Model-to-model interface for multiscale materials modeling

by

Perry Edward Antonelli

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Materials Science and Engineering

Program of Study Committee:
Richard LeSar, Major Professor

Kenneth Mark Bryden

Duane Johnson

Towa State University
Ames, Iowa
2016

Copyright (© Perry Edward Antonelli, 2016. All rights reserved.



ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . ot i it e e e e e e e e v it e e e e e iv
ABSTRACT . . . o e e e e e e e e e e e e e e e e e e v
CHAPTER 1. INTRODUCTION ... ... . ittt iitiieen 1
1.1 Background . . . . . . . . .. 1
1.2 Thesis Organization . . . . . . . . .. .. e 2

CHAPTER 2. A MODEL-TO-MODEL INTERFACE FOR CONCURRENT

MULTISCALE SIMULATIONS . . . . . o it e e et e e e e e e e e e e 3
2.1 Introduction . . . . . . . . .. 3
2.2 Coupled Multiscale Model of Surface-Fluid Interactions in Couette Flow . . . . 7
2.2.1 Lattice Boltzmann (LB) method . . . .. ... ... ... ........ 8
2.2.2  Molecular dynamics (MD) . . . . ... ... . L o 10

2.2.3 Interface between lattice Boltzmann (LB) and molecular dynamics (MD) 11

2.2.4 Information transfer between models . . . . . . . ... ... 12
2.3 The Basic Model Inteface (BMI) . . . .. ... .. ... ... ... 12
2.4 Results of the Model . . . . . . . .. . 18
2.5 Summary and Conclusion . . . . . .. ... . oo 22
2.A Appendix ... 25

CHAPTER 3. ADDING THE BASIC MODEL INTERFACE (BMI) TO

LARGE-SCALE ATOMIC/MOLECULAR MASSIVELY PARALLEL SIM-

ULATOR (LAMMPS) . . & o o i e e e e e e e e e e e e e e e e e e e e 27
3.1 Imtroduction . . . . . . . . . . e e e e e e e 27
3.2 Interface Implementation . . . . . . . . ... . ... ... ... 27



iii

3.3 Results of the Model . . . . . . . . . . .

3.4 Summary and Conclusion . . . . . . .. .. . L 0o

REFERENCES

......................................



iv

ACKNOWLEDGEMENTS

This work was funded by US Department of Energy’s Office of Fossil Energy at the Ames
Laboratory under Contract No. DE-AC02-07CH11358. The Ames Laboratory is operated for

the DOE by lowa State University.



ABSTRACT

A low-level model-to-model interface is presented that will enable independent models to
be linked into an integrated system of models. The interface is based on a standard set of
functions that contain appropriate export and import schemas that enable models to be linked
with no changes to the models themselves. These ideas are presented in the context of a specific
multiscale material problem that couples atomistic-based molecular dynamics calculations to
continuum calculations of fluid flow. These simulations will be used to examine the influence
of interactions of the fluid with an adjacent solid on the fluid flow. The interface will also be
examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics

code.



CHAPTER 1. INTRODUCTION

1.1 Background

Modeling is an important part of materials research. It provides a way to test ideas and pre-
dict materials properties without needing to make physical samples and perform experiments.
Experiments are still an important part of the process, in fact, modeling works best when used
in conjunction with experiments. Modeling can be used to determine which materials or pro-
cessing conditions are mostly like to produce desirable properties. Additionally, experiments
can be used to validate models; if simulations and experiments disagree, something is likely
wrong with one of them.

Materials modeling often requires multiscale modeling, the use of two or more models at
different length or time scales. This is necessary because materials are multiscale in nature;
structures and processes at different length and time scales are often strongly linked together
and affect the overall properties of a material. These different scales often require different
models, which can be difficult to combine together.

In the current state of multiscale modeling, modeling codes are generally written to be
specific to an application. The physics and boundary conditions are often hard coded to
simulate only one system. Additionally the code for one model is hardwired to code for other
models. The data structures and methods of passing information between models are strongly
interconnected. A change in one model would require rewriting code relevant to all models.
The code is inflexible and thus difficult to reuse in different applications.

Models at each scale are developed by experts who are often independent of an overall
modeling effort. For example, someone who works on molecular dynamics models is rarely an

expert on other methods, and may not know best how to couple their models to another. This



is a barrier to linking models together. There does not currently exist a way to combine them
into a multiscale modeling scheme. This way of doing multiscale modeling makes it difficult to
change codes or to add additional physics.

We attempt to solve these problems through the use of a model-to-model interface that
enables communication between independent models. The inspiration for and development
of this interface are discussed in more detail in Chapter 2. Eventually, this interface will
allow the creation of a library of independent materials models that can easily linked together
for multiscale materials modeling. In this thesis we show how the interface works with a few
different models: two of our own and the molecular dynamics code developed at Sandia National

Laboratories, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).

1.2 Thesis Organization

Chapter 1 of this thesis in an introduction. Chapter 2 is the paper that has been published
in Computation Materials Science, which shows how the interface works with two of our own
models in the context of a simple fluid flow problem. In Chapter 3 is information about
LAMMPS, details about the addition of our interface to LAMMPS, and a comparison of it

with the results presented in Chapter 2.



CHAPTER 2. A MODEL-TO-MODEL INTERFACE FOR
CONCURRENT MULTISCALE SIMULATIONS

A paper published in Computational Materials Science

P.E. Antonelli, K. M. Bryden, and R. LeSar

2.1 Introduction

Multiscale modeling is ubiquitous in science and engineering, arising in many and quite
divergent domains, from the design of materials to simulations of power plants. All of these
systems are governed by important features that control their behavior at multiple scales of
length and time. Describing such systems often depends on having independent models based
on differing physics for each scale [1][2].

Integrated modeling [3][4], which can be defined as modeling that “includes a set of interde-
pendent science-based components (models, data, and assessment methods) that together form
the basis for constructing an appropriate modeling system” [3], provides a structure to develop
and organize the relevant information about a multiscale system and to apply that information
to model the behavior of that system in response to external forces. The challenges of cre-
ating such integrated modeling systems are common to many disciplines. The environmental
modeling community, for example, has been very active in this area, driven by their need to
coordinate between various disciplines and to integrate a wide range of models that are often
developed autonomously and independently from the integrated modeling efforts, and gener-
ally by experts who may not be tightly connected to the overall effort[3][4]. Inclusion of new
models and codes into an integrated modeling system thus often requires coordination between

disparate groups, which can inhibit addition of new capabilities into the integrated scheme. As



discussed in more detail below, we have similar challenges in multiscale materials modeling.

In this paper we present an approach to integrated modeling based on the development of
a model-to-model interface that enables independent models to be more readily linked into an
integrated system with no changes to the models themselves. We examined a number of existing
technologies for linking models, all from environmental modeling. While these systems have
not been applied to systems with the range of scales found in materials, their basic structures
provide an excellent starting point for creating integrated multiscale materials models. The
models we examined include the Bespoke Framework Generator [5], Earth System Modeling
Framework [6], OASIS (Ocean Atmosphere Sea Ice Soil) [7], and CSDMS (Community Surface
Dynamics Modeling System) [8]. All of these systems require models to have initialize, run,
finalize, get, and set functions (examples are described below) for basic control over models.
Also generally required by these couplers is a description of how the models are connected
together, which is done in the form of an XML file or some other type of configuration file.
OASIS and CSDMS have an additional advantage of having GUI’s that allow placing the
models and their connections into the interface for visualization and automated configuration
file generation. CSDMS also uses Babel [9] to allow model writing in different languages (C++,
C, Fortran, XML, Python, and Java are supported) whereas the other couplers are limited to
models all being in the same language.

After consideration of the attributes of the various approaches, we have chosen to adapt the
basic methodology of the CSDMS approach, which is based on the use of a low-level model-
to-model interface, for linking materials models together. The purpose of this paper is to give
an example of how to construct such an interface within a multiscale problem, with a focus on
the types of information that must be passed from one model to another.

The biggest challenge for computational materials science is the extreme range of length and
time scales that govern materials behavior, ranging from the and sub-picoseconds of atomistic
behavior to the meters and years of materials in engineered applications. In between those
extremes lie complex sets of physical phenomena that depend on the overall material behavior
of interest and the type of material. We show a simple example of this range of mechanisms

in Figure 2.1, highlighting the various scales that govern the mechanical behavior of metallic



materials [10]. Consideration of other types of materials or other properties would lead to
a similar, but not identical, figure. Looking more closely at Figure 2.1, we see that at each
scale there is a structural“unit” that dominates the physical processes at the given length
and timescales. These units are the entities whose dynamics define the physics of interest at
each scale. Typically, a set of models of materials behavior is created for each of the various
scales [2][11]. These models are generally developed and used by different groups. In the
traditional view of computational materials science, this hierarchy of models and simulations,
each describing a specific scale and its associated phenomena, are linked to create a multiscale
description of materials behavior. Typically, information is passed sequentially from scale to
scale, an approach that is often referred to as information passing or sequential multiscale [1].
Inherent in the information-passing paradigm is the lack of inverse models that would allow us
to predict the needed structures and properties at the small scale from desired properties at a
larger scale — information flows only one way. It is common that information passing is done

be separate groups of researchers, using codes specific to the scales of their particular interests.

While the information-passing approach has proved useful for many systems and properties,
it is, at its core, suspect in a number of ways. Information passing assumes that there is a sep-
aration of scales, which is not always clear. It is inherently a coarse-graining procedure, which
loses information at each step, especially about the distribution of properties other than their
mean. Indeed, this latter statement reflects the fundamental flaw of this approach — it assumes
that we can start from fundamental laws and build up to a description of a macroscopic system,
which is not obviously true [12]. Another approach, which is often referred to as “concurrent
multiscale” [1], links simulations at differing scales directly within a single integrated frame-
work. This approach has the advantage of enabling the flow of information between scales,
which eliminates many of the uncertainties inherent in the information-passing paradigm. For
recent examples, see [13][14][15]. As in sequential multiscale simulations, models must be de-
veloped and applied at multiple scales, with the added complication of developing appropriate
interfaces between the models that enable them to be used concurrently. As we will discuss in

detail below, the integrated approach described here provides for an efficient construction of



Unit Length Time Mechanics
Scale Scale

Complex 3 6 Structural
Structure 10°m 10°s Mechanics

Simple ] 3 Fracture
Structure 10" m 10°s Mechanics
Continuum

-1 0
Component 10" m 10%s mechanics
Grain 3 3 Crystal
Microstructure 10% m 10%s plasticity
Dislocation 5 -6 Micro-

Microstructure 10°m 10®s mechanics
Single 7 9 Dislocation
Dislocation 107 m 107s Dynamics

. Molecular

-9 -12

Atomic 109 m 1012 s Dynamics
Electron 11 15 Quantum
Orbitals 107" m 10™s Mechanics

Figure 2.1: Length and time scales in materials science adapted from [10]. On the left, we
indicate the important unit structure at each scale, in the middle, the approximate length and
time scales, and at the right, the approach used to simulate the material’s mechanical behavior.
We note that the approaches used at each scale are generally distinct to that scale and, most
often, are developed and used by different research groups.



integrated multiscale materials models. We will present these ideas in the context of a specific
problem, involving the interaction between an atomistic scale and a continuum scale, to serve as
an example of the types of problems inherent in multiscale modeling of materials. Specifically,
we use molecular dynamics to examine the interactions between a fluid and an underlying solid
to set the boundary condition between a continuum fluid (described using the Lattice Boltz-
mann method) and the solid. Our focus is not on fluid properties, per se, but rather on how one
connects an atomistic scale to a continuum scale in the context of creating a model-to-model
interface to link together independent multiscale models. We describe the basic methodologies
in Section 2.2, followed by a description of our implementation of a basic model-to-model in-
terface in Section 2.3, in which we discuss modifications to the CSDMS approach necessary for
our test problem. Section 2.4 is a summary of results from an application of the model, with
comments about the efficiency of the code with the model interface. Concluding remarks are

given in Section 2.5.

2.2 Coupled Multiscale Model of Surface-Fluid Interactions in Couette
Flow

The goal of this work is to provide a method for coupling multiscale simulations using a
low-level model-to-model interface. We focus on an example problem in which we examine
the role of surface interactions on Couette flow, which is the laminar flow of a viscous fluid
held between two plates, with one plate moving at some velocity relative to the other, fixed,
plate. In traditional computational solutions to Couette flow, the velocity of the fluid at the
stationary plate (which we will refer to as the slip velocity) is assumed to be zero and a linear
increase of velocity is seen between the two plates. In this sample problem, our goal is to
examine the role of fluid-surface interactions on determining the slip velocity by incorporating
realistic descriptions of the interactions between atoms in the fluid and those on the surface
of the solid. We model the system using a lattice Boltzmann method for the continuum fluid
flow coupled to a molecular dynamics simulation of the interaction between the atoms of the

fluid and the underlying surface. The models operate at different scales and are based on



different physics so provide a good case for understanding information mediation in multiscale
simulations. We note that this problem has been used previously as an example of coupled
multiscale simulations, though without the model integration strategy introduced here.[e.g.,

[16]]

2.2.1 Lattice Boltzmann (LB) method

The lattice Boltzmann (LB) method [17] was introduced in the 1990s to address deficiencies
in the lattice-gas cellular automaton model for fluid flow [18]. In the LB method, the single
particles that move around the lattice in the lattice-gas method are replaced with single particle
distribution functions, f(x,ej,t), in which f is the probability of a fluid particle at position
x at time ¢ having velocity e. The probability distributions are discretized on a lattice (with
positions x) and represented as fj(x,t) = f(x,e;j, t), in which 7 indicates a direction to the
nearest points in the lattice (as described below), e At is the displacement vector along direction
i, and At is the time step.

The macroscopic quantities of density p and velocity u are found by evaluating the moments

of f at each lattice site. These are given by

18
p(x,e5) = po Y _ filx,e:) (2.1)
=0

18
p(x, e)u(x, ej) = po Z fi(x, ej)e;
i=0

in which the sum is over the directions in the lattice and py is the density of the system (an
input parameter). The equation of motion for the probability distributions can be shown to be
[17]

Fila + et 4+ A = fila,0) + (51— fule, 1) (22)

where f,“ is a local equilibrium distribution resulting from collisions, A¢ is the time step and

T is a relaxation time. The equilibrium distributions are given by

9 3
= wiﬁ(l +3e;-u+ ~(e;-u)’— =(u-u)) (2.3)
Po 4 2



in which w; are a set of directional weights normalized to unity and c; is the speed of sound. The
w; are effectively quadrature weights in the numerical integration over a continuous distribution
[19].

In Figure 2.2 we show the grid used in this work. This lattice is generally referred to as
the D3Q19 lattice (3 dimensions and 19 directions) [20]. Shown in the figure are the lattice

directions and velocity vectors, with the velocity vectors given by

(0,0,0), i=0

€i = 4 (£¢,0,0), (0, +¢,0), (0,0, £c), i=16 (2.4)

(£c, +,0), (0, £¢, +¢), (£¢,0, £c), i=7-18

in which ¢ = Az/At and Az is the grid size [21]. The speed of sound is given by cs = ¢/V/3

for the D3Q19 lattice [20]. The weights are

1/3, i=0
wi =41/18 i=1-6 (2.5)
1/36, i=17-18

such that Zzlio w; = 1. To account for constraints on the particle densities introduced by using
content-velocity boundary conditions at the top and bottom of the simulation, an artificial force,
Q, is applied to the unknown components of the particle density function [22].

The solution to the LB equations has two steps, advection and collision. The advection

equation

fiM(x 4 e At t + At) = foU (1) (2.6)
and the collision equation is
out n 1 eq n

in which f,°* denotes the outgoing (after collision) distribution functions while f; denotes the
incoming (before collision) distribution functions. Note that the LB calculations are all done
in reduced units with unit densities, unit time steps, and unit distances. The calculations are

scaled to specific units as specified below.



10

-:-_ - ‘.
oY— —>& "
,
|
z .
[ ]
[}
y .
X Y

Figure 2.2: D3Q19 lattice showing the lattice directions. The numbering scheme is described
in the text. [18]

2.2.2 Molecular dynamics (MD)

We employed a constant-volume molecular dynamics (MD) simulation to model the interac-
tion of a fluid and a solid. We solved the equations of motion using the velocity Verlet algorithm
[23] and controlled the temperature using the Nosé-Hoover thermostat [24][25]. Details of such
simulations are given elsewhere [10][26]. Lennard-Jones potentials were used to describe the
interactions between the atoms in the fluid and between the atoms in the fluid and the solid.

Specifically the potential between atoms in the fluid takes the form [27]

=D )] 2

Details of the choice of potential parameters are described below. A cutoff distance of is
used. The MD simulations were run in standard reduced units, with the reduced total, kinetic
and potential energies given by E* = E/e, K* = K /e, and U* = U /e, respectively. Other
reduced quantities are: distance: r* = r/o; pressure: P* = Po’/¢; temperature: T* = T/e;

density: p* = po?; and time: t* = t/ty, where ty = o1/m /e, where m is the mass of the atom.



11

The constant velocity boundary condition at the top of the system continuously adds energy to
the system, which, if left unchecked, would lead to viscous heating and a steady increase in the
temperature. The resultant non-uniform temperature profile can be studied either by solving
the heat equation with a source term representing viscous forces [28] or by using molecular
dynamics simulations with a thermostat applied to the wall atoms [29]. A complete treatment
of the viscous heating would require the incorporation of heat flow into the fluid flow simulation,
either through a thermal lattice Boltzmann model [30] or by coupling an additional model for
the heat flow to both the lattice Boltzmann and molecular dynamics models. For this paper, in
which the goal is to examine the challenges inherent in linking models across scales, we chose
to simplify the problem and include only a Nosé-Hoover thermostat on the fluid atoms, which
we apply to the x-components of the velocities, perpendicular to both the flow direction and

the height of the simulation cell.

2.2.3 Interface between lattice Boltzmann (LB) and molecular dynamics (MD)

As noted above, our goal is to couple a lattice Boltzmann simulation of continuum Couette
flow with a molecular dynamics simulation used to model the interactions of the fluid with
the underlying surface. These simulations are done in three dimensions, using the basic grid
shown schematically in Figure 2.3. The system is divided into vertical cells with flow in the
cells being calculated with the LB method. In a traditional simulation of Couette flow, the
driving velocity in the y-direction would be set at the upper surface (z = 1 in Figure 2.3) and
a zero-velocity boundary condition would be used at the bottom (z = 0) boundary. In the
present simulation, we employ a MD simulation in the bottom cell to set the velocity boundary
condition for the LB calculation. The MD simulation cell is shown schematically in Figure 2.4.
The boundary condition at the bottom edge arises from the influence of the interaction of the
fluid atoms with a set of stationary atoms in a face-centered cubic (fcc) structure. The strength
of the interaction between the fluid atoms and the solid atoms, the well depth €,, was varied
to examine the role it plays on the slip velocity. The top atoms (light gray) have a density
and interactions appropriate for the fluid but are kept in a fixed fcc structure and are given

a velocity in the y direction that comes from the LB calculation. The basic procedure is as



12

follows: an LB calculation is run assuming a zero-velocity boundary condition at the bottom;
the calculated velocity from the LB calculation at the top of the bottom cell is used to set the
velocity at the top boundary of the MD calculation; the velocity at the bottom edge of the MD
cell (the slip velocity) is determined (as described below); and the slip velocity sets the bottom

boundary conditions for an LB calculation. The system is iterated to self-consistency.

2.2.4 Information transfer between models

In our approach, the LB and MD models have been written as autonomous codes that need
input to run and that provide output. For the LB method, the needed input are the distance
and time scales (Ax and At), the actual density, and the relaxation time 7. For MD, the needed
input are the potential parameters (o, €, and €;) as well as atomic positions, temperature, cell
dimensions, number of atoms, and time step, which are given in the code in reduced units. In
addition to these parameters, the boundary conditions must be set. The LB method requires
the velocity at the top surface (the driving velocity) and bottom surface (the slip velocity).
The driving velocity is set as an input, while the MD calculations provide the slip velocity. The
MD calculations require the average velocity at its top surface, which is provided by the LB
calculation. One of the challenges in any multiscale simulation based on methods that describe
different physical processes is to ensure a match between the fundamental thermodynamic,
mechanical and transport properties described by each method. In general, the methods are
based on different physical models and thus the information is calculated in very different ways.
In the present case, we must ensure that the LB and MD calculations are modeling the same
fluid, i.e., that each fluid has the same density, effective temperature, and viscosity. Details on

making that connection are presented in the Appendix.

2.3 The Basic Model Inteface (BMI)

Our goal is to create a standard model-to-model interface by which we can link autonomous
models into an integrated modeling system for multiscale simulations. A detailed discussion of
the reasons behind such an approach and more details of how to construct these interfaces is

given elsewhere by the CSDMS group [8]. The basic goal of the CSDMS system is to create a



13

|

\
\

-1f,'-111||||||||||

o
L]
L]
=
-

. &
& @ @&
L]

L

L]
L]

L
-
L]
L]

lll"\.lllllllllll 11

L]

=
£ ]
L

hllllllllll

-
W
L}
-
L
R
-

Z
oy s

Figure 2.3: Schematic view of the Lattice Boltzmann grid, with the region in which molecular

dynamics is used shown in gray.



14

o = W =

Figure 2.4: Schematic two-dimensional view of the molecular dynamics cell (a 2D projection).
The dark colored atoms at the bottom represent the solid. The shaded atoms at the top
boundary are given a velocity set by the results of the LB calculation. The rectangles indicate
volumes over which averages are taken to determine the velocities as a function of z. Details
are in the text.



15

common interface to link computer codes that have been developed by disparate members of
their team to describe different aspects of the earth-surface system into an integrated simulation.
They refer to these codes as “components,” which are equivalent to what we have been referring
to as models. We will continue with the word model in the following discussion. We emphasize
that we are not discussing an interface between a user and a computer program, such as through
a GUI. Rather, we are constructing an interface between models. The interface has no data
associated with it, but rather is a specific set of common functions that define how information
is transferred to and from various models. This interface thus allows the models to be connected
into an integrated modeling system. We use the word “model” in a very broad way. Each model
is a computer code, which is written in some computer language and requires some input and
yields some output, i.e., a “model” is an “information processor” that takes information in and
sends new information out. The model may involve calculations that will be solved on a grid
(or not) and will be written in some units (e.g., meters), which may or may not be consistent
across all the models. The model could be a simple algebraic equation or it could be a complex
computer simulation or a database — each model acts as a source of information. The model
interface makes communication between models independent of the models themselves, making
integration of the models easier. We believe that such an approach is essential for the efficient
construction of integrated multiscale models in a environment in which models are widely
different (e.g., lattice Boltzmann and molecular dynamics) and are likely to be developed and
maintained by different groups. The benefits to this approach are that these groups can develop
their models in any computer language; the models can be written in any sets of units; and the
models can be calculated on any grid (or no grid). Each model can have multiple interfaces,
so that we could link the same model in different ways to achieve multiple functionalities.
For example, we could provide a set of interfaces to a molecular dynamics code that has many
functionalities (constant volume and energy versus constant temperature versus constant stress,
etc.). Thus this one model could be used in multiple ways by multiple people with no change in
the fundamental computer code and can be reused in multiple integrated models without any
special adaptations. The most important benefit is that constructing such autonomous models

facilitates effective cooperation between groups, allowing each group to do what it does best



16

framework
service
components
m " CcMmI
/\
BMI BMI
model 1 model 2

Figure 2.5: Relationship between the components of the CSDMS schema. Adapted from [7].

— creating new models without having to focus on developing a new framework. Our starting
point is the CSDMS approach [8], which enables a model to communicate with other models in
a way that is accessible to the developers of those models. The CSDMS scheme is to do this in a
structured way, as shown schematically in Figure 2.5. The basic model interface (BMI) is a set
of functions that is attached to each model to enable it to fit into a second-level interface called
the component model interface (CMI). The BMI uses very simple data types and is easy to
implement, which facilitates its use by the developer community [31]. The BMI provides all the
information that enable the model to be “plugged into” the integrated modeling application.
The functions in the CMI allow the models to communicate and share data with other models
regardless of computer language [8]. Service components are background packages that all
models use to provide basic compatibility between languages, etc. The framework provides
the means by which the modeler can assemble the models into a connected application. We
note that in this paper we are using the same programming language for all models and so are
focused on creating a low-level basic model interface.

Modeling materials has a number of unique challenges, including a tight coupling between



17

scales as described in Figure 2.1. Our work is thus centered in part on developing a better
understanding of model-to-model communication in multiscale materials simulations, i.e., on
the mediation of information transfer between models across scales. Our approach has been to
start with a relatively simple hybrid system of multiscale models (described in Section 2) to
examine key aspects of information mediation for linked (concurrent) multiscale simulations,

including

compatibility of information transfer between models (i.e., does information have the

right units, attributes, etc.)

boundaries between models (how do we match boundary conditions)

e convergence of the overall solution, especially with highly disparate models

stability of the solution

The Basic Model Interface (BMI) consists of a standardized set of functions that allow access to
a model’s input and output variables in a standard way [31]. Communication between models is
handled mainly by the use of get and set functions that return and change the value of variable
respectively. The full name of these functions will include the data type and rank of the variable.
Appropriate use of these functions allows access to any of the models’s input or output variables.
While the models are allowed to do their internal calculations in whatever systems of units is
most convenient, the values returned by get or input into set should be in some accepted set
of units. In our case, we use SI units. A list of functions and their descriptions is found in
Table (2.1). We note that get and set functions exist for variables of every combination of
data type and rank and that we only list a few of them in Table (2.1). While many of these
functions are similar or identical to those from the BMI [8][31], new functions have been added
for information about the potential boundary conditions that can be applied to a model and
what input and output variables to use with a specific boundary condition. Specifically, the
function get_boundary_condition_names returns types of boundary conditions that a model is
capable of enforcing and get_boundary var names(string) returns a list of names of variables

associated with a given boundary condition. The function match units(model *) has also been



18

added and is used to ensure that two models are simulating the same material under the same
conditions. This function enables the model calling it to examine the state variables of the
input model and modify its own state variables to match them, as discussed in the Appendix.

The framework in Figure 2.5 provides access to linking autonomous models within a run-
time environment. To demonstrate the benefits of this approach, however, we are using a
simpler system, in which there is a “controlling model” that serves the role as both the CMI
and framework. The MD code and LB code are implemented as subclasses of the controlling
model, so they inherit all of the functions, while the implementation for each function is specific
to a given model. The BMI enables the models to communicate and share data with each other
regardless of the language, though in our case the two models are written in a common language
(C++). We emphasize again that since the models communicate through the functions in Table
(2.1) (and others), it is immaterial that they are on a different grid (or no grid at all), use
different units, or use a different time stepping scheme. The boundaries between models are
controlled through the model-to-model interface. The controlling model creates and initializes
a object of each model class, md and 1b, and uses match_units to set the density, temperature,
and viscosity to be the same in both models. It then connects the LB/MD simulations as

described above.

2.4 Results of the Model

We developed and implemented a BMI-like interface to link the LB and the MD models,
with the goal of (1) establishing a structure for connecting multiscale materials models and
(2) demonstrating that this structure can be used to solve a specific problem, which, in this
case, is to evaluate the effects of surface interactions at a fluid-solid interface. Here we describe
the simulations in more detail and present some results. We note that detailed comparisons
were made between an original monolithic code and the BMI-linked application, with no loss
in computational speed or accuracy arising from use of the BMI-linked code.

The basic parameters in the modeled system are given in Table (2.2). The interaction
potential between the fluid atoms and the underlying solid atoms (as shown in Figure 2.4), €,

is varied. The velocity profile in the y direction from an MD simulation is found by determining



19

Table 2.1: List of BMI-like functions

Function

Purpose

void initialize(string input_file,
string identifier)

allocates memory for model and sets input vari-
ables

void run(int time_steps)

void finalize()

runs model for number of time steps based on
value of time_steps

deallocates memory for model and prints output
to a file

vector<string> get_input_var_names ()

returns list of input variables

vector<string> get_output_var_names()

returns list of output variables

vector<string>
get_boundary condition names()

returns list of usable boundary conditions

vector<string>
get_boundary_condition_var names(string
boundary_condition)

returns list of variables to use to enforce given
boundary condition

string get_var_type(string variable)

returns data type of variable

string get_var_units(string variable)

returns units of variable

int get_var_rank(string variable)

returns rank of variable

double get_0Od_double(string)

returns value of a zeroth rank floating point vari-
able

vector <double> get_ld_double(string)

returns a first rank floating point variable

void set_2d_double_at_index(string,
double, int, int)

set, the value of a second rank floating point vari-
able at a specified index

int get_3d_int_at_index(string, int,

int, int)

return the value of a third rank integer variable
at a specified index

vector < vector < vector < vector <
string> > > > get_4d_string(string)

return a fourth rank string variable

void match_units(model *)

matches the values of variables in two models to
put them into the same state




20

Table 2.2: Physical parameters input to each model

Az, At, pg, and T are defined in Eq.(2.1), (2.2) and (2.4). N is the number of freely flowing
fluid atoms in the molecular dynamics cell, m, is the mass per atom, € and ¢ are the potential
parameters defined in Eq.(2.8), appis the size of molecular dynamics cell (= Az), Vi is the
volume of the molecular dynamics cell (and the LB grid volume), T is the temperature, and
Ot is the time step in the solution to the equations of motion. ty is the reduced unit of time in
the calculation, as described in the text.

Lattice Boltzmann Molecular dynamics
Az = 5.78 nm N = 2400
At =4.363x 107! s me = 6.63 x 10720 kg
po = 1374 kg/m® | € =120 K = 1.656 x 10721]
T=1 o = 0.34 nm
ayp — 170 = Az
Veen = 1.93 x 1072°m?
T =13 ¢/ky, = 156 K
5t = 0.001t) =2.2x1071° s

the average velocity in small volume at different z values in the MD cell (indicated in Figure 2.4).
These are then fitted with a line and the slip velocity (the value at the surface) is determined,
which is passed to the LB model as the boundary condition at the bottom surface. The LB
simulations were run for 1000 time steps before passing information to the MD calculations,
which were then run for 20000 time steps to equilibrate the fluid with the new boundary
condition and 600,000 time steps to create the velocity profile and to determine the slip velocity,
which is passed to the LB calculation. This process continues for 20 cycles. The average of the
slip velocity from the last 10 cycles is taken as the slip velocity and its standard deviation is
taken as a measure of the error of the method.

We examined two types of substrate surfaces. In Figure 2.6a we show a “smooth” surface,
consisting of the [100] surface of a face-centered cubic lattice. In Figure 2.6b, a “rough surface”
is created by removing 1/2 of the surface atoms from Figure 2.6a, keeping a fourfold symmetry.
We note that the interaction energy between these atomic-scale surfaces and the fluid is not
sufficient, in general, to lead to zero slip velocity, which is why we are using a solid density at
an unphysical value of four times that of the fluid [16]. To obtain non-zero slip velocities for

the atomically rough surface we had to increase the driving velocity at the top of the Couette



21

(b)

Figure 2.6: Atomic-level structures for the two surfaces used in our study. (a) The [100]
surface of a face-centered cubic lattice. Note that it is smooth at an atomistic scale. (b) The
surface from (a) with 1/2 of the atoms removed. Note that the surface structure has a fourfold
Symimetry.

7 . 35
G‘- Q
g6 E
=5 230
= 3]
S 4 RS
T o
> i 25
k=N =
) %}
o 2
20
1
5 10 15 5 10 15 20
Cycles Cycles

(@) (b)

Figure 2.7: The slip velocities as a function of iterative cycle for (a) the atomically-smooth
surface of Figure 2.6a and (b) the atomically-rough surface of Figure 2.6b.

flow relative to that used for a smooth surface (30 LB units, or 3974 m/s for the rough surface
and 0.75 LB units or 99.3 m/s for the smooth surface).

In Figure 2.7, we show the calculated slip velocity as a function of the number of cycles
in the iterative procedure. Calculations were done with €;/¢ = 0.2 for the rough surface and
0.6 for the smooth surface. As noted above, the velocities with the smooth surface are small
enough that numerical noise is relatively larger than that for the rough surface. That said,
the results converge reasonably well for both, with larger relative error for the smooth surface.
Note that the surface velocities are much smaller than the driving velocities (at the top of the

LB model). For example, for the smooth surface, the ratio of the slip velocity to the driving



22

10 40 =
8 [ @ ‘ l\'
30 h
2 e £ N
Es = By
> -~ S 20 ..
8 4 - ° R
= I_\ = “1‘-\., 1
g {‘ 210 L
2 7 by
0 I 8
0.6 0.8 1.0 1.2 .0 0.2 0.4 0.6 0.8 1.0
Wall-Fluid Interaction Strength Wall-Fluid Interaction Strength

(@) (b)

Figure 2.8: The slip velocities vs (the average fluid velocity at the substrate surface) as a
function of the strength of the interatomic interaction (e5/€) between the atoms in the fluid
and those in the solid substrate. (a) The atomically-smooth surface of Figure 2.6a. (b) The
atomically-rough surface of Figure 2.6b.

velocity in Figure 2.7a is about 6/99 ~ 6% and for the rough surface in Figure 2.7b, the ratio
is about 0.8%. From a continuum perspective the assumption of a zero slip velocity may be a
reasonable boundary condition, depending on the driving velocity and the strength of the fluid
solid interaction.

In Figure 2.8, we show the converged slip velocity as a function of €5 for the smooth and
rough surfaces. In both cases, the stronger the interaction energy between the fluid atoms and
the solid atoms, the lower the slip velocity, which is certainly as one would expect For the
smooth surface (Figure 2.8a), the net interactions between the substrate surface and the atoms
in the fluid were quite small, and very small net fluid velocities were sufficient to drive the
atoms past the surface. Moving to an atomically rough surface changed the dynamics of the
solid-liquid interface dramatically (Figure 2.8b), greatly increasing the effects of the surface on

the fluid flow at the interface.

2.5 Summary and Conclusion

The results from the simulations of Couette flow are consistent with expectations and with
previous work [16], with the stronger the interaction energy between the fluid atoms and the

solid atoms, the lower the slip velocity (see Figure 2.6 and Figure 2.8). We found that an surface



23

with roughness at an atomic scale enhanced the interactions between atoms in a fluid and the
surface than that found with an atomically-smooth surface. The iterative approach taken to
link the models was satisfactory, though one could imagine a number of other coupling schemes.
The important part of this paper is that we established a basic model-to-model interface for
linking autonomous multiscale computer models. We specifically examined key aspects of the
mediation of the information between the models. A challenge for materials modeling is that
the physical behavior at a specific set of length and time scales generally depends on physical
processes at smaller scales, which can lead to complex boundary conditions between models.

Because of this complexity, we focused on the key issues of

compatibility of information transfer between models (i.e., does information have the

right units, attributes, etc.)

e boundaries between models (how do we match boundary conditions for widely different

length and time scales)
e convergence of the overall solution, especially with highly disparate models
e stability of the solution, especially with highly disparate models

We introduced new functionality to the Basic Model Interface of the CSDMS group [8] to handle
these issues. Specifically, we introduced new functions to force compatibility between the LB
and MD models to consistently represent fluids in the same state (detailed in the Appendix)
and to set the boundaries between the models (detailed in Section 3). Convergence and stability
were managed in the “controlling model” and were a product of the choice of an iterative link
between scales. More sophisticated calculations will most likely require more sophisticated
boundary conditions, which are under investigation. We are currently adding the model-to-
model interface to other models (e.g., heat flow and a phase-field model) for application to
problems of more relevance to materials (e.g., solidification). The goal is to create a library
of models that we can link together as needed to form an integrated model system for a
specific application that requires no further modification of the models in the library. We note

that a more effective approach to developing this type of integrated model system would be



24

to develop autonomous models with ontological and semantic independence [32]. Autonomy
refers to models existing and running independently of other models. Ontological and semantic
independence mean that each model’s description of its own data and how the code is written
is independent of how other models work and how they describe their data. Models could then
be developed independently of one another and a way to link them together as necessary would

be employed.



25

2.A Appendix

The parameters of the two models were chosen so that the fluid is in the same thermo-
dynamic state, i.e., with the same temperature, density, and viscosity, in both simulations.
The equivalence between units as calculated with the two methods is given in Table (2.A.1).
After both models are initialized, the function match units(model *) is called, which sets
the value of the parameters dx and dt in the lattice Boltzmann simulation so that one cell in
the lattice Boltzmann simulation is the same size as the entire molecular dynamics simulation
and to match the viscosity of the two simulations. Temperature and unit cell size are input
parameters to the molecular dynamics simulations, from which the density and viscosity can be
determined. The viscosity for the molecular dynamics simulations are based on previous cal-
culations for the Lennard-Jones fluid and tabulated as a function of pressure and temperature
[33]. The temperature, simulation cell size, density, and viscosity are then passed to the lattice
Boltzmann simulation. The viscosity, lattice spacing, density, and time step are related, so once
the first three of these variables are known (passed from the molecular dynamics simulation)
the time step is determined. All of the matching of variables and units is handled through the

function match_units(model *) function.



26

Table 2.A.1: Equivalence of quantities between lattice Boltzmann and molecular dynamics

Property Lattice Boltzmann ‘ Molecular dynamics ‘
Density p=po i, = 137458 \ p=irss = 137424 \

Temperature T = 156K (arbitrary) ‘ T = 156K (thermostat) ‘
Viscocity n =LA (7 — .5) = 1.75x10"4 ke n* = 1.934

n =Y = 1.75x1071 A

Velocity Conversion Factor VLB = YMD—>LBUYMD ‘ UMD = YLB—>MDVLB ‘

YMD—>LB = %aff[) =.0493 ‘ YLB->LMp = 1/YMp—>L5 = 20.3 ‘




27

CHAPTER 3. ADDING THE BASIC MODEL INTERFACE (BMI) TO
LARGE-SCALE ATOMIC/MOLECULAR MASSIVELY PARALLEL
SIMULATOR (LAMMPS)

3.1 Introduction

One of the long term goals of this project is to build a library of models that can be linked
together via the BMI. To test the ability to add new models to this library, we would like
to add the BMI to an existing code that has been developed independently by someone else
and without its compatibility with the BMI in mind. Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) was chosen for this purpose. LAMMPS is an open source
molecular dynamics code written in C++ developed at Sandia National Laboratories. We will
be adding the BMI to LAMMPS and comparing it with our own molecular dynamics code by
repeating the calculations performed in the previous chapter. Section 2 of this chapter will be
a discussion of the implementation of the BMI with LAMMPS, Section 3 will show the results

of the calculations, and Section 4 will be a summary of the results along with our conclusions.

3.2 Interface Implementation

As mentioned in the previous chapter, models are implemented as subclasses of the class
model. This means that all objects of subclasses of model can act as members of model, such
as in a list of models. Additionally, all functions defined for the class model can be used by its
subclasses, a process known as inheritance [34]. The BMI functions are defined for the class
model and all of its subclasses inherit these functions with each individual model having its
own specific implementation of the BMI functions.

LAMMPS works by creating an object of the class LAMMPS, reading an input file, and



28

translates each line into code to execute. Since LAMMPS is already a class, it can be used
with the BMI by simply declaring it a subclass of model and adding the BMI functions to it.
The BMI get_ and set_ functions are implemented by determining an equivalent LAMMPS
command, generating a string for that command, then passing that string to the function
one() which executes the same code as if that string had used as a line in an input file. For
example, setting the velocity on the top boundary uses the velocity command from LAMMPS
to set the velocity on a specified group of atoms to the desired value, the relevant section of

code is

void LAMMPS::set_1d_double(string variable, vector<double> value)
{

std::stringstream ss;

ss.str("");

double units;

if (variable == "velocity")
{
// conversion factor from real units to LAMMPS units
units = _time/_length;
value [0] *= units;
value [1] *= units;
value [2] *= units;

// creates a string for the command to set

// the velocity of group BMI_upper_boundary

// to the value specified by value

ss << "velocity_ BMI_upper_boundary set " << value[0]
<< " " << value[1] << "" << value[2] << "_units_box";

// creates a char array with the same contents as ss
const char *s = new char[100];
s = &(ss.str (D)) [0];

// runs the command specified by the string
input ->one(s);

With similar code existing setting the temperature and pressure and for calculating the slip
velocity. For this to become a constant velocity boundary condition, two commands in the

LAMMPS input file are necessary. One which sets the force on the group of atoms to always




29

Table 3.1: Physical parameters input to each model

Az, At, pp, and 7 are defined in Eq.(2.1), (2.2) and (2.4). N is the number of freely flowing
fluid atoms in the molecular dynamics cell, m, is the mass per atom, € and ¢ are the potential
parameters defined in Eq.(2.8), appis the size of molecular dynamics cell (= Az), Vi is the
volume of the molecular dynamics cell (and the LB grid volume), 7' is the temperature, and
0t is the time step in the solution to the equations of motion. ty is the reduced unit of time in
the calculation, as described in the text.

Lattice Boltzmann Molecular dynamics
Az = 5.78 nm N = 2400
At =4.363x 107! s me = 6.63 x 10720 kg
po = 1374 kg/m® | € =120 K = 1.656 x 10721]
T=1 o = 0.34 nm
ayp — 170 = Az
Veen = 1.93 x 1072°m?
T =13 ¢/ky, = 156 K
5t = 0.001t) =2.2x1071° s

be zero and one which updates the positions of the atoms at every time step. Together these

look like
fix 3 BMI_boundary setforce 0.0 0.0 0.0
fix 4 BMI_boundary nve

Units are handled within LAMMPS by defining a number of variables which give the con-
version factor between real constants and the unit system used. The BMI looks at two of these
variables, angstrom and nanosecond, which define the size of an angstrom and a nanosecond,

respectively, to define the values for _length and _time which are used for unit conversion.

3.3 Results of the Model

The simulations performed in Chapter 2 are run again, this time using LAMMPS for the
molecular dynamics portion of the simulations instead of our own molecular dynamics code.
For reference, the simulation parameters are repeated here in Table (3.1).

The results of both sets of simulations are shown in Figure 3.1 and Figure 3.2. As seen in
Figure 3.1, the convergence behavior for both appear to be similar, the slip velocity approaches

the true value after about 10 cycles then fluctuates around its mean for the rest of the sim-




30

R [2)] o]

Slip Velocity (m/s)

N

10

Cycles

15

20

= Using LAMMPS
= Previous Results

Figure 3.1: Comparison of the slip velocity as a function of iterative cycle for the smooth

surface with €5/ = .6.

10

T
100 y
g ) I 2 g ‘
£ E \
> 6} > &
S . g 69 \
K/ o
[ (% N .
g4 I > 40} g AN = Using LAMMPS
2 [ ™ l 2 R ., Previous Resul
@, I ~~~~~~~ L v 2 ,_’ - = Previous Results
r ] Ty
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 8 0.2 0.4 0.6 0.8 1.0
Wall-Fluid Interaction Strength Wall-Fluid Interaction Strength
(a) (b)

Figure 3.2: Comparison of the slip velocity as a function of €5/e. (a) The atomically smooth

surface. (b) The atomically rough surface.

ulations. For the smooth surface Figure 3.2a shows that calculations using LAMMPS give a

higher value for the slip velocity for the €,/ = .6 and e5/e = 1.1 cases and smaller values for

the slip velocity in the other cases. Additionally the standard deviation of the slip velocity over

the second half of the simulation, shown as half the height of the vertical bars for each data

point, is much smaller, less than half, in all cases. For the rough surface Figure 3.2b shows

that the calculations using LAMMPS tend to give larger values for the slip velocity, especially

at lower values of e5/e. Though difficult to see from Figure 3.2b, the standard deviation of slip

velocity is smaller when using LAMMPS for all cases except €,/e = .3.



31

3.4 Summary and Conclusion

By adding the BMI to LAMMPS we demonstrated the ability to add the BMI to an existing
code. This modified version of LAMMPS was then able to communicate with our previously
written lattice Boltzmann model and was used to repeat previous simulations of Couette flow.
The results using LAMMPS are similar to the results from the previous chapter. The differences
could be do to a number of possible factors: A simulation parameter that has accidentally not
been made identical in the two simulations, slight differences between the algorithms used by
the two molecular dynamics codes, an unknown bug in either code, etc.

It has been mentioned previously that one of the advantages of the BMI is that it can
be added to models without modifying their code. Unfortunately, this may not be the case
for LAMMPS. While creating a function to calculate the slip velocity based on the velocity
profile, it was discovered that the velocity profile values are not directly accessible so a simple
function which outputs these values had to be added to the fix and fix_ave_chunk classes.
This is regarded as a temporary solution to this problem. Different methods of accessing this
information and a solution which does not require the modification of LAMMPS code are still

being sought.



[11]

[12]

[13]

32

REFERENCES

Jacob Fish. “Bridging the scales in nano engineering and science”. In: Journal of Nanopar-
ticle Research 8.5 (2006), pp. 577-594.

Jitesh H Panchal, Surya R Kalidindi, and David L McDowell. “Key computational model-
ing issues in integrated computational materials engineering”. In: Computer-Aided Design
45.1 (2013), pp. 4-25.

Gerard F Laniak et al. “Integrated environmental modeling: a vision and roadmap for
the future”. In: Environmental Modelling &amp; Software 39 (2013), pp. 3-23.

DJ Muth and Kenneth Mark Bryden. “An integrated model for assessment of sustainable
agricultural residue removal limits for bioenergy systems”. In: Environmental modelling
&amp; software 39 (2013), pp. 50-69.

C. W. Armstrong, R. W. Ford, and G. D. Riley. “Coupling integrated Earth System Model
components with BFG2”. In: Concurrency and Computation: Practice and Ezxperience 21

(2009), pp. 767-791.
V. Balaji. ESMF Reference Manual for Fotran. 2014.

R. Redler, S. Valcke, and H. Ritzdorf. “OASIS4 - a coupling software for next generation
earth system modelling”. In: Geoscientifici Model Development 3 (2010), pp. 87-104.

Scott D. Peckham, Eric W.H. Hutton, and Boyana Norris. “A component-based approach
to integrated modeling in the geoscience: The design of CSDMS”. In: Computers & Geo-
sciences 53 (2013), pp. 3—12.

Babel Homepage. https://computation.llnl.gov/casc/components/index.html.

Mike F Ashby. “Physical modelling of materials problems”. In: Materials Science and
Technology 8.2 (1992), pp. 102-111.

Richard LeSar. Introduction to computational materials science: fundamentals to appli-
cations. Cambridge University Press, 2013.

Philip W Anderson et al. “More is different”. In: Science 177.4047 (1972), pp. 393-396.

Somnath Ghosh. “Adaptive Hierarchical-Concurrent Multiscale Modeling of Ductile Fail-
ure in Heterogeneous Metallic Materials”. In: JOM 67.1 (2015), pp. 129-142.


https://computation.llnl.gov/casc/components/index.html

[14]

[15]

21]

22]

[25]

[26]

33

Qi Tong and Shaofan Li. “From molecular systems to continuum solids: A multiscale
structure and dynamics”. In: The Journal of chemical physics 143.6 (2015), p. 064101.

Franck J Vernerey and Mirmohammadreza Kabiri. “An adaptive concurrent multiscale
method for microstructured elastic solids”. In: Computer Methods in Applied Mechanics
and Engineering 241 (2012), pp. 52-64.

Nikolaos Asproulis, Marco Kalweit, and Dimitris Drikakis. “A hybrid molecular con-
tinuum method using point wise coupling”. In: Advances in Engineering Software 46.1
(2012), pp. 85-92.

Shiyi Chen and Gary D Doolen. “Lattice Boltzmann method for fluid flows”. In: Annual
review of fluid mechanics 30.1 (1998), pp. 329-364.

Uriel Frisch, Brosl Hasslacher, and Yves Pomeau. “Lattice-gas automata for the Navier-
Stokes equation”. In: Physical review letters 56.14 (1986), p. 1505.

Bastien Chopard. “Cellular automata modeling of physical systems”. In: Encyclopedia of
Complexity and Systems Science. Springer, 2009, pp. 865-892.

Dominique d’Humieres. “Multiple-relaxation—time lattice Boltzmann models in three di-
mensions”. In: Philosophical Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences 360.1792 (2002), pp. 437-451.

Carolin Kérner, Elham Attar, and Peter Heinl. “Mesoscopic simulation of selective beam
melting processes”. In: Journal of Materials Processing Technology 211.6 (2011), pp. 978~
987.

Chih-Fung Ho et al. “Consistent Boundary Conditions for 2D and 3D Lattice Boltzmann
Simulations”. In: Computing Modeling in Engineering and Science 44,2 (2009), pp. 137—
155.

Loup Verlet. “Computer” experiments” on classical fluids. I. Thermodynamical properties
of Lennard-Jones molecules”. In: Physical review 159.1 (1967), p. 98.

Shtuichi Nosé. “A molecular dynamics method for simulations in the canonical ensemble”.
In: Molecular physics 52.2 (1984), pp. 255-268.

William G Hoover. “Canonical dynamics: equilibrium phase-space distributions”. In:
Physical review A 31.3 (1985), p. 1695.

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to
applications. Vol. 1. Elsevier (formerly published by Academic Press), 2002, pp. 1-638.

John Edward Jones. “On the determination of molecular fields. II. From the equation of
state of a gas”. In: Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences. Vol. 106(738). The Royal Society. 1924, pp. 463-477.



[28]

[29]

34

J. N. Reddy. An introduction to continuum mechanics with applications. Cambridge Uni-
versity Press, 2008.

Xin Yong and Lucy T Zhang. “Thermostats and thermostat strategies for molecular
dynamics simulations of nanofluidics”. In: The Journal of chemical physics 138.8 (2013),
p. 084503.

Xiaoyi He, Shiyi Chen, and Gary D Doolen. “A novel thermal model for the lattice
Boltzmann method in incompressible limit”. In: Journal of Computational Physics 146.1
(1998), pp. 282-300.

CSDMS Basic Model Interface. http://csdms.colorado.edu/wiki/BMI_Description.

Kenneth Bryden. “A Proposed Approach to the Development of Federated Model Sets”.
In: International Congress on Environmental Modelling and Software (2014).

RL Rowley and MM Painter. “Diffusion and viscosity equations of state for a Lennard-
Jones fluid obtained from molecular dynamics simulations”. In: International journal of

thermophysics 18.5 (1997), pp. 1109-1121.

Bjarne Stroustrup. The C++ programming language. Pearson Education, 2013.


http://csdms.colorado.edu/wiki/BMI_Description

	TABLE OF CONTENTS
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Background
	1.2 Thesis Organization

	2. A MODEL-TO-MODEL INTERFACE FOR CONCURRENT MULTISCALE SIMULATIONS
	2.1 Introduction
	2.2 Coupled Multiscale Model of Surface-Fluid Interactions in Couette Flow
	2.2.1 Lattice Boltzmann (LB) method
	2.2.2 Molecular dynamics (MD)
	2.2.3 Interface between lattice Boltzmann (LB) and molecular dynamics (MD)
	2.2.4 Information transfer between models

	2.3 The Basic Model Inteface (BMI)
	2.4 Results of the Model
	2.5 Summary and Conclusion
	2.A Appendix

	3. ADDING THE BASIC MODEL INTERFACE (BMI) TO LARGE-SCALE ATOMIC/MOLECULAR MASSIVELY PARALLEL SIMULATOR (LAMMPS)
	3.1 Introduction
	3.2 Interface Implementation
	3.3 Results of the Model
	3.4 Summary and Conclusion

	REFERENCES

