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ABSTRACT

The discovery of quantum Hall effect has motivated the use of topology instead of broken
symmetry to classify the states of matter. Quantum spin Hall effect has been proposed to
have a separation of spin currents as an analogue of the charge currents separation in quantum
Hall effect, leading us to the era of topological insulators. Three-dimensional analogue of the
Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with
three-dimensional Dirac states could potentially be the parent compounds for Weyl semimet-
als and topological insulators when time-reversal or space inversion symmetry is broken. In
addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimet-
als, Dirac points can form a line in the momentum space, resulting in a topological node line
semimetal. These fascinating novel topological quantum materials could provide us platforms
for studying the relativistic physics in condensed matter systems and potentially lead to design
of new electronic devices that run faster and consume less power than traditional, silicon based
transistors.

In this thesis, we present the electronic properties of novel topological quantum materials
studied by angle-resolved photoemission spectroscopy (ARPES). In Chapter 1, we will lay the
ground for understanding the topological quantum states in these materials. Chapter 2 will
provide an introduction to the ARPES used in research presented in this thesis. ARPES results
of unpublished projects such as BisRh3S,, unpublished data such as PtSny, and other materials
such as CrAuTey will be discussed along with the description of the ARPES systems in Chapter
2. In Chapter 3, we will present the study of topological insulator (or more precisely, topological
semimetal) candidate LaBi, where the Dirac cone at the I' point is buried deeply inside the
bulk spectrum and asymmetric massive states are acquired for top and bottom Dirac cones.
Chapter 4 elucidates the three-dimensional Dirac state in CdzAsy using fine tuning incident

photon energies with energy step ~ 0.15 eV, which provides k, dispersion with ultrahigh energy
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and momentum resolutions. Type-II Weyl semimetal candidate WTes displays a surprising
temperature-induced Lifshitz transition. Furthermore, both “normal” and “topological” states
have been observed in this material due to the fact that the electronic structure is very sensitive
to strain and pressure. Detailed electronic structure of WTes including the surface Fermi arcs
and three-dimensional bulk states will be discussed in detail in Chapter 5. In the last chapter
(Chapter 6), we will present an unusual Dirac node arc structure in PtSny showing arcs instead
of closed loops of Dirac nodes. The materials presented in this thesis are just a fraction of the

known novel topological quantum materials, and more are yet to be discovered.



CHAPTER 1. INTRODUCTION

Topological quantum materials have attracted great interest since the discovery of the quan-
tum Hall effect. Topology has been introduced for classifying the states of matter in addition
to the “old fashioned” symmetry breaking. In this chapter, we will give an overview of the
discovery of novel topological quantum materials such as the quantum Hall system, topologi-
cal insulators, three-dimensional Dirac/Weyl semimetals, and the Dirac node line semimetals.
After introducing the quantum Hall effect in graphene, we will discuss the difference between
trivial insulators and quantum Hall insulators. Generalization of the quantum Hall effect to
quantum spin Hall effect (topological insulator) requires, in general, strong spin-orbit cou-
pling and band inversion. Extension of the two-dimensional Dirac states to three-dimensional
systems leads to Dirac/Weyl semimetals and topological node line semimetals. We will use
plentiful examples and schematics to better illustrate the properties of the topological states
in these systems and to better understand the unique signatures such as Fermi arc states in an

intuitive way. More details can be found in the corresponding references.

1.1 Quantum Hall Effect

Before 1980, atoms and electrons forming different states of matter, such as crystalline
solids and magnets, can be classified by the symmetries they spontaneously break [1]. The
crystalline solids break the continuous translational symmetry of free space; thus, the atom has
to be moved by a finite distance to reach the next possible position. The magnets break the
continuous rotational symmetry of free space; thus, the magnetic moments have to be aligned
along certain directions. However, the quantum Hall state, discovered in 1980 [2], provided the

first example of a quantum state that cannot be described by spontaneous symmetry breaking.
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Figure 1.1 Quantized magnetoresistance and Hall resistance of a graphene device. (a) Hall
resistance (black) and magnetoresistance (red) measured in the device at T = 30
mK and V;, = 15 V. The vertical arrows and the numbers on them indicate the
values of B and the corresponding filling factor v of the quantum Hall states. The
horizontal lines correspond to vh/e? values. The inset shows the quantum Hall
effect for a hole gas at V; = -4 V, measured at 1.6 K. (b) Hall resistance (black)
and magnetoresistance (orange) as a function of gate voltage at fixed magnetic
field B =9 T, measured at T'= 1.6 K. The same convention as in (a) is used here.
The upper inset shows a detailed view of high-filling-factor plateaux measured at
30 mK. (c¢) A schematic diagram of the Landau level density of states (DOS) and
the corresponding quantum Hall conductance as a function of energy. (From Ref.

[31)-

When placed in an environment of strong magnetic fields and low temperatures, a two-dimensional

electron system will undergo the quantum Hall transition, i.e., the Hall conductance o will be-

come quantized:

2
e
=y 1.1
o l/h (1.1)

where e is the electric charge, h is the Planck’s constant, and v is the number of quantized

Landau levels that are completely filled. Since there is a gap between the filled and empty



Landau levels, the system behaves like an insulator if the Fermi energy Er resides in the gap.
However, unlike a conventional insulator, the filled Landau levels in a quantum Hall system
can be continuously tuned. For example, in graphene the filled Landau levels can be tuned by
varying either the applied gate voltages or magnetic fields as shown in Fig. 1.1. Fig. 1.1(c)
shows a schematic diagram of the Landau level density of states (DOS) and the corresponding
quantum Hall conductance as a function of energy. The Landau level index n is shown next
to the DOS peak. We can see that by changing the applied gate voltage on the graphene
device, the Fermi energy Fr can be tuned to cross the Landau levels, resulting in plateaus in
the Hall resistance as shown in Figs. 1.1(a) and (b) [4, 3]. Furthermore, by tuning the gate
voltage, two-dimensional electron and hole gas systems can be created, and both systems show
quantum Hall effect as presented in the insets of panels (a) and (b). Surprisingly, the quantum
Hall effect in graphene can even be observed at room temperature [5].

As explained by Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) [6], the major
difference between a quantum Hall state and an ordinary insulator is a matter of topology.
The topological invariant, i.e., Chern invariant, can be understood in terms of the Berry phase
[7] associated with the Bloch wave functions |u,,(k)). By taking the line integral of A, =
(U |Ag|um) or the surface integral of the Berry flux (defined as F,,, = A x A;;,), the Berry
phase can be calculated if there are no accidental degeneracies when k changed around a closed

loop. Thus, the Chern invariant is the total Berry flux in the Brillouin zone

1
m=— [ &°kF,, 1.2
n 271’/ F, ( )

The total Chern number, n = Z%Zl N, 1S the sum over all occupied bands m, which is
invariant even if there are degeneracies between occupied bands, provided that the gap sepa-
rating the occupied and empty bands remains finite. TKNN showed that the Hall conductance,
calculated using the Kubo formula, has the same form, so that v in Eq. 1.1 is identical to n.
The Chern number n is a topological invariant; thus, when the Hamiltonian varies smoothly,
the Chern number does not change.

To illustrate the difference between an ordinary insulator state and a quantum Hall state

in a more intuitive way, we have shown the insulating and quantum Hall states in Fig. 1.2.
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Figure 1.2 Electronic states of matter. (a) The insulating state is characterized by an energy
gap separating the occupied and empty electronic states, which is a consequence of
the quantization of the energy of atomic orbitals. (b) In the quantum Hall effect,
the circular motion of electrons in a magnetic field, B, is interrupted by the sample
boundary. At the edge, electrons execute “skipping orbits” as shown, ultimately
leading to perfect conduction in one direction along the edge. (From Ref. [8]). (c)
In the quantum Hall effect, the motion of the electrons will not be blocked by the
disorder on the edge (light blue rectangular box) due to lack of back-scattering
channel.

Fig. 1.2(a) shows the typical state of an insulator, where the electrons are confined due to
the quantization of the atomic orbitals. Therefore, the completely empty conduction bands
and completely filled valence bands are separated by a band gap and there is no conducting
channel in between. On the other hand, in the quantum Hall state as shown in Fig. 1.2(b),
the electrons in the bulk under a magnetic field, B, will be confined to the circular motions.
Therefore, the bulk of the material would be insulating. However, at the edge of the system, the
circular motion of the electrons are interrupted by the sample boundary. Thus, the electrons
striking the boundary would bounce off and execute only half orbitals as shown at the bottom
of Fig. 1.2(b), leading to perfect conduction in one direction along the edge. Due to this
constrained one-direction propagation of the electrons in the quantum Hall system, there is a
robustness in such system against non-magnetic disorder because there are no states available

for backscattering [8]. When an edge-state electron encounters a non-magnetic disorder on the



edge, it simply takes a detour and still keeps going in the same direction since there is no way

for it to turn back [as shown in Fig. 1.2(c)].

This special edge state is said to be protected

by the time reversal symmetry. This dissipationless transport mechanism could be extremely

useful for semiconductor devices if it is not limited by the requirement of a high magnetic field

[9].
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Figure 1.3 Spatial separation of the electronic states. Spatial separation is at the heart of
both the quantum Hall (QH) and the quantum spin Hall (QSH) effects. (a) A
spinless one-dimensional system has both a forward and a backward mover. Those

two basic degrees of freedom are spatially separated in a QH bar, as illustrated by

the symbolic equation “2 =1 + 1”. The upper edge contains only a forward mover

and the lower edge has only a backward mover. The states are robust: They will

go around an impurity without scattering. (b) A spinful 1D system has four basic

channels, which are spatially separated in a QSH bar: The upper edge contains a

forward mover with up spin and a backward mover with down spin, and conversely

for the lower edge. That separation is illustrated by the symbolic equation “4 = 2

+ 2”. (From Ref. [9]).

To generalize the quantum Hall effect to a non-magnetic field case, it is important to under-

stand the effect of applying a magnetic field in the quantum Hall transition. As shown in Fig.

1.3, in a one-dimensional world without considering spin, there are only forward and backward

motions. When a strong magnetic field is applied to a two-dimensional gas of electrons at a

low temperature, the electrons travel only along the edges of the system, i.e., two counterflows

of electrons are spatially separated to the top and bottom edges. This can be understood as



a simple charge transport separation. On the other hand, in a real one-dimensional world,
the electrons propagating along one direction are composed of both spin-up and -down states.
Thus, one way to mimic the charge transport separation is to have a spin transport separation.
We can have the spin-up forward moving electrons and spin-down backward moving electrons
stay on the top edge and the opposite case at the bottom edge. Therefore, we will have a net
forward spin transport along the top edge and backward spin transport along the bottom edge.
This is a quantum spin Hall state that is protected by the time reversal symmetry and immune
to the non-magnetic impurities. Since there can only be odd numbers of spin-up or -down
states on one edge, the quantum spin Hall state is characterized by a so-called Zo topological
quantum number. Therefore, the quantum spin Hall insulator is synonymously referred to as
a topological insulator [9]. The following section will present more details about topological

insulators.

1.2 Topological Insulators

In order to realize the quantum spin Hall state, opposite spin states have to propagate in
opposite directions. Such a coupling between the spin and the orbital motion is a relativistic
effect most pronounced in heavy elements such as Bi, Te, and many others. In 2006, two-
dimensional topological insulator states have been proposed to exist in mercury telluride (HgTe)
quantum wells beyond a critical thickness [10, 11].

In common semiconductors, the spin-orbit coupling is weak and the conduction and valence
bands are formed from the electrons in s orbitals and p orbitals, respectively. However, the
spin-orbit coupling in heavy elements, such as Hg and Te, is large enough to push the p-orbital
band above the s-orbital band, i.e., the bands are inverted. On the other hand, the CdTe layer
has a weak spin-orbit coupling. Thus, by changing the thickness of the HgTe layer, the strength
of the spin-orbit coupling in the quantum well can be continuously tuned, which can lead to a
quantum phase transition. Fig. 1.4 shows the quantum phase transition of HgTe quantum wells
from an ordinary insulator to a quantum spin Hall insulator (topological insulator) beyond the
critical thickness of d. = 6.5 nm. In the thin quantum well with HgTe layer thickness less than

the critical value d., the quantum well is in the insulating state, i.e., there is a gap between the
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Figure 1.4 HgTe quantum wells beyond a critical thickness are two-dimensional topological
insulators. (a) The behavior of a HgTe-CdTe quantum well depends on the thick-
ness d of the HgTe layer. Here the blue curve shows the potential-energy well
experienced by electrons in the conduction band; the red curve is the barrier for
holes in the valence band. For thin quantum wells (d < d.), the energy of the
lowest-energy conduction subband (E1) is higher than that of the highest-energy
valence (H1). But for d > d., those electron and hole bands are inverted. (b) The
band dispersion in the quantum wells. The thin quantum well has an insulating
energy gap, but inside the gap of the thick quantum well there are conducting edge
states (shown by red and blue lines). (c¢) Transport measurements demonstrating
the insulating state in the thin quantum well and the quantum spin Hall state in
the thick quantum well. (From Ref. [9]).

lowest-energy conduction band (E1) and the highest-energy valence band (H1). As the thickness
of the HgTe layer increases, the spin-orbit coupling strength also increases and leads to a
band inversion in the quantum well, i.e., the valence band H1 is above the conduction band
El. As shown in Fig. 1.4(b), the inverted bands result in one pair of edge states carrying
opposite spins and dispersing from valence band to conduction band (the red and blue lines)
[9]. These two conducting channels, each contributes one quantum of conductance, e?/h, have

been observed in the quantum wells grown by molecular-beam epitaxy [12] as shown in Fig.



1.4(c). The insulating state in the thin quantum well and the quantized resistance (or quantized
conductance) in the thick quantum well have demonstrated the topological phase transition in
this system.

It is amazing that the quantum spin Hall state can be realized in a simple two-dimensional
system, the natural question then is how we can extend this into a three-dimensional case. One
way to achieve that is to stack layers of the two-dimensional quantum spin Hall insulators,
which will lead to a weak topological insulator. In a weak topological insulator, the Fermi
surface encloses even number of Dirac points in the Brillouin zone; while in a strong topological
insulator, the Fermi surface encloses odd number of Dirac points [11]. Bi;_,Sb, was the first
three-dimensional material predicted to be an actual strong topological insulator [11] and was
soon verified as such by angle-resolved photoemission spectroscopy (ARPES) [13]. However,
due to the alloying disorder, complex surface state, and small bulk band gap in Bi;_,Sb,,
it is hard to to be utilized as a model system for studying topological quantum phenomena.
The second generation topological insulators, BisSes, BisTes, and SboTes were theoretically
predicted [14] and experimentally confirmed to possess a single surface Dirac cone at the center
of the Brillouin zone by ARPES measurements [15, 16, 17]. As presented in Fig. 1.3(b), the
electrons with specific spins can only move along specific directions (spin-momentum locking)
on the edge of a quantum spin Hall insulator (topological insulator). In order to verify that
the spin of the electrons in the surface Dirac cone is “locked” to its momentum, spin-resolved
ARPES measurements are required.

Fig. 1.5 shows the Fermi surface and band dispersion measured from spin- and angle-
resolved photoemission spectroscopy. Fig. 1.5(a) shows the Fermi surface of Biy_sCasSes with
a circular shape and the band dispersion in (c¢) shows a single Dirac cone structure. Similar
structure can be seen in BisTes as shown in panels (b) and (d). By analyzing the spin-
polarization of photoelectrons emitted at a binding energy of 20 meV in BisTes, it is evident
that there is no clear spin polarization signal in the = and z directions [panel (f)]. On the other
hand, clear y direction polarization signals of equal magnitude and opposite sign are observed
for surface-edge electrons of opposite momentum [panel (e)], demonstrating the one-to-one cor-

respondence between the spin and momentum direction, i.e., spin-momentum locking. Fig.
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Figure 1.5 Spin-momentum locking of spin-helical Dirac electrons in topological insulators.
(a) ARPES intensity map at Er of the (111) surface of tuned Biy_sCasSes and
(b) the (111) surface of BisTes. Red arrows denote the direction of spin around
the Fermi surface. (c¢) ARPES dispersion of tuned Biy_sCasSes and (d) BisTes
along the k, cut. The dotted red lines are guides to the eye. (e) Measured y
component of spin polarization along the I'-M direction at Ep =-20 meV, which
only cuts through the surface states. (f) Measured x (red triangles) and z (black
circles) components of spin polarization along the I'-M direction at Fp =-20 meV.
(g) Spin-resolved spectra obtained from the y component spin polarization data.
(h) Fitted values of the spin polarization vector P. (From Ref. [15]).

1.5(h) shows a schematic view of the spin-momentum-locking effect in the helical Dirac elec-
trons with experimental angular uncertainties [15]. Interestingly, hexagonal warping effect has
been discussed [18] and warped helical spin texture has been observed from circular dichroism
ARPES measurements [19]. Compared to the first generation topological insulator, the second
generation of these materials such as BisSes, has several advantages: (1) the materials are
stoichiometric single crystals; thus, they do not have alloying disorder; (2) the surface state is
nearly idealized single Dirac cone, which is ideal for studying the topological phenomena; (3)
the fairly large band gap (~ 300 meV) is suitable even for room temperature measurements

and because of that these materials have potential for industrial applications [20].
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Figure 1.6 Non-magnetic and magnetic doping in a topological insulator. (a) and (b) A
non-magnetically doped topological insulator with a Dirac point connecting the
upper and lower Dirac cones same as in the undoped case. (c) Band structure
along the K-I'-K direction of undoped BisSes. Right subpanel shows the energy
distribution curves (EDCs). The red curve indicates the EDC at the I' point. (d)
Band structure for a Tl-doped sample, (Bigp9Tly1)25es3. (e) and (f) A magnetically
doped topological insulator with a gap separating the upper and lower Dirac cones.
(g) and (h) Band structure of two Fe-doped samples from two growth batches with
melt composition (BiggsFeg 12)25e37 and (BiggsFep.16)25€3.7, respectively. The
EDCs indicate a gap formation. (From Ref. [16]).

Due to its spin-momentum-locking effect, the surface Dirac states in the topological insula-
tors are protected by the time-reversal symmetry, i.e., there is no channel for back scattering.
Therefore, only time-reversal symmetry breaking sources, such as magnetic field or magnetic
impurities can change these fermions from massless to massive states in the topological insula-
tors [21, 22].

Fig. 1.6 shows the electronic structure of BisSes with non-magnetic and magnetic doping.
Figs. 1.6(a)—(d) show that with a non-magnetic doping (such as TI1), the system does not
violate the time-reversal symmetry. Thus, the dopant T1 only introduces holes into the system,
moving the chemical potential down (i.e., the energy location of the Dirac point moves up,
closer to the chemical potential). The electronic structure itself (i.e., the shape of the Dirac

cone) does not change in this case. However, when a magnetic dopant, such as Fe, is introduced
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to the system, a gap would appear to separate the upper and lower Dirac cones. As shown
in panels (g) and (h), a gap formation can be clearly seen in the energy distribution curves.
This demonstrates that the Fermi energy and the energy gap at the surface Dirac point in the
topological insulator can be continuously tuned; thus, providing a means to control the surface
electric transport, and that indeed could be of great importance for industrial applications [16].

Intuitively, the transition of Dirac electrons from massless to massive states would be sym-
metric for the upper and lower cones under the influence of the time-reversal symmetry breaking
sources. However, in topological insulator candidate (or more precisely, topological semimetal
candidate), LaBi, an asymmetric mass acquisition was observed. Interestingly, the surface
Dirac cone is buried deeply inside the bulk state and there are no external time-reversal sym-
metry breaking sources to induce the mass acquisition. We will discuss these observations in

more detail in Chapter 3.

1.3 Three-dimensional Dirac Semimetals

As massless Dirac states have been realized in two-dimensional materials (such as graphene)
and on the surface of three-dimensional topological insulators (such as BisSes), searching
for bulk (three-dimensional) Dirac states has attracted great interest. In a two-dimensional
massless relativistic electronic system, the minimum model Hamiltonian can be written as
H (k) = hw(kyo, + kyoy), where v is the relativistic electron velocity, k is the momentum, and

o are Pauli matrices.

Oy = , Oy = , Oy = (1.3)

10 i 0 0 -1
The point-like degeneracies between the conduction and valence bands are responsible for
many important properties of graphene such as high electron mobility and conductivity. How-
ever, the Dirac points are not robust against perturbations proportional to o,, which will open
a gap in the energy dispersion. Fortunately, the spin-orbit coupling in graphene is not strong
enough to significantly double the number of states and open a gap at the Dirac point due to

carbon atoms in this system being very light [23].
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The analogous Hamiltonian in three dimension can be expressed as H (k) = hv;;k;0;. If the
determinant of v;; is not equal to zero, H (k) is robust against perturbations and is called a Weyl
Hamiltonian because it describes two linearly dispersing bands that are degenerate at a (Weyl)
point [24]. In materials with both time-reversal and space inversion symmetries, the Weyl
points must come together in pairs, and be degenerate in energy to form symmetry protected
three-dimensional Dirac points or annihilate each other. This can be simply illustrated by
choosing an arbitrary Weyl node at momentum k. The time-reversal symmetry requires that
another Weyl node with the same chirality must be present at —k. On the other hand, the
inversion symmetry requires that a node of opposite chirality must be present at —k. This
implies that in the presence of both time-reversal and inversion symmetry, there will exist a
pair of opposite-chirality Weyl nodes at the same crystal momentum, i.e., they may annihilate
each other instead of forming bulk Dirac points. Therefore, these Dirac points need to be
protected by extra crystal symmetry to avoid the annihilation of Weyl fermions with opposite
chirality [25]. It has been theoretically predicted that a topological three-dimensional Dirac
point can be viewed as a composite of two sets of Weyl fermions where broken time-reversal or
space inversion symmetry can lead to a topological insulator phase or a Weyl semimetal phase
with surface Fermi-arc states [26]. Thus, bulk Dirac semimetal materials with strong spin-orbit
coupling are of great interest since they can serve as parent compounds for other topological
quantum materials [24]. Three-dimensional Dirac semimetals with bulk Dirac points protected
by crystal symmetry have been proposed to exist in S-cristobalite BiOg [24] and A3Bi (A = Na,
K, Rb) [27]. ARPES measurements on NaBiz and Cd3zAsz have demonstrated the existence of
Dirac dispersions along all three dimensions in the momentum space [26, 28, 29, 30, 31, 32].

Fig. 1.7 shows the crystal structure and ARPES intensity of CdsAs,. Figs. 1.7(a) and
(b) show the crystal structure of CdgAsy, which has a tetragonal unit cell and the arsenic ions
are approximately cubic close-packed and Cd ions are tetrahedrally coordinated. Fig. 1.7(d)
shows the corresponding Brillouin zone, where the center of the Brillouin zone is the I' point,
the centers of the top and bottom square surfaces are the Z points, and other high-symmetry
points are noted. In band structure calculations, Cd3Asy shows band inversion but the spin-

orbit interaction cannot open up a full energy gap between the inverted bulk conduction and
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Figure 1.7 Brillouin zone symmetry and three-dimensional Dirac cone in CdgAsy (a) CdzAsg
crystallizes in a tetragonal body centered structure. (b) The basic structure unit is
a four corner-sharing CdAss-trigonal pyramid. (c) Core-level spectroscopic mea-
surement where Cd 4d and As 3d peaks are observed. (d) The bulk Brillouin
zone and the projected surface Brillouin zone along the (001) direction. The red
crossings mark the locations of the two Dirac band-touchings, which are protected
by the crystalline C; symmetry along the k, axis. (e) Second derivative image
of ARPES dispersion map of CdsAsy. (f) ARPES intensity of CdsAse near the
Fermi level at the surface Brillouin zone center I' point. (g) Cartoon view of the
dispersion of three-dimensional Dirac semimetal. (From Ref. [29]).

valence bands due to its C4 rotational symmetry along the k, direction [24, 26]. Two symmetry
protected bulk Dirac points have been predicted to exist at two special k points along the I'-Z
direction in the momentum space [two red crosses in Fig. 1.7(d)]. Figs. 1.7(e) and (f) show
the band dispersion of CdgAsy measured at the photon energy of 22 eV and temperature of
14 K, where a Dirac cone structure can be clearly seen within the binding energy of 300 meV.
The cartoon view of the dispersion of three-dimensional Dirac semimetal is shown Fig. 1.7(g)
with two Dirac points visualized along the k, direction, which are protected by the C4 rotation

symmetry [29].
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As we will discuss in detail in Chapter 2, ARPES measurements carried out at one single
photon energy can only probe the £k, and &, dispersion at specific k. location. To demonstrate
that the band dispersion in CdsAss is indeed relativistic in all three dimensions and the two
Dirac points are located along the k, direction, detailed photon energy dependence measure-
ments are needed. Although multiple ARPES measurements have carried out the photon energy
dependence measurements [29, 30, 31, 32|, fine details are still missing in the band dispersion
along the k. direction due to the typical large photon energy steps (a couple of eVs) used in
the synchrotron radiation centers. Thus, to better illustrate the three-dimensional Dirac states
in CdsAse, we will show detailed ARPES measurements with photon energy steps of ~ 0.15

eV in Chapter 4, .

1.4 Weyl Semimetals

As discussed in the previous section, a three-dimensional Dirac point may exist under crystal
symmetry protection, while the Weyl points are more immune to perturbations in general. The

Hamiltonian of a Weyl semimetal phase can be expanded as

Hy = £ho(kyoy + kyoy + k.02) (1.4)

where + is the associated chirality for a pair of Weyl nodes, which measures the relative
handedness of the three momenta and the Pauli matrices associated in the above equation.
The Weyl node can be interpreted as a sink/source, or a monopole of Berry flux. A general
property of Weyl fermions realized in band structures is that the Weyl nodes must come in
pairs with opposite chirality and the net chirality in the Brillouin zone be zero. As discussed
in Section 1.3, when both time-reversal and inversion symmetries are present, the Weyl nodes
with opposite chirality will degenerate and annihilate. If there is an extra crystal symmetry
protection against the annihilation of the Weyl points, we will have a three-dimensional Dirac
semimetal instead. Thus, in order to realize a Weyl semimetal phase, either the time-reversal
or inversion symmetry should be broken. The minimal case of just a pair of opposite chirality

Weyl nodes requires that the time-reversal symmetry must be broken, which can be achieved
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Figure 1.8 Fermi arc surface states in Weyl semimetals. (a) A cylinder encloses the Weyl node
with the base defines a one-dimensional circular Brillouin zone . (b) The cylinder
unrolled onto a plane gives the spectrum of the two-dimensional subsystem with a
boundary. On top of the bulk spectrum, a chiral state appears due to the nonzero
Chern number. (c¢) Meaning of the surface states back in the three-dimensional
system. The chiral state appears as a surface connecting the original Dirac cone
to a second one, and the intersection between this plane and the Fermi level gives
a Fermi arc connecting the Weyl points. (From Ref. [35]).

by magnetic order in the crystal [33] . When inversion symmetry is broken, there are at least
two pairs of Weyl nodes present in the system [34].

The band structure of Weyl semimetals has led to two interesting physical properties. One
is the chiral magnetic effect [36], which is not the main focus of this thesis. The other is an
unusual type of surface state Fermi arc that is present in the system. This is indeed a unique
signature of Weyl semimetals [35]. Fig. 1.8 shows the formation of the Fermi arc surface state
in an intuitive way. Considering a cylinder enclosing the Weyl node [Fig. 1.8(a)], due to its
nonzero Chern number, this cylinder would behave like a two-dimensional quantum Hall system.
Thus, there will be a one-dimensional chiral edge state on the energy momentum spectra of
this cylinder when unrolled onto a plane [Fig. 1.8(b)]. Apparently, this one-dimensional chiral
edge state would cross the Fermi energy Er at a single point on the Fermi surface. Therefore,
by considering all the cylinders enclosing the Weyl node with varying radius from zero to
infinity, there will be continuous surface state crossing points at the Fermi level until the
cylinder encloses two Weyl nodes with opposite chirality at the same time, leading to zero

Chern number of this system. In the end, a surface state Fermi arc starting from one Weyl
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node and ends at the other Weyl node with opposite chirality will be present as shown in Fig.
1.8(c). If one considers both top and bottom surfaces of a Weyl semimetal sample, a closed
Fermi surface would be recovered. Thus, a thin slab of a semimetal may be viewed as a two-
dimensional system with a closed Fermi surface. As the thickness increases, two halves of the
Fermi surface are spatially separated to opposite sides of the sample [35]. Although multiple
ARPES measurements have confirmed the existence of the Fermi arcs on the surface of the
Weyl semimetals [37, 38, 39, 40, 41], yet no direct evidence have been found to support the
notion of closed surface Fermi arc state formed by both top and bottom surface of the sample.

In search of the Weyl semimetal phase in real materials, iridium pyrochlores, which are
strongly correlated magnetic materials, were the first compounds proposed to possess 24 Weyl
nodes [35]. A more simplified Weyl semimetal phase with only two Weyl points was proposed
to exist in a topological insulator multilayer heterostructure. However, so far no ARPES mea-
surements have provided direct evidence of Fermi arcs on the Fermi surface of these materials.
On the other hand, a family of noncentrosymmetric transition-metal monophosphides have
been predicted to be Weyl semimetals [42, 43] and direct observation of Fermi arcs have been
reported [37, 38, 39, 40, 41].

Fig. 1.9 shows the topology and electronic structure of TaAs. TaAs is a semimetallic
material that crystallizes in a body-centered tetragonal lattice system [Fig. 1.9(a)]. The crystal
has group space #109, which does not have space inversion symmetry. Thus, the broken
space inversion symmetry satisfies the condition for realizing Weyl semimetallic phase in TaAs.
Without spin-orbit coupling, first-principles band structure calculations show that there are
bulk bands touching each other close to the Fermi level as shown in the blue box in Fig. 1.9(c).
These conduction and valence bands interpenetrate each other to form four one-dimensional line
nodes (closed loops) located at the k, and k, planes. Upon the inclusion of spin-orbit coupling,
the line nodes gap out and reduce to six Weyl nodes that are off the k, = 0 and k, = 0
mirror planes. Total of 24 Weyl nodes are shown in Fig. 1.9(f) based on the band structure
calculations considering the spin-orbit coupling. Figs. 1.9(g) and (h) shows the Fermi surface
from band structure calculations and ARPES measurements, respectively. The Fermi arc that

extends out from one Weyl node and ends at the other Weyl node with opposite chirality can
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Figure 1.9 Topology and electronic structure of TaAs. (a) Body-centered tetragonal structure
of TaAs. The lattice of TaAs does not have space inversion symmetry. (b) STM
topographic image of TaAs’s (001) surface. (c¢) First-principles band structure
calculations of TaAs without spin-orbit coupling. (d) Illustration of the simplest
Weyl semimetal state that has two single Weyl nodes with opposite (+ 1) chiral
charges in the bulk. (e) In the absence of spin-orbit coupling, there are two line
nodes on the ky, mirror plane. In the presence of spin-orbit coupling, each line node
reduces into six Weyl nodes. (f) A schematic showing the projected Weyl nodes
and their projected chiral charges. (g) Theoretically calculated band structure of
the Fermi surface on the (001) surface of TaAs. (h) The ARPES-measured Fermi
surface of the (001) cleaving plane of TaAs. (From Ref. [37]).



Figure 1.10 Two types of Weyl semimetals. (a) Type-I Weyl point with a point-like Fermi
surface. (b) A type-II Weyl point appears as the contact point between electron
and hole pockets. The grey plane corresponds to the position of the Fermi level,
and the blue (red) lines mark the boundaries of the hole (electron) pockets. (From
Ref. [44]).

be clearly seen in the ARPES-intensity and is consistent with the calculations. These results
strongly support the existence of Fermi arcs on the surface of TaAs [37].

Interestingly, the family of noncentrosymmetric transition metal monophosphides [42, 43]
are now often referred to as the type-I Weyl semimetals. In type-I Weyl semimetals, the
conduction and valence bands touch at single points on the Fermi level, forming a point-like
Fermi surface at the Weyl point [Fig. 1.10(a)]. Another type of Weyl semimetal, type-IT Weyl
semimetal has been proposed, where the Weyl points exist at the boundaries between electron
and hole pockets as shown in Fig. 1.10(b) [44]. W(Mo)Tes family were the first predicted to
be type-II Weyl semimetals [44, 45, 46].

Fig. 1.11 shows the data of MoTey from ARPES measurements and band structure calcu-
lations. The MoTey samples cleave between two adjacent Te layers, which breaks the inversion
symmetry and gives rise to two chemically similar, but structurally different cleaving planes
A and B as shown in Fig. 1.11(d). Fig. 1.11(a) shows the Fermi surface measured by 6.7 eV
photons for surface termination A. The hole bands at the center of the Brillouin zone have
a “butterfly” shape. The electron pockets shaped like ovals are located on each side of the

butterfly. There are also two banana-like hole pockets partially overlapping the oval electron
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Figure 1.11 Identification of Weyl points and Fermi arcs from experimental data in MoTe,.
(a) Constant-energy contour at Er, measured by 6.7 eV photons for surface ter-
mination A. DFT-predicted and measured locations for Weyl points are marked.
(b) The same as (a) except for surface termination B. (c) The same as (b) except
for using 5.9 eV photons. (d) Schematic drawing of the crystal structure of a
single unit cell layer with two different possible surface terminations. (e)—(h),
(i)—(1), and (m)—(p) Energy dispersion for (a)—(c) along the black lines, respec-
tively. (q)—(t) and (u)—(x) Calculated band dispersion for surface termination A
and B, respectively. (From Ref. [47]).

pockets. Since the A and B terminations are different, the electronic structure of each termi-
nation is expected to be slightly different [as demonstrated in Figs. 1.11(a) and (b)] due to
the different length of the Mo—Te bonds. The data along the k, direction are shown in Figs.
1.11(e)—(p) along with results of calculations [Figs. 1.11(q)—(x)] for the two surface termina-
tions. The data in Figs. 1.11(m)—(p) best illustrate the formation of the Wy points, which

shows that the hole band (red dashed line) and electron band (blue dashed line) move closer
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as we move away from the symmetry line and merge at a point located ~ 20 meV above Ep
marked by a red dot in Fig. 1.11(0). These results demonstrate the formation of type-II Weyl
points in MoTes.

In addition to the laser ARPES measurements carried out at high temperature to detect
Weyl points located above Ep in MoTes [47], pump-probe ARPES has also been utilized to
to populate unoccupied states by exciting low lying electrons in Mo, W;_,Tey [48]. However,
strong evidence for the existence of Fermi arcs in another type-II Weyl semimetal WTes is still
lacking. In Chapter 5, we will discussed the detailed electron properties of WTes, including
the temperature-induced Lifshitz transition, the Fermi arcs on the surface, and the strong

three-dimensionality of the bulk electronic structure in this material.

1.5 Dirac Node Line Semimetals

As we have seen in previous sections, the conduction and valence bands can touch at distinct
points, leading to the symmetry protected Dirac or Weyl semimetallic states in the material.
Another type of special band touching is the case of Dirac node lines, where the conduction and
valence bands are touching along a closed curve. The Dirac node lines can either take the form
of extended lines running across the Brillouin zone with ends meet at the zone boundary [49],
or wind into closed loops inside the Brillouin zone [50], or even form a node chain with several
loops connected to each other [51]. Interestingly, when the symmetry protection is broken in a
topological node line semimetal, the node line can be fully gapped leading to a trivial electronic
structure, or gapped into several node points leading to Dirac or Weyl semimetallic states. As
we have discussed in Section 1.4, TaAs was a node line semimetal in first principles calculations
without considering spin-orbit coupling. When the spin-orbit coupling in TaAs is turned on,
the node lines break into three pairs of Weyl nodes. Thus, topological node line semimetals
could potentially be the parent compound of other topological semimetallic states, which can
be precisely tuned by symmetry breaking [52]. Searching for topological node line semimetals
have attracted great interest.

Multiple groups have proposed the Dirac node line structure to exist in graphene networks

[54], rare earth monopnictides [55], and et al. ARPES measurements on PbTaSe, [53] and
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Figure 1.12 ARPES mapping and band calculation of PbTaSes. (a) ARPES spectra taken
along M—K-T" at photon energy of 64 eV. (b) DFT projected bulk bands and sur-
face bands (bright white lines) of (001) surface with Pb-termination. (¢) ARPES
constant-energy contours taken at photon energy of 64 eV. (d) DFT Fermi surface
contour of PbTaSey (001) surface). The yellow lines indicate the surface states
on Pb-terminated (001) surface. (From Ref. [53]).

ZrSiS [56] have shown evidence of the existence of Dirac-like features and “drumhead” surface
states, which point to the potential node line semimetallic states in these materials. Fig. 1.12
shows the ARPES mapping and band calculation for PbTaSes. Band structures from ARPES
measurements and corresponding numerical calculations of PbTaSes are shown in Figs. 1.12(a)
and (b), respectively. The projected bulk bands and surface bands for the Pb-termination (001)
surface were shown with the surface states highlighted by the white lines and marked by the blue
arrows. The (001) Fermi surface of PbTaSes from ARPES measurements with 64 eV photons

and theoretical simulations are shown in Figs. 1.12(c) and (d). At the Fermi level, the Fermi
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surface consists of three parts: a hexagon-shaped pocket centered at I' with smeared intensity
inside, a dog-bone-shaped contour centered at the M point, and several circles surrounding
the K point. The “drumhead” shape surface states at the K points are noted as evidence
supporting the existence of the topological node line semimetallic states in this material [53].
However, further research is still needed to understand fully the significance and relation of the
“drumhead” surface states to Dirac node lines.

As we have discussed at the beginning of this section, the Dirac node lines in the materials
are typically closed loops or extended across the entire Brillouin zone. However, we have ob-
served a completely different Dirac node line structure-Dirac node arc-in PtSny, a compound
showing extremely large magnetoresistance at low temperatures and high magnetic fields. Un-
like the closed loop Dirac node line, the Dirac node arc is formed by Dirac dispersion extended
along one dimension in the momentum space and terminated by energy gaps at both ends.

Detailed electronic structure of PtSny will be presented in Chapter 6.
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CHAPTER 2. ANGLE-RESOLVED PHOTOEMISSION
SPECTROSCOPY (ARPES)

In this chapter, we will cover the basic principles of angle-resolved photoemission spec-
troscopy (ARPES), the components of the ARPES system, and techniques for preparation of
sample surface. In Section 2.1, we will present the basic principles of ARPES measurements
and explain how the conservation of energy and momentum is used to infer the energy and mo-
mentum of the electrons. There are two theoretical approaches to describe the photoemission
process: comprehensive one step model and much simpler three step model. We will mainly
focus on the three-step model in this thesis, because it is easy to understand and sufficiently
captures the essence of the photoemission process. We will introduce single particle spectral
function that is used to describe the interaction of electrons in solids. Finally, matrix elements
play an important role in determining the intensity of the ARPES spectral, a brief discussion
will be given in this section.

After the discussion of the basic principles, we will then present the description of the
components in the ARPES system in Section 2.2. Photon source is one of the most crucial
components in the APRES system. With the basic Helium-discharge lamp, it is easy to setup
an in-house system. However, only the He Ia spectral line with photon energy of 21.2 eV has
sufficient intensity for acquiring high quality data. Synchrotron radiation photon sources are
also commonly used, with its great advantage of wide range of tunable photon energies from
tens of to hundreds of eV. With the emergence of advanced laser photon sources, ultrahigh
momentum and energy resolutions can be now achieved. The advantages and disadvantages of
these photon sources will be discussed in this section along with examples. After the electrons
have been excited and escaped from the sample surface, angle (momentum) resolved electron

analyser will be used to determine the energy and momentum information of the photoelectrons.
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In order to obtain the information about the initial state of the electrons in a photoemission
experiment, their path from the sample to the detector has to be maintained at ultrahigh vac-
uum. Even slightly elevated pressure will cause condensation at sample surface and scattering
of the photoelectrons. The importance of keeping an ultrahigh vacuum in the ARPES system
will be discussed briefly. In order to control the sample temperatures precisely, cold head and
cold finger are also important, especially for studying superconductivity, magnetic phase tran-
sitions, and structural phase transitions. Thus, a brief introduction to cold head will also be
included in this section.

In Section 2.3, we will present a couple of methods to prepare the sample before we can
measure the electronic properties of the crystal. Cleaving the sample in ultrahigh vacuum is the
most widely used method to obtain a clean and flat surface, which works pretty well for layer
crystals. For samples that cannot be cleaved properly, a sequence of polishing, sputtering, and
annealing techniques can be used. For measuring thin film samples, Molecular Beam Epitaxy
(MBE) technique has become very popular. However, we do not have the capability of doing

MBE growth in our system yet. Thus, we will mainly focus on the first two techniques.

2.1 Principles of ARPES

2.1.1 Photoemission Process

The observation of photoelectric effect by Heinrich Hertz [57] in 1887 has inspired great
interest in investigating the properties of light and its interaction with matter. In 1902, Lenard
observed that the energy of the emitted electrons increased with higher incident frequency of
the light [58]. Three years later, Albert Einstein introduced the idea of discrete quanta to
describe the photoelectric effect [59] and built the foundation of the dual nature of light, as
both a electromagnetic wave and a single particle photon. The discovery of the quantization of
light led to the quantum revolution in physics and earned Einstein the Nobel Prize in Physics in
1921. Since then, photoelectric effect has been widely used in the photoemission spectroscopy

to study the electronic properties of materials.
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Figure 2.1 Energetics of the photoemission process. The electron energy distribution pro-
duced by incoming photons and measured as a function of the kinetic energy FEp;n
of the photoelectrons (right) is more conveniently expressed in terms of the binding
energy Ep (left) when one refers to the density of states inside the solid (Ep =0
at Er). (From Ref. [60]).

Fig. 2.1 shows a schematic of the photoemission process. An electron inside the material
absorbs a photon with the energy hv, overcomes the binding energy Ep and the work function
¢, then escapes into the vacuum with energy FEp;,. This process can be expressed by the

following equation

hv = Eg + ¢ + Egin (2.1)

where the work function (¢) is typically around 4-5 eV for metals, and represents the potential
barrier that prevents the electrons from escaping from a solid [60]. To avoid measuring the
work function for each sample, the samples measured in the ARPES system are in electrical
contact with the analyzer and a reference gold sample that is used to determine the Fermi

energy of the system.
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Figure 2.2 Schematic of the angle-resolved photoemission spectroscopy. (a) Schematic of an
ARPES experiment. The emission direction of the photoelectron is specified by the
polar (f) and azimuthal (1) angles. (b) Momentum-resolved one-electron removal
and addition spectra for a noninteracting electron system with a single energy band
dispersing across Ep. (c¢) The same spectra for an interacting Fermi liquid system.
(From Ref. [60]).

By taking advantage of the energy conservation law as shown above, we could get the

binding energy of the electrons by doing simple algebra to solve Eq. 2.1.

EB = hv — (25 — Ekm (2.2)

One of the most commonly used techniques based on this process is the X-ray photoelectron
spectroscopy (XPS), which was developed by Kai Siegbahn and et al in 1957 [61]. XPS is also
known as Electron Spectroscopy for Chemical Analysis (ESCA), which emphasizes the chemical
information that the technique provides. By probing the energy core levels of the elements in
the material, elemental composition can be detected [62].

In order to determine the momentum of the electrons in the materials, angle-resolved pho-
toemission spectroscopy was developed. Fig. 2.2(a) shows the schematic of an ARPES experi-
ment. A beam of photons with known photon energy hv is incident on the sample, which has
an atomically flat surface and has to be a single crystal for momentum-resolved measurements.
The electrons inside the sample will be excited and escape into vacuum with various emission
directions, which are specified by 6 and . After travelling through ultrahigh vacuum, the elec-
trons are then collected by the electron analyzer, where energy and momentum of the electrons

are acquired on a charge coupled device (CCD) camera.
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By measuring the kinetic energy FEy;, and the departure angle of the electrons, the electron

momentum can be determined based on the following formula

p” = hk” =V QmEkm - sinf (23)

pL = hky = /2m(Epi, - cos20 + Vp) (2.4)

where pj (p1) is the momentum component parallel (perpendicular) to the surface of the
sample. Parallel component of the electron momentum is conserved in the photoemission
process, because we can neglect the photon momentum at low photon energies used in the
ARPES measurements (less than a few hundred eV) and the sample surface is atomically flat.
However, the momentum perpendicular to the sample surface is not conserved, therefore we
need to consider the inner potential Vj in the formula, which is hard to determine precisely.
Several methods can be used to determine the value of Vj, such as matching the theoretical and
experimental band mapping for the occupied electronic state, using the theoretical zero of the
muffin tin potential used in band structure calculations, or inferring from the experimentally
observed periodicity of the out of plane direction dispersion E(k, ) [63]. The last method can be
easily achieved in the ARPES experiment by varying the incident photon energies. Therefore
the k| (and its periodicity) of the emitting electrons can be determined after utilizing Eqs. 2.2
and 2.4.

As for the momentum parallel to the surface of the sample p|, we can determine the z and
y component of the momentum (assuming we are looking at z — y plane of the sample) by

measuring the electron outgoing angles 6 and 1.

Pz = | - c0sYp = \/2mEj;y, - sind - cosyp (2.5)
py = p| - sinp = \/2mEjp, - sinb - siny (2.6)

As shown in Fig. 2.2(b), by measuring the angles of the outgoing electrons, a single band
dispersion under the assumption of noninteracting electron system can be mapped out dispers-
ing through the Fermi energy. Both the direct and inverse photoemission spectra are shown,

and the former one is usually observed in a conventional ARPES system. When considering
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the interacting Fermi liquid system, the single electron spectral would have a finite band width
[as shown in Fig. 2.2(c)], which contains information about the lifetime (interaction and scat-
tering) of the electrons in the material [60]. To describe the photoemission process, three-step

model is often discussed.

2.1.2 Three-step Model

The photoemission process discussed above can be described by two models: three-step
and one-step model as shown in Fig. 2.3. In the one-step model, the photon absorption,
electron removal, and electron detection are treated as a single coherent process. Thus, the
bulk, surface, and vacuum have to be included in the Hamiltonian of interaction, which makes
the one-step model really complicated. Due to the complexity of the one-step model, three-
step model is usually used to describe the photoemission process. Although this model uses
several assumptions and simplifications, it has been proved to be rather successful. Within this
approach, three independent and sequential steps are included in the photoemission process:
(1) The electron is excited by the incident photon, (2) The excited electron travels from the bulk
to the surface, (3) The excited electron on the sample surface escapes into vacuum. The total
photoemission intensity is just the product of these three independent terms representing the
probability of each process. The first step represents the probability of the optical transition,
which provides information about the intrinsic electronic structure of the material and gives rise
to the matrix element effect that we will discuss in this section. The second step is proportional
to the probability that the excited electron travels from the bulk to the surface without any
scattering, thus the energy and momentum of the excited electron are considered to be conserved
in order to reflect the intrinsic electronic structure in the sample. This probability is tightly
connected to the effective mean free path of the excited electrons, which will be discussed along
with the photon sources used in the ARPES experiment (Section 2.2.1). The third step is the
transmission probability of the excited electrons through the surface, which depends on the

energy of the electrons and the material’s work function [60].
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Figure 2.3 Pictorial representation of three-step and one-step model descriptions of the pho-
toemission process (From Ref. [63]).

The transition probability wy; in the first step of the photoemission process can be approx-

imated by Fermi’s golden rule:

27 2
wp; = f\(‘l’}v’Hmt\‘I’f\[H S(EY — EYN — hv) (2.7)
where \I'fv stands for the N-electron initial state, \IJ}V is one of the possible final states, EZN =
EiN_1 — Eg and E}V = E}v_l + Fi;y, are the initial and final state energies of the N-particle
system (E]’“3 is the binding energy of the photoelectron with kinetic energy Ej;, and momentum
k). The Hamiltonian for interaction with the photon can be written as
e e

(A-p+p-A)=—A-p (2.8)

Hint —
2me mc

where p is the electronic momentum operator and A is the electromagnetic vector potential. In

this approximation, gauge ® = 0 was chosen for the scalar potential, and the quadratic term in
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A was not considered since it is typically negligible when compared to the linear terms in the
linear optical regime. This interaction Hamiltonian plays an important role when considering
matrix element effect or circular dichroism effect in the ARPES measurements [63]. This will
be further demonstrated in the section of photon sources.

In order to calculate the photoemission intensity in terms of the transition probability w;
in the first step of the photoemission process, we need to introduce the sudden approximation
assumption. Under this assumption, the photoemission process is assumed to be sudden, i.e.,
an electron is instantaneously removed and the effective potential of the system changes dis-
continuously at that instant. Thus, we can factorize the initial and final state wave functions

in Eq. 2.7 into photoelectron and (N-1)-electron terms,

Y = Agf ot (2.9)

v = Agpuy ! (2.10)

where A is an antisymmetric operator that ensures that the N-electron wave function satisfies
the Pauli principle, ¢¥ (qﬁ’]ﬁ) is the initial (final) one-electron orbital with momentum k, and
gt (\Ifﬁcvfl) is the initial (final) state wave function of the (N — 1)-electron system. Thus,

the matrix element in Eq. 2.7 can be expressed as

(U | Hine |97 ) = (85 Hinel 0F) (W1 107 (2.11)

where <¢§|Hmt|¢f> = M]’f’i is the one-electron dipole matrix element, (TN-1WN~1) is the
(N — 1)-electron overlap integral, ¥2'~1 is the eigenfunction with energy EN~! of the (N —1)-
electron system after one-electron removal. The total transition probability is given by the sum

over all possible excited states m.

2 _
I(k, Ein) = > wyioc > IMFA  lemal*6(Brin + BN ' — EY — hv) (2.12)
f?i f?l m

where |epmi)* = [(UN=1 TN 1) is the probability of the case that the removal of an electron from

state ¢ will leave the (N — 1)-electron system in the excited state m. Since the eigenfunctions
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of the (N — 1)-electron system are orthogonal to each other, the probability |¢,, ;|* will be zero
unless ¥V-1 = \Ilfv ~1 leading to unity probability. In this case, if M ]’fl # 0, the ARPES spectra
will be given by a delta function at the Hartree-Fock orbital energy E% as shown in Fig. 2.2(b).
However, this is assuming that we are in the noninteracting particle regime. When considering
strongly correlated systems, many of the |cm,i\2 will be different from zero because the removal
of the photoelectron results in a significant change of the system effective potential. Thus, the
overlap integral between \I’ZN ~! and many final eigenstates UN=1 will be non-zero. As a result,
the final ARPES spectra are not delta functions but will show a main line and several satellites
corresponding to the non-zero excited states m created in the photoemission process as shown

in Fig. 2.2 [60].

2.1.3 Omne-particle Spectral Function

When considering the correlated systems, the ARPES spectra are no longer -functions and
several other states will have finite probability ]cmvi\z in Eq. 2.12. Green’s function formalism
is the most powerful and commonly used approach to solve this problem. In this approach, the

one-electron addition and removal Green’s function Gt (k,w) and G~ (k,w) are introduced at

T=0
WNEL A gy 2
~w—FEpn" +E; tin
where the operator ¢ = ¢ (¢, = ¢,) creates (annihilates) an electron with energy w,

momentum k, and spin ¢ in the N-particle initial state \Iffv . The summation adds up all possible
(N=+1)-particle eigenstates WV *! with eigenvalues EN*!, and 7 is a positive infinitesimal. Thus,

we will have the one-particle spectral function

Ak w) = At (kyw) + A (k,w) = —%ImG(k,w) (2.14)

AF(kyw) = 3 N[0 5w — BN+ EN) (2.15)

m
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where G(k,w) = G*(k,w)+[G™ (k,w)]* is the retarded Green’s funciton. A" (k,w) and A~ (k,w)
are the one-electron removal and addition spectra, which can be obtained with direct and inverse
photoemission, respectively.

By comparing A~ (k,w) and Eq. 2.12 (note that ¢ is the annihilation operator for one elec-
tron with momentum k, thus \Iffv e ck\I/fV ), and taking into account the finite-temperature
effect, the intensity measured in an ARPES experiment on a two-dimensional single-band sys-

tem can be written as

I(k,w) = Iy(k,v, A) f(w)A(k,w) (2.16)

where k is the electron momentum, w is the electron energy with respect to the Fermi level,
and Iy(k,v, A) is proportional to the squared one-electron matrix element |M ]'fl|2 Therefore
the ARPES intensity depends on the electron momentum, as well as the energy and polariza-
tion of the incoming photon (more details will be discussed in Section 2.1.4). Fermi function
f(w) = (e"/k8T £ 1)~1 accounts for the fact that direct photoemission only probes the occupied
electronic states.

The energy renormalization and lifetime of the electron in the many-body system can be in-
ferred from the real and imaginary parts of the self-energy term [2(k, w) = X' (k, w)+i%" (k, w)],
respectively. Using the self-energy terms, the Green’s and spectral functions can be expressed

as the following

1
w—ep — N(k,w)

Gk, w) = (2.17)

B 5" (k,w)
Ak ) = T R+ R o)l

(2.18)

The spectral function A(k,w) has the form of a Lorentzian function if ¥ is a linear function
of w. Thus, fitting the ARPES spectral with a Lorentzian function is often used to extract
information about scattering rates and energy renormalization. In general, it is extremely
difficult to extract the exact values of ¥ (k,w) from the ARPES spectra, since high quality

measurements are typically obtained with the direct photoemission process [63].
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2.1.4 Matrix Elements
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Figure 2.4 Schematic representation of the polarization and photon energy effects in the pho-
toemission process. (a) Mirror plane emission from a d,2_,2 orbital. (b) Sketch of
the optical transition between atomic orbitals with different angular momenta (the
wave function of the harmonic oscillator are used here for simplicity) and free-elec-
tron wave functions with different kinetic energies. (c) Calculated photoionization
cross sections for Cu 3d and O 2p atomic levels. (From Ref. [63]).

As we have pointed out in Section 2.1.3, the probability of the optical transition in the first
step of the photoemission process depends on the matrix element term |M ]’?Z\2 Therefore, the
initial and final states of the electron, as well as the energy and polarization of the incoming
photons will have a significant effect on the ARPES intensity. Not only does the matrix elements
depend on the properties of the electron and photons (such as the energy and momentum), but
also the experimental geometry, which may even result in complete suppression of the ARPES

intensity. By substituting the interaction Hamiltonian from Eq. 2.8, the matrix element term
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‘Mk,i’2 can be written as ]MkZIQ x |<¢]J3\A -p|¢f)]2, where the vector potential A will specify
the polarization direction of the incoming photons. Fig. 2.4 shows an example of considering
the experimental geometry in the ARPES measurements. In Fig. 2.4(a), the electron analyzer

is pointed in the mirror plane of the photoemission from a d,2_,2 orbital. In order to have

~y
nonvanishing photoemission intensity, the whole function in the overlap integral must be even
under reflection with respect to the mirror plane. Furthermore, the final state wave function (ﬁ’}
must have even-parity in the mirror plane; otherwise, there would be zero intensity everywhere
including the detector. Therefore, the term (A - p)|¢¥) must be even. Considering both even
and odd symmetry of the initial state, the polarization conditions of the incoming photons can
be summarized as the following

K even (+]+|+) = A even

)

)
(0FIA - plof) = (2.19)
oF  odd (+] = |-)= A odd
In the example shown in Fig. 2.4(a), the initial state |¢¥) is even. Thus, the potential vector
A must be even or pointing in the mirror plane in order to observe finite ARPES intensity
from this orbital. The transition probability also depends on the incoming photon energy, which
determines the energy and momentum of the outgoing electron as demonstrated in Figs. 2.4(b)
and (c). By considering a plane wave e™r for the photoelectron at the detector, the matrix
element can be written as |M ]’“ﬂ-|2 o |(A - p)<¢f|eikr>|2. The overlap integral strongly depends
on the details of the initial state wave function, and on the wavelength of the outgoing plane

wave [as shown in Fig. 2.4(b)]. In Fig. 2.4(c), we can clearly see that for Cu 3d and O 2p the

photoionization cross section strongly depends on the photon energy used in the measurements.

2.2 Components of an ARPES System

With the knowledge of the basic principles of an ARPES measurement, we now proceed
to look into the details of each component in the ARPES system. As we have discussed in
Section 2.1.1, the photoemission process of the ARPES experiment can be described by the

three-step model with the first step as the excitation of the photoelectrons by the incident
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light. Indeed, photon sources play an essential role in the ARPES system. Various photon
sources, such as He-discharge lamps, synchrotron radiations, and laser photon sources have
been used throughout the study and will be discussed separately with detailed examples from
the unpublished results. After escaping the sample surface, the photoelectrons will be collected
by a hemispherical electron analyzer for energy and momentum analysis. Basic concept and
principle of operation of an electron analyzer will be discussed to explain how the energy
and momentum information can be obtained at the same time. Ultrahigh vacuum is very
important in preserving the information of the photoelectrons, since they need to travel a fairly
long distance (~ 2 m) from the sample surface to the electron analyzer. Due to the limited
probing depth of the ARPES system, preserving the freshness of the cleaved sample surface
also requires the ultrahigh vacuum. Finally we will discuss basic knowledge of a cold head for
controlling the sample temperature from room temperature (300 K) to low temperature (~ 15
K), which is essential for studying magnetic phase transitions as shown in Section 2.2.4 and

structural phase transitions shown in Fig. 2.21.

2.2.1 Photon Source

ARPES measurements are typically performed with photon energies less than a few hundred
eV. However, recently keV photon sources gained some popularity due to enhancement of the
escape depth of the photoelectrons, which enables measurements of bulk electronic structure.
One important aspect of choosing the low photon energy is the ability to achieve high momen-
tum resolution. By taking the derivatives of Eq. 2.3, the resolution of the parallel component

of the momentum can be expressed as the following

Ap” = hAk|| =V 2mEkm - cosf - A6 (2.20)
where A corresponds to the finite acceptance angle of the electron analyzer. Therefore, lower
photo energy would result in lower E};, and typically yield higher momentum resolution as-
suming that the same electron analyzer is used in the ARPES experiment. Fig. 2.5 shows
the Fermi surface and band dispersion measured at two different photon energies. Panels (a)

and (b) show the ARPES intensity measured at the photon energy of 21.2 eV in the He-lamp
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Figure 2.5 Fermi surface plots and band dispersion of PtSny measured at photon energies
of 21.2 and 6.7 eV. (a) Fermi surface plot of ARPES intensity integrated within
10 meV about the chemical potential measured at photon energy of 21.2 eV. (b)
Band dispersion along the black dashed line in panel (a). (c) Fermi surface plot of
ARPES intensity integrated within 10 meV about the chemical potential measured
at photon energy of 6.7 eV. (d) Band dispersion along the black dashed line in panel

().

ARPES system. Panels (c¢) and (d) show the ARPES intensity measured at the photon energy
of 6.7 eV in the tunable laser-based ARPES system. By comparing panel (a) with (c), we can
clearly see that the features on the Fermi surface can be better resolved in the low photon
energy measurements. The band dispersion in panel (d) is much sharper and has much higher
momentum resolution than the one in panel (b). However, we should also be cautious that the
electron analyzer in the laser ARPES system is more advanced (Scienta R8000) compared to
the one in the He-lamp ARPES system (Scienta SES2002), which will also affect the momentum
and energy resolution of the ARPES intensity. Although lowering the incident photon energy
could be one possible way to improve the momentum resolution in the ARPES experiment,

sufficiently high photon energies are needed in order to excite the electrons with enough energy
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to overcome the potential barrier on the sample surface, i.e., the work function (typically 4-5
eV in the metal). In addition, there is a drawback in using low photon energy to measure the
Fermi surface of the sample. As we can see in Figs. 2.5(a) and (c), the Fermi surface plot
from higher photon energy (21.2 eV) covers more area (larger momentum space based on Eq.
2.3) in the Brillouin zone than the one from lower photon energy (6.7 eV). Thus, we sacrifice
the range of momentum space available for study when using low photon energies for ARPES

measurements, which could be a nightmare if the area of interest lies outside of the probing

range.
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Figure 2.6 Band dispersion of YSb measured at various photon energies. (a) Band dispersion
of YSb measured at photon energies of 6.70, 6.36, 6.05, 5.90, 5.77, and 5.54 eV,
respectively. (b) Momentum dispersion curves at the Fermi energy extracted from
panel (a). (c) k. dispersion of YSb.

Besides the momentum resolution difference demonstrated in Fig. 2.5, another important
feature should be noted: the Fermi surface plots in Figs. 2.5(a) and (c) are not exactly the
same (one example is the same area enclosed by the red solid boxes), even though the band
dispersions along the center cuts look similar to each other at different photon energies. This

difference in Fermi surface plots is due to the fact that with one single incident photon energy,
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we are probing the Fermi surface along a spherical cut in a three-dimensional momentum space.
By varying incident photon energies, we can probe the Fermi surface at various values of the
k., momentum (i.e. roughly equal to radius of the sphere). For sample with strong three
dimensional character of the electronic structure, we can tune the incident photon energies to
determine the k, dispersion of the sample. Fig. 2.6 shows the band dispersion of YSb measured
at photon energies of 6.70, 6.36, 6.05, 5.90, 5.77, and 5.54 eV, respectively. Two hole bands can
be clearly seen in the band dispersion measured at the photon energy of 6.70 eV. As the incident
photon energy decreases, the top hole band continuously moves up and touches the Fermi level
at the photon energy of 6.05 eV. By further decreasing the incident photon energy, we can see
that the top hole band crosses the Fermi level and forms a hole pocket. The size of the hole
pocket increases continuously as the probing photon energy decreases. Fig. 2.6(b) presents the
momentum dispersion curves (MDCs) at the Fermi energy extracted from the plots in panel
(a). The peak positions of the MDCs are extracted by fitting a double-Lorentzian function to
the curve, which denote the Fermi surface sheet along the out of plane direction. Panel (c)
summarizes the k, dispersion of YSb with an ellipse shape based on panel (b). The above
data demonstrate the ability of probing the k, dispersion of the sample by tuning the incident
photon energies. We should also note that with the limited tunability of the photon source,
only partial k. dispersion can be measured as shown in Fig. 2.6(c).

Another important aspect of the photon sources is that the kinetic energy of the photoelec-
trons will depend on the photon energy used. This leads to different mean free paths in the
sample as shown in Fig. 2.7. The mean free path is an indicator of how far a photoelectron on
average will travel through a solid without scattering (loss of momentum/energy information).
This is essential for the second step of the photoemission process, where we assume that no
energy loss and change of momentum occurs. As we can see from the “Universal Curve”, the
most commonly used photon energies in an ARPES experiment fall into the range of about
20-100 eV, which is sitting at the bottom of the curve. This leads to the fact that the common
ARPES experiment is basically probing the top few layers of the crystal (~ 10 A), i.e., it has
high surface sensitivity. On the other hand, with low photon energy of around 6 eV (laser pho-

ton source) and high photon energy of around 1000 eV (synchrotron radiation photon source),
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Figure 2.7 Universal curve of the electron mean free path in solids. (From Ref. [64])

the electron mean free path is almost an order of magnitude larger. Thus, the ARPES measure-
ments would have higher bulk sensitivity by using low energy laser or high energy synchrotron
radiation. Therefore, the range of the incident photon energies should be used depending on
which property, surface or bulk, we are most interested in.

In the following sections, we will cover three most commonly used photon sources, namely

He-lamp, synchrotron radiation, and laser in ARPES experiments.

2.2.1.1 He-discharge lamp

He-discharge lamp (we commonly refer to as He-lamp for short) belongs to a family of
artificial light sources called gas-discharge lamps. Gas-discharge lamps generate light by sending
an electrical discharge through an ionized gas, a plasma. Collisions between the electrons and
the atoms in the plasma will excite the atoms to a higher energy state. When the excited atoms
de-excite to a lower energy state (or ground state), a photon with the characteristic energy equal
to the energy difference between these two states will be emitted. In a typical DC-powered

gas-discharge lamp system, a noble gas such as neon inside the lamp tube is ionized, and
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Figure 2.8 VUV 5050 source head. (From Ref. [65])

electrical discharge is produced by applying a high DC voltage between two electrodes. The
electrons need to travel a finite distance to gain enough energy to excite the atoms in the
plasma. Thus, relatively high gas pressure, sufficiently high voltage, and finite dimensions are
required to have a sufficiently intense photon source.

Another type of gas-discharge lamps has taken advantage of the electron cyclotron resonance
(ECR). An electron with charge e, mass m, and velocity v travelling perpendicular to a magnetic
field B will form a circular orbit with angular frequency w = eB/m. Thus, a typical electron
has a free travel distance considerably longer than the cavity dimensions and leads to increased
ionization probability at a relatively low gas density. On the other hand, since the frequency

of revolution is independent of the velocity, a radio frequency (RF) oscillating electric field



41

Table 2.1 Spectral lines of helium plasma (From [65])

Spectral Line | Energy (eV) | Intensity (%)
Hel « 21.2182 ~ 88

Hel 3 23.087 ~ 5

Hel ~ 23.743 ~1

Hel ¢ 24.045 < 0.2

Hell « 40.814 ~

Hell 3 48.372 ~ 0.5

Hell ~ 51.017 ~ 0.1

with its field vector perpendicular to the B-field can be applied to couple with the plasma in
the device to constantly accelerating the electrons. When compared to the DC-powered gas-
discharge lamp, the ECR discharge lamp can operate at a much lower gas pressure and much
smaller volume. Furthermore, the positive ions in the ECR discharge are not coupled to the
RF due to its much larger mass. Thus, the kinetic energy of the ions reaching the cavity walls
is fairly low (~ 10 eV) comparing to the ones in the DC-powered discharge (~ 500 eV). This
results in much slower sputter wear rate of the cavity wall in the ECR discharge system than
that of the anode in the DC-powered discharge system.

Fig. 2.8 shows a VUV 5050 source head in the Scienta VUV 5000 photon source system. The
light source is based on a helium plasma, generated with the ECR technique. The microwave
generator (10 GHz) is coupled to a small discharge cavity in a magnetic field tuned to the
microwave frequency to meet the ECR condition. Cooling water must be supplied during
operation to avoid the melting of the waveguide soldered joints, which may lead to injury
from the escaping microwave radiation. The view port can be used for alignment and visual
inspection of the discharge.

Table 2.1 shows the energies and relative intensities for the most intense spectral lines in
a He-discharge lamp. Since the Hel « line is emitted with roughly 90 % of the total intensity,
there is almost no need for a monochromator in the VUV 5000 photon source. For ARPES
experiments, we typically use Hel o and Hell « lines. Hel « line has a photon energy of 21.2

eV and is mainly used for band dispersion measurements and Fermi surface mapping. Due to
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Figure 2.9 (a) Schematics of the Fermi mapping. (From Ref. [66]) (b) Fermi surface of PtSny
measured with Hel « spectral line (21.2 eV photons).

the relatively high energy photons in the Hel aline, it can probe the second Brillouin zone of
most materials. This can be demonstrated in the ARPES measurements of PtSny.

The photoelectrons at the Fermi surface emitted by fixed-energy photons span a spherical
surface at the three dimensional k-space as shown in Fig. 2.9(a). Therefore, for Fermi surface
measured at large 6 (second Brillouin zone in the following case), the k, value could be different
from the Fermi surface in the first Brillouin zone. This difference would be evident if the
material has strong three-dimensionality of the electronic structure. Fig. 2.9(b) shows the
Fermi surface measured by Hel « spectral line, where the Fermi surface sheets in the first and
second Brillouin zones are observed close to the zone centers (k; = 0 and 2, respectively). The
difference between these two Fermi surface sheets can be clearly seen in the red dashed boxes,
which should be symmetric if they are at the same location along the out of plane direction.
These results (Fig. 2.5 and Fig. 2.9) have demonstrated the strong three-dimensionality of the
electronic structure in PtSny4, which is consistent with the band structure calculations in Ref.
[67].

For Hell « line with photon energy of 40.8 eV, it can either be used to measure the band
dispersion and Fermi surface, or to determine the chemical composition on the surface of the
sample like an XPS. Fig. 2.10 shows an example of using Hell « to detect the Pb deposition
on the surface of a Si (111) plate. In panel (a), we can clearly see one dispersion sitting at the

binding energy of ~ 3 to 4 eV, and two dispersionless peaks sitting at the binding energies of
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Figure 2.10 Hell o measurements of Pb deposition on Si (111) surface. (a) ARPES intensity
measured after 4-min Pb deposition (2.7 A and 2.1 V applied on Pb source). (b)
Energy dispersion curve [red dashed line in panel (a)] integrated over the whole
momentum range. Inset shows the zoom-in image of the black dashed box.

~ 10 and 13 eV after 4-min Pb deposition. The band with dispersion comes from the Si(111)
substrate and the dispersionless peaks come from core levels of Pb deposited on the surface of
the substrate. Panel (b) shows the energy dispersion curve [along the red dashed line in (a)]
integrated over the whole momentum range prior to deposition, and 1- to 4-min Pb deposition.
The inset shows the zoom-in image of the black dashed box, where two peaks at the binding
energies of ~ 12.8 and 10.1 eV continuously grow in intensity with longer Pb deposition time.
This figure demonstrates the ability of using Hell « line to probe the band dispersion of the

material and the chemical composition on the sample surface at the same time.

2.2.1.2 Synchrotron Radiation

Although He-lamp photon source can provide us with relatively high intensity photon beam,
the usable photon energies are limited to 21.2 (Hel «) and 40.8 eV (Hell «). As we have
discussed at the beginning of this section, the ability to tune the incident photon energies
continuously is very important for probing the momentum dispersion along the out of plane
direction. Therefore, synchrotron radiation with large range of tunable photon energies is an

important tool in photoemission studies. Synchrotron radiation photon beams are produced
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Figure 2.11 Undulator used in the synchrotron radiation center. (from Ref. [68])

by radially accelerating charged particles, using bending magnets, undulators and/or wigglers.
In most ARPES experiments, undulators are commonly used.

Fig. 2.11 shows a schematic of the undulator. It consists of a periodic structure of dipole
magnets, which produces a static magnetic field alternating along the length of the undulator
with a periodicity of A,. Electrons travelling in this periodic magnetic field are forced to
undergo oscillations and thus to radiate energy. The radiation produced in an undulator has
high intensity and is collimated on the orbit plane of the electrons. After exiting the undulator,
the radiation is monochromatized at the desired photon energy by a grating monochromator,
and is focused on the sample. The advantage of using a synchrotron radiation is that it offers a
wide range of spectral, from the visible to the x-ray region, with an intense and highly polarized
continuous spectrum [60]. Thus, ARPES experiment with this type of photon source can probe
several Brillouin zones of the sample along the in-plane and out-of-plane directions, which is
often used to determine the k| dispersion and inner potential Vy of the material as we have
discussed in the previous sections.

Fig. 2.12 shows the ARPES intensity and k, dispersion of YSb measured at Synchrotron
Radiation Center (University of Wisconsin - Madison) at photon energies from 30 to 76 eV
with 2 eV step. Panel (a) shows the band dispersions from several photon energies as marked

at the top left corner of each plot. We can clearly see that the hole pocket size changes with the
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Figure 2.12 Synchrotron radiation based ARPES measurements of YSb. (a) Band dispersion
measured at photon energies of 30, 40, 50, 60, 70, and 74 eV. (b) k., dispersion of
YSb measured at photon energies from 30 to 76 eV with 2 eV step.

incident photon energy. By stacking the band dispersions from various photon energies together
and extracting the ARPES intensity at the Fermi level, k, dispersion can be constructed as
shown in panel (b). Comparing to Fig. 2.6, it is obvious that ARPES measurements using
synchrotron radiation source cover much wider momentum space in the out-of-plane direction.
There is only a half ellipse shape in Fig. 2.6, whereas several ellipses can be seen in Fig.
2.12. These results demonstrate the advantage of the synchrotron radiation source for studies

requiring wide k, scans.

2.2.1.3 Laser ARPES

Although synchrotron radiation can provide us wide range of photon energies, the exper-
iment time (beamtime) in synchrotron radiation centers is limited. Researchers working on
synchrotron radiation ARPES experiments will have to work 24 hours a day continuously for

several days in order to take full advantage of the precious time. A tabletop photon source
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Figure 2.13 (a) Schematic layout of the fourth-harmonic generation. Red, blue, and purple
arrows indicate the optical path for fundamental, second-harmonic generation,
and fourth-harmonic generation photon beam, respectively. (b) Picture of the
optical components layout. Red arrows point to the KBBF and BBO crystals,
respectively.

with energy tunability is therefore very desirable. Tunable laser becomes the natural choice.
Fig. 2.13(a) shows the schematic layout of the fourth-harmonic generation (FHG) in our
laser ARPES system. An infrared (IR) beam with wavelength of 710-940 nm (red arrows) is
produced by Ti:sapphire laser. After being focused by lens L1, the IR beam passes through
BBO crystal with doubled frequency, i.e., with wavelength of 355-470 nm (blue arrows). After
being reflected by several mirrors, the second-harmonic laser beam goes through the KBBF
crystal and its frequency doubles again, resulting in the fourth-harmonic laser beam. The
outgoing fourth-harmonic laser beam has wavelength between 177 and 235 nm (corresponding
to photon energies of 7 and 5.3 eV, respectively). Since the typical work function in the metal
is roughly 4 to 5 eV, the fourth-harmonic laser beam has sufficiently high photon energy for
the ARPES experiment. Fig. 2.13(b) shows a picture of the optical components in the laser
ARPES system, where the red arrows point to the KBBF and BBO crystals. Since UV photons
with wavelength of below 200 nm are readily absorbed by oxygen, it is important to enclose
the fourth-harmonic generation part in a rough vacuum (~ 10 mTorr). This layout design is
modified based on the original design in Ref. [69] to have a more compact stage for fourth-

harmonic generation; thus, it is easier to enclose in a vacuum chamber.
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Figure 2.14 Circular dichroism of PtSny. (a) ARPES intensity at X point of PtSny measured
with right-handed circularly polarized light. (b) ARPES intensity at X point of
PtSny measured with left-handed circularly polarized light. (¢) ARPES intensity
of (a) subtracting (b).

Due to its relatively low photon energies, laser photon source results in higher momentum
resolution in the ARPES measurements as shown in Fig. 2.5. Another advantage of the laser
photon source is that its polarization can be easily changed from linearly polarized light to
circularly polarized by inserting a quarter-wave plate in the beam path. Furthermore, left- and
right-handed circularly polarized light can also be achieved by using a half-wave plate. Taking
advantage of the left- and right-handed light, circular dichroism can be utilized to study the
spin texture in topological insulators [19, 70].

Fig. 2.14 shows the circular dichroism of PtSns. Panels (a) and (b) show the ARPES
intensity at X point of PtSn, measured with right- and left-handed circularly polarized light,
respectively. We can clearly see the intensity difference in these two plots. The ARPES intensity
measured with right-handed circularly polarized light has higher intensity on the right side of
the Dirac dispersion, while the other one shows the opposite. By subtracting ARPES intensity
of (b) from (a), we can see the difference of these two measurements more clearly [shown in
panel (c)]. The Dirac dispersion on the left hand side has the opposite polarization dependence
of the intensity compared to the one on the right hand side. These plots demonstrate the ability

of measuring circular dichroism in the laser ARPES system. However, we should note that
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Table 2.2 Comparison of photon sources (Adopted from [71])

Helium-lamp | Synchrotron radiation Laser
Photon energy (eV) 21.2,40.8 20-1000 5.3-7
Intensity (photons/s) 1013 102 10%
Energy resolution (meV) ~ 8 1-50 <1
Momentum resolution (A=1) 1072 1071 1073
Time resolved none ~ 10 ns 100 fs — ps
Polarization unpolarized changeable easy to change
Bulk sensitivity (ML) ~5 ~ 50 10-100
Spot size 1 mm 50 pum 1- 30 pm
Momentum range 2 BZ several BZ partial BZ

detailed analysis of the matrix elements, selection rules, and experimental geometry for the
circularly polarized light used in these measurements is needed. Further theory is required to
better understand the Dirac state in PtSny.

The properties of these photon sources used for ARPES experiment are summarized in
Table 2.2. We can clearly see that the advantages of the laser photon source are high intensity,
high energy and momentum resolution, easy to change polarization, bulk sensitivity, and small
spot size. However, due to its low photon energy and fairly small tunability, laser-based ARPES
system can only probe partial Brillouin zone (BZ) of the sample [see Fig. 2.5(c)]. Thus, He-
lamp and Synchrotron radiation ARPES experiment are essential to determine the whole BZ

information.

2.2.2 Electron Analyzer

Apart from the photon source, electron analyzer is another essential part of an ARPES
system. Fig. 2.15 shows a schematic of the Scienta hemispherical analyzer. A conventional
hemispherical electron analyzer consists of multielement electrostatic lens, a hemispherical en-
ergy analyzer with entrance slits, and an electron detector. The electrostatic lens collects the
electrons from the sample and transfers them to the entrance slit of the energy analyzer. The
lens serves mainly three purposes: (1) physically separates the sample region from the electron

analyzer for better accessibility of the sample, (2) acts as focusing lens to produce a photoelec-



Figure 2.15

tron image of the sample on the entrance plane of the analyzer, (3) matches the initial kinetic
energy of the electrons to the pass energy of the analyzer. The electron energy analyzer is the
part of the instrument that measures the actual energy dispersion and consists of two concen-
tric hemispheres of radius R and Ry. These two hemispheres are kept at a potential difference
AV, so that only those electrons reaching the entrance slit with kinetic energy within a narrow

range centered at the pass energy FEp.ss can pass through this hemispherical capacitor. The
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Schematic of the Scienta hemispherical electron analyzer. The red, black, and
blue beams represent photoelectrons with different emission directions. Within
the same beam, photoelectrons with different energies are present. (Adopted from

Ref. [60))

pass energy Ep.ss has the following form,

B B eAV
P (R1/R2 — Ry/Ry)
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In this way it is possible to measure the kinetic energy of the photoelectrons with an energy

resolution given by

w a2

0E, = pass(R—o +) (2.22)

where Ry = (R1 + R2)/2, w is the width of the entrance slit, and « is the acceptance angle (~
14° in the He-lamp ARPES system with a SES2002 electron analyzer and ~ 30° in the laser
ARPES system with a R8000 electron analyzer). Due to the spherical symmetry, electrons pass
through a straight slit with width < 1 mm will be imaged onto a curved line at the detector with
a radius half of the analyzer (the effect can be neglected for relatively wide slits). Thus, the
narrower slits are curved with the appropriate radius to produce straight lines at the detector,
which yields higher energy resolution but lower sensitivity. Typically a slit carousel is used with
various widths and shapes (straight or curved) to facilitate the choice of a suitable compromise
between resolution and sensitivity. The electron detector consists of two micro-channel plates
(MCP), a phosphor screen, and a CCD camera, which is responsible for detecting electrons
and measuring their energy and momentum. The MCP pair multiplies each incoming electron
~ 10% times and this electron pulse is accelerated to the phosphor screen to produce a light
flash, which can be captured by the CCD camera. As shown in Fig. 2.15, after the electrons
inside the sample get excited by the incoming photon beam, the electrons escape the sample
surface in various directions (denoted by the red, black and blue arrows). After being focused
by the electrostatic lens onto the entrance slit, electrons with the same outgoing direction
(momentum) but different energies will be deflected by the electron energy analyzer and finally
get collected by the detector with both energy and momentum resolved [60, 72]. Figs. 2.14(a)

and (b) show typical ARPES intensities measured at the detector with red and blue color scale.

2.2.3 Ultrahigh Vacuum

In the ARPES experiment, ultrahigh vacuum is required mainly for two reasons: (1) the
photoelectrons need to travel relatively long distance (~ 2 m) to the electron detector without
collision with gas molecules in the system, (2) fresh sample surface needs to be maintained since

most of the ARPES measurements are probing the top few layers of the sample. In order to
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satisfy the first condition, a vacuum of 10~# Torr is enough by doing rough estimation using the
kinetic theory. In kinetic theory, the mean free path of a particle is [ = (no)~!, where n is the
density of the particles, and o is the effective cross-sectional area for collision. Using ideal gas
law, we have n = N/V = p/(kgT), where kp is the Boltzmann constant (~ 1.38x10723.J. K1),
and room temperature T'= 300K . The effective cross-section area can be estimated using the
radius of the gas particle in the system, o = 7 - r2, where r is the radius of the gas particle (~

1 A). Thus, we would have

kT  1.38 x 10723J/K x 300K
ar2-1 314 x (1071%m)2 x 2m

P~ ~ 0.066 Pa ~ 5 x 10~* Torr (2.23)

However, the second condition cannot be easily satisfied. From the surface science lectures,
we know that the gas flux can be written as

AN
Zyp=—1 = P (2.24)

dt \/m

where Ny is the total number of particles striking the surface per unit area, m is the

particle mass, kp is the Boltzmann constant, and T is the gas temperature (300 K). Thus, we
can calculate the number of particles striking on the surface based on the above equation. An

another easy way to estimate this value is to take advantage of the Langmuir’s Rule

#L =P xtx10° (2.25)

where L stands for 1 monolayer of gas particles on the surface, P is the gas pressure with
unit of Torr, and t is the time with unit of s. Thus, in order to measure the samples with less
than one monolayer of gas particles covered on top for one day, the minimum pressure would
be 1x 10~ Torr assuming that each and every gas particle hitting on the sample surface sticks
on the surface. Normally, pressure below 1 x 107!° Torr in the ARPES system is sufficient
for basic measurements for a few days or even weeks. In order to achieve ultrahigh vacuum in
the ARPES system, “baking” the system is necessary to desorb gases from the chamber walls.
Typical temperature for baking is around 120 °C to 150 °C based on the maximum allowed

temperature of each component in the ARPES system. After two or three weeks of baking,
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Figure 2.16 Time dependence of the band dispersion in LaBi. (a)—(j) Band dispersion of LaBi

measured at photon energy of 6.7 eV, temperature of 40 K, and time of 0 to 18
hours after cleaving in situ.

most of the residue gases inside the ARPES main chamber would be Hs, N2, and CO4 and a
ultrahigh vacuum of 5 x 10! Torr can be achieved. However, for samples such as LaBi, even
though ultrahigh vacuum is maintained in the system, the measured spectrum changes with
time due to deposition of contaminants on the surface.

LaBi is an air sensitive material that may react to Og, water, No, or CO5. Even though
the sample is measured under a vacuum better than 8 x 10~ Torr, its band structure evolves
slowly but significantly with time. Fig. 2.16 shows the time dependence of the band structure
in LaBi measured at the photon energy of 6.7 eV and temperature of 40 K. We can clearly see
the top cone of the Dirac dispersion at the binding energy of ~ 200 meV after fresh cleaving
[Fig. 2.16(a)]. However, as time goes by to 10 hours after cleaving, the intensity of the top cone
is smeared out [Fig. 2.16(f)]. After 16 hours, the top cone of the Dirac dispersion cannot be
clearly resolved as shown in Fig. 2.16(i). These results show strong variation of the measured
band structure in LaBi with time. Therefore, all the measurements need to be completed on
a freshly cleaved sample within a relatively short time (a couple of hours) to ensure that the

intrinsic band structure of LaBi is obtained.
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2.2.4 Cold Head

The ability to control the sample temperature is very important for studying interesting

temperature dependent physical properties, such as superconductivity, ferromagnetic and anti-

ferromagnetic (AFM) phase transitions, temperature-induced Lifshitz transitions and etc.

Figure 2.17
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Band dispersion of CrAuTes; measured at photon energies of 6.70 eV. (a)-(b)
ARPES intensity measured at 7" = 270 and 40 K, respectively. (c)-(d) The
intensity plots of the second derivatives of data in (a) and (b). The red arrows
mark the Fermi crossings. (From Ref. [73])

Fig. 2.17 shows the band dispersion of CrAuTes measured at the photon energy of 6.70 eV

and temperatures of 270 and 40 K. CrAuTes has an AFM transition at 255 K as shown in the

magnetization data and temperature dependent resistivity measurements [73]. As we can see

in Fig. 2.17, the band dispersion measured at 270 K (above the AFM transition temperature

of 255 K) shows only a single hole pocket (marked by the red arrows). When the sample
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Figure 2.18 (a) Schematic of the two-stage pulse tube crycooler with gas-coupled stages. C:
compressor; R1, R2: reservoirs; PT1, PT2: pulse tubes of first and second stage;
RG1, RG2: first stage and second stage regenerator; CT1, CT2: cold tips; 11,
12: inertance lines; D1, D2: second-inlet valves. (b) Schematic outline drawing
of PT415 cryorefrigerator with remote motor option from Cryomech, Inc. (From
Ref. [74, 75])

temperature is cooled down to 40 K, another hole pocket emerges in the center [panel (b)]. To
better illustrate the band dispersion, we calculate and plot the second derivative of the ARPES
intensity in Figs. 2.17(c)-(d), where one hole pocket to two hole pockets transition can be
clearly seen. This demonstrates the importance of precise sample temperature control in the
ARPES measurements.

The most direct, yet not the most cost efficient way to cool down a sample is to use
liquid Helium (7" = 4.2 K) based on the lowest temperature that is required. Liquid He
is very expensive and its use for ARPES measurements in laboratory environment is cost
prohibitive. In our laboratory we use closed cycle refrigerator, which uses electrical energy and

thermodynamics to cool down the samples.
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Fig. 2.18 shows a schematic drawing of the two-stage pulse tube crycooler with gas-coupled
stages. Both stages have a U-shaped configuration with the warm ends of the pulse tubes
located at ambient temperature that is cooled by air flow during operation. The regenerator
of the first stage serves for precooling of the Helium gas for both stages. At the cold end of
the first regenerator the gas is split into one fraction that flows through the first stage pulse
tube and another fraction that enters the second stage. The regenerator consists of a matrix
of a solid porous material, through which the gas flows back and forth, and heat is stored and
released periodically. This periodic gas flow is driven by the compressor and motor on top
of the cold head which would cause vibration on the whole stage. In order to minimize the
vibration in the system, we use PT415 cryorefrigerator with remote motor option to isolate the
motor from the cold head [Fig. 2.18(b)]. The PT415-RM pulse tube refrigerator can achieve
cooling power of 1.35 W at 4.2 K and 36 W at 45 K. This is more than sufficient to cool down

samples below liquid He temperatures [75].
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Figure 2.19 Laser ARPES system. The red arrows point to the electron analyzer, electrostatic
lens, and FHG stage, respectively.
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In summary, Fig. 2.19 shows a picture of the Laser ARPES system in our lab, which is
the first operational tunable laser ARPES system in the world. Most of the data that will be
shown in the following chapters are collected using this system. The red arrows point to the
main components of the system, i.e., electron analyzer, electrostatic lens, and FHG stage. The
cold head with 4-axis motion is not completely shown in this picture and will be replaced soon
by PT415-RM cold head with lower temperature capability and minimum vibration. Except
for the FHG stage (for now), all other components are under ultrahigh vacuum. Furthermore,
in order to eliminate the earth magnetic field effect on the trajectory of the photoelectrons,
magnetic shielding (u-metal) and demagnetization of the inner components are essential in

order to obtain reliable results from ARPES measurements.

2.3 Sample Preparation

After all the components in the ARPES system have been properly set up, the next step is to
prepare “good” surfaces of the samples for measurements. As we have discussed in Section 2.1.1,
in order to ensure that the parallel component of the photoelectron’s momentum is conserved,
the sample surface needs to be atomically flat. Furthermore, we cannot measure sample surfaces
directly prepared in the open air, because they are covered by multiple layers of molecules as
we have pointed out in Section 2.2.3. Thus, the sample surfaces need to be freshly prepared
in the ultrahigh vacuum. There are three main methods of sample preparation: (1) cleaving
(breaking) the sample in ultrahigh vacuum, (2) polishing the sample in open air, then sputter
and anneal the sample surface in vacuum, (3) in-situ growth of thin films using molecular
beam epitaxy (MBE) method. In our ARPES system, we do not have a MBE system yet,
although we can do simple deposition like Pb, Au, Gd, K, and etc for magnetic/non-magnetic
or electron/hole doping measurements. In the following sections, the first two methods will be

discussed.
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Figure 2.20 (a) Process of sample cleaving. A cleaving bar is attached to the sample before it
is loaded; then it is removed mechanically inside the vacuum chamber. (Adopted
from Ref. [66]) (b) Picture of a cleaved sample PtSny. (c) Picture of a cleaved
sample CesBisPts.

Fig. 2.20(a) shows the process of sample cleaving. First the sample is glued to the sample
holder, which is usually made out of aluminium. Two types of glues can be used. One is
silver epoxy, which is conductive itself. The other is Torr Seal high vacuum epoxy, which is
not conductive and usually extra graphite paint is needed to ensure the sample is properly
electrically connected to the system. After the sample is glued to the sample holder, a cleaving
bar is glued on top of the sample. After the sample transferred into the ultrahigh vacuum
system has been cooled down to the desired temperature for measurements, we use a rod
(transfer arm) to push on the side of the cleaving bar and split the sample into two pieces as
shown in Fig. 2.20(a). For samples with layered structure, such as PtSny, cleaving can produce
beautiful atomically flat surface as shown in Fig. 2.20(b). With this nice cleaved surface, high
resolution ARPES intensity can be obtained as shown in Fig. 2.5(c). However, for samples
that do not have a layered structure, such as Ce3BiyPts, shiny surface may be obtained after
cleaving [Fig. 2.20(c)]. This shiny but uneven cleaving surface usually produce high intensity

of photoelectrons but poorly resolved momentum and energy information.



58

=
>
)
N
>
o
=
]
c
w

01 00 01 02 01 00 01 02 " 01 00 01 02 01 00 01 02 01 00 01 02
k(A7) k(A% k(A% k(A9 k(A%

Figure 2.21 Fermi surface and band dispersion of BisRh3S. (a)—(e) Fermi surface of BiaRh3Ss
measured at photon energy of 6.7 eV and temperature of 180, 140, 100, 60, and
20 K, respectively. (f)—(j) Band dispersion along the black dashed lines in (a)—(e),
respectively.

An example of imperfect energy and momentum resolved ARPES measurements is BisRh3So
(shown in Fig. 2.21). BipRh3Ss has a structural first-order transition at around 165 K [76]. As
shown in Figs. 2.21(a)—(e), the Fermi surface evolves from mainly one big hole pocket at the
temperature above the transition temperature of 165 K into two smaller pockets at temperatures
below the transition temperature. Figs. 2.21(f)—(j) show the band dispersion along the black
dashed lines in (a)—(e), respectively. New bands emerge starting at the temperature of 140 K
and become significantly visible at 20 K. Even though we can see dramatic changes in the Fermi
surface and band dispersion, all these features are very broad and not very well resolved. One
reason may due to the imperfect cleaving of the sample of this material, and the other reason
may due to the strong three-dimensionality of its electronic structure. Further band structure

calculations are needed to verify the origin of the electronic structure transition.
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2.3.2 Polishing, Sputtering, and Annealing

ICI..HQ...

Figure 2.22 Bragg’s Law. d is the distance between two diffraction planes, 6 is the incident
angle of the X-ray with respect to the diffraction plane.

For samples that cannot be cleaved properly, polishing is the other option to obtain a flat
surface. Another benefit of using polishing is that we can almost choose any crystal orientation
as needed. To determine the crystal orientation, back-reflection Laue system is used in our lab.
In the back-reflection Laue system, the film for recording the backward diffraction beams is
placed between the X-ray source and the crystal. The diffraction beams form arrays of spots,

which satisfy the Bragg’s law

2-d-sinf = n\ (2.26)

where d stands for the distance between the two diffraction planes, 6 stands for the incident
angle of the beam respect to the diffraction plane, and A stands for the wavelength of the
incident X-ray. Since we are using white X-rays (a full spectrum of many wavelengths), these
X-rays will have the opportunity to be diffracted by different planes given that the value of A
satisfies the Bragg’s law. Therefore, in Laue measurements, an array of spots corresponding to
different orientations will be obtained.

AuoPb crystallizes in cubic Laves phase at room temperature, and is a topological super-
conductor candidate with a Dirac metal to topological metal transition along with a structural
phase change [77]. Fig. 2.23 shows the pictures of AuaPb single crystals with different orien-
tations and their corresponding Laue patterns. Fig. 2.23(a) shows the natural growth facet

of a AugPb single crystal, and panel (d) shows its corresponding Laue pattern with three-fold
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Figure 2.23 Laue pattern from AuaPb. (a)-(c) AugPb natural growth facet, edge, and corner,
respectively. (d)-(f) Laue pattern from (a)-(c) crystal orientations, respectively.

(more precisely six-fold) symmetry. Thus, the natural growth facet would be in (111) direction.
Fig. 2.23(b) shows the natural growth edge, and panel (e) shows its Laue pattern with clear
four-fold symmetry, indicating the (001) direction. Fig. 2.23 shows the natural growth corner,
which shows a four-fold crystal symmetry at the tip. Obviously the Laue pattern shown in
panel (f) has a clear four-fold symmetry, consistent with the crystal image. The orientations of
the single crystals’ edge and corner may vary from one to the other, but most of the facets that
we have measured show clear six-fold symmetry, i.e., along (111) direction. With the ability to
determine the single crystal orientation by Laue system, we successfully obtained crystals with
(111) and (001) surfaces by cutting, filing, and polishing various pieces of the sample.

Taking the corner at the (001) orientation of the crystal as an example, we first use a dia-
mond file to file the tip of the crystal off as shown in Fig. 2.24(a), then various grades of sand-
papers are used to rough polish the top surface [Fig. 2.24(b)], finally we use grinder/polisher to
fine polish the crystal surface as shown in Fig. 2.24(c). Fig. 2.24 shows this three-step process,

with each step improving the flatness of the crystal surface. In panel (c), a flat and shiny sur-
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face is obtained after proper polishing, which almost resembles the surface of a layer-structured
crystal surface after cleaving [Fig. 2.20(b)]. However, we should note that the sample surface is
still not as perfectly flat as the surfaces in cleaved samples. Besides, even with careful handling
of the crystal surface, there are still small scratches on the surface that cannot be eliminated
completely. With all the polishing powders/solutions and glueing wax, it is very important to
clean the crystal thoroughly before loading the crystal into ultrahigh vacuum in order not to

contaminate the whole system.

Figure 2.24 Process of polishing AuaPb. (a) After filing the tip of AuaPb crystal off. (b)
After polishing with various grades of sandpapers. (c) After polishing with
grinder/polisher.

Figure 2.25 Stage for electron heating. (a) Schematic of the electron heating stage. (b)
Picture of the sample stage. The red box marks the electron heating stage.



62

Sputtering is used to clean the top surface of the polished sample. During sputtering process,
Argon gas with a base pressure of 1 x 107 Torr is maintained in the preparation chamber. At
the beginning, sputtering voltage of 1 kV and current of 15 mA are used to clean the surface.
However, this high sputtering voltage and current could potentially lead to significant damage
to the crystal structure at the surface. Thus, annealing is required to obtain a smooth surface
and reduce the number of defects. Fig. 2.25 shows the custom made electron beam heating
stage, where high-energy (1 keV) electron beam emitted from Ta coil bombards the back of
the sample holder and thus transfer kinetic energy to thermal energy for sample heating. Fig.
2.25(a) shows the schematic view of the electron heating stage, and panel (b) shows a picture
of the whole sample stage with the red box marking the electron heating component. Typically
temperatures below 500 °C can be easily achieved and samples are kept at temperatures below
its melting point for several minutes or longer. This sputtering and annealing process will be
repeated multiple times in order to obtain a nice smooth surface. During the cycling procedure,
sputtering voltage can be lowered down to 200 V, which is enough to clean the sample surface
without introducing major damage in the AusPb case.

Fig. 2.26 shows the Fermi surface measurements of AusPb measured at photon energy of
21.2 eV. As we have shown in Fig. 2.23, the natural growth facet of this crystal is in the
(111) direction and the edge and corner cases are most often along the (001) direction. Thus,
in order to obtain the Fermi surface of AuaPb along the (001) direction, we have to polish,
sputter, and anneal the samples as described above. Fig. 2.26(a) shows the ARPES intensity
integrated within 10 meV about the chemical potential measured along (001) direction. We
can see several pockets in the first Brillouin zone, which seem to be consistent with four-fold
symmetry. However, due to the fact that polishing, sputtering, and annealing cannot produce a
perfect atomically flat surface, the band structures cannot be resolved clearly. Thus, we cannot
determine whether this is exactly four-fold symmetry or it is two-fold symmetry as proposed in
the literature that the AusPb crystal undergoes a low temperature structural phase transition
from cubic Laves phase into orthorhombic phase structure (slightly distorted version of the
cubic Laves phase structure) [77]. On the other hand, the (111) direction of this crystal has the

natural growth facet. After sputtering and annealing (polishing is not necessary) for several
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Figure 2.26 Fermi surface measurements of AusPb. (a) Fermi surface plot of ARPES intensity
integrated within 10 meV about the chemical potential measured along (001)
direction and 7' = 35 K. (b) Fermi surface plot of ARPES intensity integrated
within 10 meV about the chemical potential measured along (111) direction and
T =18 K.

cycles, we have obtained nice Fermi surface as shown in Fig. 2.26(b). From the ARPES
intensity plot, we can see roughly six-fold symmetry in the Fermi surface, which is consistent
with a cubic crystal structure. Thus, by measuring the electronic structure of AusPb, we
have demonstrate the advantages of using polishing, sputtering, and annealing technique in
the ARPES experiments. It is an excellent technique to study the crystals that do not have
a layered structure, i.e., those that cannot be cleaved properly. Furthermore, it has given us
the power to study any orientations of the single crystal instead of being limited to its natural
cleaving planes.

In summary, in this chapter, we have covered the basic knowledge of ARPES experiment.
The basic principles of ARPES were discussed, such as the photoemission process including
the momentum and energy conservation during the process, the one- and three-step model for
calculating the ARPES intensity, one-particle spectral function for extracting the electron in-
teraction/scattering information, and matrix elements that play an important role when we use

left- and right-handed circularly polarized light. Then we have discussed the experimental com-
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ponents in a typical ARPES system, including different photon sources and their advantages and
disadvantages, the electron analyzer and how it measures the energy and momentum of the pho-
toelectrons at the same time, the ultrahigh vacuum and why it is important in ARPES measure-
ments, and the cold head for precise temperature control of the samples. Finally we described
two basic sample preparation techniques, i.e., cleaving and polishing/sputtering/annealing.

In the following chapters, we will utilized the ARPES system to study the electronic prop-
erties of some novel topological quantum materials, such as a topological insulator (semimetal)
candidate LaBi with asymmetric mass acquisition, a three-dimensional Dirac semimetal CdsAss
with detailed k. dispersion, a type-II Weyl semimetal candidate WTey harboring temperature-
induced Lifshitz transition, and a Dirac node arc metal PtSny with unusual Dirac node struc-

ture.
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CHAPTER 3. TOPOLOGICAL SEMIMETAL CANDIDATE LaBi

3.1 Asymmetric mass acquisition in LaBi

The following context is an extended version of the published work in

Phys. Rev. B 94, 081108(R)

3.1.1 Introduction

The discovery of quantum Hall effect [2] introduced the concept of quantum states that
cannot be classified by spontaneous symmetry breaking, but instead are classified by their
topology. Another topological state, quantum spin Hall state, has been theoretically predicted
and experimentally observed in HgTe quantum wells [10, 12]. This new topological state ex-
ists in a system that is insulating in its bulk but topologically conducting on the edges (i.e.,
one-dimensional equivalent of a two-dimensional surface). A BiggSbg binary was the first
bulk material verified to be a topological insulator by use of angle-resolved photoemission spec-
troscopy (ARPES) to directly probe the electronic structure [11, 13]. However, its complicated
surface states, fairly small bulk band gap, and alloying disorder made it hard to be a model
system for studying topological quantum phenomena and technological applications. BisSes,
BisTes, and SboTes were theoretically predicted [14] and experimentally proved to be the sec-
ond generation topological insulators (or, at lease, near insulators) with a single Dirac cone
residing at the I" point [78, 16]. The surface Dirac cone states are protected by time-reversal
symmetry (TRS). Therefore, TRS breaking sources, such as magnetic field or magnetic dopant

can modify the massless electrons into finite mass electrons [22].
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Figure 3.1 Brillouin zone and band structure calculations of LaBi. (a) The three-dimensional
Brillouin zone of the face-centered cubic lattice and its projection to the surface
Brillouin zone of the LaBi (111)-surface. (b) A schematic of the three nodal rings
around one X-point in LaN. (¢, d) The calculated configuration of the nodal rings
on the yz-plane and the zy-plane, respectively. Only one quarter of each ring is
shown due to symmetry. (e) The band structure on the (111)-surface of a 20-layer
slab of LaBi. The inset shows the spin texture near M. (Adopted from Ref. [55])

The discovery of such topologically protected quantum states generated a lot of interest
and sparked the search for other novel, exotic topological states, such as three-dimensional
Dirac semimetals [27, 28, 26, 29, 30, 79], type-I and type-II Weyl semimetals [42, 43, 37, 41,
80, 44, 45, 46, 48, 47, 81, 82, 83, 84, 85, 86], and line node semimetals [53, 87]. However, no
new family of binary topological insulators was reported to date. Recently, simple rocksalt
rare-earth monopnictides LaX (X =N, P, As, Sb, Bi) were predicted to host novel topological
states, such as “linked nodal ring” in LaN when spin-orbital coupling is neglected [55]. When
considering the spin-orbital coupling, LaN turns into a three-dimensional Dirac semimetal and
the rest of the family turn into topological insulators [55].

In Fig. 3.1 we present the drawing of the Brillouin zone and band structure calculations of
LaBi. The three-dimensional (3D) Brillouin zone and its surface projection on the (111)-surface
is shown in Fig. 3.1(a). When the spin-orbit coupling in LaBi is neglected, three nodal rings
formed by band crossing points are predicted based on the first-principles calculations. These

intersecting nodal rings look like the equator and two perpendicular longitudes of a football
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Figure 3.2 Extremely large magnetoresistance in LaSb and LaBi. (a) p(T") of LaSbh at several

magnetic fields as indicated on the figure. Temperature of resistivity minimum 7,
and inflection T; are marked on the black curve. (b) p(T') of LaBi at the same

fields as in LaSb. Inset shows p(T") at low T and low H to capture the onset of
resistivity activation at 0.4 £ 0.1 T. (From Ref. [88])

centered at each X point as shown in Fig. 3.1(b). One quarter of each nodal ring is shown

in Fig. 3.1(c) and (d) to provide more details. When spin-orbit coupling in LaBi is turned
on (in calculation), the nodal rings break up and the band crossing along I'-X becomes an
anti-crossing with a gap of ~ 35 meV, leading to a 3D topological insulator phase. Based on
the analysis, the single Dirac cone projected onto the (001) surface would be buried inside the
bulk projection continuum and hence cannot be observed. On the other hand, the projection
on the (111)-surface will result in three Dirac cones at the M point as shown in Fig. 3.1(e).
Since there are bands crossing the Fermi energy everywhere in the Brillouin zone, the LaBi
is called a topological semimetal candidate in the published work instead of the topological
insulator candidate as proposed in Ref. [55].
Interestingly, extremely large magnetoresistance was observed in this material [89, 90, 88|.
As shown in Figs. 3.2(a) and (b), LaBi and its sister compound LaSb both show significant
increase in the resistivity at low temperatures and high magnetic fields. The magnetoresistance,

defined as MR = 100 x [R(H) — R(0)]/R(0), can reach as high as 5 x 10°% at the temperature



68

of 2 K and magnetic field of 9 T [88]. The origin of the extremely large magnetoresistance
in LaBi has been attributed to either its topological nature [88] or the electron-hole carrier
compensation [90, 89, 91]. In order to elucidate this question, detailed band structure and
Fermi surface measurements are needed.

Here, we present the results from our laboratory-based ARPES measurements and density
functional theory (DFT) calculations detailing the electronic structure of LaBi. We observe
the coexistence of the bulk and surface states at the I' point from our He lamp and ultrahigh
resolution laser-based ARPES measurements. The dispersion of the surface state is highly
unusual. It resembles a Dirac cone, but upon closer inspection we can clearly detect an energy
gap. The bottom band follows roughly a parabolic dispersion. The top band has an unusual
linear “V”-shape dispersion with the tip approaching very closely to the extrapolated location
of Dirac point. This is evidence of abnormal, asymmetric mass acquisition by Dirac fermions.

Our data suggests that this compound hosts an unusual, yet to be understood topological state.

3.1.2 Methods
3.1.2.1 Sample growth.

Single crystals of LaBi were grown using a high-temperature solution growth technique
[92]. Starting elements (La from Ames Laboratory and Bi from Alfa Aesar, 99.99% purity)
were packed in a frit-disc alumina crucible set (otherwise known as a Canfield crucible set or
CCS) [93] with a molar ratio of La : Bi = 30: 70. The crucible with the starting materials
were sealed in a silica ampoule under a partial argon atmosphere. The whole ampoule was then
heated up to 1200°C, held at 1200°C for 3 h and slowly cooled to 1000°C over 50-100 h, at
which temperature the solution and the single crystals were quickly separated in a centrifuge.

Single crystals of LaBi are cubic in shape with a typical edge length of 0.5 mm.
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3.1.2.2 ARPES measurements.

ARPES measurements were carried out using a helium discharge lamp (angular and energy
resolutions set at ~0.3° and 15 meV, respectively) and tunable, laser-based [69] (~0.05° and 1
meV) ARPES spectrometers. Data from the laser-based ARPES were collected with a tunable
photon energy from 5.64 to 6.70 eV and the size of the photon beam on the sample was ~ 30
pm. Samples were cleaved in situ at a base pressure lower than 1 x 107! Torr. Samples were
cleaved at 37 K in the He-lamp system and 40 K in the laser-based system and were kept at
the cleaving temperature throughout the measurements. The cleaved surface is perpendicular

to the (100) direction.

3.1.2.3 Calculation method.

DFT calculations [94, 95] have been done in VASP [96, 97] using the Perdew-Burke-
Ernzerhof [98] exchange-correlation functional, plane-wave basis set with projected augmented
waves [99] and spin-orbital coupling effect included. For bulk band structure of LaBi, we use
the conventional tetragonal cell of four atoms along (001) direction with a (10x10x8) k-point
mesh. For (001) surface band structure, we sue slabs up to 48 atomic layers or 96 atoms with a
(10x10x1) k-point mesh and at least a 12 A vacuum. The kinetic energy cutoff is 165 eV. The
convergence with respect to k-point mesh was carefully checked, with total energy converged
below 1meV /atom. We use experimental lattice parameters of a = 6.5799 A with atoms fixed

in their bulk positions.

3.1.3 Results and Discussion

The crystal structure, calculated 3D Fermi surface (FS) and band dispersion along key
directions in the Brillouin zone (BZ) for LaBi are shown in Figs. 3.3(a) - 3.3(c). Panel (d)
shows the ARPES intensity measured at the chemical potential using the He-I line (21.2 eV) at
T = 37 K. The data was integrated within 10 meV to improve statistics. High intensity areas
mark the contours of the FS sheets. The FS consists of one electron and two hole pockets at

the T" point and two elliptical electron pockets at the M point (black dashed lines are guide to
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Figure 3.3 Calculated and experimental Fermi surface (FS) and band dispersion of LaBi mea-
sured at 7' = 37 K and photon energy of 21.2 eV. (a) Crystal structure (La: purple
spheres; Bi: green spheres) of LaBi. (b) Brillouin zone (BZ) and DFT-calculated
3D bulk FS of LaBi. (c) Calculated bulk dispersion along main symmetry direc-
tions. (d) FS plot of ARPES intensity integrated within 10 meV of the chemical
potential along I' — M. (e)-(g) ARPES intensity along cuts 1-3 marked by white
dashed lines in (b). (h)-(j) Surface-band dispersion calculated for a 48-layer slab
along cuts 1-3 in (b). (k) Measured dispersion along the I" cut in the second BZ. (1)
Second derivative of data in (k). Black and red arrows point to electron and hole
bands, respectively. (m) Projection of 3D bulk dispersion in red with overlapped
green surface bands calculated for a 48-layer slab.

the eye). The FS resembles the calculated bulk-band FS from DFT as shown in Fig. 3.3(b).
Panels (e)—(g) show the band dispersion measured using ARPES along cuts 1-3 [marked in
(b) as white dashed lines] in Fig. 3.3(d). Panels (h)—(j) show the corresponding surface band
calculations with a 48-layer slab along those same cuts shown in panels (e)—(g). In Panel (e),
we can see two electron pockets at the M point with the smaller one being enclosed by the
bigger one, which agrees with the calculations shown in panel (c). Panel (f) shows the band
dispersion along the cut 2 at the crossing point of the d — p orbital mixing. This feature may
look like a Dirac cone, except that the calculation shows a possible gap separating the top and

bottom bands. Our DFT calculation results are similar to the results in Ref. [55] in which
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Figure 3.4 Fermi surface and band dispersion in the proximity of the I' point measured at
T = 40 K and photon energy of 6.70 eV. (a) Constant energy contour plots of
ARPES intensity integrated within 10 meV at the binding energies of 0, 200, 280,
and 400 meV. (b) Constant energy contour plots of DFT surface-band calculation
at the binding energies of 0, 80, 160, and 220 meV with a 16-layer slab. (c) Band
dispersion along cut 1 marked in panel (a). (d) Calculated surface-band dispersion
along I' — X in panel (a) with a 48-layer slab.

topological surface state was predicted to reside in the d — p band inversion regime. However,
due to limited resolution and limited tunability of the photon energy in the He-lamp ARPES
system, we cannot verify its surface origin by probing its out-of-plane momentum dispersion
in proximity at the M point. At the I' point [panel (g)], an electron pocket is clearly seen.
However, no details can be resolved at higher binding energies. Panel (j) shows the calculated
surface-band dispersion along the same cut as in panel (g), which very roughly resembles main
features measured by ARPES results. The electron pocket and two hole pockets are clearly
observed in the second BZ, as shown in Fig. 3.3(k) and its second derivative in panel (1). The
band dispersion of the surface state at I' is more complicated, because there is no gap in the
projected 3D bulk dispersion, as shown in Fig. 3.3(m). This means that signals from both bulk
and surface states will contribute to photoelectron intensity.

To reveal the details of these states at I' we used a vacuum ultraviolet laser ARPES spec-
trometer. The low photon energy combined with small beam spot and ultrahigh resolution

allows us to gain more information about these features. Figure 3.4 shows the constant energy
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contours and data along the high symmetry cut along with the results of the DFT surface-band
calculations using a slab method. Panel (a) shows the constant energy contours measured at
40 K and photon energy of 6.7 eV. The constant energy contour at the Fermi level shows rather
blurred features dominated mostly by bulk bands. At the binding energy of 200 meV, a circu-
lar energy contour can be clearly observed, surrounded by square shape bulk-band intensities.
Further moving down to 280 meV below the Fermi level, the circle shrinks to a dot of intensity.
At binding energy of 400 meV, the dot expands to an almost perfect circle. Panel (b) shows
the constant energy contours from DFT calculations with a 16-layer slab, which also shows
the evolution of the Dirac-cone like feature from a circular contour to a single Dirac point and
further to a circular contour, which is not very easily resolved due to contribution of the bulk-
band projection, but has an overall shape consistent with the data. The surface Dirac-cone like
band dispersion can be better visualized in band dispersion data [panel (c)] along cut 1 in Fig.
3.4(a). The bulk conduction band crosses the Fermi level and the top of the bulk valence band
is visible in panel (c¢). The conduction and valence bands appear to be connected by a surface
state that forms a Dirac-like cone. Panel (d) shows the calculated surface state with a 48-layer
slab, which demonstrates that the surface state is buried in the bulk state projection. This is
consistent with the data shown in panel (a) and it is also consistent with previously reported
results [55].

We utilize photon energy dependent ARPES data to distinguish between bulk and surface
states as shown in Fig. 3.5. A single Dirac-like dispersion is present at higher photon energies
[top row of data in panel (a)] with no obvious change in shape. However, the size of the
conduction electron pocket and the intensity of the bulk hole band change drastically especially
for lower photon energies and overshadow the surface state due to different matrix elements
[bottom row of panel (a)]. In order to qualitatively determine the change in the size of the
conduction electron pocket as a function of k, momentum, we have plotted the momentum
dispersion curves (MDCs) at the Fermi level in panel (b), which clearly shows an increase
of the electron pocket size with decreasing incident photon energies. For the four highest
photon energies we plot the MDCs at binding energies of 200 meV (top part of the Dirac-cone-

like feature) and 320 meV (bottom part of the Dirac-cone-like feature). Constant separation
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Figure 3.5 Band dispersion measured at 7' = 30 K using several photon energies. (a) Band
dispersion along cut 1 in Fig. 3.4(a) using photon energies of 6.70, 6.57, 6.36, 6.20,
6.05, 5.90, and 5.64 eV. (b) Momentum dispersion curves at the chemical potential
for data in panel (a). (¢) Momentum dispersion curves at the binding energies of
200 and 320 meV for data in panel (a).

between the MDC peaks demonstrates surface origin or quasi-two-dimensionality of this feature.
These results are consistent with the band structure calculations.

The key question raised by these data is whether or not this actually is a relativistic, Dirac
dispersion with no energy gap and apparent degeneracy of electronic states at the Dirac point.
To examine this we use energy distribution curves (EDCs) and look for the presence of an
energy gap. The band dispersion along the I' cut measured with 6.7 eV photons is shown in
Fig. 3.6(a). In Fig. 3.6(b), we show the band dispersion extracted from MDC peaks (green
lines) and EDC peaks (red lines). The lower band has a parabolic dispersion that can only
occur if and energy gap is present. To verify this, we have plotted a set of EDCs equally spaced
in the momentum in Fig. 3.6(c). The EDC at the suspected location of the Dirac point shows
a peak that originates from the bottom part of the dispersion and a distinct shoulder at lower
binding energy that originates from the upper band. The two peaks fitted to EDC at the I"
point are shown in Fig. 3.6(d). We also verified that at other photon energies, where the
matrix elements weaken the intensity of the bottom band, a clear dip is observed in EDCs at

the energy that would correspond to the Dirac point—evidence that a gap is present instead
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Figure 3.6 Band dispersion and EDCs measured at T' = 40 K and photon energy of 6.7 eV.
(a) Band dispersion measured along symmetry direction at I'. (b) Band disper-
sion extracted by MDC (green) and ECD (red) fits. The black dashed lines are
extensions of the top Dirac-like bands. The blue dotted line marks the dispersion
of the bottom band reflected about the energy of the Dirac point—i.e., show the
expected dispersion of the upper band for the case of symmetrical mass acquisi-
tion. (c) Set of equally spaced EDCs corresponding to the data in (a). The red
curve is measured at I' and it reveals the presence of an energy gap separating the
upper and lower branches marked by bars. (d) Single EDC corresponding to the
data in (c). The green curves are two Lorentzian curves fitted to the EDC and the
blue curve is the composite of the two green curves. The blacked lines mark the
location of the peak positions. (e) EDC curves at I for measured photon energies.
The red bar marks the locations of the surface state peak. The black arrow marks
the intensity due to bulk band that increases at lower photon energies.

[Fig. 3.6(e)]. Note that at very low photon energies the bulk intensity overlaps and moves the
apparent location of the upper peak to even lower binding energies. This additional intensity
is indicated by the black arrow in the top curve of panel (e). These data confirm the presence
of an energy gap separating the two bands and it demonstrates that Dirac fermions acquire
mass and energy gap.

This is not a case of a trivial band gap. While the electron part of the band is parabolic,
the top part is remarkably linear with a pronounced cusp pointing towards the bottom band.
Usually, when Dirac fermions acquire mass, the upper and lower bands should develop similar
parabolic features with degree of symmetry about the energy of the Dirac point. The experi-

mental data is very different, as the upper band remains linear and cuspy almost to the Dirac
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point energy. To better illustrate this we marked the expected dispersion of the upper band for
the case of symmetric mass acquisition by blue dots in Fig. 3.6(b). Such asymmetric acquisi-
tion of mass was not predicted by theory, to the best of our knowledge, and further theoretical
efforts are needed to explain this highly unusual behavior.

In summary, we studied the electronic properties of newly proposed topological semimetal
LaBi. The dispersion of the surface state resembles a Dirac cone, but upon closer inspection we
can detect an energy gap. The bottom band follows roughly a parabolic dispersion. The top
band has an unusually linear, V-shape dispersion with the tip approaching very closely to the
bottom band. Such abnormal, asymmetric mass acquisition by Dirac fermions suggests that

this compound likely hosts an unusual, yet to be understood topological state.
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CHAPTER 4. THREE-DIMENSIONAL DIRAC SEMIMETAL Cd;As;

4.1 Three-dimensional Dirac state in Cd;As,

4.1.1 Introduction

As we have already discussed in Section 1.3, three-dimensional Dirac semimetals can po-
tentially be parent compounds for Weyl semimetals and topological insulators when time-
reversal or space-inversion symmetry is broken [24]. CdzAsg is a three-dimensional semimetal
with valence and conduction bands touching at discrete points along the I'-Z axis, where the
Dirac points are protected by the C4 rotation symmetry. ARPES measurements have provided
strong evidence for the existence of Dirac dispersion in two-dimensional momentum space
[28, 29, 30, 31] as shown in Fig. 1.7. However, due to the limited photon energy tunability at
the synchrotron radiation centers, only coarse k, measurements with photon energy steps of 4
eV [29], 1 eV [30], and 2 eV [31] were presented.

Measurements utilizing a broad range of photon energies with energy steps of 1 eV (see
Fig. 4.1) reveal the bottom and top dispersion of the Dirac cones along all three momentum
directions with and without potassium doping. In these measurements, only bottom Dirac
cones can be observed in the as-grown crystals. These dispersions can be fitted with only
one set of velocity parameters: V, = 8.47 eV A, Vy, = 8.56 eV A and V. = 2.16 eV A
as shown in Figs. 4.1(a)—(c). In order to observe the top Dirac cone, potassium doping
was deposited. The top Dirac cone dispersions along all three directions are shown in Figs.
4.1(g)—(i). Even though the Dirac dispersions along the k, and k, can be resolved clearly, the
dispersion along the k. direction is still not very sharp [30]. Relatively large photon energy
steps and limited momentum and energy resolutions significantly limit the ability to measure

the Dirac dispersion along the k. direction still remain uncovered. Here, we report the evolution
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Figure 4.1 Dispersion of the three-dimensional Dirac fermions along all three momentum di-
rections in CdzAssy. (a)—(c) Band dispersions measured at a series of k;, ky, and &,
values. Red dotted curves are fitted dispersions by using only one set of velocity
parameters. (d) Illustration of the in situ electron doping using an alkaline metal
dispenser. (e) Three-dimensional intensity plot of the photoemission spectra at the
Dirac point after K surface doping, showing the upper Dirac cone. (f) Stacking
plots of constant-energy contours after K doping. (g)—(i) Band dispersions of the
upper Dirac cone measured after K doping with fitted dispersions. (From Ref.
[30]).

of the Dirac dispersion along k, direction by using tunable laser based ARPES with photon
energy steps of ~ 0.15 eV. With the high precision control of the incident photon energy, and
ultrahigh momentum and energy resolution, we can obtain high quality data showing the Dirac
dispersion along all three momentum directions. Our ultrahigh resolution data helps us better

determine the Fermi velocities of the electrons in this material.

4.1.2 Methods
4.1.2.1 Sample growth.

Crystals of CdsAse were grown by solution growth from a Cd-rich melt [79)].
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4.1.2.2 ARPES measurements.

Samples were cleaved in situ at 40 K under ultrahigh vacuum (better than 1.5 x 10710
Torr), and kept at their cleaving temperature throughout the measurements. The data were
acquired using a tunable VUV laser-based ARPES system, consisting of a Scienta R8000 elec-
tron analyzer. Photon energy dependent data were collected with a tunable photon energy
from 5.77 €V to 6.7 eV with energy step of ~ 0.15 eV. Momentum and energy resolutions were

set at ~ 0.005 A=1 and 2 meV.

4.1.3 Results and Discussion

Fig. 4.2 shows the constant energy contours of CdgAs, measured at various photon energies.
Figs. 4.2(a)—(d) show the ARPES intensity of CdszAsy integrated within 10 meV at the binding

energy of 0, 100, 200, and 300 meV, respectively. We can clearly that the energy contour in
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Figure 4.2 Constant energy contours of CdzAsy. (a)—(d) Constant energy contours of CdzAss
measured at photon energy of 6.7 eV and binding energy of 0, 100, 200, and 300
meV, respectively. (e)-(h) Fermi surface plots (constant energy contours at Er) of
CdsAsse measured using photon energy of 6.70, 6.36, 6.05, and 5.77 eV, respectively.
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the k, and k, plane shrinks continuously with higher binding energy. These plots demonstrate
that the top Dirac cone observed in the measurements. Figs. 4.2(e)—(h) show the Fermi surface
of Cd3sAsy measured at the photon energies of 6.70, 6.36, 6.05, and 5.77 eV, respectively. No
clear trend can be concluded from the photon energy dependent Fermi surface measurements
except for some variations in ARPES intensity and shape. On the other hand, the band
dispersions at various photon energies provide essential information of the three-dimensional
Dirac state in this material. In the following, we will show detailed photon energy dependence

measurements of CdgAss.
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Figure 4.3 Band dispersions of Cd3Asy measured using various photon energies. (a)—-(f) Band
dispersions of CdgAss measured using photon energy of 6.70, 6.46, 6.20, 6.05,
5.90, and 5.77 eV, respectively. The red dashed line marks the bottom tip of the
dispersions. (g) Band dispersion of Cd3zAsy measured at photon energy of 6.70 eV.
(h) Second derivative of (g). (i) Momentum dispersion curves (MDCs) of (h) with
constant separations. The red dashed lines are peak positions of the MDCs fitted
with double-Lorentzian function.
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Fig. 4.3 demonstrates the three-dimensional Dirac state in Cd3Asy measured at the tem-
perature of 40 K. Figs. 4.3(a)—(f) show the ARPES intensity measured at the photon energy
of 6.70, 6.36, 6.20, 6.05, 5.90, and 5.77 eV, respectively. A Dirac dispersion is clearly seen with
the bottom almost touching the top of the valence band in Fig. 4.3(a). As the incident photon
energy decreases from 6.70 to 5.77 eV, the Dirac dispersion evolves from linear to parabolic, as
the cut in momentum space moves away from the Dirac point and instead glides along side of
the cone. Furthermore, the separation between the bottom of the Dirac dispersion and the top
of the valence band also increases. The red dashed line in Figs. 4.3(a)—(f) connects the bottom
tip of these dispersions from which velocity v, = 1.2 eVA can be estimated, in agreement with
the results in Ref. [30]. To estimate the Fermi velocity of the electrons in the k, and k, di-
rections, we have plotted the second derivative [Fig. 4.3(h)] of the ARPES intensity measured
using the photon energy of 6.70 eV [Fig. 4.3(g)]. In this plot, a nice linear dispersion is clearly
visible with V, = V,, = 4.9 eV A. These results are consistent with the results from Ref. [30]
of 5 eVA and are significantly smaller than the value from Ref. [29] of 10 eVA and Ref. [31] of
7.5 eVA. However, we should also note that due to the limited range of the photon energies in
our laser system, we cannot probe the second Dirac point in the Brillouin zone along the I'-Z
direction as presented in other measurements performed using synchrotron radiation.

In conclusion, we verified the three-dimensional character of the Dirac state in CdszAss
by using tunable laser ARPES with fine photon energy steps of ~ 0.15 eV. Our results show
that the Fermi velocities along the k, and k, directions are roughly 4.9 eVA and along the k,
direction 1.2 eVA. Since the Dirac state in CdzAss is protected by crystal symmetry, it is a
promising candidate for a parent compound of Weyl semimetals and topological insulators by

inducing breaking of the time-reversal or space-inversion symmetry.

4.1.4 Acknowledgements

Funding agencies are the same as presented in Section 3.1.4.
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CHAPTER 5. TYEP-1I1 WEYL SEMIMETAL CANDIDATE WTe,

WTey has attracted great interest due to its extremely large magnetoresistance at low
temperatures and high magnetic fields that do not show any sign of saturation [100]. This
material was also proposed to be a type-II Weyl semimetal candidate, which has the Weyl
nodes emerging at the contact points of the electron and hole pockets [44]. In this chapter,
we will describe results of detailed measurements of the electronic structure of WTes: the
temperature-induced Lifshitz transition in Section 5.1, the observation of Fermi arcs on the

surface in Section 5.2, and its three-dimensional bulk electronic structure in Section 5.3.

5.1 Temperature-Induced Lifshitz Transition in WTe,

The following context is an extended version of the published work in

Phys. Rev. Lett. 115, 166602

5.1.1 Introduction

Traditional phase transitions are driven by spontaneous symmetry breaking and the contin-
uous growth of an order parameter below the transition, as in magnets and superconductors. In
addition, it is possible to have phase transitions in topological materials that do not break any
symmetries but can be described by topological invariants. Here we describe a fundamentally
different type of phase transition in fermionic systems, a Lifshitz transition. Such Lifshitz tran-
sitions hold the key to new types of topological phase transitions [101, 102]. Lifshitz transitions
driven by chemical doping or substitution [103, 104] or pressure [105, 106] are common and

have been observed previously.
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Figure 5.1 Band structure and Lifshitz transitions in Ba(Fe;_;Cogz)2Ass. (a)—(h) Band dis-
persion for eight different doping levels at T' =20 K and photon energy of 35 eV.
The red vertical line roughly marks the Lifshitz transition point. (i) Energy dis-
tribution curve at Z for each doping level. (j) and (k) Evolution of binding energy
for the top of the hole band and the bottom of the electron band at the zone center
with respect to cobalt doping. (From Ref. [104])

Fig. 5.1 shows the band dispersion analysis for the Lifshitz transitions in Ba(Fe;_;Co,)2Ass.
Figs. 5.1(a)—(h) show the band dispersion of Ba(Fe;_,Co,)2Ass measured at the temperature
of 20 K and photon energy of 35 eV with eight different doping levels ranging from x = 0.10
to x = 0.42. As the cobalt doping level increases, the hole band at the Z point continuously
moves down and the top of the hole touches the Fermi level at doping level of x = 0.195 as
shown in Fig. 5.1(d). An electron band emerges as the doping level reaches x = 0.27 and
keeps moving down to higher binding energies with increased doping. This dramatic change of
Fermi surface topology from a hole pocket to an electron pocket at the critical doping level of
0.195 < z. < 0.27 demonstrates the doping-induced Lifshitz transition in Ba(Fe;_,Co;)2Ase
[104]. In this section, we provide evidence for a new type of such transition in WTey that is

driven by temperature.
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From the giant magnetoresistance (MR) in Fe/Cr superlattice [107, 108], to colossal MR
in manganese oxide materials [109, 110, 111], these phenomena have opened a new era of
applications in magnetic field sensors, read heads in high density hard disks, random access
memories, and galvanic isolators [112]. Recently, extremely large MR has been obsrved in PtSny
[67], CdsAse [113], NbSbe [114], and WTey [100]. In both PtSngy and WTes, the MR shows
no sign of saturation and reaches an order of at least 10°% at low temperature. The MR in
WTesy also displays large 3D anisotropy [115, 116] and is linear up to 60 T [115, 117]. Different
mechanisms have been proposed to explain MR in these materials [67, 113, 100, 118, 119].
However, the exact origin of MR in these materials remains an open question.

WTey has been known for several decades now [120], and a phenomenological three-carrier
semimetal band model [120, 121], density-functional-based augmented spherical wave electronic
structure calculations, and early, relatively low resolution ARPES [122] have supported the
semimetallic nature of this material. Recent quantum oscillation [123, 124, 125] results have
revealed the presence of four small electron and four small hole pockets of roughly similar size
consistent with ARPES data [118]. These findings are consistent with carrier compensation
mechanisms as the primary source of the MR effect [100, 119]. Furthermore, ARPES studies
[118] also reported a change of the size of the Fermi pockets between 20 and 100K. More
recently, Jiang et al. [126] have proposed that protection from backscattering could play a
role in the large nonsaturating MR of WTesy in the presence of strong spin-orbital coupling
effects. Amazingly, Kang et al. demonstrated that a suppression of the magnetoresistence with
pressure in this material leads to emergence of superconductivity with respectable T, of ~6.5K
[106]. This occurs in the absence of structural transition, and is caused by pressure-induced
Lifshitz transition (suppression of hole pockets), as is evident from Hall data [106].

The strength of our Letter is the combination of temperature-dependent ultrahigh res-
olution, tunable vacuum ultraviolet (VUV) laser based ARPES [69], and temperature- and
field-dependent resistivity and thermoelectric power (TEP) measurements, that together with
electronic structure calculations provide new insights into the mechanisms driving the phenom-
ena we observe. The electronic structure calculations show, and our data are consistent with,

the presence of two pairs of hole pockets and two pairs of nearly degenerate electron pockets
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along the X — I' — X direction. Systematic temperature-dependence measurements reveal for
the first time a Lifshitz transition, i.e., a change of the Fermi surface topology, close to 160 K,
above which both pairs of hole pockets vanish. We further show that this transition is associ-
ated with a change of slope observed in the derivative of the temperature-dependent TEP. We
demonstrate that the shift of the chemical potential (1) with temperature, responsible for the
Lifshitz transition, is caused by the close proximity of electron and hole densities of states near
the Fermi energy. This result is applicable to other important semimetallic systems, such as

pnictides, 3D Dirac semimetals, and Weyl semimetals.

5.1.2 Methods
5.1.2.1 Sample growth and transport measurements.

Whereas most of the previous measurements have been carried out on WTey crystals grown
via chemical vapor transport using halogens as transport agents [100, 127], we have grown
WTe, single crystals from a Te-rich binary melt. High-purity, elemental W and Te were placed
in alumina crucibles in W;Tegg and WyTegg ratios. The crucibles were sealed in amorphous
silica tubes and the ampoules were heated up to 1000 °C over 5 h, held at 1000 °C for 10
h, then slowly cooled to 460 °C over 100 h, and finally decanted using a centrifuge [92]. The
resulting crystals were blade- or ribbonlike in morphology with typical dimensions of 3 x 0.5
x 0.01 mm with the crystallographic ¢ axis being perpendicular to the larger crystal surface;
the crystals are readily cleaved along this crystal surface. Temperature- and field-dependent
transport measurements were performed in a Quantum Design Physical Property Measurement
System for 1.8 < T < 350 K and |H| < 140 kOe. The TEP measurements were performed by

a dc alternating temperature gradient technique [128].

5.1.2.2 ARPES measurements.

Samples were cleaved in situ at 40 K in UHV. The data were acquired using a tunable VUV

laser ARPES [69]. Momentum and energy resolution were set at ~0.005 A~! and 2 meV.
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5.1.2.3 Calculation method.

For first-principles band structure calculations, we used the Perdew-Burke-Ernzerhof parametriza-
tion of the generalized gradient approximation [98] and the full-potential (linearized) augmented
plane-wave plus local orbitals [FP-(L)APW+LO] method including the spin-orbit coupling as
implemented in the WIEN2K code [129]. Experimental crystal structure taken from Ref. [130]
was used. The muffin-tin radii for W and Te atoms ry and 7., were set to 2.4 and 2.38
a.u., respectively. The maximum modulus for the reciprocal lattice vectors K., was chosen
so that rpeKipar = 9.00. TEP was calculated using a 52 x 29 x 13 k-point mesh with the

BOLTZTRAP code [131].

5.1.3 Results and Discussion
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Figure 5.2 Temperature-dependent resistivity and field-dependent magnetoresistance mea-
surements of WTes.

Temperature-dependent resistivity and field-dependent magnetoresistance.— Fig. 5.2 shows
the resistance of the samples as a function of temperature and magnetic field measured in a
standard, linear four probe configuration. The black curve is the resistivity data with residual
resistivity ratio of ~ 907, demonstrating excellent sample quality grown from Te-rich binary

melt. The red curve presents the magnetoresistance ratio with respect to the applied magnetic
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dence of TEP. Inset shows first derivative with arrow marking the change of slope
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line). In case (ii), u(T") calculated from the actual electronic structure is scaled
by a factor of 3 for the best experimental fit and shows a variation of 45 meV for
temperatures between 0 and 300 K. (c) Generalized Kohler plot. Arrow marks the
point below which the Kohler rule is violated (7' < 60 K). Inset shows temperature
dependence of the resistance measured for magnetic field of 0, 50, 90, and 140 kQe.

field. The magnetoresistance reaches up to 6.5 x 10°% at the temperature of 1.8 K and magnetic

field of 90

kOe when field is applied along the ¢ axis of the sample (H | ¢). The magnetore-

sistance measured in our sample is in the same order as reported in the original literature

[100].

Thermoelectric power.—The field dependence of the TEP at 2.2 K in WTes shows very

clear quantum oscillations [Fig. 5.3(a)], as was the case for PtSny [67]. FFT analysis [Fig.

5.3(a) inset] gives F'' = 0.93 MOe, F? = 1.31 MOe, F?3 = 1.47 MOe, and F* = 1.70 MOe, in
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excellent agreement with the values found from Shubnikov-de Hass data (Fig. S2 in Supplement
Material). Peaks F'! and F** are attributed to hole pockets, while peaks F? and F? are due to
nearly degenerate electron pockets [123]. The peak labelled F° is though to be a result of the
magnetic breakdown of F! and F* low field orbits [123].

The temperature dependence of the TEP in Fig. 5.3(b) shows two features that are note-
worthy: (a) a monmonotonic dependence of the TEP on temperature with a local maximum at
~30 K and (b) a kink at 7" ~ 160 K marked by an arrow in the inset of Fig. 5.3(b) observed in
the rate of change of the TEP dS/dT as a function of temperature. This fact will be important
when we investigate the electronic structure using ARPES. The solid greed and blue lines are
calculated TEP and are discussed later. We also note that the here-reported feature in TEP
occurs at very similar temperature to one where the large magnetoresistance is suppressed
[100].

Temperature- and field-dependent magnetoresistance.—The temperature and field depen-
dence of the extraordinarily large MR of WTes are shown in Fig. 5.3(c). The generalized
Kohler’s plot shows that there is fairly good scaling of the data with an exponent of ~1.98 at
lower temperatures. As the temperature is increased, Kohler’s scaling breaks down, as was also
previously suggested [115], at the field indicated by the vertical arrow in Fig. 5.3(c); at this
point temperatures range from 70 to 140 K for scans at different fields. We now proceed to
elucidate the electronic origin of the change of the slope of The TEP and violation of Kohler’s
rule.

In The data discussed below, we provide evidence for two pairs of hole pockets and two
pairs of electron pockets in ARPES. We then show the effect of increasing temperature, and
how that enhances the electron pockets and finally the disappearance of the hole pockets, i.e.,
the Lifshitz transition observed at 160 K.

ARPES Fermi surface and band dispersion. —In Fig. 5.4(a) we show the ARPES intensity
along high-symmetry directions in the Brillouin zone, integrated within 10 meV about the
chemical potential, with the high intensity contours marking the location of the Fermi surface
sheets. By comparing with our electronic structure calculations in Fig. 5.5(a), we observe

that the ARPES data clearly resolved the two pairs of hole pockets; however, the separation
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Figure 5.4 Fermi surface plot and band dispersion measured at T' = 40 K and photon energy
of 5.77 eV. (a) Fermi surface plot of ARPES intensity integrated within 10 meV
about the chemical potential. Black and red arrows point to electron and hole
pockets, respectively. (b)-(f) Band dispersion along cuts 1-5. Dashed lines in (b)
mark the two left branches of the two hole bands.

between concentric electron pockets is too small and they appear as a single contour. The top
of the band at I' is located below the chemical potential for all studied photon energies and
temperature down to 20 K, as shown in Fig. S6 of the Supplemental Material.

In the band dispersion in Fig. 5.4(b), only the right branch of the electron band is clearly
visible due to matrix elements. This is followed by two crossings of the left sides of the hole
bands (marked by dashed lines), and the coinciding crossings of the right branch of both of the
hole bands. At the center of the BZ, the top of the hole band is located just below the chemical
potential; thus, there is no hole pocket at the center of the zone. Detailed band dispersions

along vertical cuts are shown in Figs. 5.4(c)-5.4(f). Figure 5.4(c) shows that the bottom of
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the electron band joins with the top of a lower band and appears just like the structure of a
Dirac state [132] approximately 70 meV below the chemical potential. This is different from
calculations shown in Fig. 5.5(a), where the bottom of the electron pocket is separated from
the band below by a 200 meV gap. Cut 3 and cut 5 reveal that the dispersions of the hole
pockets are nearly degenerate at this location.

T-dependent ARPES and evidence for Lifshitz transition.—We now proceed to describe one
of the more intriguing electronic properties of this material, a restructuring of the Fermi surface
with increasing temperature, that also has consequences for the unusual transport properties.

Fig. 5.5(a) shows the calculated band structure along the I' — X direction. The band
calculation predicts a pair of hole pockets and a doubly degenerate electron pocket between I
and X, in agreement with ARPES data presented above and with previous calculations [100].
In Figs. 5.5(b) and 5.5(c) we show the Fermi surface map measured at 40 and 160 K. The
hole pockets (marked by red arrows) shrink from two circles to a spot of intensity and electron
pockets (marked by black arrow) expand with increasing temperature. We detail this behavior
by plotting ARPES intensity divided by the Fermi function along the vertical cut at the center
of the hole pocket in Figs. 5.5(d)-5.5(k). A clearly visible hole band moves down in energy and
by 160 K its top touches the chemical potential, and at a temperature of 280 K the top of this
band has sunk below the chemical potential.

To quantify this effect we have plotted the Energy Distribution Curves (EDC) divided by
the Fermi function at the center of the hole pocket for several temperatures in Fig. 5.5(1) and
extracted the energy at the top of the hole band from a Gaussian fit in Fig. 5.5(m). Our
data show that the top of the hole band moves down in energy upon increasing temperature
from 18 meV at 120 K to -7 meV at 280 K. We have also extracted the area of the hole
pocket by measuring the separation between Momentum Distribution Curves (MDC) peaks as
a function of temperature in Fig. 5.5(m). We see that the top of the hole band moves below
the chemical potential and the area of the hole pocket vanishes above ~160 K, signalling the

Lifshitz transition.
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Figure 5.5 (a) Calculated band structure along I' — X symmetry direction. Blue and red

dashed lines mark the values of chemical potential determined from ARPES data at
low and high temperature, respectively. (b) Fermi surface plot of ARPES intensity
integrated within 10 meV about the chemical potential measured at T' = 40 K and
5.77 eV. Black and red arrows point to electron and hole pockets, respectively.
(c) same as (b) but for T = 160 K. (d)-(k) Temperature dependence of the band
dispersion at the hole pocket [along cut 1 in Fig. 1(a)] divided by the Fermi
function. (1) EDCs divided by Fermi function at the center of the hole pocket for
several temperatures. Black line marks the energy of the peak. (m) Temperature
dependence of the area of the hole pocket and energy of the top of the hole band.
Purple arrows in (a), (1), and (k) point to a band located above the hole band.
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These data provide an archetypical example of a temperature-induced Lifshitz transition
since they demonstrate a change of the Fermi surface topology upon heating. Chemical-
substitution-induced Lifshitz transitions are quite common and were previously observed in
Ba(Fe;_;Coz)2As2 at Co concentrations of 3.8 %, 11 %, and 20 % [103, 104]. On the other
hand, a temperature-induced Lifshitz transition in the absence of a structure or magnetic phase
transition is extremely rare. The temperature-dependent TEP, in particular the change of slope
of 05/0T at ~160 K (Fig. 5.3, inset), is consistent with the existence of a temperature-induced
Lifshitz transition, as TEP is expected to be very sensitive to the changes in the Fermi surface
topology [133]. This conclusion can be further confirmed by the theoretical calculations as
shown in the following.

T dependence of chemical potential pu(T' ).—The dramatic temperature-dependent change in
relative size of the electron and hole pockets manifests itself in other measurements over wider
temperature ranges, as we discuss below. Going back to Fig. 5.3(b), we compare the TEP
measurements with our calculations of the x component of TEP. We notice that for a fixed
w(T) = 0, the agreement is rather poor: the TEP has a large positive peak at low temperatures,
and is almost temperature independent above ~50 K [blue curve in Fig. 5.3(b)], quite unlike
the behavior seen in the experimental TEP data.

We next calculate the temperature-dependent u(7"), by imposing a fixed total number of
electrons across all bands at all temperatures. In conventional metals, u does not change
appreciably for kgT <« Ep. However, in WTes and other semimetals, where the top of the
hole band and bottom of the electron band are in close proximity (few tens of meV) to the
chemical potential, significant changes of u(T") with temperature can occur; e.g., in WTes we
calculate that chemical potential should shift by 14 meV between T" = 0 K and T" = 300
K. We have repeated the calculation of TEP using a scaled pp(T = 300 K) = 45 meV to
account for possible renormalization effects and match the experimentally observed shits. We
then use such obtained pup(T) to calculate the  component of TEP. When the temperature-
induced shifts of the chemical potential are taken into account, the absolute value of TEP
increases monotonically at high temperatures with qualitatively improved agreement with the

measurements [green line in Fig. 5.3(b)]. Although the calculation does not take into account
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the thermal expansion, phonon drag [134], and assumes constant relation time (i.e., ignores
T-dependent scattering), it does reproduce the key features of the TEP data: the positive peak
at low temperatures and the correct trend at higher temperatures. The breakdown of Kohler’s
rule in MR shown in Fig. 5.3(c) can also be understood in terms of the changing ratio of electron
and hole carriers implied by the data in Fig. 5.5(m) and caused by the temperature-induced
shift of u(T").

In summary, we discovered the temperature-driven Lifshitz transition in highly magnetore-
sistive WTey. By correlating spectroscopic studies with electronic structure calculations, we
find that the chemical potential can be strongly temperature dependent in semimetallic mate-
rials such as WTey, which in turn can strongly affect their magnetotransport properties [100]
by driving a Lifshitz transition. Such shifts in g with temperature were previously reported
in pnictides’ high-temperature superconductors [135, 136], where both electron and hole pock-
ets were found in close proximity to the chemical potential. The mechanisms described here,
the presence of small electron and hole pockets, strong chemical potential shifts, and Lifshitz
transitions, are likely to be relevant for other systems, such as 3D Dirac semimetals, Weyl
semimetals, and thermoelectric materials. In the presence of interactions, the restructured
Fermi surfaces could change the nesting conditions and drive various magnetic, charge-ordered,

and superconducting transitions in these classes of dichalcogenide and related materials.
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5.2 Observation of Fermi arcs in the type-II Weyl semimetal candidate

WTeg

The following context is an extended version of the published work in

Phys. Rev. B 94, 121113(R)

5.2.1 Introduction

The discovery of graphene [132] opened the possibility to study relativistic quasiparticles
that can be realized in solids. The occurrence of Dirac dispersion attracted great interest and
triggered searches for novel topological states in three-dimensional (3D) systems [20, 137]. Dirac
semimetals with bulk 3D Dirac points protected by crystal symmetry have been proposed to
exist in [-cristobalite BiOgy [24] and A3Bi (A = Na, K, Rb) [27] and experimentally confirmed
in NagBi and CdsAsg [26, 28, 29, 30, 31, 32, 79]. This led to the observation of novel topological
quantum states with Fermi arcs [35, 50|, which were first observed in NagBi [138]. Subsequently,
another type of massless particle-the Weyl fermion [139]-was predicted to exist in a family of
noncentrosymmetric transition-metal monophosphides [42, 43]. Angle-resolved photoemission
spectroscopy (ARPES) measurements on TaAs [37, 38, 39, 40] and NbAs [41] confirmed the
existence of Fermi arcs connecting Weyl points of opposite chirality. Recently, a new type of
Weyl semimetal (type-II Weyl semimetal) was proposed to possess Weyl points emerging at
the boundary between electron and hole pockets [44]. WTey [44] and MoTey [45, 140] were
among the first predicted to be type-II Weyl semimetals with different Fermi arc lengths. By
doping Mo in WTesq, the Fermi arc length (or the topological strength) can be continuously
tuned [141]. Signatures of topological Fermi arcs have been reported in Mo-doped WTey by
using pump laser techniques to access the states above the Fermi level [142]. Spectroscopic
evidence for type-II Weyl semimetal states in MoTe, was reported and novel “track states”
were predicted by theoretical modelling and density functional theory calculations [143] and
subsequently discovered by ARPES [47]. In addition to W(Mo)Tey family [142, 47, 144, 145,
146, 147], YbMnBis [85] and LaAlGe [86] were also reported to display signatures of type-II

Weyl semimetal states.
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WTes has attracted great interest due to its extremely large magnetoresistance at low tem-
peratures and high magnetic fields [100], which resemble those of the earlier studied PtSny
[67, 148]. Superconductivity has been reported to emerge from a suppressed magnetoresistive
state by applying high pressure [106, 149]. Interestingly, a temperature induced Lifshitz tran-
sition has also been observed in WTe, caused by dramatic shifts of the chemical potential with
temperature [84]. Type-II Weyl semimetal states have also been proposed to exist in WTey

[44].

Figure 5.6 Topological surface state in WTes. (a) Spectral function of the (001) surface. The
Fermi level (green line) is set to be between the Weyl points. (From Ref. [44])

Based on the band structure calculations, one of the four pairs of Weyl points resides at
momentum points k1 = (0.1212, 0.0454, 0) and ke = (0.1218, 0.0382, 0), which are very close
to each other and hard to resolve by ARPES measurements. Both points are located slightly
(0.058 eV and 0.052 eV, respectively) above the Fermi energy, making them difficult to observe
by ARPES measurements. Fortunately, distinct topological surface states emerging from the
projections of the Weyl points on the surface can be easily resolved by ARPES measurements.
Due to the reflection symmetries in this material, Weyl points of opposite chirality are projected
on top of each other on the (100) and (010) surfaces, which results in no topological surface
states on these two surfaces. On the other hand, all the Weyl points project onto distinct

points on (001) surface. Fig. 5.6 illustrates the spectral function of the (001) surface, where
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the Fermi level (green line) is set to be between the Weyl points. A Fermi arc emerging from
the Weyl point at the hole pocket with non-zero Chern number connects to the Weyl point of
opposite Chern number on the inside of the electron pocket. Surface states connecting electron
and hole bands are clearly visible in Fig. 5.6 [44].

Although the band structures and Fermi surface of WTes have been reported previously
[118, 84, 150], no surface states were clearly observed in these studies. Here, we present the
study of the electronic structure of WTey by using an ultrahigh resolution, tunable, vacuum
ultraviolet (vuv) laser-based ARPES system. We observed two pairs of Fermi arcs that link the
electron and hole pockets. These features are consistent with the theoretical prediction that
this material is a host of the type-II Weyl semimetallic state. Our results, together with reports
of similar states in MoTey [142, 47], point to the (W, Mo)Te; systems as exciting platforms for
tuning the properties of Weyl fermions [141]. WTey, in particular, is a model system, where

the topological properties can be turned on and off and tuned by the use of strain.

5.2.2 Methods
5.2.2.1 Sample growth.

Sample growth is the same as described in Section 5.1.2.1.

5.2.2.2 ARPES measurements.

Samples for ARPES measurements were cut to roughly a square shape (approximately
300 x 300 pm) and cleaved in situ at 16 and 40 K under ultrahigh vacuum (UHV). The
data were acquired using a tunable vuv laser ARPES system, consisting of a Scienta R8000
electron analyzer, picosecond Ti:sapphire oscillator, and fourth harmonic generator [69]. Data
were collected with tunable photon energies from 5.3 eV to 6.7 eV. Momentum and energy
resolution were set at ~0.005 A~! and 1 meV, respectively. The size of the photon beam on

the sample was set at ~ 30 pm.
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5.2.3 Results and Discussion

The schematic drawing of the crystal structure of single unit cell layer of WTes is shown
in Fig. 5.7(a). This structure breaks the inversion symmetry due to slight differences in the
bond lengths between tungsten and tellurium within the unit cell. This results in the tellurium
layer on each side of tungsten being inequivalent. We label those as “A” and “B”. We indeed
observed two distinct types of electronic structures, but even for a single cleave there were often
two different domain types present. This is illustrated in panels (b)—(e) where we show the
picture of the sample after cleaving and data along cut #4 (marked in panel h, between the
hole and electron pockets) for three spots are plotted in panels (c)—(e). The data from the part
of the sample marked by a red circle in (b) shows sharp electron like dispersion near the Ef.
The data near the edge of the sample [green and blue circles in (b)] partially (d) or completely
(e) lacks this feature. The two domains have different Fermi surfaces and band dispersions as
demonstrated in Fig. 5.7. The Fermi surface of type N (normal) domain is shown in panel
(f) and band dispersion along the I' — X symmetry direction is plotted in panel (g). These
data are very similar to what was previously reported [84]. Figure 5.7(h) shows the Fermi
surface plot for the type T (topological) domains in the first Brillouin zone, integrated within
10 meV about the chemical potential, with the high intensity contours marking the location of
the Fermi surface crossings. The presence of Fermi arcs that connect the bulk hole and electron
pockets is clearly visible. This is further confirmed by examining the band dispersions along
cuts #1-#6 as shown in Figs. 5.7(i)-5.7(n). In addition to the two nearly degenerate electron
bands and two branches on the left side of the hole pockets (marked by the red dashed lines),
a high intensity, sharp band dispersion can be clearly seen, that connects the bottom of the
electron pockets and the top of the hole pockets. The data along the y-axis cuts shown in Figs.
5.7(1)-5.7(n), for the type T domains look almost the same as the type N domains [84], except
for cuts #3 and #4. Here, an additional electron band s present that results in the formation

of the Fermi arcs seen in Fig. 5.7(h). We will examine this feature in more detail below.
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Figure 5.7 Two types of Fermi surface plot and band dispersion measured at photon energy of
6.7 eV. (a) Schematic drawing of the crystal structure of single unit cell layer with
two possible cleaving sites marked by arrows. Note that these are not equivalent
to “N” and “T” data types. (b) Optical image of the cleaved sample with three
measured regions marked by circles. (¢)—(e) Data measured in red, green, and blue
regions marked in (b), respectively. (f) Type “N” Fermi surface plot of ARPES
intensity integrated within 10 meV about the chemical potential measured at 7' =
40 K. (g) Band dispersion along white dashed line cut in (f). (h) Type “T” Fermi
surface plot of ARPES intensity integrated within 10 meV about the chemical
potential measured at T'= 16 K. (i)—(n) Band dispersions along cuts #1-#6 in
(h). Red dashed lines in (i) mark the electron pocket and two left branches of the

hole pockets.

The data from more than a dozen samples had both features present on cleaved surfaces.
We also cleaved and measured the same piece of single crystal on both sides. We found the
presence of both domains on each side. The presence of two types of domains on the same
side of the sample is inconsistent with the scenario of two different surface terminations, as for
a given piece of sample, cleaving it on one side should consistently yield either type “A” or
“B”, but not both [see Fig. 5.7(a)]. Residual strain introduced by cutting and/or cleaving of
the samples is responsible for the two different electronic structures. This is consistent with
the theoretical prediction that the topological character of WTes is highly sensitive to pressure

and strain [44]. In particular, it was theoretically demonstrated that stretching the crystal



98

along the a and ¢ axis causes annihilation of the Weyl points and transition from topological
to trivial semimetal. In type N (normal) domains the Fermi surface consists of two pairs of
electron pockets and two pairs of hole pockets in agreement with previous studies [84, 118, 150]
and bulk band calculations, where the Fermi arcs are absent. Those results are in contrast to

the results from type T (topological) domains.
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Figure 5.8 Fermi surface plot and band dispersion measured at 7' = 16 K and photon energy
of 6.7 eV. (a) Fermi surface plot of ARPES intensity integrated within 5 meV about
the chemical potential. The red dashed line marks the contour of the surface state
(SS) and the black dashed lines mark the contour of the two bulk hole pockets.
(b)—(j) Band dispersion along cuts #1-#9. Dashed lines in (b) mark the electron
pocket and the two hole pockets. The white arrows point to the location of the SS.
The red arrows in (j) point to the locations of the two hole bands crossing Fermi
level.
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Figure 5.8 shows details of the Fermi sheets and band dispersion of what we will show is
an unusual surface state. In panel (a) we plot the ARPES intensity (integrated within 5 meV
about the chemical potential) close to the momentum region, where the surface state connects
to the hole pocket. The red dashed line and the black dashed lines in Fig. 5.8(a) mark the
outline of the surface electron pockets and two almost degenerate hole pockets, respectively.
The band dispersion along cut#1 is shown in Fig. 5.8(b), where the white arrow points to
the location of the surface state. Detailed band dispersions along the white vertical cuts are
shown in Figs. 5.8(c)-5.8(j). The bottom of this surface band dips only slightly below the Er
demonstrating its electron character. This band is much sharper than the lower energy broad,
bulk hole bands, consistent with its surface origin. As we move towards the zone center, the
electron band shrinks and moves closer to the Fermi level, while the lower hole bands move
up. The Fermi arc surface state touches the hole bands at cut#5 [panel (f)] and is completely
swallowed by the lower hole bands along cut#6 [panel (g)]. After cut#6, the hole bands
continue moving up and finally cross the Fermi level and form a pair of hole pockets. We can
clearly see the separation of the almost degenerate hole pockets along cut#9 [panel (j)], as
marked by the red arrows pointing at the crossing points.

The merging between Fermi arcs and bulk electron pockets is shown in Fig. 5.9. Panel
(a) shows the ARPES intensity integrated within 10 meV about the chemical potential and
measured at T' = 160 K. The black dashed line and red dashed line mark the location of the
bulk electron pockets and Fermi arc band, respectively. In order to better show the details of
the bulk electron pockets, we have plotted the ARPES intensity divided by the Fermi function
along the white vertical cuts#1-#8 in Figs. 5.9(b)-5.9(1). At cut#1 [panel (b)], a single
electron pocket is clearly observed that touches the top of the lower hole bands and forms the
beginning of two Fermi arcs on either side. As we move away from the hole pockets, the band
responsible for Fermi arcs moves to higher binding energy. Slightly further (cut#2) a bulk
band becomes visible still above the Er. Both bands are very clearly visible starting from cut
#3, where they are indicated by white arrows and labelled. Closer to the center of the bulk
electron pocket, the two bands eventually merge together. The detailed band evolution in Figs.

5.8 and 5.9 demonstrates that the Fermi arc states connect the bottom of the electron pockets
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Figure 5.9 Fermi surface plot and band dispersion measured at T' = 160 K and photon energy
of 6.7 eV. (a) Fermi surface plot of ARPES intensity integrated within 10 meV
about the chemical potential. The red dashed line marks the contour of the SS
and black dashed line marks the contour of the bulk electron pocket. (b)—(i) Band
dispersion along cuts #1-#48. The white arrows point to the location of the SS
and the bulk state (BS).

and the top of the hole pockets, consistent with the previous theoretical prediction [44].

To verify the surface origin of the Fermi arc bands, we have carried out photon energy
dependent measurements and present them in Fig. 5.10. Panels (a)—(c) show the ARPES
intensity integrated within 10 meV about the chemical potential measured at photon energies
of 6.7, 6.36, and 6.05 eV, respectively. We can clearly see that the shape of the bulk electron
pockets and hole pockets change slightly with photon energy, but the Fermi arcs that connect
them remain sharp and its central part does not. To better quantify our results, We have

plotted the contour obtained by fitting to the data of the Fermi arc band in Fig. 5.10(d).
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Figure 5.10 Fermi surface plot measured at 7' = 40 K. (a)-(c) Fermi surface plot of ARPES
intensity integrated within 10 meV about the chemical potential measured at
photon energies of 6.7, 6.36, and 6.05 eV, respectively. (d) Fermi surface contour
extracted from peak positions of momentum dispersion curves. (e) Scanning
electron microscopy (SEM) image of cleaved sample surface. The red arrow points
to the flat area close to the sample center, while green arrows point to area away
from the center where buckling and thus strain is present.
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The outlines of the central section of the Fermi arcs remains the same for all three photon
energies. As discussed previously [44, 141, 142], the electronic structure of WTeg and MoTey
may change significantly even if a small change in the lattice parameters (e.g., strain) is con-
sidered in band structure calculations. By performing high precision SEM measurements using
various backscattering geometries we found that close to the center of the sample, the surface
is relatively flat. Closer to the edges of the cleaved sample, where ARPES data shows mostly
N-type domains, we observed buckling of the sample surface which demonstrates the presence
of strain as shown in Fig. 5.10(e). These results are strong evidences that strain/pressure could
be the cause of the topological phase transition in this material.

In summary, we have used ultrahigh resolution, tunable, laser-based ARPES to study the
electronic properties of WTes, a compound that was predicted to be a type-II Weyl semimetal.
We found two different cleave types that have distinct electronic structure. The first type is
consistent with previous studies, while the second type displays clear Fermi arcs that connect
the hole and electron pockets. The coexistence of the trivial and topological domains is most
likely due to the presence of inhomogeneous strain, which can be tune topological properties of
this material [44]. The Fermi arcs reported here are long sought after signatures of the type-1I
Weyl semimetallic state that ere predicted by theory [44].

Note added. Recently, we become aware of results presenting ARPES data that are con-
sistent with ours [81, 82, 151]. We note that Bruno et al. [81] considers the observed surface
state topologically trivial and inconclusive to establish the presence of a type-II Weyl state.
While it is true that Weyl points in WTes are too high above the Er to be observed directly
with ARPES, given the rarity of Fermi arcs in solid state and good agreement between data
and theory prediction we argue that our interpretation is a very reasonable one. We are not

aware of any other theory that could explain the presence of Fermi arcs in a trivial material.
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5.3 Three-dimensionality of the bulk electronic structure in WTe,

The following context is to be submitted to peer-reviewed journal

5.3.1 Introduction

Extremely large magnetoresistance, i.e., dramatic increase in the resistance of a material at
low temperatures and high magnetic fields, has attracted great interest recently [67, 100, 113].
Materials with this type of property can be potentially very useful for applications such as low
temperature magnetic field sensors. Among the first few extremely large magnetoresistive ma-
terials, PtSny [67] has been reported to host unusual Dirac node arc structures, that is the Dirac
dispersion extending in momentum space in one dimension and gapped out at both ends [148].
CdsAsy [113] was shown to be one of the first three-dimensional Dirac semimetals with linear
energy momentum dispersion along all three directions [26, 29, 30, 32, 79]. WTey [100] has
been reported to exhibit pressure-induced superconductivity [106, 149], and pressure-induced
Lifshitz phase transition was proposed to explain the emergence of the superconductivity [106].
Surprisingly, temperature-induced Lifshitz transition was recently observed in WTey. The sig-
nificant shift of the chemical potential with moderate temperature change is caused by the close
proximity of electron and hole densities of states near the Fermi energy [84]. More interestingly,
WTey was the first material proposed to be a type-II Weyl semimetal candidate [44]. Unlike
the type-I Weyl semimetal [42, 43, 37, 38, 39, 40, 41], type-II Weyl semimetals have the Weyl
points emerging at the touching points of the electron and hole pockets [44]. Recently, multiple
ARPES measurements have been reported to have observed the Fermi arc surface states in
these compounds [152, 47, 153, 144, 145, 146, 147, 81, 82, 83, 151]. Photon energy dependence
measurements have been used to demonstrate the two-dimensionality (surface origin) of the
Fermi arc states in WTey [81, 83]. However, detailed measurements of three-dimensional bulk
electronic structures are still lacking.

ARPES has been known as the most direct technique to probe the electronic structures
of materials [60, 154]. Early ARPES and density-functional based augmented spherical wave

calculations have revealed the semimetallic nature of WTey [122]. However, no details close
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to the proximity of the Fermi level were clearly resolved. More recent and high resolution
ARPES data has revealed one pair of electron pockets and one pair of hole pockets with
similar size, supporting the electron-hole carrier compensation theory as the primary origin
of the extremely large magnetoresistance [118]. By varying the incident photon energies from
40-70 eV, the k, dispersion of the states were mapped out with some bands showing low
dispersion and some showing variations in intensity, but no solid conclusion can be drawn from
the data [118]. Another group with high energy and momentum resolution ARPES observed
total of nine Fermi pockets. However, no significant photon energy dependence along the
out of plane direction was observed due to the limited k, range [150]. On the other hand,
magnetoresistance measurements with varying magnetic field applied at an angle with respect
to the c axis of the sample have led to the conclusion of three dimensional electronic structure in
WTes [155]. Furthermore, the results from quantum oscillations—another technique to probe the
Fermi surface structure—have come to similar conclusions. Angle-resolved quantum oscillation
measurements implied strong three-dimensionality of the band structure in this material [123].
Although quantum oscillation is a nice technique to measure extrema of the the Fermi surface
topology, the oscillation frequencies obtained from fast Fourier transform (FFT) cannot be
perfectly assigned to the correct electron/hole pockets. As in measurements performed under
applied pressure, one group has assigned the peaks to one pair of electron and hole pockets
[125]. However, the Hall effect measurements from another group found that only electron
carriers survive under the high pressure [106], which is consistent with our temperature-induced
phase transition in WTey [156]. Thus, in order to demonstrate the three-dimensionality of the
electronic structure in WTey, ultrahigh resolution ARPES measurements with fine tunable
incident photon energies are necessary.

Here, we use the ultrahigh resolution, tunable VUV laser-based ARPES to probe the three-
dimensionality of the bulk electronic structure in WTey. With the ability of fine tuning of the
incident photon energy from 5.77 to 6.7 eV, we have obtained high resolution Fermi surface
and band structure. For the incident photon energy of 6.7 eV, the bulk F'S consists of two pairs
of electron pockets and two pairs of hole pockets, with a hole band barely touching the Fermi

level at the I' point. When decreasing the incident photon energy to 6.36 eV, another pair of
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tiny electron pockets emerges close to the I' point, which corresponds to the unaccounted for,
super low oscillation frequency observed in the quantum oscillation measurements [125, 156].
Further decreasing the incident photon energy results in the disappearance of the tiny electron
pockets, thus the bulk F'S has only two pairs of electron and hole pockets left for this range of k.
momenta. Detailed band structure along high symmetry cuts measured using different incident
photon energies were performed and demonstrate strong three-dimensionality of the electronic
structure in WTes. These results are consistent with the band structure calculations and
quantum oscillations [100, 125, 156]. Our photon energy dependent ARPES measurements have
solved the mystery of the super low frequency peaks reported by several quantum oscillation

measurements [125, 156].

5.3.2 Methods
5.3.2.1 Sample growth.

Sample growth is the same as described in Section 5.1.2.1.

5.3.2.2 ARPES measurements.

Samples were cleaved in situ at 40 K under ultrahigh vacuum (UHV). The data were ac-
quired using a tunable VUV laser ARPES system that consists of a Scienta R8000 electron
analyzer, picosecond Ti:Sapphire oscillator and fourth harmaonic generator[69]. Data were col-
lected with a tunable photon energies from 5.3 eV to 6.7 eV. Momentum and energy resolution

were set at ~ 0.005 A~ and 2 meV. The size of the photon beam on the sample was ~30 pm.

5.3.3 Results and Discussion

Fig. 5.11 shows the ARPES intensity measured at the photon energy of 6.7 eV and temper-
ature of 40 K. Figs. 5.11(a) and (b) show the constant energy contour intensity plots integrated
within 10 meV of the chemical potential and at binding energy of 25 meV, respectively. The
pockets marked by the black arrow shrink, while the pockets marked by the red arrows expand
at higher binding energy, indicating their electron and hole characters, respectively. The hole

pockets on the right hand side of the I' point show clear degeneracy, which is more evident in
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Figure 5.11 Constant energy contour plots and band dispersion measured at 7' = 40 K and
photon energy of 6.7 eV. (a) Fermi surface plot of ARPES intensity integrated
within 10 meV about the chemical potential. The red arrow points to the pair
of electron pockets and the red arrows point to the pairs of hole pockets. (b)
Constant energy contour of ARPES intensity integrated within 10 meV at the
binding energy of 25 meV. (c)-(g) Band dispersion along cuts #1-5. Red dashed
lines in (c) mark the two right branches of the two hole pockets.

the band dispersion along cut #1 as shown in Fig. 5.11(c). The red dashed lines in (c¢) mark
the right two branches of the almost degenerate hole pockets. Unlike the previously reported
ARPES measurements at the photon energy of 5.77 eV [156], the separation of the hole pock-
ets at the left hand side of the I' point is not that significant. Fig. 5.11(d) shows the band
dispersion along cut #2, where the asymmetric intensity of the electron pockets is probably
due to the matrix element effect. Fig. 5.11(f) shows the band dispersion along cut #4. No
clear Fermi crossing is observed providing strong evidence that there are only two pairs of hole
pockets and two pairs of electron pockets in the first Brillouin zone measured for the incident

photon energy of 6.7 eV.
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Figure 5.12 Fermi surface plots and band dispersion measured at different photon energies.
(a)-(d) Fermi surface plots measured at photon energies of 6.70, 6.36, 6.05, and
5.77 eV, respectively. (e)-(h) Band dispersion along the black dashed lines in
(a)-(d), respectively.

By varying the incident photon energies, we are able to map out the band dispersion along
the out of plane, (k) direction [60, 154]. Synchrotron radiation based ARPES systems are
often used for k, dispersion mapping due to the large tunable range of the incident photon
energies. However, tuning photon energies with coarse steps > 1 eV would result in some
important details being omitted along very important k, dispersion [118, 150]. With the photon
energy tunability from 5.7 eV to 7 eV with rather fine energy steps in our laser-based ARPES
system, we mapped out the k, dispersion of WTey in great detail. Fig. 5.12 shows the FS
and band dispersion measured using the incident photon energies of 6.70, 6.36, 6.05, and 5.77
eV, respectively as indicated at the top left corner of each plot. In Figs. 5.12(a)-(d), we can
see that the FS of WTey measured at different photon energies look similar, with two pairs of
electron pockets and two pairs of hole pockets in the first BZ. However, significant difference is

also observed. The hole band at the I" point has different intensities and curvatures, although
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Figure 5.13 Band dispersion, momentum dispersion curves, and energy dispersion curves mea-
sured at different photon energies. (a)-(d) Band dispersion along the cut #2 in
Fig. 5.11(a) measured at photon energies of 6.7, 6.36, 6.05, and 5.77 eV, re-
spectively. (e) Momentum dispersion curves at the Ep of (a)-(d). (f)-(i) Band
dispersion along the cut #3 in Fig. 5.11(a) measured at photon energies of 6.7,
6.36, 6.05, and 5.77 eV, respectively. (j) Momentum dispersion curves at the Ep
of (f)-(i). (k)-(n) Band dispersion along the cut #4 in Fig. 5.11(a) measured at
photon energies of 6.7, 6.36, 6.05, and 5.77 eV, respectively. (o) Energy dispersion
curves along the red dashed lines in (k)-(n). Black arrows point to the locations
of the lower hole bands in (k)-(n). (p) Diameters of the electron and hole pockets
measured at different photon energies extracted from the momentum dispersion
curves in (e) and (j).

none of them has crossed the Fermi level as shown in Figs. 5.12(e)-(h). Furthermore, the
FS close to the I' point in Fig. 5.12(b) shows a dumb-bell like structure, while all the other
three F'Ss show only a single hole band at the I" point. The band dispersion along the black
dashed line in Fig. 5.12(b) is shown in (f). On both sides of the I' point, one tiny electron
pocket is clearly visible [marked by the red dotted lines in panel (f)], which is significantly
different from the band dispersion measured at other photon energies. By re-examining the
quantum oscillation data that we have published in the previous paper [156] and other group’s
results [125], we found that there is a super low frequency that was not assigned to any Fermi
surface and initially was most likely attributed to noise. Furthermore, the electronic structure

calculations after taking into account the spin-orbit coupling in WTes clearly bring extra tiny
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electron pockets close to the I" point [100]. Thus, our ARPES results have solved the mystery
of this unaccounted for, low frequency in quantum oscillation peak. We should note that as the
electronic structure of WTey is very sensitivity to pressure/strain [106, 149, 44, 83] and even
temperature [156], it is possible that these tiny electron pockets might be suppressed in some
of the quantum oscillation measurements.

Fig. 5.13 shows the detailed band dispersion measured along high symmetry directions
using various photon energies. Panels (a)—(d), (f)—(i), and (k)—(n) present the band dispersions
measured using the photon energy of 6.7, 6.36, 6.05 and 5.77 eV, respectively, and correspond
to the high symmetry cuts as marked #2, 3, and 4 in Fig. 5.11. In panels (a)—(d), only minor
intensity differences can be seen between the four measurements. At the photon energy of 6.05
and 5.77 eV, the electron pockets are clear and symmetric. On the other hand, the electron
pockets measured at the photon energy of 6.7 and 6.36 eV are not symmetric in intensity,
probably due to the matrix elements effect. To quantify the electron pocket sizes in panels
(a)-(d), we have plotted the momentum dispersion curves (MDCs) at the Fermi level Efr in
Fig. 5.13(e). The peak locations of the MDCs show clear differences across these four photon
energies (peak locations of the left branches are aligned for easy comparison). Panels (f)—(i)
present the band dispersion from cut #3, which clearly shows that the hole pocket measured
with 5.77 eV photons is significantly smaller than the other three. Panel (j) shows the MDCs
at the Er from panels (f)—(i), illustrating different hole pocket sizes [also left aligned as in (e)].
Panels (k)—(n) show the photon energy dependence of the hole bands at the I' point (cut #4 in
Fig. 5.11). Two hole bands can be clearly seen at the I" point with different separations between
them for different photon energies. Panel (o) shows the energy dispersion curves (EDCs) from
panels (k)—(n), where the black arrows point to the peak locations in the lower hole bands.
The top hole bands sit at roughly the same binding energy for these photon energies, but none
of them crosses the Fermi level. On the other hand, the distance between the top and lower
hole bands is very different across these photon energies, with 5.77 eV showing the maximum
separation. By fitting two Lorentzian functions to the MDCs in panels (e) and (j), we calculate
the electron/hole pocket sizes and summarize the results in panel (p). With the increasing

incident photon energy, the size of the electron pocket decreases and then increases. On the
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other hand, the size of the hole pocket increases and then decreases. This trend is consistent
with the band structure calculations shown in Ref. [100], where the hole pockets have a concave
shape and the electron pockets have a convex shape along k, direction toward the center of the
zone.

In conclusion, we used the ultra high resolution laser based ARPES system to investigate
the electronic structure of WTes. The photon energy dependence measurements with relatively
fine energy steps have revealed the three-dimensional characteristic of the electron and hole
pockets along the I'-Z direction. With the increasing incident photon energy from 5.77 to
6.70 eV, the hole pocket expands and then shrinks, while the electron pocket displays opposite
behavior. Strong photon energy dependence is also observed in the hole bands at the I' point.
Furthermore, we have revealed a pair of tiny electron pockets sitting at the opposite side of
the I' point at the photon energy of 6.36 eV, providing strong evidence for the low quantum

oscillation frequency that was not accounted for in the previous studies.
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CHAPTER 6. DIRAC NODE ARC METAL PtSn,

6.1 Dirac Node Arcs in PtSny

The following context is an extended version of the published work in

Nature Physics 12, 667

6.1.1 Introduction

In topological quantum materials [20, 157, 158] the conduction and valence bands are con-
nected at points or along lines in the momentum space. A number of studies have demonstrated
that several materials are indeed Dirac/Weyl semimetals [28, 29, 37, 41, 80]. However, there
is still no experimental confirmation of materials with line nodes, in which the Dirac nodes
form closed loops in the momentum space [157, 158]. Here we report the discovery of a novel
topological structure — Dirac node arcs — in the ultrahigh magnetoresistive material PtSny us-
ing laser-based angle-resolved photoemission spectroscopy data and density functional theory
calculations. Unlike the closed loops of line nodes, the Dirac node arc structure arises owing
to the surface states and resembles the Dirac dispersion in graphene that is extended along a
short line in the momentum space. We proposed that this reported Dirac node arc structure is
a novel topological state that provides an exciting platform for studying the exotic properties
of Dirac fermions.

The discovery of nontrivial surface states in topological insulators [20] attracted a lot of in-
terest and initiated quests for diverse novel topological states in condensed matter. Topological
nodal states with conduction and valence bands touching at points (Dirac/Weyl semimetals) or
lines (line node semimetals) have been proposed to exist in multilayer heterostructures [157].

A possible extension of these states to three dimensional (3D) single crystals was proposed in
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B-cristobalite BiOg (ref. [24]) and A3Bi (A = Na, K, Rb; ref. [27]), which are thought to host
bulk 3D Dirac points protected by crystal symmetry. Subsequently, NagBi and CdsAs, were
experimentally demonstrated to be 3D Dirac semimetals [26, 28, 29, 30]. Subsequently, another
type of massless particle-the Weyl fermion [139]-was found in states that were predicted to exist
in a family of non-centrosymmetric transition metal TaAs, TaP, NbP and NbAs (refs [42, 30]).
These materials were confirmed as Weyl semimetals by reports of Fermi arc states connecting
the Weyl points as a unique signature [37, 41, 80]. Although experimental evidence supports
the existence of Dirac semimetals and Weyl semimetals, clear signatures of semimetals with line
nodes are yet to be discovered. Several groups proposed that line node structures may exist in
graphene networks [54], rare earth monopnictides [159], antiperovskite CugPdN/CusZnN (refs
[160, 161], SrIrO3 (ref. [162]), TlTaSey (ref. [163]), CagPa (ref. [164]) and CaAgX (X=P,
As; ref. [165]), but so far no direct evidence has been reported. Several angle-resolved photoe-
mission spectroscopy (ARPES) studies in PbTaSes (ref. [53]) and ZrSiS (ref. [87]) presented
some evidence of the existence of Dirac-like features and ‘Drumhead’surface states, but further
research is till needed to understand fully their significance and relation to Dirac line nodes.
Many topological nodal semimetals, such as CdsAsy (ref. [113]), NbP (ref. [166]) and WTe,
(ref. [100]), exhibit extremely large magnetoresistance. Before these discoveries, a similar effect

was observed in PtSny [67].
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Figure 6.1 Resistivity measurements as a function of temperature and field of PtSny. (a)
Temperature-dependent resistivity for an applied field along the ac plane (H L b).
(b) The same as (a) with field along the b axis (H || b). Insets (a) and (b) are
p(T) vs log(T') plot. (From Ref. [67])
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Figure 6.2 The theoretically calculated Fermi surface of PtSny. (From Ref. [67])

Fig. 6.1 shows the resistivity measurements as a function of temperature and field of PtSny
along two different directions: H L b and H || b. Although extremely large magnetoresistance
has been observed along both directions, a strong anisotropy can be also clearly seen. The
magnetoresistance along H | b reaches up to 5 x 10°% at 1.8 K and 140 kOe, while the other
direction only 1.4 x 10°% [67].

As shown in Fig. 6.2, the bulk Fermi surface of PtSny is three dimensional, and very
complex with Fermi surface pockets spreading across the Brillouin zone [67]. As we have
already illustrated in Figs. 2.5 and 2.9, strong three-dimensionality in the Fermi surface close
to the zone center is observed. These results are consistent with the complex band structure
calculations in Fig. 6.2. Here we demonstrate that, despite its complex F'S in the centre region

of the Brillouin zone, there are also very interesting features close to the boundary of the
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zone, that is, the Z and X points, which are the signatures of a topological quantum material.
Whereas most of the topological quantum materials were predicted by theory first and verified
by experiment later, we present an opposite approach: we focused on ultrahigh non-saturating
magnetoresistance, and on this basis we searched for topological states in PtSny by means of

ultrahigh resolution ARPES, followed with band structure calculations.

6.1.2 Methods
6.1.2.1 Sample growth.

Single crystals of PtSny were grown out of a Sn-rich binary melt [92]. The constituent
elements, with an initial stoichiometry of Ptg 04Sng.9¢, were placed in an alumina crucible and
sealed in a quartz tube under a partial Ar pressure. After the quartz ampoule was heated up to
600°C, the ampoule was cooled down to 350°C over 60 h (ref. [67]). To decant the Sn readily

at this temperature, a frit-disc crucible was used [93].

6.1.2.2 Sample preparation and measurements.

ARPES measurements were carried out using a laboratory-based system consisting of a
Scienta R8000 electron analyser and a a tunable vacuum ultraviolet (VUV) laser light source
consisting of picosecond Ti:Sapphire oscillator and fourth harmonic generator [69]. All Data
were collected with a constant photon energy of 6.7 eV, except for Fig.6.6g (6.36 €V) and 6.6h
(6.05 V). The angular resolution was set at ~ 0.05° and 0.5° (0.005 A~! and 0.05 A~') along
and perpendicular to the direction of the analyser slit (and thus cut in the momentum space),
respectively; and energy resolution was set at 1 meV. The size of the photon beam on the
sample was ~30 um. Samples were cleaved in situ at a base pressure lower than 1 x 10710
Torr. Samples were cooled using a closed-cycle He refrigerator and the sample temperature was
measured using a silicon-diode sensor mounted on the sample holder. The energy corresponding
to the chemical potential was determined from the Fermi edge of a polycrystalline Au reference
in electrical contact with the sample. Samples were cleave at 40K and were kept at the cleaving

temperature throughout the measurement.
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6.1.2.3 Calculation method.

Density functional theory [94, 95] (DFT) calculations were done in the Vienna Ab initio
Simulation Package (VASP; refs [96, 97]) using the Perdew-Burke-Ernzerhof (PBE; ref. [98])
exchange-correlation functional, a plane-wave basis set with projected augmented waves [99]
and spin-orbital coupling (SOC) effect included. For bulk-band structure of PtSny, we use the
conventional orthorhombic cell of 20 atoms with a Monkhorst-Pack [167] (8 x 6 x 8) k-point
mesh. For surface-band structure, we use slabs up to 96 atomic layers or 320 atoms with a
(8 x 1 x 8) k-point mesh and at least a 12 A vacuum. The kinetic energy cutoff is 230 eV. The
convergence with respect to k-point mesh was carefully checked, with total energy converged,
for example, well below 1 meV /atom. We use experimental lattice parameters [168] of a = 6.418

A, b=11.366 A, and ¢ = 6.384 A with atoms fixed in their bulk positions.

6.1.3 Results and Discussion

The crystal structure, Fermi surface and band dispersion along key directions in the Bril-
louin zone (BZ) for PtSny are shown in Fig. 6.3. Figure 6.3b shows the ARPES intensity
integrated within 10 meV of the chemical potential. High-intensity areas mark the contours of
the F'S sheets. The FS consists of at least one large electron pocket at the centre of BZ, sur-
rounded by several other electron and hole F'S sheets, consistent with the quantum oscillation
result [67]. Figure 6.3c shows the calculated bulk FS, which matches the data well close to
the centre of the zone and Z point in Fig. 6.3b, and is also consistent with the calculated F'S
using the full potential linearized augmented plane wave (FLAPW) method within the local
density approximation (LDA; ref. [67]). However, it does not predict the FS crossings close
to the X point, missing a set of nearly parallel F'S sheets that are present in Fig. 6.3b. On
the other hand, these experimental features are reproduced well by a calculation of the surface
sates using the slab method; results of which are shown in Fig. 6.3d. Band dispersions along
several cuts in proximity to the Z and X points are shown in Fig. 6.3e-1. Close to the Z point
(Fig. 6.3e, g), the dispersion resembles a Dirac-like feature, but the intensity within the band

contour indicates a bulk origin and is consistent with corresponding band calculations shown in
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Figure 6.3 Experimental and calculated Fermi surface and band dispersion of PtSny. a Crystal
structure (Pt: white spheres, Sn: blue spheres) and Brillouin zone of PtSny. b
Fermi-surface plot of ARPES intensity integrated within 10 meV of the chemical
potential along I'—Z and I'— X. ¢ DFT-calculated bulk F'S slice at k, = 0.284 7 /b.
d Calculated surface FS with a 24-layer slab. e Band dispersion at k, = 0.88 7 /c
along cut #1 in b. f Calculated bulk-band dispersion at k, = 0.88 7/c and
ky, = 0.284 w/b. g Band dispersion at k, = 7/c along cut #2 in b. h Calculated
bulk-band dispersion at k, = w/c and k, = 0.284 7/b. i Band dispersion at
k, = 0.88 m/a, similar to cut #3 in b. j Calculated surface-band dispersion at
k; = 0.88 m/a with 42-layer slab. k Band dispersion at k, = 7/a along cut #4 in
b. 1 Calculated surface-band dispersion at k, = 7/a with 42-layer slab.

Fig. 6.3f, h. Close to the X point (Fig. 6.3i, k), the band dispersion is also Dirac-like, but very
sharp, and thus more likely to be due to surface states; moreover, it is consistent with the slab
calculation shown in Fig. 6.3j, . The data in Fig. 6.3 demonstrate that the experimentally
observed band structure has both bulk and surface components. The former dominate the
Fermi surface close to the Z point, and the latter is prominent close to the X point. The linear
dispersion and gapless band crossings strongly suggest that both bulk and surface features at
the edge of the Brillouin zone may have topological character, possibly linked to the ultrahigh

magnetoresistance, similar to CdzAsy (ref. [29]), NbP (ref. [80]) and WTey (ref. [156]).
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Figure 6.4 Fermi surface and band dispersion in the proximity of the Z point. a Fermi surface
plot of ARPES intensity integrated within 10 meV of the chemical potential along
I' = Z. b Zoom in image of the red box in Fig.6.4a, red dashed lines mark the cut
#1 — #8. ¢ Band dispersion along cut #1 — #8. Cut #8 is cutting through the Z
point. The red arrows mark the Dirac nodes.

In Fig. 6.4 we focus on the interesting features near the Z point in more detail. An enlarged
image from the red box in Fig. 6.4a is shown in panel b, where two triangular-shaped FS sheets
are observed. The detailed evolution of band dispersions along cuts no. 1 to no. 8 is shown in
Fig. 6.4c. A sharp linear dispersion starts to cross at a binding energy of ~ 200 meV in cut
no. 1, and the Dirac point moves up in energy in cuts no. 2— no. 5, finally reaching the Fermi
level in cut no. 6, as indicated by red arrows. The the Dirac point moves up above the Fermi
level and becomes a sharp, shallow hole pocket in cuts no. 7 and no. 8. This movement of the

Dirac nodes forms a line in the energy-momentum space in the proximity of Z.
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Figure 6.5 Fermi Surface plot and band dispersion close to the X point. a Fermi surface
plot of ARPES intensity integrated within 10 meV of the chemical potential along
I'— X. b Zoom in image of the red box in Fig.6.5a, red dashed lines mark the cut
#1 — #12. ¢ Band dispersion along cut #1 — #12. Cut #8 is cutting through the
X point. The red arrows mark the Dirac nodes. #5 and #10 (in red box) are the
dispersion at the end point of the Dirac node arcs.

Whereas the behaviour described above has previously been predicted by theory, the struc-
ture in the proximity of the X point is far more interesting. We now examine the Fermi surface
and band dispersion in a small area in the part of the Brillouin zone that is marked by the red
box in Fig. 6.5a. The Fermi surface in this region consists of a short arc along the symmetry
line and two longer, nearly parallel segments on either side of this arc. Detailed band dispersion
along cuts no. 1 to no. 12 are shown in Fig. 6.5c. The data along cut no. 1 show Dirac-like
dispersion, with the top and bottom bands merging at a single gapless point. The band is very
sharp, consistent with its surface origin. As we move closer to the X point, two things happen:
a gap develops between top and bottom bands and both top and bottom bands split into two
parts symmetric about the k,=0 line (cuts no. 2-no. 4). Before reaching the X point, the gap
vanishes and there are two gapless Dirac-like features in close proximity to the X point. The

inner bands of the two Dirac features merge along the symmetry line and form an arc at the
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chemical potential visible in Fig. 6.5b. The two gapless, Dirac-like features extend along one
direction in the proximity of the X point between k; ~ 0.957/a and 1.057/a (cuts no. 5 and
no. 10 marked by the red frame in Fig. 6.5¢). Outside this momentum range a gap develops,
separating the upper and lower portion of the band that is, cuts no. 4.5 and no. 10.5 are
already gapped. This gives rise to two arcs of Dirac nodes located at a binding energy of ~ 60

meV, one on each side of the I' — X symmetry line, which we named Dirac node arcs.
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Figure 6.6 Two types of gapless Dirac-like dispersion close to X point. a Band dispersion
along cut #1 in Fig.6.5b measured at photon energy of 6.70 eV. b Momentum
Dispersion Curves (MDC) of a. ¢ Energy Dispersion Curve (EDC) along the
red dashed line in b. d Band dispersion along cut #8 in Fig.6.5b measured at
photon energy of 6.70 eV. e Momentum Dispersion Curves (MDC) of d. f Energy
Dispersion Curves (EDC) along the red dashed lines in e. g Band dispersion along
cut #8 in Fig.6.5b measured at photon energy of 6.36 eV. h Band dispersion
along cut #8 in Fig.6.5b measured at photon energy of 6.05 eV. i Calculated
surface band along cut at k,; = 0.88 7/a, similar to cut #3 in b, with a 42-layer
slab. j Energy-gap evolution with increasing number of layers in the slab.

We now proceed to demonstrate that the Dirac-like dispersion shown in Fig. 6.5 is gapless
by plotting the momentum dispersion curves (MDCs) and energy dispersion curves (EDCs).
Figure 6.6¢c shows the EDC extracted along the red dashed line in 4b. The red arrow marks
the peak located at roughly 90 meV below the Fermi level (Fig. 6.6a), and demonstrates the
absence of an energy gap in this single Dirac-like feature. In Fig. 6.6d, we show the double

Dirac-like features along cut no. 8 (Fig. 6.5¢). The EDCs shown in 4f are extracted along
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the red dashed lines marked as 1, 2, 3 in Fig. 6.6e. The red arrows in Fig. 6.6e,f mark the
locations of the peaks at a binding energy of ~60 meV, and show the gapless nature of these
dispersions. The same cut measured at two other photon energies (6.36 eV and 6.05 eV) is
shown in Fig. 6.6g and h, respectively. It is clear that the band dispersion does not vary
with the incident photon energy (within 16% of the Brillouin zone), demonstrating its surface
origin. As such, those states do not have dispersion along a direction perpendicular to the
sample surface (that is, k). The surface-state calculation using a 42-layer slab shows that the
conduction and valence bands are separated by roughly 23 meV in the single Dirac feature.
However, a further increase in the layer number reduces the gap size significantly, as shown in

Fig. 6.6].
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Figure 6.7 Schematic of Dirac node arcs in PtSny close to X point. a Schematic of Double
Dirac node arc structure. Red arrows mark the double single nodes and double
node arcs. b Locations of the Dirac nodes extracted from the peak positions of
the MDCs as marked by the red dashed lines in a and d. The blue dots denote
the two single Dirac nodes at Ep ~ 90 meV. The green dots denote the two Dirac
node arcs at Eg ~ 60 meV. The red dots denote the Dirac node arc at Ep.
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In Fig. 6.7a, the schematic of the double Dirac node arc structure is shown, with two Dirac
dispersions extending along one dimension in momentum space. To better illustrate the Dirac
node arc structure, we plot the location of the Dirac nodes in momentum space in Fig. 6.7b
by extracting the peak positions of the MDCs at each node (that is, at a binding energy of 90
meV in the single Dirac dispersion and 60 meV at the proximity of the X point in the double
Dirac dispersion, as marked by the red dashed lines in Fig. 6.6a, d).

Our results show that, near the X point, the single Dirac dispersion evolves into two gapped
dispersions and, before reaching the X point, the gaps close and two gapless Dirac-like feature
emerge extending along one dimension in momentum space, forming a Dirac node arc. These
novel features differ from previously predicted Dirac line nodes that form closed loops in mo-
mentum space. We proposed that this novel topological nodal structure could be an ideal
platform for studying the exotic properties of Dirac fermions. Finally, we note that most of
the recently discovered ultrahigh magnetoresistive materials [113, 166, 100] seem to also pos-
sess Dirac or Weyl features in the band dispersions [29, 80, 156]. As we have demonstrated,
this opens an avenue for discovering and identifying novel topological states and relativistic

behaviour based on rudimentary transport measurements.
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