Each type of ensemble has particular advantages and
disadvantages. This study uses the NPH ensemble, since it has the advantage (with
respect to NVT and NVE) that the volume of the box can change, allowing the solid and
liquid halves of the system to relax, and that the temperature can spontaneously adjust

until the Gibbs free energy of the liquid and solid phases are equal.

2. Computational Methods

All simulations were done using the GAMESS software package.?’ 2! For the EFP
calculations, the basis set used to generate the potential was 6-31++G(d,p). Since the
gradient for the EFMO method does not contain terms needed for the use of bond

midpoints in the EFP Coulomb term, only atom centers are used in generating the
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multipole moments for the EFP potential. The gradient for the EFMO method also only
contains terms in the multipole moment expansion through quadrupole-quadrupole. As
mentioned above, charge transfer was not included. Thus, the EFP used here differs from
the standard EFP used in Ref. '*, and will be referred to here as EFP-small-noct.
Likewise, the EFMO used here will be referred to as EFMO-small-noct. Unless otherwise
noted, all simulations in this study used a 0.35 fs time step and the Velocity-Verlet
algorithm.

Since the phase diagram of EFP-noct and EFMO-noct is not known, first an
appropriate pressure is calculated by performing NVT MD simulations with 192 water
molecules at T=250 K and a density of 1 g/ml. A 4 ps NVT simulation was performed,
where the average pressure of the last 2 ps was ~3167 bar for the EFP-small-noct method
and ~5149 bar for the EFMO-small-noct method. Thus, the use of 4000 bar and 6000 bar
should be reasonable choices for calculating the melting temperature for the EFP-small-
noct and EFMO-small-noct, respectively. The pressure value is chosen so that it is at a
higher value than the pressure at the triple point, with the rough assumption that the
temperature at the triple point is near 250 K. As long as an ice-liquid coexistence is stable
at the pressure, the melting temperature can be computed.

For reference, the pressure used for calculating the melting temperature with
DFT-BLYP and DFT-PBE was 9869.23 bar and 2467.31 bar, respectively.! In Ref. 13, a
pressure of 1.01 bar was used.

To perform the direct coexistence simulation, a box was prepared with 192
waters, 96 in the liquid state and 96 in the solid state. The 96 liquid state water molecules

were prepared by equilibrating 96 waters in a 13.52 x 15.61 x 14.72 A box using an NVT
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simulation for 100 ps. The 96 solid state waters were prepared according to Bernal—
Fowler rules.?? The system is prepared to match the previous EFP study that determined
the melting temperature of ice-Ip. '°

To ensure that the ice-liquid interface has relaxed, and to prepare initial
conditions for the NPH simulations, three 500 fs anisotropic NPT simulations were
performed at T=250K, T=300K, and T=400K. The resulting geometries and velocities
were then used as starting conditions for three NPH simulations. For the EFP-small-noct
method, the three NPH simulations were run for ~30 ps, and for the EFMO-small-noct
method, the three NPH simulations were run for ~10 ps.
3. Results and Discussion

For the EFP-small-noct method, the temperature change during the three NPH
simulations is shown in Figure 1. All simulations were assumed to converge after 15 ps,
and the last ~15 ps were used to calculate the average and standard deviation of the
temperature. The averaged temperatures are 311 £ 11 K, 337+ 13 K, 424 + 15 K for
simulation with initial conditions from the 250K, 300K, and 400K NPT ensembles,
respectively. None of the temperatures agree within a standard deviation. The causes for
the disagreement could be that the initial NPT simulations did not equilibrate, resulting in
stress that causes the ice to melt too quickly, that the basis set differs enough from that
used in Ref. !* that there is no liquid-ice coexistence between 250K and 400K and a
pressure of 4000 bar, or that it is necessary to include the charge transfer term for the

melting temperature to be in the 250K to 400K range.
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Figure 1: Temperature change as the EFP NPH simulations evolve, starting
from initial conditions generated from a 250K, 300K, and 400K NPT ensembles.

The temperature change during the three NPH simulations using the EFMO-
small-noct method is shown in Figure 2. As in the EFP-small-noct method, the
simulations run at different initial temperatures did not equilibrate to the same

temperature.
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Figure 2: Temperature change as the EFMO NPH simulations evolve,
starting from initial conditions generated from a 250K, 300K, and 400K NPT
ensembles.

As mentioned above, it is possible that the melting temperature was not found due

to the small basis set used. Thus, the next step is to try the calculations with a bigger basis

set.
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CHAPTER 5. SUMMARY AND CONCLUSIONS

Much of chemistry happens in solvated systems, or with large molecules. Overall,
the goal of this dissertation has been to work towards accurate but computationally
inexpensive calculations on large systems. The two main ways discussed here of
decreasing computational expense without losing too much accuracy have been
fragmentation methods and intermolecular interaction methods.

Central to every chapter is the Effective Fragment Potential (EFP) method, a
sophisticated ab initio-based interaction energy method.

Chapter 2 discussed the derivation and implementation of the gradient for the
Effective Fragment Molecular Orbital (EFMO) method. The fully analytic gradient for
the EFMO method differs from the gradient for the (EFP) method in that the geometry of
each EFMO fragment is flexible. The EFMO gradient requires multiple response terms,
arising from the derivative of the ab-initio-calculated parameters in the EFP terms. The
accuracy of the EFMO gradient was tested by comparing the analytic gradient to the
numeric gradient and by confirming that energy was conserved during an NVE ensemble
molecular dynamics simulation. The gradient was parallelized using multi-level
parallelization. Discontinuities in the potential energy surface due to cutoffs were
discussed.

In Chapter 3, the accuracy of the EFP interaction energies was benchmarked
using several sets of multipole moments. The multipole moments considered were the
basis space-based and numeric grid-based Stone Distributed Multipole Analysis (DMA),

with varied basis sets, and the basis space-iterated stockholder atom (BS-ISA+DF) by
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Misquitta and Stone. Both sets of multipole moments led to reasonable results. The mean
unsigned errors with respect to the CCSD(T)/CBS interaction energies are 0.78 and 0.72
kcal/mol for the BS-ISA+DF and DMA-generated (using a smaller basis set and the
analytic DMA procedure) multipole moments, respectively. The MUEs are on the same
order of accuracy as the MUEs for the MP2 and SCS-MP2 methods.

Chapter 4 discussed computing the melting temperature of ice In using the EFMO
method. The direct coexistence method using the NPH ensemble was used to calculate
the melting temperature. A previous study determined that the melting temperature of ice
I using the EFP method is ~ 380K, which is about 100 K different from the experimental
melting temperature. However, the direct coexistence method did not find a melting
temperature for the range of temperatures (250 to 400 K) considered in the current study.
One potential issue is that the current study performed EFMO and EFP calculations using
parameters generated from a smaller basis set than in the previous study. A next step is to

try the EFMO calculations with a larger basis set.



