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ABSTRACT

Benefiting from unique properties of 4f electrons, rare earth based compounds are known

for offering a versatile playground for condensed matter physics research as well as industrial

applications. This thesis focuses on three specific examples that further explore the rare earth

local moment magnetism and strongly correlated phenomena in various crystal structures.

The first two Chapters of the thesis will be dedicated to general introductions to rare

earth physics and to quasicrystals that are related to the forthcoming Chapters. Chapter 3

describes the high-temperature solution growth technique for single crystal synthesis as well as

the measurement techniques that were used during the course of this thesis research.

We then look at how local magnetic moments behave in a quasicrystalline lattice. Chapter

4 presents the discovery and characterization of i-R-Cd (R = Y, Gd-Tm), icosahedral qua-

sicrystals, six of which belong to the world’s first family of magnetic, binary quasicrystals.

We first show how these quasicrystals were discovered via high-temperature solution growth

utilized as an exploratory tool. We then present a detailed characterization of i-R-Cd (R =

Y, Gd-Tm) by means of x-ray diffraction, temperature-dependent dc and ac magnetization,

temperature-dependent resistance and temperature-dependent specific heat measurements. i-

Y-Cd is weakly diamagnetic and manifests a temperature-independent susceptibility. i-Gd-Cd

can be characterized as a spin-glass below 4.6 K via a dc magnetization cusp, a third order non-

linear magnetic susceptibility peak, a frequency-dependent freezing temperature and a broad

maximum in the specific heat. i-R-Cd (R = Ho-Tm) is similar to i-Gd-Cd in terms of features

observed in thermodynamic measurements. i-Tb-Cd and i-Dy-Cd do not show a clear cusp in

their zero-field-cooled dc magnetization data, but instead show a more rounded, broad local

maximum. The resistivity for i-R-Cd is of order 300 µΩ cm and weakly temperature-dependent.

The characteristic freezing temperatures for i-R-Cd (R = Gd-Tm) deviate from the de Gennes

scaling, consistent with crystal electric field splitting induced local moment anisotropy.
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Chapter 5 focuses on the search for a hexagonal system that exhibits a strong planar

magnetization with a 6-state-clock, in-plane magnetic anisotropy. In Chapter 5, we look at a

specific system, RMg2Cu9. Single crystals of RMg2Cu9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown

using a high-temperature solution growth technique and were characterized by measurements

of room-temperature x-ray diffraction, temperature-dependent specific heat and temperature-,

field-dependent resistivity and anisotropic magnetization. YMg2Cu9 is a non-local-moment-

bearing metal with an electronic specific heat coefficient, γ ∼ 15 mJ/mol K2. Yb is divalent and

basically non-moment bearing in YbMg2Cu9. Ce is trivalent in CeMg2Cu9 with two magnetic

transitions being observed at 2.1 K and 1.5 K. PrMg2Cu9 does not exhibit any magnetic

phase transition down to 0.5 K. The other members being studied (R=Nd, Gd-Dy) all exhibit

antiferromagnetic transitions at low-temperatures ranging from 3.2 K for NdMg2Cu9 to 11.9 K

for TbMg2Cu9. Whereas GdMg2Cu9 is isotropic in its paramagnetic state due to zero angular

momentum (L=0), all the other local-moment-bearing members manifest an anisotropic, planar

magnetization in their paramagnetic states. To further study this planar anisotropy, detailed

angular-dependent magnetization was carried out on magnetically diluted (Y0.99Tb0.01)Mg2Cu9

and (Y0.99Dy0.01)Mg2Cu9. Despite the strong, planar magnetization anisotropy, the in-plane

magnetic anisotropy is weak and field-dependent. A set of crystal electric field parameters are

proposed to explain the observed magnetic anisotropy.

The topic of Chapter 6 switches to strongly correlated phenomena. We study the evolution

of the Kondo effect in heavy fermion compounds, Yb(Fe1−xCox)2Zn20 (06 x 6 1), by means of

temperature-dependent electric resistivity and specific heat. The ground state of YbFe2Zn20 can

be well described by a Kondo model with degeneracy N = 8 and a TK ∼ 30 K. In the presence

of a very similar total CEF splitting with YbFe2Zn20, the ground state of YbCo2Zn20 is close to

a Kondo state with degeneracy N = 2 and a much lower TK ∼ 2 K. Upon Co substitution, the

coherence temperature of YbFe2Zn20 is suppressed, accompanied by an emerging Schottky-like

feature in specific heat associated with the thermal depopulation of CEF levels upon cooling.

For 0.4. x . 0.9, the ground state remains roughly the same which can be understood by the

Kondo effect in the presence of CEF splitting. However, only qualitative information can be

obtained in this middle region due to a large substitution level variation. There is no clear
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indication of Kondo coherence observable in resistivity within this substitution range down to

500 mK. The coherence re-appears at around x& 0.9 and the coherence temperature increases

with higher Co concentration levels.
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CHAPTER 1. BASICS OF THE MAGNETIC PROPERTIES OF RARE

EARTH ELEMENTS

If one looks at the periodic table of elements, rare earth elements probably are the most

prominent ones since the majority of them (lanthanides) are listed separately across the whole

bottom of the periodic table. Scandium and yttrium also belong to the rare earth family

since they are often found in the same ore as lanthanide elements with very similar chemistry.

Despite the fact that they are called rare earth, the real concentrations of rare earth elements

in the crust of earth are actually not low. For example, cerium is as abundant as the well

known metal, copper. And most of them are two orders of magnitude more abundant than

precious metals, like gold[1]. The reason that they are called rare earths is that most of them

are diffuse/dispersed and not often found in concentrated mineral deposits. In the context

of current studies, the focus of this chapter will be on the magnetic and electronic properties

of rare earth elements, most of which arise from the partially filled 4f-electron shell. Due to

the relatively smaller spatial distribution of the un-paired 4f electrons compared to the outer

filled shells, the 4f-magnetism can be approximated as a spatially localized moment. In the

opposite limit, itinerant magnetism comes from a difference in population in spin orientations,

or a spatial modulation of spins, of conduction electrons that are delocalized in real space.

In the following sections, I am going to introduce in more detail how 4f electrons behave by

themselves as well as collectively in a crystalline lattice.

1.1 4f electrons of rare earth and local magnetism

Most rare earth elements are trivalent in intermetallic compounds. Notable exceptions hap-

pen at the two ends of the lanthanide group and in the middle of the series where full/half-full 4f
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shell is energetically more favourable. Eu is almost always divalent in intermetallic compounds

to achieve a half-filled 4f shell. Eu2+, therefore, has the same 4f electron configuration with

Gd3+, whereas contribute one less electron to the conduction band. Ce and Yb sometimes tend

to have an empty (Ce4+) or a full 4f shell (Yb2+).

Figure 1.1 Relative radial extent for electrons of Gd+ from Hartree-Fock calculations.[2]

As mentioned above, the 4f electrons are closer located near the atomic core than outer-shell

electrons. Fig. 1.1 shows the radial extent of some atomic electrons according to Hartree-Fock

calculations. It worth pointing that the 4f electrons have a narrower spatial extent than, for

instance, 5s and 5p electrons. Note that the 5s and 5p orbitals belong to closed shells, whereas

the maximum of the 4f orbital is located inside of those orbitals[2; 3]. Since the overlap between

5d or 6s electrons between atoms are significantly larger than 4f electrons, the conduction band

formed by s-d electrons are much wider in energy. Band calculations often show only ∼50 meV

band width for 4f electrons and locate at ∼10 eV below the 6s-5d conduction bands[3]. In other

words, 4f electrons are well localized.
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Here, it is necessary to introduce Hund’s rules, which explain how to calculate the ground

state configuration for an unfilled shell when the total angular momentum is a good quantum

number. The Hund’s rules are:

• Hund’s first rule: The ground state has the largest value of total spin angular momentum S.

• Hund’s second rule: The ground state has the largest value of total orbital angular momen-

tum L that is permitted by the first rule.

• Hund’s third rule: The total angular momentum J = |L-S| for less than half filled shell and

J = L+S for more than half filled shell.

The ”energy scale” of these three rules becomes progressively smaller as we go from the first

rule to the third. The third rule can be justified by considering spin-orbit coupling, whereas

the first two rules are related to exchange energy that is usually much higher in energy. For

example, being able to have the maximum spin avoid electrons staying in the same orbit due

to Pauli exclusion principle and thus saves Coulomb potential energy. Roughly speaking, the

first rule is easily of the order ∼1 eV. The second is weaker at around 0.1-0.3 eV. And the third

rule is even weaker[4].

For most rare earth elements, the three Hund’s rules’ energy scales are dominant ones

as compared to other energy scales, for instance room temperature (∼25 meV) and crystal

electric field splitting (more detail later). The ground state, as shown above, therefore, is well

separated from excited states. For rare earth trichlorides, the excited states are at least 0.2

eV higher in energy, except for much lower values for Sm and Eu. Because of the relatively

small energy difference between the Hund’s rule ground state and the first excited state, Sm

sometimes behaves differently from what is expected from the Hund’s rule’s prediction. Eu is

mostly divalent in intermetallics instead of trivalent as been tabulated[5]. In the case other

energy scales become more dominant, for example many 3d electrons in the presence of a strong

crystalline electric field (CEF) effect, Hund’s second and third rule may be violated. For the

current study, we won’t go into details for such cases.

Hund’s rules will specify the ground state J, which still has a degeneracy of (2J+1). In the

presence of applied magnetic field, Zeeman splitting will continue lifting the degeneracy. With
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a finite thermal excitation due to finite temperature, the magnetization of the ground state J

can be written as:

M = −N
V
gJµBJBJ(βgJµBJH) (1.1)

Where N is the particle number, V is the volume of the sample. gJ is the Landé g factor,

gJ = 1+ J(J+1)+S(S+1)−L(L+1)
2J(J+1) , µB is the Bohr magneton, β = 1/(kBT) and BJ is the Bril-

louin function. When temperature is much higher than the Zeeman splitting, the magnetic

susceptibility can be expressed as:

χ =
∂M

∂H
∼ NA

(gJµB)2J(J + 1)

3kBT
=
C

T
(1.2)

This is known as the Curie’s law where the Curie constant C is defined as C = NA
(µeff )2

3kB

and the effective moment, µeff = gJµB
√
J(J + 1)

In a real compound, magnetic interaction produces an effective mean field on the magnetic

ions. This additional magnetic field modifies equation (1.2) into:

χ =
C

T − θ
(1.3)

When θ is positive (negative), the magnetic interaction is ferromagnetic (antiferromagnetic).

The addition of the θ term, however does not change the effective moment that is depicted by the

Curie constant, C. Since most of the rare earth ions have a well defined effective moment, this

can be used to evaluate the concentration of rare earth in a compound, such as a magnetically

doped system or a simple binary compound (an example of i-R-Cd will be described in the

following chapter), as long as the rare earth ion is the only moment bearing ion in the compound.

Useful parameters associated with trivalent rare earth ions are summarized in Table 1.1.

The data in Table 1.1 are for isolated rare earth ions. Magnetic interaction may appear in

a solid once multiple magnetic moments are present and able to interact. The most straight

forward interaction is via a direct overlap between 4f electrons. Due to the quite small spatial

extent of 4f electrons, this type of direct exchange interaction usually does not offer the primary

source of interaction in rare earth based intermetallic compounds (or even elements). In a
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Table 1.1 Ground state orbital angular momentum L, spin angular momentum S and total

angular momentum J as calculated from Hund’s rules. Landé factor, gJ = 1+
J(J+1)+S(S+1)−L(L+1)

2J(J+1) ; Saturated magnetic moment, Msat = gJJ ; Effective magnetic

moment, µeff=gJ
√
J(J + 1)µB and de Gennes factor, dG = (gJ -1)2J(J+1) of

trivalent rare earth ions.

R3+ L S J gJ Msat µeff dG

Sc - - - - - - -

Y - - - - - - -

La 0 0 0 - - - -

Ce 3 0.5 2.5 0.857 2.14 2.54 0.19

Pr 5 1 4 0.800 3.20 3.58 0.80

Nd 6 1.5 4.5 0.727 3.27 3.62 1.84

Pm 6 2 4 0.600 2.40 2.68 3.20

Sm 5 2.5 2.5 0.286 0.71 0.84 4.46

Eu 3 3 0 - - - -

Gd 0 3.5 3.5 2.00 7.00 7.94 15.75

Tb 3 3 6 1.500 9.00 9.72 10.50

Dy 5 2.5 7.5 1.333 10.00 10.64 7.08

Ho 6 2 8 1.250 10.00 10.61 4.50

Er 6 1.5 7.5 1.200 9.00 9.58 2.55

Tm 5 1 6 1.167 7.00 7.56 1.17

Yb 3 0.5 3.5 1.143 4.00 4.54 0.32

Lu 0 0 0 - - - -

metal, the primary interaction between localized 4f electrons is through polarized conduction

electrons, an indirect exchange interaction called RKKY interaction. RKKY interaction is

named after the scientists who proposed the theory: M. A. Ruderman, C. Kittel, T. Kasuya,

K. Yosida[6; 7; 8]. The model starts with a single magnetic impurity embedded in conduction

electrons. The spin polarization of the conduction sea will exhibit a Friedel oscillation type

spatial modulation, which only arises when a sharp Fermi surface exists. When encountering

with another magnetic impurity some distance away, the polarization of conduction electrons

will be able to interact with this second magnetic impurity, finishing the indirect interaction

between the two magnetic impurities. More detailed mathematical treatment can be found

in several books[5; 9]. Since the RKKY interaction is mediated by conduction electrons, the

interaction depends on the density of states of electrons at the Fermi energy, the Fermi surface

topology and the real space distance between local moments. In addition, depending on the
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combination of Fermi surface momentum and the real space spacing, Friedel oscillations can

result in different signs for the exchange interaction, which may result in either ferro- and

antiferromagnetic interactions between local moments.

If assuming that the interaction between local moments and the conduction electrons, I,

does not vary much across the rare earth series, the strength of interaction can be simplified

as:

H ∼ IsS (1.4)

where s and S represent spins for conduction electrons and 4f electrons[10]. For 4f electrons,

since J is a good quantum number, we can project S back to J via S = (gJ − 1)J. Since the

conduction electron need to interact with another local moment again to complete the 4f-4f

communication, overall the strength of this indirect interaction is proportional to:

∼ I2(gJ − 1)2J2 ∼ I2(gJ − 1)2J(J + 1) (1.5)

In a mean field theory, the Curie-Weiss temperature as well as the ordering temperature

will be proportional to the de Gennes factor (dG): (gJ − 1)2J(J + 1). This is called the de

Gennes’ scaling[11]. Note that for all rare earth trivalent ions listed in Table 1.1, the de Gennes

factor reaches its maximum at Gd3+. The de Gennes’ scaling is followed for most of the time

by heavy rare earth members with possible complication brought in by anisotropy in exchange

energy and CEF effects[12; 13]. More examples will be discussed in the following chapters.

1.2 Crystalline electric field effect

The crystalline electric field (CEF) describes the electric field an ion experiences due to

its neighboring ions when embedded in a crystalline lattice. The simplest picture depicts an

environment where the central ion is surrounded by point charges sitting on neighboring lattice

sites. Such an electric field produces an additional Coulomb energy that needs to be taken into

account. For 4f electrons, this energy scale is usually smaller than the energy scale of Hund’s

rules and therefore can be considered as a perturbation. For 3d electrons, as a counter example,
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the CEF energy scale can be stronger than the spin-orbit coupling. This means that, for 3d

electrons, the total angular momentum J is no longer a good quantum number.

Figure 1.2 Shape of 4f electron clouds of different crystal field levels for Ce in CeB6[4]. The

structure of CeB6 is shown on the right[14].

The CEF induced free ion magnetic anisotropy originates from the fact that each occupied

orbital has a spatial charge distribution which feels the surrounding crystalline electric field.

To minimize the static electric potential energy, certain spatial distributions will be favored

and therefore lowered in energy while others will be raised. For rare earths, where the total

angular momentum J is a good quantum number, the degeneracy in magnetic orientation is

lifted via spin-orbit coupling, and single ion, magnetic anisotropy emerges. Following such an

argument, elements with a finite angular momentum will exhibit magnetic anisotropy whereas

trivalent Gd and divalent Eu will be isotropic since L = 0 (spherical distribution). Note that the

magnetic anisotropy can still arise from other contributions, for instance, anisotropic exchange

interaction. In any case, there will be anisotropy in the ordered state. Coming back to the

single ion CEF picture, Fig. 1.2 shows an example of CeB6 where Ce3+ sits in a cubic symmetry.

If assuming that B clusters at the corners of the cube have effectively negative charges, the

Γ7 states with charges distributed towards the corners will be unfavourable in energy. On the

other hand, the Γ8 states, where electron distributions point to the gaps, will be lower in energy.
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Some examples of anisotropic magnetization in tetragonal systems are shown in Fig. 1.3[15;

16]. As mentioned above, trivalent Gd is isotropic with L= 0. Fig. 1.3(a) shows the temperature-

dependent magnetization of GdNi2Ge2. In the paramagnetic state, the anisotropic magnetiza-

tion data along the two characteristic orientations of a tetragonal system are virtually isotropic

as expected. CEF effect can also confine the magnetic moment along the axial or within the

basal-plane, leading to an extreme axial or planar magnetization. Fig. 1.3(b)-(d) show exam-

ples for these cases. For DyAgSb2, the magnetic moments of Dy3+ are primarily confined in the

basal-plane as shown in Fig. 1.3(b). Y dilution allows a more accurate evaluation of the CEF

effect by minimizing the magnetic anisotropy brought in by the anisotropic exchange interac-

tion. TbNi2Ge2, on the other hand, is extremely axial as shown in Fig. 1.3(c)-(d). The c-axis

magnetization is an order of magnitude larger than the planar magnetization and deviating

from the c-axis, the magnetization decreases rapidly (Fig. 1.3(d)).

To describe the CEF effect quantitatively, based on the idea of point charge model, one can

write down the electric potential generated by surrounding point charges at the point r :

V =
∑
j

qj
|Rj − r|

(1.6)

where qj is the charge of the jth neighboring ion (or simplified as a point charge here) at a

distance Rj from the origin. The potential energy of a magnetic ion with charges qi will then

be:

We =
∑
i

qiVi =
∑
i

∑
j

qiqj
|Rj − r|

(1.7)

To expand this equation, different forms can be used. Common straightforward solutions

include using Cartesian coordinates or somewhat easier, spherical harmonics. The most con-

venient and widely used is the formalism set up by Stevens in 1952[17; 18; 19]. Utilizing

Wigner-Eckart theorem, Hamiltonian expressed in Cartesian system is converted to operator

equivalents so that it is expressed in total angular momentum J . In solving the matrix ele-

ments of crystalline electric potential, such operator equivalents requires no additional effort to

go back to single electron wavefunctions. These operator equivalents were then named Stevens’
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Figure 1.3 Anisotropic, temperature-dependent magnetization of (a) GdNi2Ge2 (b) Y diluted

DyAgSb2 and (c) TbNi2Ge2. (d) Angular-dependent magnetization of Lu diluted

TbNi2Ge2[15; 16].
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operators. With lengthy derivation skipped here, the Hamiltonian of CEF effect can then be

simplified as:

HCEF =
∑
n,m

Bm
n O

m
n (1.8)

Where Om
n are Stevens’ operators. Bm

n are called CEF parameters which can be dissected

into three parts: Bm
n = Am

n 〈rn〉θn. Am
n is the material-dependent part describing the sign and

the strength of the CEF effect. It is only very weakly dependent on the lattice parameter[20]

and usually can be considered as a constant in an iso-structural series. 〈rn〉 describes the mean

value of the nth power of the radial distance of the 4f electrons. θn are multiplicative factors

that are usually denoted as: θ2 = αJ , θ4 = βJ and θ6 = γJ . Theoretically computed 〈rn〉 and

the αJ , βJ , γJ values are tabulated in Table 1.2[21; 22].

Table 1.2 Stevens factors αj , βj , γj and radial matrix elements 〈rl〉 for rare earth ions.

R3+ αj × 102 βj × 104 γj × 106 〈r2〉 (Å2) 〈r4〉 (Å4) 〈r6〉 (Å6)

Ce -5.7143 63.4921 0.0000 0.3666 0.3108 0.5119

Pr -2.1010 -7.3462 60.9940 0.3350 0.2614 0.4030

Nd -0.6428 -2.9111 -37.9880 0.3120 0.2282 0.3300

Sm 4.1270 25.0120 0.0000 0.2728 0.1772 0.2317

Tb -1.0101 1.2244 -1.1212 0.2302 0.1295 0.1505

Dy -0.6349 -0.5920 1.0350 0.2188 0.1180 0.1328

Ho -0.2222 -0.3330 -1.2937 0.2085 0.1081 0.1181

Er 0.2540 0.4440 2.0699 0.1991 0.0996 0.1058

Tm 1.0101 1.6325 -5.6061 0.1905 0.0921 0.0953

Yb 3.1746 -17.3160 148.0001 0.1826 0.0854 0.0863

CEF effects in both cubic and hexagonal point symmetry have been well studied by Lea et

al. and Segal et al.[23; 24]. For a cubic symmetry, the CEF Hamiltonian can be written as:

Hcubic = B0
4 [O0

4 + 5O4
4] +B0

6 [O0
6 − 21O4

6] (1.9)

For hexagonal symmetry, an ideal closed packing will give the Hamiltonian:

Hhex = B0
4O

0
4 +B0

6(O0
6 +

77

8
O6

6) (1.10)
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It should be noted, though, that for hexagonal systems, deviating from the ideal c/a ratio

(1.63), the relative ratio between Stevens’ operators will be not fixed and B0
2 term will have

to be considered. In general, the lower the symmetry the more terms there will be in the

Hamiltonian. CEF terms that need to be included for each point group can be found, for

example, in Table.3 of Ref. [21]. Experimentally, CEF parameters can be obtained by fitting

experimental data, e.g. temperature- and field-dependent magnetization and specific heat data

or inelastic neutron scattering data, to the calculated values from the CEF Hamiltonian. In

uniaxial systems, B0
2 can be directly determined via anisotropic Curie-Weiss temperatures[25]:

B0
2 =

10

3(2J − 1)(2J + 3)
kB(Θab −Θc) (1.11)

In Chapter 5, we will show more examples on how to obtain the CEF parameters from

experimental data and how the CEF influences the anisotropic magnetization.

1.3 Kondo effect and heavy fermions

Now we move on to a different type of system where the 4f moments hybridize with con-

duction electrons. The puzzle started in early 1930s when scientists observed an upturn of

resistance in noble metals, like gold, at very low temperatures (see, for example Ref.[26]). This

upturn violated the common understanding based on Matthiessenss rule, where the residual

resistivity, ρ0 should be additive. It was later realized that the amount of magnetic impurity

in the sample modifies the features associated with this mysterious upturn in temperature-

dependent resistivity data (see Fig. 1.4)[27]. Whereas the magnetic nature of the impurity was

crucial, the right combination of magnetic impurity and host was also important[28].

In 1961, P.W. Anderson proposed a model to understand the conditions needed for a local

moment to exist in a host metal by considering the interaction between local spins and the

conduction electrons[29]. J. Kondo later successfully explained the logarithmic rise of resistivity

at low-temperature using a perturbation theory considering a s-d exchange interaction[27]. The

interaction between local moment and conduction electron has to be antiferromagnetic in the

model. Historically, however, the calculation by Kondo predicted a non-physical diverging
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resistivity at zero temperature, which was later called the ”Kondo problem”. This problem

was solved by K. G. Wilson by using numerical renormalization group theory[30]. In the Kondo

model (which is also known as the single ion Kondo model because it deals with well isolated

magnetic ions in a metallic host), an energy scale is characterized by a so called ”Kondo

temperature”, TK ∼ De−1/2JKρ[31]. Here, D is the band width of conduction electrons, JK

is the antiferromagnetic exchange energy between s-d electrons and ρ is the density of states

at the Fermi energy. Below TK , the entropy that is removed can be approximated by γTK =

RlnΩ. Here γ is the Sommerfeld coefficient, R is the ideal gas constant and Ω is the degeneracy

associated with the local moment. It was taken as Ω = 2 for spin 1/2 in the simplest situations.

Figure 1.4 Low-temperature resistivity of Au with different Fe impurity concentrations. Solid

lines are theoretical fits from J. Kondo[27].
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When magnetic impurities get denser, they can ultimately fully occupy a specific lattice

site as part of an ordered compound and a new ground state, heavy fermion, can sometimes

emerge. The heavy fermion state is very similar to that of a normal metal, however with a

very high γ value, for example, ∼ 1600 mJ/mol-K2 in CeAl3[32]. In comparison, the γ value

is around 1 mJ/mol-K2 in most elemental metals[33]. Heavy fermions were later related to the

Kondo effect as a concentrated Kondo lattice as opposed to single ion Kondo impurities. A new

energy scale, the so called ”Kondo coherence temperature”, emerges, below which each Kondo

impurity starts communicating with other impurities and a coherent state develops. Despite

many theoretical, phenomenological studies, it is still not clear how the Kondo temperature

and the Kondo coherence temperature are related to each other[34; 35; 36; 37; 38; 39].

As mentioned in the previous sections, the interaction between local moments and con-

duction electrons will inevitably give rise to an indirect exchange channel which could result

in magnetic ordering. On the other hand, the Kondo effect leads to a singlet ground state.

Conduction electrons will eventually screen the local moment and end up in a non-magnetic

state at low-temperatures. If assuming the interaction between local moment and conduction

electron is always antiferromangetic and is the same for both Kondo and RKKY, Doniach

came up with a generic phase diagram that captures the results from the competition between

the the Kondo effect and the RKKY interaction (see Fig. 1.5). With increasing |JKρ|, the

ground state can evolve from an magnetically ordered state to a non-magnetic state[40]. This

phase diagram is of course simplified. It omits many real factors for example different types

of interactions between local moments and conduction electrons, leaving only the Kondo type

antiferromagnetic exchange interaction. Due to a rising TK , it also indicates a decreasing γ

value as one initially increases |JKρ|, which will give a higher γ value in the antiferromagnetic

regime (This could be explained by including more considerations, for example: short range

magnetic correlations[41]). However, the Doniach phase diagram captures the bulk part of the

picture and serves as a good guide for material searching.

Kondo physics, including single ion effects, Kondo lattices and the related heavy fermion and

quantum critical point, is a very large and currently intensively investigated subject. Many

experimental and theoretical reviews have provided detailed descriptions, which will not be



14

Figure 1.5 Doniach diagram. It shows the strength of Kondo energy scale (TK0) and the

RKKY energy scale (TN0) as a function of |JKρ|. The actual ordering temperature

(TN ) shows a dome-like shape due to the competition between the two energy

scales[41].
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covered here[31; 42; 43; 44; 45]. Several models and results will be mentioned in the context of

the work that will be presented in the following chapters.

To date, most of the models and calculations have focused on studying the physical prop-

erties of isolated magnetic impurities (single ion Kondo impurity). Coqblin and Schrieffer have

mapped out a way to calculate when the local moment has an arbitrary degeneracy instead of

the simplest spin 1/2 case[46]. This model was later solved numerically by Rajan for magneti-

zation and specific heat[47].

In real systems, the degeneracy of local moments will be lifted by CEF effects. As tem-

perature decreases, the Kondo behavior will look differently when different CEF levels are

populated and interact with conduction electrons. In the presence of CEF splitting, physical

quantities such as resistivity[48], thermoelectric power (TEP)[49] have been modelled and cal-

culated. Specific heat of spin 1/2 as well as degenerate cases are solved and scaled with TK as

mentioned ahead[47; 50; 51]. In the presence of CEF splitting, the specific heat in an arbitrary

CEF splitting has only been solved for Ce very recently[52]. Yb, having a large degeneracy,

is yet to be exactly solved. Only approximation models have been proposed[53] and used to

fit Yb-based Kondo systems(see for example Ref.[53; 54]). Another key feature in a real world

is anisotropy. Undoubtedly, this brings more complications into the calculation. So far, only

anisotropy effects in resistivity have been studied[55; 56; 57].

In the Fermi liquid picture, the coefficient of T 2 dependence in low-temperature resistivity,

A, is proportional to m∗2. Similarly, the magnetic susceptibility χ and Sommerfeld coefficient

γ are all proportional to m∗, where m∗ is the quasiparticle effective mass. In a heavy fermion

system, these relations still apply. Therefore, the Wilson ratio (χ/γ)[31] and the Kadowaki-

Woods ratio (A/γ2)[58] work for many of the heavy fermion systems. Deviations from the

standard numbers will offer additional information about the system. For instance, the gen-

eralized Kadowaki-Woods plot can be understood from degeneracy point of view[59], or band

structure point of view[60; 61]. The Wilson ratio (WR) was generalized to be WR = N/(N -1)

which could also indicate the degeneracy (N) that is associated with the Kondo effect[31]. More

examples will be discussed in the following chapters.
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1.4 Spin glass

Previous sections have been focusing on well ordered magnetic systems which will end up

with either a long range magnetic ordering or a non-magnetic, hybridized, heavy Fermi liquid

state. Now we introduce two new concepts: frustration and randomness. Frustration means

no spin configuration can simultaneously minimize all the competing interaction terms. For

example in a triangular lattice of Ising spins with only a nearest neighbor antiferromagnetic

interaction, two nearest spins will be anti-parallel due to antiferromagnetic interaction. However

the third spin cannot satisfy the antiferromagnetic interaction on both sides since it cannot

be both spin up and spin down. Randomness is mainly about the randomness related to

local moments. It could be a randomness in site occupancy where there is a distribution

of distance between spins or a randomness of bond where nearest neighbor interactions vary

between ferromagnetic coupling and antiferromagnetic coupling. Randomness in these cases

will ultimately result in a distribution of exchange interactions experienced by each specific

magnetic ion.

If one adds enough frustration and randomness into a long-range magnetically ordered

system, it will eventually lose its static long-range magnetic order, leaving only a short range

order in a non thermal equilibrium state. In many aspects, this picture is very similar to

that of oxide glasses, which describe solid states with only short range structural order below a

certain glass transition temperature. A spin glass is thus defined as a magnetic system that can

be characterized by a well defined freezing temperature, Tf , below which an irreversible and

metastable freezing of spin orientation occurs without long range magnetic ordering[62; 63].

The spin glass state was initially recognized in diluted magnetic alloys, for example AuFe

alloy with only a few molar percent of moment-bearing Fe[64]. Later, spin glass states were

found in magnetically ordered systems when the magnetic ions were sufficiently diluted by non-

magnetic ions. Dilution can create randomness as well as spin configurations that are equally

favorable in energy at low temperature[65]. In the following chapter, I will show that, qua-

sicrystals, albeit being an ordered structure, also end up in a spin glass state at low temperature

due to a distribution of exchange interaction, and possibly a randomness in site occupancy.
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Due to the randomness and non thermal equilibrium nature of the spin glass state, theo-

retical study is still ongoing, often resorting to large scale numerical simulations. Many review

papers have covered the progress on the theoretical side with comparison to the experiments[62;

63; 65]. In the current study, I will be focusing more on the experimental identification of the

spin glass state as compared to long range magnetically ordered states[62; 63; 65]:

A spin glass will show time-dependent (ageing process) physical properties due to the fact

that spin-glass state is a metastable and non-equilibrium state. It manifests a zero-field-cooled

(ZFC) and field-cooled (FC) irreversibility in which a canonical spin glass will have a cusp in

the ZFC magnetization data at the freezing temperature, Tf . In addition, the magnetization

of spin glass is frequency-dependent. Higher order magnetic susceptibility can also serve as

a clear indicator to identify the spin glass state. At Tf , a spin glass will manifest a sharp

peak in the third order magnetic susceptibility (χ3) whereas for ferromagnets, theory predicts

a divergence of χ3 to opposite extremes before and after Tc, and for antiferromagnets, a step-

like behavior at TN [66]. Finally, in specific heat and resistivity, there will be no clear feature

that can be associated with magnetic phase transition at Tf . The specific heat data manifest

a broad maximum at ∼ 20% above the Tf [62]. The resistivity data can show a variety of

temperature-dependences in the vicinity of Tf . Similar to the temperature-dependent specific

heat data, the resistivity data sometimes show a broad feature above the Tf . It should be noted

that, like the identification of any other phase transitions, all criteria should be considered for

consistency and satisfying a single criterion is not sufficient to claim a spin glass state.

Fig. 1.6 shows examples of some spin glass systems to illustrate criteria that are mentioned

above. The time-dependence of the magnetization for the icosahedral, quasicrystalline, Tb-

Mg-Zn measured at 100 Oe is shown in Fig. 1.6(a). For the ZFC data, the magnetization

increased by approximately 10% in 3 days from the time external magnetic field was turned

on. On the other hand, the FC data stay fairly constant as a function of time. Fig. 1.6(b)

shows the irreversibility between ZFC and FC data for Tb-Mg-Zn measured at 25 Oe. The

ZFC data shows a clear cusp at Tf whereas FC data flattens below Tf . The temperature and

measurement procedure for the middle curves starts from an initial ZFC down to 2 K, at which

temperature 25 Oe was applied and magnetization was measured upon warming up to 2.5 K.
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Figure 1.6 Some representative physical properties of a canonical spin glass system. (a)-(d)

are data measured on Tb-Mg-Zn icosahedral quasicrystal[67] (a) Time-dependent

magnetization measured in 100 Oe at 2 K. (b) Temperature-dependent magnetiza-

tion measured at 25 Oe. (c)-(d) Real and imaginary part of the ac magnetic suscep-

tibility measured at different frequencies. (e) Third order magnetization of Ising

spin glass Y1−xTbxNi2Ge2 with comparison to that of Tb-Mg-Zn quasicrystal[68].

(f) Temperature-dependent specific heat of CuMn alloy measured at different ap-

plied magnetic fields[69].
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The sample was then cooled back to 2 K with applied field and measured upon warming up

to 3.0 K. This is in essence a FC data from 2.5 K. It stays close to constant up to 2.5 K and

then falls back onto the pure ZFC data between 2.5 K and 3.0 K. A similar procedure was also

carried out for 3.0, 3.5 and 4.0 K. These data provide further evidence for spin-glass freezing

and demonstrate that the thermal and magnetic field history affects the observed phenomena

for a spin glass. Note that the applied magnetic fields are very small for these measurements.

With increasing field, the cusp feature will be rounded and the irreversible temperature will be

lower[63].

Fig. 1.6(c) and (d) show real and imaginary part of the ac magnetic susceptibility of Tb-

Mg-Zn. With increasing frequency, the Tf is shifted to higher temperatures. For a long

range magnetically ordered system, such shift would require several orders of magnitude higher

change of measurement frequency[63]. Fig. 1.6(e) shows the normalized third order magnetic

susceptibility for two different spin glass systems: Ising-like spin glass achieved by diluting Tb

into YNi2Ge2 and the aforementioned Tb-Mg-Zn quasicrystal[68]. Both systems show sharp

peaks at Tf in their third order magnetic susceptibility data, indicating spin glass states.

Fig. 1.6(f) shows the temperature-dependent specific heat data for spin glass system, CuMe

alloy, measured at various applied magnetic fields. At zero field, only a broad dome could be

observed at a temperature that is slightly above the Tf (3.9 K). This is in contrast to long-range

order phase transitions where different sharp features could be observed depending on the order

of the phase transition. With increasing field, the specific heat feature for spin glass gets even

broader.
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CHAPTER 2. BASICS OF QUASICRYSTALS

2.1 Crystalline, non-crystalline and quasicrystal

Prior to the discovery of quasicrystals, the way scientists thought of a space being filled with

atoms could be categorized into two types: Crystalline and non-crystalline. In a crystalline

solid, an important concept is the existence of ”unit cell”, which is the building block for the

crystal, in analogy to bricks for a building. The crystal is constructed by laying identical

unit cells together in a periodic fashion. What is implicitly required is the existence of a

translational symmetry and a unique unit cell for a specific crystal. Given a set of basis vectors,

any brick in the building can be indexed by a combination of the basis vectors. Physically it

means that given an origin point, all atomic positions can be predicted if the lattice is ideal

and free from defects. Under the assumption of a translational symmetry, additionally, one

can easily derive the rotational symmetry operations that are allowed for a crystalline solid:

namely 2, 3, 4 and 6-fold rotations. More intuitively, in two dimensions, this is equivalent as

saying one can only tile the floor without leaving empty space if the tile has the shape of a

rectangle/triangle/square/hexagon. Other rotational symmetries are thus all called ”forbidden”

for periodic crystals. Due to the periodicity in the real space, the reciprocal space of a crystal

is also periodic.

On the contrary, the structure of a non-crystalline solid is much less restricted. There

is no building block to speak of and there is no way one can predict where atoms are given

a starting point. Locally, one may still expect to observe some similar motifs (short-range

order). However, strong disorder and randomness in atomic tiling leads to the loss of long-range

order. (Note: an incommensurate structure is also considered as a crystalline structure. An

incommensurate structure has two sublattices that have lattice parameters with an irrational
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ratio. However, each of them still has the concept of unit cell and translational symmetry.) As

a consequence, no sharp diffraction peak would be expected from a non-crystalline solid with

no fixed atomic spacings. It is then obviously a great challenge to explain what was observed

by Dan Shechtman in 1984 where sharp diffraction peaks appear for a rotational symmetry

that is not 2-fold, 3-fold, 4-fold nor 6-fold, but rather, 5-fold.

This 5-fold symmetry was first observed in a rapidly quenched Al-Mn alloy[70]. The diffrac-

tion peaks that represent the reciprocal space of the compound were sharp without exhibiting

spatial translational periodicity. A new rule, inflation, was discovered for this 5-fold pattern:

the diffraction pattern could be expanded/contracted by a factor of τ3 (τ is the golden mean

which will be discussed more in detail later.). For comparison, in the version for a crystal,

the diffraction pattern can map back onto itself by moving a multiple of basis vectors or their

combinations. All these facts led to the realization that quasicrystals represent a new way of

systematically filling the space with atoms. And Dan Shechtman was awarded the Nobel Prize

in Chemistry in 2011 for the discovery of quasicrystals.

2.2 Types of quasicrystals

In the decades since the initial discovery, several different types of quasicrystal have been

discovered. If the forbidden symmetry only exists in 2-dimensional (2D) out of the 3D real

space, like a periodic packing of quasicrystalline sheets in the third dimension, it is called

a 2D quasicrystal. Some of the examples are octagonal in-plane symmetry in Ce-Ni-Si and

V-Ni-Si systems[71], decagonal in-plane symmetry in Al-Ni-Co[72] and Al-Fe[73] systems and

dodecagonal in-plane symmetry in V-Ni and V-Ni-Si systems[74]. If the quasicrystalline concept

happens in 3D, it is called a 3D quasicrystal. All known 3D quasicrystal have an icosahedral

symmetry and therefore called i-QCs. If we look deeper into the structure of i-QCs, they can

be divided into primitive, body-centered and face-centered, depending on the details of hyper-

space that their structure can be derived from. This point will be introduced more in later

sections. For our current studies, we focus on 3D quasicrystals, i-QCs.
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2.3 How to describe a quasicrystal

In conventional crystallography, 5-fold symmetry is formally forbidden. The solution to the

puzzle is: forbidden symmetries can be realized if the prerequisite of translational symmetry

is abandoned. And in fact, sharp diffraction peaks only require the existence of well-defined

order or rules for packing rather than the periodic translational order. For example, a Penrose

tiling in a 2D surface does not have a translational symmetry, yet it features a reciprocal

space that reproduces real quasicrystalline materials[75] (Fig. 2.1). A simpler example is given

by a 1D Fibonacci sequence. Unlike amorphous solids, here, given a starting sequence, one

can uniquely determine the segment at any point[76]. A quasicrystalline solid is thus a solid

that is well ordered and predictable in terms of atomic arrangement but without translational

symmetry. A quasicrystal is constructed by two or more motifs, or structural units, arranged

in a quasiperiodic way. This is in contrast to a conventional crystal where a single building

block is arranged periodically throughout the whole space. It is an incommensurate lattice

with forbidden rotational symmetry.

For an incommensurate structure to exist, there are many available irrational numbers.

But for a quasicrystal to form, only a special class of irrational numbers are allowed, known as

algebraic numbers[77]. That means, the irrational number must be a solution to a polynomial

equation with integer coefficients. For example the golden mean that we are talking about is a

root for the polynomial equation: τ2 − τ − 1 = 0

The rotational symmetry will put constraints on the allowed quasiperiodicity. In Fig. 2.2,

parallel lines with periodic spacing a are drawn parallel to the edges of a hexagon (Fig. 2.2(a))

and a pentagon (Fig. 2.2(b)). In the case of a hexagon, the intervals between intersection points

by set 1&3 and by set 2&3 have the same length. This equivalence in length results from the

fact that the whole space can be filled by a periodic stacking of hexagons. On the other hand,

if we look at the pentagon, the intervals have different lengths. The ratio between these two

segments is exactly the golden ratio. A more rigorous mathematical derivation shows that the

quasiperiodic spacing for a pentagonal symmetry must be related to τ in order to make sure

the spacing between intersecting point does not go non-physically small[77].
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Figure 2.1 Top: Penrose tiling. Bottom: A combination of motifs that if replaced in the

original Penrose tiling, will reproduce the Penrose tiling. This illustrates the infla-

tion/deflation rules followed by quasicrystals.[76]
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Figure 2.2 Parallel lines with periodic spacing a are drawn parallel to the edges of a (a)

hexagon and (b) pentagon.[77].
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The simplest incommensurate, aperiodic structure is a Fibonacci sequence. To describe a

Fibonacci sequence, one needs to use at least two parameters to denote the two fundamental

units. Given the real space arrangement of a Fibonacci sequence, it can be shown that the

basis vectors in reciprocal space can be written as[76]:

Qhh′ =
2πτ2

τ2 + 1
(h+ h′/τ) (2.1)

where h and h’ are two integer parameters. And the amplitude of each Fourier component can

be written as:

Fh,h′ =
sin( πτ

τ2+1
(τh′ − h))

( πτ
τ2+1

(τh′ − h))
exp(iπ

τ − 2

τ + 2
(τh′ − h)) (2.2)

Even though long range translational symmetry is missing, it is clear that the reciprocal

space, or diffraction peaks, for a Fibonacci sequence are well-defined, sharp, peaks that can be

described by two sets of numbers. Worth noting, the intensity of each diffraction peak is not a

simple function of Q (as with traditional crystals), but rather also depends on the ratio of h/h’

(Eq.2.2). The most intense peak occurs when h/h’ is close to τ . This is reminiscent of what

was observed in quasicrystals where the diffraction peaks are densely spaced while neighboring

peaks in reciprocal space differ significantly in intensity.

If we use the Miller integer indices to label the atomic orientation or atomic positions, a

smart, and now common, way is to invoke a higher dimension and view the real space as a

projection space from a hyperspace with more dimensions. For example, if we have a square

lattice with an edge length of a, (Fig. 2.3), drawing a line that has a slope of the golden mean

and project lattice points onto the line, we will get a Fibonacci sequence. In this manner, the

projected point can be traced back to two integer indices that index the original point in the

2D square lattice. Of course, in the real space, the atomic size will determine a lower limit

of how close atoms can be. To avoid unphysical results, we can either limit the region where

points in the square lattice are allowed to project, or we can define a ’strength of influence’

that is represented by a line segment on each lattice point in the square lattice. Whenever the

segment crosses the Qpar, it will be an atom in the real space.
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Figure 2.3 Cut and projection method to construct a quasiperiodic order from a higher

dimension[78].
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In a similar fashion, we can construct the whole 3D atomic tiling by invoking a 6D hyper-

space for the i-QCs. This, in principle, is the same as using the vectors point to six five-fold axis.

However, to solve a 3D quasicrystal structure, it involves much more complicated expertises.

Since it is not the focus of current studies, we are not going into details. More information and

examples can be found in Refs.[76; 79; 80]

In Fig. 2.3, the axis where cuts are projected onto, x‖, can be understood as the axis

in real space. On this axis, if the arrangement of atoms were shifted from their designated

positions, it is equivalent as dislocations in a conventional crystal. On the other hand, the

axis that is perpendicular to x‖, x⊥, is called the phase space. The reason is that if the atom

in the hyperspace distorts along the phase space, it will cause the project and cut disrupted

which result in a new start of a Fibonacci sequence. This instead of a distortion, is closer to

a phase shift in tiling in the real space. And this phase space is what quasicrystals have in

addition to a conventional crystal as a ”benefit” from more degrees of freedom in describing

its structure. Additionally, in a conventional crystalline material, a periodic vibration of atoms

in the real space is called a phonon. If vibrations happen in the hyperspace, specifically, in

the perpendicular space, that will cause a tiling error/defects in real space. This is called a

”phason”. Physically, phasons will cause shift/broadening of diffraction peaks that increase

with Qperp and independent of Qpar.

2.4 Approximant phase

A quasicrystal approximant phase is very similar to a real quasicrystal in terms of their local

motifs. One can construct a quasicrystal approximant phase by taking a quasicrystalline cluster

and locate the clusters onto a regular Bravais lattice. Thus by definition, the approximant

phases have periodic structures that satisfy translational symmetry. Due to the similarities

in structure that they share with a real quasicrystal, they serve a very important role for the

understanding of how quasicrystal is constructed and why translational symmetry is missing

under certain condition of synthesis. The order of an approximant phase is a scale that describes

how close it is to a real quasicrystal. It is conventionally expressed in a ratio of p/q, where the

closer the number to the golden mean, the closer it is to a real quasicrystal. p and q are chosen
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as neighboring numbers in a Fibonacci sequence. The RCd6, quasicrystal approximant phase,

as will be discussed in Chapter 4, is a 1/1 approximant phase.

When projecting from the hypercubic lattice to the real 3D space, we will get oblate and

prolate rhombohedras. These polyhedrons are the building blocks of an quasicrystal. The edge

lengths of the rhombohedras are in analogous to a unit cell length in a traditional crystal with

translational symmetry. This edge length, aR, is therefore called the quasilattice constant.

Relating aR to the lattice parameter of a quasicrystal approximant phase, aq/p, we have[78]:

aq/p =
2(p+ qτ)aR
(2 + τ)1/2

(2.3)

2.5 Ways to prepare quasicrytalline samples

The way quasicrystalline grains grow remains an interesting and open subject. Many models

have been put forward[76]. Recently, the growth of decagonal Al-Ni-Co was observed in-situ

by high resolution transmission electron microscopy, which suggests phason relaxation plays an

important role in quasicrystal’s crystallization (see Ref. [81] and references therein). Without

understanding the mechanism, quasicrystals have been experimentally discovered and made

over the years. The first quasicrystalline sample studied by Dan Shechtman in 1984[70] was

made by fast cooling Al-Mn. The fast cooling or rapid solidification of liquid where the cooling

rates are in the order of 106 K/s can be achieved by using a melt spinning apparatus. Liquid is

ejected onto a cold, fast spinning wheel, after which it is rapidly solidified into a solid ribbon.

A fast quench does not allow for a careful nucleation of a high temperature stable phase.

Therefore, it is often used to produce metallic glasses and metastable phases. In the initial

stage of quasicrystal study, quasicrystalline materials produced this way usually have sizes in

micron range and are mixed with other phases.

Large single crystals of quasicrystal can also be grown using high-temperature solution

growth technique, for example, in the cases of decagonal quasicrystal Al-Ni-Co[82] and icosahe-

dral quasicrystal R-Mg-Zn[83]. These quasicrystals are thought to be thermodynamically stable

phases and allow for more physical property measurements, for e.g. powder xray diffraction,

neutron diffraction and anisotropic magnetization and transport.
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2.6 Physical properties of quasicrystals

One of the most important milestones in condensed matter physics is the concept of recip-

rocal space and Brillouin zone. However, this key concept fails when one looks at a quasicrystal

where no translational symmetry is present. The definition of a Brillouin zone is very difficult for

a quasicrystal where, formally, one grain of quascicrystal, even if it is a cubic centimeter in size,

is one unit cell. Band structure and density of states are thus usually calculated by looking at

high order quasicrystal approximant phases which still contain thousands of atoms[84; 85; 86].

These calculations suggest a small density of states or a pseudogap at the Fermi energy. Such

a pseudogap was experimental observed[87; 88; 89]. In transport measurements,the resistivity

along the quasicrystalline, or in other words, quasiperiodic direction can often be characterized

as a bad metal or close to a metal insulator transition. At room temperature, the resistivity is

of the order of mΩ cm which is about three orders of magnitude higher than that for a good

metal[76]. The resistivity is very weakly temperature-dependent, increasing or decreasing with

temperature only slightly, often, non-monotonically. Typical resistivity data can be found, for

example, for Al-Pd-Mn[90; 91], Al-Ni-Co[82], R-Mg-Zn[67] and Yb-Cd[92]. These resistivity

data are consistent with a low density of states at the Fermi energy.

Despite theoretical predications[93; 94; 95; 96], long range magnetic ordering has not yet

been observed in any known quasicrystalline systems[97]. All magnetic moment bearing qua-

sicrystals exhibit spin glass behavior[67; 98; 99; 100].

As mentioned above, the approximant phase is structurally very similar to a real quasicrys-

tal. Interestingly, long range magnetic order does exist in approximant phases, for instance,

antiferromagnetic RCd6[101; 102; 103] and ferromagnetic Gd-Au-Si(Ge)[104; 105]. However, as

will be discussed in the next chapter, the corresponding quasicrystal for RCd6 does not have a

long range magnetic order, and the corresponding quasicrystal phase for Gd-Au-Si is yet to be

found. It is an interesting subject to understand the evolution of magnetic correlations from a

quasicrystal approximant phase to a quasicrystal. This might help to unveil the missing long

range magnetic order in the quasicrystals found so far.
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CHAPTER 3. EXPERIMENTAL TECHNIQUES

3.1 Crystal growth

For most condensed matter physics experiments, being able to make the condensed matter

being studied is the first and necessary step. Material synthesis, therefore, is a vital starting

point. For the studies presented in this thesis, bulk, single crystals were prepared and char-

acterized. Single crystals can preserve the anisotropic information about the magnetic and

electronic properties of the material. In addition, as compared to polycrystalline samples, sin-

gle crystals reduce effects associated with grain boundaries and defects that are concomitants of

microscopic grains found in polyscrystals. Hence, high quality single crystals are important for

detailed studies of intrinsic, anisotropic properties of a material. Polycrystals, however, do have

their advantages in some cases when a random crystalline orientation is needed. For example:

(i) the random orientation in powder x-ray diffraction makes it easier to observe all possible

diffraction peaks, and (ii) the polycrystalline averaged temperature-dependent magnetization

is closer to an ideal Curie-Weiss behavior even in the presence of a large CEF splitting[106].

It is, though, much easier to make a polycrystalline sample out of a single crystal than the

reverse.

Single crystalline samples can be grown by many different techniques. Starting stoichiome-

try and temperature are controlled to achieve a slow solidification with or without a solution.

Czochralski, Bridgeman and floating zone refining methods, for example are commonly used to

grow congruently melting compounds. The high-temperature solution technique is the method

that was used to prepare samples in this thesis. Its principle is analogous to crystallizing salt

out of salty water by cooling. The solubility of one compound in the liquid mixture is a func-

tion of temperature. By changing the temperature of a given mixture (fixed stoichiometry),
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the desired phase can therefore be crystallized out of the solution. The advantage of the high-

temperature solution growth technique, as compared to other aforementioned techniques, is

that it requires relatively simple equipment and it can work for either congruent melting or in-

congruent melting materials. In the following, the high-temperature solution growth technique

will be explained in more detail.

Figure 3.1 Gd-Cd binary phase diagram from ASM alloy phase diagram[107]. Arrow indicates

the starting stoichiometry and temperature profile. Brown dots indicate the liquid

and solid compositions at the temperature of the red line.

First, I will introduce the principle of the high-temperature solution growth technique from

the perspective of a binary phase diagram[108; 109]. The binary phase diagram of Gd-Cd, as it

was presented before my research efforts, is shown in Fig. 3.1 and can be used as an example.

For the sake of this discussion, we will, for the time being, assume that the phase diagram

shown in Fig. 3.1 is accurate. As we will discuss in the next chapter, for the more Cd-rich

part of this diagram, this is not actually the case. Blue indicates a single phase regime and

white indicates a two-phase regime. The large blue area on the top/left of the phase diagram

suggests a homogeneous liquid state. The boundary between the blue, homogeneous liquid

region, and the white, two-phase region, is called the liquidus line. A point on the liquidus
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line indicates the lowest temperature to have a single phase liquid of that stoichiometry, below

which temperature a solid phase should start to precipitate and the melt composition starts to

change. For the congruent melting compound, GdCd, melting the solid will result in a liquid

with the same chemical composition (GdCd). As mentioned above, Czochralski, Bridgeman

and floating zone refining methods often work well for congruent melting compounds since

cooling the liquid will yield a solid phase with the same chemical composition as well. For

an incongruent melting compound, for example GdCd6, cooling a liquid with a composition of

GdCd6 to room temperature will yield multiple phases, including Gd13Cd58, GdCd6 and Cd.

To grow a single phase GdCd6, one has to start with a more Cd rich composition. When

the starting stoichiometry is Gd:Cd=7:93, a homogeneous, single phase, liquid state can be

reached above approximately 600 ◦C (Note that elemental Cd boils at ∼767 ◦C. Even with the

addition of Gd, caution should be taken to prevent Cd from boiling and thereafter causing an

explosion of the sealed ampoule.). Upon cooling, GdCd6 will be crystallized (precipitates) out

from the solution according to its exposed liquidus line. At the temperature of the red line,

the equilibrium state consists of two phases as suggested by the white color. Two brown dots

at the ends of the red line represent these two phase: GdCd6 and a more Cd-rich liquid. The

relative amount of each can be estimated based on the lever rule[110]. Further cooling will lead

to further crystal growth until below ∼316 ◦C, everything solidifies at the eutectic temperature

and there is a eutectic decomposition of the solid into Cd and GdCd6. To obtain clean single

crystals of GdCd6 in an easier manner, it is then necessary to separate the crystal from the

liquid above 316 ◦C. This can be achieved in a centrifuge where liquid is filtered through a

frit/strainer and crystals remain[111]. Of course, in some cases, single crystals can also be

obtained after everything solidifies, i.e. when the non-crystalline parts can be etched or washed

away (See, for example, KFe2As2 single crystal growth with KAs solution. Ethanol can be used

to rinse away the non-crystalline materials[112]).

Existing phase diagrams are often good starting points when designing the growth profile

(the initial stoichiometry of the melt, temperature profiles and cooling rates). However, for most

of the intermetallic compounds with three or more elements, phase diagrams are commonly not

available. In such cases, trials and errors, based on knowledge of binary phase diagrams and
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other similar, known systems, are often needed to obtain the target compound. Growing

crystals from a solution that contains only elements contained in the target crystal itself is

commonly called a self-flux. Here, flux has the same meaning as solution. Discussions on

choices of flux and solution growth technique can be found in Ref. [83; 108; 111].

After determining the starting stoichiometry, one needs to choose the right container for

the melt. For many of the materials studied here, alumina crucibles are stable enough to resist

any reaction with the melt below 1200 ◦C. Crucibles that were made of Ta were also used

when some of the starting elements were thought likely to react with alumina, for example,

Mg. In addition, Ta can be a good protective layer to protect the outer silica jacket from being

attacked by the material vapor (the silica jacket with back filled Ar gas serves as an outer,

protective environment against sample and Ta oxidation.). K, for example, will react will silica

and thus needs to be contained in a sealed Ta tube (or other sealed container that does not

react with it). In Fig. 3.2(c), a Matryoshka-doll-like ampoule that was used to grow K2Cr3As3

is shown[113]. Alumina can hold FeAs solution (which Ta tube fails to hold) whereas a Ta tube

prevents the K vapor from attacking silica ampoule. Finally, the silica ampoule protects the

Ta tube from getting oxidized.

The final step in our standard implementation of the solution growth technique is the

separation of the liquid phase from the crystallized solid phase that are both residing at the

bottom, or growth, crucible. Traditionally, a reversed crucible filled with silica wool was used to

filter the liquid. At the desired temperature, the whole growth ampoule as shown in Fig. 3.2(a)

is quickly flipped and placed inside of a centrifuge where the liquid and the solid is separated by

filtering. During ”the spin”, the liquid phase will be spun to the so called ”catch crucible” and

the solid phase will be left outside of the pack of silica wool. The drawback of using silica wool

is that the spun material will inevitably solidify with silica contamination when it gets cold.

This makes the re-use of the spun material impossible. Recent development in filtering set-up

involves alumina frit with drilled holes[111] (see Fig. 3.2(b)). This frit-disc crucible assembly,

also called a ”Canfield-Crucible-Set” or CCS, solves the contamination problem of the material

due to silica wool. It also allows for a more quantitative analysis of the decanted, liquid phase.

Being able to re-use the material in this clean manner can also reduce the cost of material
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Figure 3.2 Schematics of growth ampoules. Growth and catch alumina crucibles are sealed

in a silica tube with (a) silica wool as the filtering material (e.g. for synthe-

sizing BaFe2As2[114]). and (b) alumina frit as a filter (e.g. for synthesizing

YbFe2Zn20[115]). (c) An additional sealed Ta tube is added in between the frit-disc

alumina crucible set and the silica tube to prevent volatile elements from attacking

the silica tube (e.g. for synthesizing K2Cr3As3[113]).
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exploration. It is also helpful when re-using the material is necessary, for instance, when using

expensive elements as part of the solution. One drawback to the frit-disc is that if the crystals

are plate-like and block the holes in the frit, the solution will not be easily separated from the

crystal. Silica wool as a filter, in this case, can provide a better separation since it has more

porous filtering availabilities.

Going back to the growth of single crystalline GdCd6, experimentally, the starting elements

were packed in an alumina crucible with a molar ratio Gd:Cd = 7:93. The starting material and

crucible sets were then sealed in a silica ampoule under partial argon atmosphere. Considering

the high vapor pressure of Cd, the whole ampoule was heated up to 700◦C, dwelt there for 10

hours to achieve a homogeneous liquid state. It was then cooled to 510 ◦C over ∼40 hours. At

510 ◦C, the ampoule was quickly transferred from the furnace to the centrifuge where crystal and

remaining liquid was separated. This process will be discussed again in the following chapter

when discussing the discovery of i-R-Cd quasicrystals. And detailed growth procedures will be

presented in each subsequent chapter.

3.2 Characterization

3.2.1 Powder x-ray diffraction

Powder x-ray diffraction data were measured at room temperature using a Rigaku Miniflex

powder diffractometer (Cu Kα). Single crystals were ground into powders. The ground powder

was then spread onto a single crystalline Si, zero background sample holder with a thin layer of

vacuum grease on top. Typical data were recorded every 0.02◦ with 1-3 seconds data collecting

time at each angle. Longer collecting time was sometimes used to acquire a better signal to

noise ratio. For air sensitive samples, the powder x-ray diffraction was performed in a Rigaku

Miniflex powder diffractometer that is located in a N2 glove box. Powder diffraction data were

analysed using the General Structure Analysis System (GSAS) software[116; 117]. The refined

lattice parameters have a typical instrumental error bar of 0.2%.
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Figure 3.3 Side and top views for some common sample mounting geometries, using transpar-

ent drinking straws with (a) sample clamped by two halved straws from top and

bottom; (b) sample held in between an inner and an outer straw on the side; and

(c) sample held in between two halved straws in the center.
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3.2.2 Magnetization

Magnetization measurements were performed in Quantum Design (QD) Magnetic Property

Measurement System (MPMS) with superconducting quantum interference device (SQUID)

magnetometer over the temperature range of 1.8 - 300 K and field range of 55 kOe (MPMS-5)

or 70 kOe (MPMS-7). Samples were mounted by using transparent plastic straws in desired ori-

entation. For plate-like samples, the most commonly used configuration to measure anisotropic

magnetization value are shown in Fig. 3.3(a) and (b). If the sample is large and hard enough,

the method in Fig. 3.3(c) can sometimes be used, which is advantageous to the configuration

shown in (b) due to the fact that the sample is closer to the central axial of the pick-up coil.

Deviation from the central axis will lead to a slightly larger, inferred magnetization value due

to fitting error[118]. Both (b) and (c) have essentially zero magnetic background signal. In

Fig. 3.3(a), since the upper and lower straws leave a gap in the middle for the sample, there

will be a small paramagnetic background signal of an order of 10−5 emu at 2 K and 50 kOe

per 1 mm gap. dc magnetization data down to 500 mK were measured at QD (Japan) using

an iHelium3 system. And the ACMS option of a QD Physical Property Measurement System

(PPMS) was used to measure ac magnetic susceptibility or dc magnetization up to 140 kOe.

Angular-dependent magnetization was measured using a sample rotating platform with an

angular resolution of 0.1◦ in a QD MPMS. Detailed set-up of the rotator is shown Fig. 3.4.

The top clip B (Fig. 3.4(a)) is tightened to a MPMS motor which performs a vertical transport

motion to execute the dc magnetization measurement. The top clip A (Fig. 3.4(a)) is tightened

to another motor that performs a rotational motion with respect to clip B. The rotation of clip

A will lead to to a translational motion of part C via a screw, as shown in Fig. 3.4(d). Part C

pulls on the wire (part D shown in Fig. 3.4(e)) which is connected to the bottom spring (part

F) of the rod (Fig. 3.4(f)). The wire winds around a pulley/sample-stage assembly (part E)

and rotates part E when pulled. In Fig. 3.4(d), two different angles of the sample stage are

shown. On the upper panel, the sample-plate that is attached to the stage would rotate with

changing in-plane magnetic field orientation. If the sample was to be mounted on the surface of

the sample stage shown in the lower panel, the magnetic field orientation could then be rotated
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from in-plane to out-of-plane. Samples were glued to the sample stage using the Permabond

910 metal bond, which can be removed by nitromethane. The magnetic background signal of

the sample stage is weakly diamagnetic. At 2 K, the magnetization value may be equal to or

smaller than the order of 10−4 emu at 50 kOe (due to a bad regression fit, the absolute value

could not be accurately determined).

3.2.3 Specific heat

Specific heat measurements were carried out in a QD PPMS using a relaxation method[119].

The sample together with the sample platform were heated up by a heat-pulse of a known size

and then allowed to cool. The thermal response as reflected by its temperature was recorded

and fitted to the relaxation model to determine the heat capacity of the sample plus the sample

platform. The background signal from sample platform, measured as an addenda prior to the

sample measurement, was subtracted to obtain the heat capacity of the sample. In most of

the cases, specific heat data were collected down to 2 K. A 3He option or, in some cases, a

dilution refrigerator option, was used in order to measure specific heat down to 500 mK or 50

mK. Apiezon N grease was used to attach sample to the sample puck. Typical sample mass

was ∼5 mg.

3.2.4 Resistivity

Resistivity data were measured using a standard 4-probe technique. Both DuPont 4929N

silver paint and Epotek-H20E silver epoxy were used to attach Pt wires onto polished bar-shape

samples. Epotek-H20E silver epoxy needs to be cured at 120◦C for 20 minutes. It generally

provides a strong mechanical bond between the sample and the contact leads. Silver paint

only needs to be air dried for approximately 5-10 minutes. It does not provide as strong of

a mechanical bond as Epotek-H20E silver epoxy. However, it is sometimes favorable when

the sample is sensitive to air/heat or fixed in position. Contact resistance can be reduced by

running an electric current through the contacts. Slowly ramping up the electric current from

sub-mA to eventually 10-100 mA range usually works well without damaging the contacts.

Common contact resistances are around 1-2 Ω. Resistance data were collected using a QD
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Figure 3.4 Overall and expanded views on the sample rotator rod for magnetization measure-

ments. (a) and (c) are zoom-ins for the top and the bottom of the whole sample

rod shown in (b). (d) shows the top screw in the sample space. (e) shows the sam-

ple stage in two different angles, with the upper panel showing a sample glued onto

the sample stage. (f) shows the bottom spring with the wire attached. Capital red

letters represent parts that are described in the text.
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PPMS (1.8-300 K, maximum field 90 kOe or 140 kOe, f = 17 Hz, I = 1-3 mA) or a Linear

Research (LR), LR-700 ac resistance bridge (f=16 Hz, I=1-3 mA). Similar with specific heat

measurements, a 3He or a dilution refrigerator option in PPMS was used to achieve lower

temperatures. To prevent sample heating, a much lower electric current was used: typically

∼0.1 mA for 3He temperature range (down to 500 mK) and ∼0.01 mA for dilution refrigerator

temperature range (down to 50 mK). An ETO option in PPMS was used to measure resistivity

in a dilution refrigerator.
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CHAPTER 4. DISCOVERY AND PHYSICAL PROPERTIES OF i-R-Cd

(R = Y, Gd-Tm) QUASICRYSTALS

As introduced previously, quasicrystals are intermetallic compounds that manifest aperi-

odic, rather than periodic, long-range positional order with rotational symmetries (for example,

five-fold, ten-fold) that are forbidden for conventional crystals. Forbidden rotational symme-

tries are achieved in quasicrystals at the expense of translational symmetry, which is implicitly

required in conventional crystallography. Since the initial discovery of quasicrystals[70], the

search for new quasicrystalline systems, especially thermodynamically stable ones, as well as

understanding of their structural and physical properties has been of keen interest to the solid

state physics and chemistry communities[76].

One of the interests is to study the magnetic interactions of local moments on an aperiodic

lattice. Despite several theoretical predictions[93; 94; 95], no long range magnetic ordering

has, as of yet, been discovered in moment-bearing quasicrystals[97]. So far, all of the known

quasicrystals with moment-bearing elements exhibit frustration and spin-glass-like behaviour at

low temperatures[120; 121]. In the ternary i-R-Mg-Zn and i-R-Mg-Cd icosahedral quasicrystals,

for example, d.c.- and a.c.-susceptibility measurements demonstrate spin-glass behaviour[67;

98; 122]. In addition, neutron diffraction measurements on both i-R-Mg-Zn and i-R-Mg-Cd

clearly show the presence of only short-range magnetic correlations at low temperatures[123].

Interestingly, the absence of long-range magnetic order also extended to the known crystalline

approximant phases as well[91; 124; 125; 126; 127]. Crystalline approximants are periodic

crystals with compositions and unit-cell atomic decorations (for example, atomic clusters) that

are closely related to their respective quasicrystalline phases[78]. Recently, two exceptions have

been identified: ferromagnetic Gd-Au-Si(Ge)[104] and antiferromagnetic (AFM) RCd6[101;

102; 103; 128; 129]. The antiferromangetic RCd6 compounds, in particular, have attracted
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great attention. On one hand, they bring up the possibility of related quasicrystalline phases

that could have long-range magnetic ordering. On the other hand, binary compounds, in

general, are valuable for studying the chemical and physical properties due to their relative

compositional simplicity. Examples of stable binary icosahedral quasicrystals are relatively rare,

and, before this work, there were no known examples featuring localized magnetic moments.

A moment-bearing binary quasicrystal would represent an ideal model system for attaining a

deeper understanding of the nature of magnetic interactions in aperiodic lattices. The RCd6

crystalline phases, which are isostructural to the approximant (YbCd6) of the non-moment-

bearing binary i-Yb-Cd5.7 icosahedral phase, have been found to manifest a long-range AFM

order at low temperatures based on both thermodynamic and scattering measurements[101;

102; 128]. The observation of AFM order in the RCd6 approximants, therefore, provided a

strong impetus to search for and study a related, moment-bearing, binary icosahedral phase to

better understand, or place constraints on, possibilities for the existence of AFM order on an

aperiodic lattice[93]. In this chapter, I am going to present the discovery and physical properties

of a family of seven rare earth icosahedral binary quasicrystals, i-R-Cd (R = Y, Gd-Tm), six

of which bear localized magnetic moments. The contents of this chapter are a combination of

two publications on the discovery[130] and detailed characterization of i-R-Cd[100].

4.1 Discovery and identification of i-R-Cd quasicrystal

Following the previous proposal that, like icosahedral Sc12Zn88[131], binary quasicrystalline

phases may well exist nearby known crystalline approximants, perhaps as incongruent melt-

ing compounds with very limited liquidus surfaces, offering very limited ranges of composi-

tion/temperature for primary solidication, the new i-R-Cd icosahedral family (R = Y, Gd-Tm)

was discovered by using the high-temperature solution growth technique[83; 109] as an ex-

ploratory synthetic tool.

As explained in Chapter 3, the quasicrystal approximant phase, GdCd6, can be grown

from the wide, exposed, liquidus line that spans from ∼12% to ∼3% at. Gd (Fig. 3.1). In

order to verify and/or explore the accuracy of the reported liquidus line, especially in the low-

temperature regime, the initial decanting temperature was set to be 340 ◦C as opposed to 510
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◦C that was described in Chapter 3. This decanting temperature is very close to the eutectic

temperature, which then allows us to explore potential deep peritectics associated with this

liquidus line. In Fig. 4.1, the obtained large single crystal of GdCd6 is shown on millimeter

grid paper. However, in contrast to the known phase diagram, where a single phase GdCd6

is expected for this growth profile, a conspicuous secondary phase grew on top of the GdCd6

phase with pentagonal facets clearly visible. It worth noting that since the secondary phase

grows on the surface of GdCd6, it grows at a relatively lower temperature than GdCd6.

Figure 4.1 A single crystal of GdCd6 with i-Gd-Cd quasicrystalline grains grow on top.

Apparently, the previous Gd-Cd binary phase diagram is incomplete on the Cd rich side

and worth further investigation. The liquidus line for GdCd6 as well as for the new phase

can be determined via solution growth. Based on the mass of starting material and the mass

of obtained crystalline phase, the chemical composition of the remaining liquid at various

decanting temperatures can be estimated. In Fig. 4.2(a), a revised Gd-Cd binary phase diagram

on the Cd rich side is presented. The new phase, as will be shown in detail below to be a binary

quasicrystalline phase, is an incongruent melting phase with very limited liquidus range. This

range, unfortunately shrinks as we progress from R = Gd to R = Tm. The middle inset

in Fig. 4.2 shows the differential scanning calorimetry (DSC) data, which suggest that the

i-Gd-Cd phase decomposes at around 450 ◦C. Our discovery of this new, more Cd-rich phase,

refinement of the binary phase diagram and the new phase’s decomposition temperature, were

all confirmed by a metallurgical study of the Gd-Cd binary phase diagram submitted one
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year after the publication of our discovery[132]. However, Ref. [132] makes no mention of our

discovery[133].

Using our redetermined Gd-Cd phase diagram, we were able to grow single-phase i-R-Cd

for R = Y, Gd-Tm. Single-grain quasicrystals were grown out of Cd-rich binary solutions.

A typical procedure involved adding approximately 5 g of Cd (Alfa Aesar, 99.9999% purity)

and 0.06 g of rare earth elements (Ames Laboratory Material Preparation Center) into a 2 ml

alumina crucible with a molar ratio of Cd/R = 99.2:0.8 (R = Y, Gd-Dy) or 99.4:0.6 (R =

Ho-Tm). The crucible with the starting elements was sealed in a fused-silica ampoule under a

partial argon atmosphere, which was then heated up to 700 ◦C, held at 700 ◦C for 10 hours,

cooled to 455 ◦C in 3 hours and then slowly (roughly 2 ◦C h−1) cooled to 335 ◦C, at which

temperature the R-depleted, remaining Cd-rich solution was decanted with the assistance of

a centrifuge. Clusters of single grains with a mass of about 0.2 g were obtained from each

growth[100; 111; 130].

Typical grains of quasicrystal are shown in the inset of Fig. 4.2(a) and also in Fig. 4.2(b).

Small, single grains of quasicrystal, like the one shown in the inset of Fig. 4.2(a), usually are

well faceted. Much larger grains, as shown for both the front and back sides in Fig. 4.2(b),

often form from a single nucleation site, which then follows an initial dendritic growth and

followed by faceted growth.

The structure of this new phase was identified as an icosahedral quasicrystalline phase

(denoted as i-R-Cd, in which ’i’ stands for icosahedral.) via x-ray powder diffraction, us-

ing a conventional laboratory source, as well as a high-energy x-ray single-grain diffraction

technique[134]. The high-energy x-ray measurements were carried out at station 6-ID-D at the

Advanced Photon Source in collaboration with Dr. Goldman’s neutron and x-ray scattering

group at Iowa State University and Ames Laboratory. Detailed experimental methods on the

high-energy x-ray experiments can be found in Ref. [100; 130]. The single-grain precession

images of i-Gd-Cd, shown in Fig. 4.3(a) and (b), were taken with the beam along a five-fold

and two-fold axis of the pentagonal faceted grain and show the pattern of diffraction spots

characteristic of a primitive (P-type) quasilattice. This was also confirmed for R = Tb and

Tm. The entire sample shown in Fig. 4.2(b) was also surveyed by high-energy x-ray diffrac-
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Figure 4.2 (a) Revised Gd-Cd binary phase diagram around the Cd concentrated region. Blue

indicates the revised part as compared to the old version shown in Fig. 3.1. Data

points on the revised liquidus line were inferred by decanting growths at different

temperatures and weighing the obtained crystals. The upper inset shows a single

grain of i-Gd-Cd on a millimeter grid paper. The middle inset shows DSC data for

i-Gd-Cd. (b) The front and back sides of a larger grain of i-Tb-Cd on a millimeter

grid paper.
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tion. A series of diffraction patterns were recorded by translating the sample in both directions

perpendicular to the beam in a grid-like manner in steps of 1 mm. All recordings showed sim-

ilar patterns demonstrating the same crystal orientation in each probed sample volume and,

therefore, demonstrating that the entire sample shown in Fig. 4.2(b) is a single grain i-Tb-Cd

quasicrystal despite the obvious initial dendritic growth.

Likewise, the diffraction pattern from powdered single grains of i-Gd-Cd, shown in Fig. 4.3(c),

is well indexed by a primitive icosahedral quasilattice. All peaks for q < 3 Å
−1

, and the promi-

nent peaks for 3 Å
−1

< q < 5 Å
−1

are indexed either to the icosahedral phase or the residual Cd

flux. The labels 2, 3 and 5 denote prominent peaks along the two-fold, three-fold and five-fold

directions, respectively. The six-dimensional (6D) lattice constant, a6D, was estimated to be

7.972(4) Å, using the strongest peak along the five-fold axis (indexed (211111) in Fig. 4.3). No

impurity phases, beyond some residual Cd flux at the <5% level, were found.

The ambient temperature powder x-ray diffraction patterns obtained for all of the i-R-Cd

(R = Y, Gd-Tm) are shown in Fig. 4.4. All diffraction patterns are similar to that shown

in Fig. 4.3 for i-Gd-Cd. Progressing from R = Gd to R = Tm, the diffraction peaks shift to

slightly higher values of 2θ, reflecting a change in the six-dimensional quasilattice constant,

a6D. As the inset of Fig. 4.3(c) shows, our powder diffraction measurements for R = Gd, Tb,

Dy, Ho, Er and Tm shows a smooth decrease of a6D, consistent with the well-known lanthanide

contraction.

The composition of the icosahedral phase was inferred from two independent methods:

wavelength-dispersive x-ray spectroscopy (WDS) and temperature-dependent magnetization

(shown in Fig. 4.5). Compositions, determined from each measurement, are presented with

other magnetic and structural data in Table 4.1.

WDS data were collected in the electron probe microanalyser of a JEOL JXA-8200 electron

microprobe with a 20 kV beam voltage and a 5-µm spot size. For each sample, the measure-

ment was done at 12 different locations on a polished surface. In order to calibrate the WDS

data to the R-Cd system, respective RCd6 samples were also measured and used as standard

materials with known stoichiometry. The WDS data suggest an average composition of i-R-

Cd7.55±0.3 across the series. From Gd to Tm, the Cd concentration decreases continuously with
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Figure 4.3 High-energy x-ray diffraction patterns from a single grain of i-Gd-Cd were taken

with the beam parallel to the five-fold (a) and two-fold (b) axes. The scaling

of peak positions along the five-fold axis confirms that the i-Gd-Cd quasicrystals

fall within the simple-icosahedral (P-type) structural family. (c), The powder

diffraction pattern from i-Gd-Cd. The inset shows the scaling of the 6D quasilattice

constants (determined from indexing the patterns) for R = Gd-Tm as a function

of rare earth ionic radius[135] and compares the lattice constant determined from

powder measurements of our RCd6 samples with the values calculated from a6D

as described in the text.
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Figure 4.4 Powder diffraction patterns from all of the i-R-Cd quasicrystals under investiga-

tion. The patterns are normalized to the strongest diffraction peak and offset for

clarity. All peaks can be indexed to either the icosahedral phase or residual Cd

flux. Stars indicate major diffraction peaks that come from Cd flux. The arrow

indicates the (211111) peak, which was used to calculate a6D.
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Table 4.1 The composition of the icosahedral phase as inferred from WDS and tempera-

ture-dependent magnetization (Fig. 4.5), the value of the Weiss temperature, Θ,

and the 6D quasilattice constant, a6D, determined by indexing the powder diffrac-

tion patterns from each sample. Errors in parenthesis for x from the WDS mea-

surements and a6D represent one standard deviation in the values. The error in

x from the magnetization measurements was estimated from fitting over different

temperature ranges and weighing errors.

RCdx x (WDS) x (Magnetization) Θ (K) a6D (Å)

Gd 7.88(18) 7.98(7) -41(1) 7.972(4)

Tb 7.69(17) 7.89(7) -21(1) 7.958(4)

Dy 7.50(9) 7.51(6) -11(1) 7.949(5)

Ho 7.60(13) 7.80(9) -6(1) 7.935(5)

Er 7.34(13) 7.78(5) -4(1) 7.935(6)

Tm 7.28(6) 7.76(8) -2(1) 7.914(5)

Y 7.48(16) - - 7.955(5)

an exception of Dy. The Cd/Y ratio in i-Y-Cd is close to that of i-Dy-Cd.

The R/Cd ratio was also extracted from the temperature-dependent magnetic susceptibility

by assuming that R = Gd-Tm manifest full, trivalent, local moments and that the temperature-

dependent magnetic susceptibility, χ(T ) = M(T )/H, could be fitted to a Curie-Weiss law, χ(T )

= C/(T - Θ). The inverse magnetic susceptibility of i-R-Cd, measured at 5 kOe or 10 kOe

are shown in Fig. 4.5. From the fits to the high-temperature H/M(T ) data for the moment-

bearing samples, it is found that the composition is slightly more Cd rich: i-R-Cd7.75±0.25 than

the values obtained from WDS data. The Cd concentration also shows a systematic decrease

as observed in the WDS results. For the heaviest rare earth members of the i-R-Cd series,

given the shrinking grain size, the R/Cd ratios that were inferred from the magnetization data

may become less reliable than the WDS value owing to the increasing significance of the small

amount of residual Cd flux on the surfaces of the grains. For example, approximately 5% Cd

(by mass) second phase on the i-Tm-Cd quasicrystal can shift the inferred R/Cd ratio from

the WDS value of 1:7.28 to the magnetization-derived value of 1:7.76.

Both measurements, however, set compositions for i-R-Cd that: differ significantly from the

prototypical i-Yb-Cd5.7 icosahedral quasicrystal and RCd6 cubic approximants; and are close to

the stoichiometry of the recently discovered Sc12Zn88 (ScZn7.33 in the present notation) icosa-
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hedral phase[131] as will discussed in detail below. It worth noting that both measurements

suggest the possibility of a slight increase in R content as the rare earth elements become heav-

ier. This phenomena could be driven by steric (ionic size) constraints as a result of lanthanide

contraction.

Figure 4.5 Temperature-dependent inverse magnetic susceptibility of i-R-Cd measured at 5

kOe or 10 kOe.

4.2 Structure and lattice parameter

After the initial discovery and identification of this new family of binary quasicrystals, more

detailed studies are needed to further characterize their chemical and physical properties. Here

we start from the structure of i-R-Cd via x-ray diffraction.

The difference in composition between the new i-R-Cd phase and the i-Yb-Cd5.7 quasicrys-

tal, as well as the RCd6 quasicrystal approximants, raises the question of whether there are

fundamental differences between the structures of these systems. The analysis of the structure
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of i-R-Cd relative to the i-Yb-Cd5.7 quasicrystal and RCd6 approximants is based on the close

association between the atomic motifs in quasicrystals and their associated approximants[78].

The RCd6 cubic approximants may be described as a body-centred cubic packing of inter-

penetrating rhombic triacontahedral, or Tsai-type clusters[136], which features an icosahedron

of 12 R atoms comprising the third shell of the cluster. These clusters, situated at the body-

centred cubic lattice points are linked along the cubic axes by sharing a face, and interpenetrate

neighbouring clusters along the body diagonal[137].

These same clusters have been shown to comprise the backbone of the structure of the

icosahedral phase of i-Yb-Cd5.7, with the same type of linkages[80]. Indeed, in terms of the

higher dimensional description of aperiodic crystals, the atomic structure of the RCd6 approx-

imant can be generated by a rational projection of the 6D representation of the icosahedral

phase[80]. However, there is only one crystallographic site for the R ion in the approximant

structure corresponding to their placement at the vertices of an icosahedron embedded in the

rhombic triacontahedral cluster. For i-Yb-Cd5.7, on the other hand, approximately 70% of the

R ions are associated with the embedded icosahedral cluster, whereas 30% are found in the

glue that fills the gaps between the rhombic triacontahedral clusters[80; 138].

As a support argument that they belong to the same structural family, we can compare the

measured values for a6D to the lattice constant, a, expected for the RCd6 approximant phase

through the well-established relation[125]: a =
√

2a6D(p+ qτ)/
√

(2 + τ), where τ is the golden

mean, (
√

5 + 1)/2, and p and q are indices that label the approximant. For RCd6, a 1/1

approximant phase, p = q = 1. For i-Gd-Cd, the calculated value of a = 15.519 Å, in excellent

agreement with our measured lattice parameter for GdCd6 of 15.523 Å. For i-Y-Cd, the lattice

constant for the approximant, derived from a6D = 7.955 Å (15.483 Å), and the measured value

of a = 15.482 Å are also in excellent agreement and lie between those values determined for R

= Dy and Tb. The powder diffraction patterns from the RCd6 approximants were refined using

the Rietveld package in GSAS[116] and the results are in good agreement with the published

crystallographic data[137]. As the inset of Fig. 4.3(c) shows, excellent agreement between the

derived and measured cubic approximant lattice constants is found for all R ions in the i-R-

Cd family. This provides compelling evidence that, despite rather significant differences in
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composition, the cluster-based backbone of the icosahedral structure of the i-R-Cd quasicrystal

is quite similar, if not identical, to that found for i-Yb-Cd5.7 and the RCd6 cubic approximants.

This is confirmed recently by a full 6D structural refinement of the i-R-Cd quasicrystal as

was done for i-Yb-Cd5.7 [80; 139]. In the case of i-R-Cd, both the rhombic triacontahedral

clusters and the Tsai-type atomic cluster were found to show certain degree of Cd/R partial

occupancy[139]. The deficiency of R in the Tsai-type cluster may result from a deviation of

the atomic size ratio between R and Cd, from the ideal value for Tsai-type cluster, 1.288[140].

For i-R-Cd, this ratio ranges from 1.149 for i-Gd-Cd to 1.112 for i-Tm-Cd. In the case of i-Yb-

Cd5.7, where there is a full occupancy of Yb2+ in the Tsai-type cluster, the atomic size ration

between Yb2+ and Cd is ∼1.237, a value that is very close to the ideal ratio[139]. The partial

occupancy of the R sites, especially on the Tsai-type clusters, may have a strong influence on

the magnetic ground state of i-R-Cd. Neutron scattering experiments are ongoing in searching

for this link between rare earth deficiency and the missing of long range magnetic order.

As discussed above, there is a slight change in stoichiometry as R changes from Gd to Tm.

Phason strain was analysed based on the broadening of powder x-ray diffraction peaks. It was

found that the frozen-in phason strain is the key mechanism for structural disorder in these

quasicrystalline samples. And there is no significant difference in strain/phason strain between

i-Gd-Tm and i-Tm-Cd[100].

4.3 Magnetic properties of i-R-Cd

To further explore the physical properties of i-R-Cd, detailed magnetization data were

measured in identifying the magnetic ground states. As shown in Fig. 4.5, i-R-Cd (R = Gd-Tm)

binary quasicrystals show Curie-Weiss behavior at high-temperatures, which can be well fitted

with local moment behavior of trivalent rare earth elements. Among all binary quasicrystals

that were discovered in this study, i-Y-Cd is the only non-moment-bearing member due to an

empty 4f shell of Y3+. Therefore, it serves as a good non-magnetic comparison to the rest of

the members.

The temperature-dependent dc magnetization of i-Y-Cd and YCd6 are shown in Fig. 4.6.

Both compounds exhibit diamagnetic and essentially temperature-independent behavior with



53

a value close to -3×10−7 emu/g. Compared with other i-R-Cd members at room temperature,

the absolute value of magnetization for i-Y-Cd is about two orders of magnitude smaller. In

addition, the sign and order of magnitude of the dc magnetization is close to another Y-based

quasicrystal: Y-Mg-Zn[67]. At 2 K, the field-dependent magnetization is negative and close to

linear.

Figure 4.6 Temperature-dependent dc magnetic susceptibility of i-Y-Cd and YCd6 measured

at 10 kOe. The inset shows the field-dependent magnetization of i-Y-Cd measured

at 2 K.

The inverse magnetic susceptibility for i-Gd-Cd is linear from 300 K down to about 10 K as

shown in the inset of Fig. 4.7. i-Gd-Cd exhibits a typical spin glass behavior with a clear cusp

at 4.6 K in the zero-field-cooled (ZFC) magnetization data. Below 4.6 K, the field-cooled (FC)

magnetization also exhibits a small cusp and then remains almost temperature-independent.

Fig. 4.7 shows that the dc magnetization of i-Gd-Cd is strongly history-dependent: data were

measured following an initial zero-field cooling to 2 K and warming in a 50 Oe field from 2 K to
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Figure 4.7 Irreversibility of dc magnetization measured at 50 Oe. Different colors indicate

different field-cool temperatures (see text). The inset shows temperature-depen-

dent inverse magnetic susceptibility of i-Gd-Cd measured at 10 kOe. The grey line

represents Curie-Weiss behavior that is extrapolated from its high-temperature

paramagnetic state.
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various temperatures, T ’. For instance, after ZFC measurement from 2 K to 2.6 K, the sample

was cooled with applied field back to 2 K, after which the magnetization data was acquired

upon warming from 2 K to 3.4 K. Therefore, the red-line in Fig. 4.7 can be considered as a

2.6 K FC measurement. The magnetization after field-cooling from various T ’ are essentially

temperature-independent up to T ’ and then fall back onto the ZFC data above T ’. Here we

define Tirr as the highest temperature where ZFC and FC data differ by more than 0.5% and

Tmax as the temperature at which the maximum of ZFC dc magnetization occurs. In the case

of i-Gd-Cd, both characteristic temperatures are the same. Above the Tmax, the FC and ZFC

data for i-Gd-Cd are essentially identical. In addition, a Curie-Weiss extrapolation from the

high-temperature, paramagnetic state of i-Gd-Cd is plotted in grey solid line in Fig. 4.7. There

exists a clear deviation from the Curie-Weiss behavior at a higher temperature than Tmax.

This precursor of spin-glass state may imply a formation of magnetic clusters prior to the spin

freezing temperature[62; 67; 141; 142; 143].

The dc magnetization of i-Gd-Cd was also investigated at different applied fields and the

results are presented in Fig. 4.8. The applied field has two significant effects on the measured

magnetization: the first being that the cusp in ZFC measurement is rounded and broadened

and the second is that Tirr is shifted to lower temperatures with higher applied fields. A subset

of the data is presented in the inset to illustrate these effects. The onset of irreversibility can be

associated with de Almeida-Thouless’s prediction[144], where the change in Tirr with applied

field should follow:

H(Tirr) = α(1− Tirr

Tf
)b (4.1)

where Tf stands for the spin freezing temperature in zero field which for i-Gd-Cd was taken as

4.6 K, the same value as Tmax. α is the applied magnetic field, above which the irreversibility

phenomenon of spin-glass should be fully suppressed. The data for i-Gd-Cd can be fitted with

α = 3.3(± 0.3) × 104 Oe and b = 2.5 (± 0.1). This value of α is close to that found for

i-Tb-Mg-Zn which has an α = 3.5 × 104 Oe[67]. It should be noted, though, that the original

theory was developed for Ising spins with b = 1.5. Clearly, this will not be the case for Gd

moments. For Heisenberg spins, however, an even smaller value of b = 0.5 was predicted[145]



56

and could not give a reasonable fit to our data. In Ref. [67], the fit could be improved if a

larger value of exponent was used. However, it is not clear what causes the difference in the

exponent values.

Figure 4.8 The field dependence of Tirr for i-Gd-Cd. Fits according to Eq. 4.1 are shown

with b = 2.5 and α = 3.3 × 104 Oe. The inset shows representative ZFC and

FC measurements under different applied magnetic filed. Arrows indicate Tirr for

different fields.

Compared with a long-range magnetic ordering, which can be viewed as a thermal equi-

librium state during the time scale of measurement, a spin-glass is not in such an equilibrium

state. Therefore, the magnetic behavior will depend on the frequency of measurement due to

the system’s limited ability to respond to the changing applied field. The cusp-temperature in

the real part of the ac susceptibility increases by about 0.16 K upon increasing the measurement

frequency from 10 Hz to 10000 Hz. This implies about 3% increase of the freezing temperature,

which is close to that found for i-Gd-Mg-Zn[146]. ∆Tf/[Tf∆(log10f)] is about 0.01.
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Although the dc magnetization data and the frequency dependence of ac magnetization are

consistent with a spin-glass-type freezing of the magnetic moments in i-Gd-Cd, more evidence is

required to rule out superparamagnetic-type blocking, or cluster glass, behavior. A convincing

way to distinguish between these possibilities is to look at the third order, non-linear magnetic

susceptibility, χ3, in the vicinity of spin-freezing/blocking temperature[147; 63]. χ3 is defined

in terms of magnetization, M , and applied field, H, as follows,

M/H = χ = χ1 + χ3H
2 + χ5H

4 + · · · (4.2)

The temperature-dependent χ3 term will exhibit a much sharper peak in spin-glass systems

as compared with a broad feature that is usually observed in superparamagnets[147]. The

third order magnetic susceptibility was investigated for i-Gd-Cd and is shown in Fig. 4.9. An

ac field with an amplitude of 3 Oe and a frequency of 333.3 Hz was applied to acquire the

data. The χ3 peak for i-Gd-Cd is sharper than other known spin-glass systems, for example,

Tb-Mg-Zn, Ho-Mg-Zn quasicrystals[67] and an Ising spin glass system Y1−xTbxNi2Ge2[68],

whereas superparamagnets usually exhibit a much broader feature[147]. The peak temperature

in χ3 for i-Gd-Cd, however, is 4.3 K, a value that is 0.3 K lower than the Tmax value from

the dc magnetization. This small discrepancy in temperatures possibly results from a different

thermometry configuration in the QD PPMS where ac susceptibility was measured. For the

current study, we follow the temperatures given by MPMS.

Whereas the data just presented for i-Gd-Cd is consistent with classic spin-glass behavior,

for i-Tb-Cd and i-Dy-Cd, the canonical cusp-shaped spin-glass signature in magnetization data

is replaced by a broad maximum in both ZFC and FC data with the irreversibility appearing at

a significantly higher temperature than the temperature at which ZFC magnetization reaches its

maximum (Fig. 4.10). Similar behavior was observed in the R-Mg-Cd quasicrystal system and

explained by the presence of magnetic impurities that due to slight oxidation of the surface of the

sample[98]. After annealing at 200◦C for two days, the dc magnetization data for both i-Tb-Cd

and i-Ho-Cd remain the same, even though a thin layer of oxidation appeared on the sample’s

surface. If the aforementioned argument is applied, a magnetization feature that evolves with

changing degrees of oxidation would be expected. In addition, sample inhomogeneity that was
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Figure 4.9 Third order magnetic susceptibility term, χ3, normalized in temperature and peak

height. For i-Gd-Cd, χ3 was measured at 333.3 Hz (black dots). Red and blue

dashed lines present the χ3 data, obtained from Ref. [67; 68], for Ising spin glass,

Y0.7Tb0.3Ni2Ge2 and Tb-Mg-Zn quasicrystal.
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proposed to cause non-cusp like feature in other spin glass systems[148], if exists in i-Tb-Cd

and i-Dy-Cd, cannot be removed by annealing at 200◦C.

In Fig. 4.10, a clear history-dependent magnetization can be observed. Comparing with i-

Gd-Cd, in which different FC temperatures result in a temperature-independent magnetization

from the base temperature up to T ’, in the case of i-Tb-Cd and i-Dy-Cd, if T ’ is higher than

Tmax, the temperature-independence survives only up to Tmax. This may indicate that only

at temperatures that are lower than Tmax, do the magnetic moments become fully ”frozen”.

Therefore, Tmax might represent the spin-freezing temperature, Tf, better than Tirr.

The grey, solid curves shown in Fig. 4.10 are the extrapolations of the high-temperature

Curie-Weiss fit to the data. Comparing with i-Gd-Cd, i-Tb-Cd and other members, the manner

in which i-Dy-Cd deviates from the Curie-Weiss behavior is different, since its magnetization in-

creases more slowly upon cooling than its high-temperature, paramagnetic state would suggest.

Since i-Gd-Cd, i-Tb-Cd and i-Dy-Cd each exhibit deviation from simple Curie-Weiss behavior,

it is clear that the CEF splitting is not the key factor for the formation of possible magnetic

clusters. However, subtleties in the CEF splitting might alter the details of magnetic properties

and make i-Dy-Cd behave differently. A similar change in the sign of the deviation was also

reported in other spin-glass systems, like AuFe alloys, with different Fe concentrations[142].

However, in that case, the sign of Curie-Weiss temperature changes at the same time.

Attempts to obtain temperature-dependent χ3 data for i-Tb-Cd were made. However, no

resolvable feature was detected. Given that no clear cusp was seen in the ZFC dc magnetization

measurement, it is likely that, for this compound, a possible distribution of freezing tempera-

tures makes it difficult to experimentally see the clear feature in χ3. However, the experimental

limitations of our instruments can not be ruled out.

The dc magnetization data measured in 50 Oe, down to 0.46 K are shown for i-Ho-Cd,

i-Er-Cd and i-Tm-Cd in Fig. 4.11. In the ZFC data, clear cusps can be observed with Tmax

= Tirr. In general, the irreversibility features for these members are much closer to what was

seen in i-Gd-Cd, i.e. sharp cusps in ZFC dc magnetization. One subtle difference being that,

unlike the case of i-Gd-Cd where ZFC and FC magnetization data reaches the maximum at

the same temperature, for i-R-Cd (R = Ho-Tm), the FC maximum is located at a slightly
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Figure 4.10 Temperature-dependent dc magnetization measured at 50 Oe for i-R-Cd (R =

Tb, Dy). Different colors indicate different FC temperatures. Gray lines rep-

resent Curie-Weiss behavior that was extrapolated from the high-temperature

paramagnetic state.
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Figure 4.11 Temperature-dependent dc magnetization measured at 50 Oe for i-R-Cd (R =

Ho-Tm). Data were acquired using a QD iHelium3 system. Gray lines represent

Curie-Weiss behavior that is extrapolated from the high-temperature paramag-

netic state.
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lower temperature than Tmax. The deviation from the Curie-Weiss, paramagnetic state (shown

in grey) occurs at higher temperature than Tmax, with a clear upward deviation. Information

obtained from all of our dc magnetization measurements are summarized in Table 4.2.

Due to the limitations of our instrument, we were not able to measure ac magnetization

below 1.8 K, where the dc magnetization features of i-R-Cd (R = Ho-Tm) emerge.

Table 4.2 Tmax represents the temperature at which dc ZFC data reaches maximum. Tirr

represents the temperature at which FC and ZFC data start to split by more than

0.5%. Error bars were estimated according to measurements on different samples

and the data step width of each measurement.

Compound Tmax (K) Tirr (K)

i-Gd-Cd 4.6(0.2) 4.6(0.2)

i-Tb-Cd 5.3(0.5) 8.7(0.5)

i-Dy-Cd 3.0(0.4) 10.1(0.3)

i-Ho-Cd 1.76(0.05) 1.76(0.05)

i-Er-Cd 1.11(0.05) 1.11(0.05)

i-Tm-Cd 0.63(0.05) 0.63(0.05)

4.4 Specific heat of i-R-Cd

The temperature-dependent specific heat of i-Y-Cd is shown in Fig. 4.12. The stoichiometry

used for the calculation was adopted from the WDS results that were listed in Table 4.1, YCd7.48

for i-Y-Cd in this case. Below 10 K, there is a linear region in C/T versus T 2, which yields a

Debye temperature, ΘD, of about 140 K. The linear fit also intersects the C/T axis at roughly 4

± 2 mJ/mol-Y K2 (or 0.5 mJ/atom K2). For crystalline solids, the intercept normally indicates

the electronic specific heat, γ. However, it was also noticed that even for non-crystalline solids,

there could still be a linear region in C/T versus T 2 plot at low temperature with a finite γ

value[149], which can be explained by a distribution of two-level systems[150]. If this is the

case, then the electronic specific heat contribution to C/T will be even closer to zero. If we

take the measured value, 4 ± 2 mJ/mol-Y K2, as the γ for i-Y-Cd, both γ and ΘD for i-Y-Cd

are very close to the values obtained for YCd6[101].

Figs. 4.13-4.18 present the specific heat data for other i-R-Cd members. The magnetic

specific heat was calculated by subtracting that of i-Y-Cd with a small molar mass correc-
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Figure 4.12 Temperature-dependent specific heat for i-Y-Cd using a stoichiometry of YCd7.48.

The inset shows Cp/T versus T 2 up to 10 K
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tions according to (1) the Debye model to approximate changes due to the heavier R ions

and (2) the R concentration. Although it is not well investigated if the model works for qua-

sicrystalline compounds, the magnetic entropy thus integrated offers some information about

how CEF splitting of the Hund’s rule ground state multiplet J of the R3+ ion plays a role in

the magnetism, as well as the temperatures at which the magnetic entropy starts to change.

Uncertainties, shown as grey areas in Figs. 4.13-4.18, take into account the uncertainty in the

WDS-determined stoichiometry and the uncertainty in the mass of the sample. Any un-physical

drop in magnetic entropy at high temperature, due to this increasing error bar, can be ignored.

In Fig. 4.13, i-Gd-Cd shows a typical spin-glass behavior with a broad maximum located

roughly 20% above Tf[62; 63]. Above roughly 10 K, the magnetic entropy of i-Gd-Cd tends to

saturate, reaching the expected value for non-CEF-split Gd3+, Rln8, where R is the univer-

sal gas constant. The temperature where the magnetic entropy of i-Gd-Cd starts to saturate

roughly corresponds to the temperature at which precursor magnetic clusters start to form as

inferred from the deviation from the high-temperature Curie-Weiss tail seen in the dc magne-

tization measurements (see Fig. 4.7).

For the rest of the i-R-Cd members, the CEF splitting, albeit relatively small in this high

symmetry structure[151], lifts the degeneracy of trivalent rare earth ground state. This results

in a slower recovery of the full Rln(2J+1) magnetic entropy upon warming and the thermal

excitations between split levels persist to higher temperature as compared with the case of

i-Gd-Cd.

The specific heat of i-Tb-Cd and i-Dy-Cd, members that exhibit non-cusp-like features in

low-field magnetization data, are shown in Figs. 4.14-4.15. In the specific heat of i-Tb-Cd, the

broad peak is not as clear as in i-Gd-Cd, which is possibly due to the addition of Schottky

anomalies to the background. The origin of the slight low-temperature upturn observed below

1 K, however, is not yet well understood. A similar upturn is also observed in i-Ho-Cd and

presented in Fig. 4.16 below. Since among all the studied i-R-Cd members, R = Tb and Ho

have the largest gyromagnetic ratio for the nuclear spins, it is likely that this low-temperature

upturn in the specific heat originates from a nuclear Schottky anomaly. If the low-temperature

specific heat upturn is included, the magnetic entropy of i-Tb-Cd is about Rln2 at Tmax and
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Figure 4.13 (a) Temperature-dependent specific heat of i-Gd-Cd. The grey solid line repre-

sents the non-magnetic part of the specific heat. The red solid line shows the

magnetic specific heat. The inset shows the magnetic entropy with grey error

bars (see text). (b) Low-temperature magnetic specific heat (red) on the right

scale and low-temperature ZFC dc magnetization (black) on the left scale.
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Rln4 at the temperature where the dc magnetization starts to deviate from the Curie-Weiss

behavior. Lacking more low-temperature data for the Schottky anomaly fit, it is difficult to

offer quantitative corrections to the magnetic entropy. Qualitatively, the magnetic entropy for

i-Tb-Cd may decrease by about 1 J/mol K if the upturn feature is excluded.

The specific heat of i-Dy-Cd is similar with that of i-Tb-Cd. The magnetic entropy reaches

Rln2 at around 5 K and approaches Rln4 at 24 K. The magnetic specific heat shown in solid

red line exhibits a broad maximum in the vicinity of the broad feature observed in the ZFC

magnetization data. Another broad hump centered at ∼10 K is most likely associated with

Schottky anomalies due to CEF split levels.

Apart from the upturn at low temperatures, the specific heat of i-Ho-Cd (shown in Fig. 4.16)

is different in a sense that it recovers the magnetic entropy much faster. After a subtraction

by i-Y-Cd, a large amount of magnetic contribution in specific heat still exists below 5 K. At

24 K, the calculated magnetic entropy approaches Rln17, which is the full magnetic entropy

expected for Ho3+. Even if the specific heat upturn below 1 K is assumed to arise from a

nuclear Schottky anomaly, and is therefore excluded, an uncertainty of up to 4 J/mol K still

suggests an Rln9 magnetic entropy at 24 K. This large amount of entropy implies relatively

small CEF splitting and is consistent with a distribution of low laying Schottky anomalies. In

addition, a small, rounded, hump next to Tmax might be consistent with a spin-glass transition.

The specific heat of i-Er-Cd and i-Tm-Cd are shown in Figs. 4.17-4.18. i-Er-Cd exhibits a

hump in specific heat. At 24 K, it approaches Rln8. The magnetic specific heat, in addition,

shows another clear broad hump at around 12 K. This is most likely due to a Schottky anomaly

associated with undetermined CEF levels. However, the current data does not allow for a more

detailed analysis.

In i-Tm-Cd, only part of the specific hump was observed due to our base temperature of

PPMS. It should be noted that it seems that the maximum temperature in specific heat of

i-Tm-Cd is equal to, or even lower than the Tmax in the dc magnetization data.
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Figure 4.14 (a) Temperature-dependent specific heat of i-Tb-Cd. The red solid line shows

the magnetic specific heat. The inset show the magnetic entropy with error

bars. (b) Low-temperature magnetic specific heat (red) on the right scale and

low-temperature ZFC dc magnetization (black) on the left scale.
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Figure 4.15 (a) Temperature-dependent specific heat of i-Dy-Cd. The red solid line shows

the magnetic specific heat. The inset show the magnetic entropy with error

bars. (b) Low-temperature magnetic specific heat (red) on the right scale and

low-temperature ZFC dc magnetization (black) on the left scale.
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Figure 4.16 (a) Temperature-dependent specific heat of i-Ho-Cd. The red solid line shows

the magnetic specific heat. The inset shows the magnetic entropy with error

bars. (b) Low-temperature magnetic specific heat (red) on the right scale and

low-temperature ZFC dc magnetization (black) on the left scale.
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Figure 4.17 (a) Temperature-dependent specific heat of i-Er-Cd. The red solid line shows

the magnetic specific heat. The inset shows the magnetic entropy with error

bars. (b) Low-temperature magnetic specific heat (red) on the right scale and

low-temperature ZFC dc magnetization (black) on the left scale.



71

Figure 4.18 (a) Temperature-dependent specific heat of i-Tm-Cd. The red solid line shows

the magnetic specific heat. The inset shows the magnetic entropy with error

bars. (b) Low-temperature magnetic specific heat (red) on the right scale and

low-temperature ZFC dc magnetization (black) on the left scale.
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4.5 Resistivity of i-R-Cd

Due to a low density of states at the Fermi level, quasicrystals are generally bad metals or

sometimes on the edge of a metal-insulator transition[76; 89]. The resistivity of quasicrystalline

material is nearly temperature-independent, or decreases weakly with increasing temperature.

Because of the high resistivity of quasicrystals, a small amount of highly conducting impurity

in/on the sample is sufficient to result in significant changes in measured resistance.

In our initial attempts to measure the electric resistance of i-R-Cd, a standard four-probe

technique was used and Pt wires were attached to an as-grown sample like shown in Fig. 4.2(b).

In Fig. 4.19(a), the temperature-dependent resistance of as-grown i-Tb-Cd is presented (green

triangles). A sizeable residual resistance ratio (RRR) of about 4.5 was obtained, which is

distinct from known quasicrystal behavior[76]. However, the shape of the observed resistance

can result from measuring a nearly temperature-independent resistor (the quasicrystal sample)

connected in series and in parallel with a highly conducting metal, in this case, Cd.

We tried to remove the residual Cd in the following way. The sample is sealed in a long

quartz tube under vacuum, in which the sample is held at 200◦C whereas the other end of the

tube is held at room temperature. Due to its high vapour pressure, Cd can be easily removed

from the sample by this heat treatment. In preparing the sample for resistance measurements,

polishing as the first step could remove residue surface Cd and the heat treatment, as the

second step, could remove part of the remaining Cd that was trapped in exposed dendritic

grain boundaries. After the polished sample went through the heat treatment for 3 days,

a nearly temperature-independent resistance was indeed observed, as shown in Fig. 4.19(a)

by black squares. However, as illustrated by the inset of Fig. 4.19(b), the resistance of i-

Tb-Cd still decreases below about 100 K, and a clear magnetic field dependence of this low-

temperature resistance emerges. For clarity, the resistance of elemental Cd was also measured.

The resistance sample of Cd was prepared by pressing an elemental Cd droplet to reduce the

thickness. A RRR of about 2200 was observed [Fig. 4.19(b)]. The magnetoresistance increases

at low temperatures as expected in general for a simple, high purity, metal, and follows Kohler’s

rule[152; 153]. The resemblance of the low-temperature magnetoresistance of i-Tb-Cd to that
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Figure 4.19 (a) Zero-field, normalized temperature-dependent resistance for i-Tb-Cd: as–

grown sample (green triangle); polished and heat treated sample (black square).

(b) Normalized temperature-dependent resistance of elemental Cd (polished and

heat treated i-Tb-Cd sample in the inset) measured at zero field (black) and at

90 kOe (red).
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Figure 4.20 Normalized temperature-dependent resistance for i-R-Cd (R = Y, Gd-Tm) at

zero field (black) and at 90 kOe (red). The value of resistivity is about 300 µΩ

cm at room-temperature.
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of Cd suggests that even after polishing and the heat treatment, Cd that is trapped within the

qusicrystal might still affect the resistance data. Therefore, it is likely that, despite efforts to

eliminate Cd, the features observed are a combination of intrinsic quasicrystal properties plus

a minor amount of conducting metal.

In Fig. 4.20, the normalized resistance data are measured in zero-field and 90 kOe for all i-R-

Cd samples shown. The room-temperature resistivity of i-R-Cd quasicrystals is approximately

300 µΩ cm. Compared with other quasicrystal systems, this is close to that in i-R-Mg-Zn[67]

and i-Yb-Cd[92] and is an order of magnitude smaller than in Al-Pd-Mn and Al-Cu-Fe[76; 91].

If an assumption of a low intrinsic magnetoresistance of quasicrystals is made, it seems that

i-Gd-Cd and i-Ho-Cd might be the best representation for single phase quasicrystal behavior.

The resistance of i-Gd-Cd and i-Ho-Cd tends to increase with decreasing temperature. At

1.8 K, the magnetoresistance is small, and negative for i-Ho-Cd and positive for i-Gd-Cd. In

other quasicrystal systems, both positive and negative magnetoresistance has been observed[90].

Besides the negative slope of zero-field resistance at room temperature, the resistance of i-R-

Cd also exhibits a broad dome at lower temperature, for example, ∼100 K for i-Tb-Cd and

∼40 K for i-Gd-Cd. Although this feature might be affected by metallic Cd, similar dome-

shape resistances had been observed in many other quasicrystals as well and was explained by

weak localization with strong spin-orbit coupling[76; 90; 91; 92; 154] and competing inelastic

scattering in the presence of weak localization[155]. It worth pointing out that the existence of

such a broad maxima was shown to be closely related to the sample preparation method and

the sample quality[67; 156]. In addition, at low temperatures, a small upturn or saturation in

resistance exists, which sometimes appears as well in other aforementioned quasicrystals that

exhibit a broad dome in resistance. The temperature at which the upturn or saturation occurs

does not match dc magnetization features.

It is important to point out that no sharp feature can be found in any of the data sets

shown in Fig. 4.20 that can be associated with long-range magnetic ordering. This is consistent

with the lack of λ-shaped features in specific heat measurements shown above. For spin-glass

systems, this is usually the case. However, it should be noted that for intermetallic compounds,

resistive features that are associated with long range magnetic transitions can sometimes be
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obscure, even for systems with a much larger RRR than i-R-Cd, for example in the case of

RNi2Ge2[15].

4.6 Discussion

In terms of the magnetic ground state, for i-Gd-Cd, I have presented data that support the

identification of Tmax as Tf, the spin glass freezing temperature. These data include: (1) a cusp

in dc magnetization; (2) a frequency-dependent freezing temperature; (3) a narrow third order

magnetic susceptibility, χ3, at the freezing temperature; (4) a broad maximum in temperature-

dependent specific heat with the temperatures of the maximum somewhat higher than the cusp

temperature in dc magnetization. According to the general understanding of the experimental

characteristics of spin-glasses[63; 65], i-Gd-Cd can be considered to be a spin-glass below Tf

= 4.6 K. Unfortunately, we were unable to obtain as extensive sets of data for the rest of the

i-R-Cd (R = Tb-Tm) series, especially χ3. In discussion of the magnetization features, i-Tb-Cd

and i-Dy-Cd are of special interest for their non-cusp-like ZFC dc magnetization data. However,

in view of the similarity in resistance and specific heat data, it is likely that neither i-Tb-Cd

nor i-Dy-Cd exhibit long-range magnetic ordering. Further investigations of i-Tb-Cd and i-

Dy-Cd are needed to elucidate the origin of this non-standard spin-glass-like behavior in the

magnetization. The rest of the local-moment-bearing members, i-R-Cd (R = Ho-Tm), behave

closer to a canonical spin-glass in terms of their dc magnetization. To obtain χ3 for these three

members, ac magnetization measurements below 2 K are needed, which is currently beyond our

instrumental capability. It is worth pointing out that although broadened maxima, rather than

λ-like peaks, were observed in the specific heat measurements, the maximum temperatures are

close to, if not equal to, Tmax, whereas in canonical spin-glass systems, the broad maximum in

specific heat often exceeds the freezing temperature, Tf, by about 20%-50%[62; 63].

The discovery of i-R-Cd (R = Y, Gd-Tm) also allows for the study of systematic trends

across this binary, local-moment-bearing quasicrystal series. As shown in Fig. 4.3, there is a

standard lanthanide contraction associated with changing R. Despite possible slight change in

stoichiometry, there is no clear difference between i-Gd-Cd and i-Tm-Cd in terms of strain and

phason strain, or in other words, sample quality.
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Figure 4.21 (a)/(b) Changes of Θ/Tmax as a function of de Gennes factor: (gJ -1)2J(J+1).

Data for i-R-Mg-Zn, i-R-Mg-Cd and i-Gd-Ag-In are obtained from Refs. [67; 98;

99; 157]. Dashed lines are guides to the eyes.
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Figure 4.22 Changes of Tmax as a function of Θ. Data for i-R-Mg-Zn, i-R-Mg-Cd and

i-Gd-Ag-In are obtained from Refs. [67; 98; 99; 157]. Dashed lines are guides

to the eyes.
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We now return to the high-temperature H/M(T ) measurements shown in Fig. 4.5. In

Fig. 4.21(a), the Weiss temperature, Θ, is shown together with values previously measured

for other ternary rare-earth-containing quasicrystalline compounds including i-R-Mg-Zn[67],

i-R-Mg-Cd[122] and i-Gd-Ag-In[125] as a function of de Gennes factors (dG). For all of these

compounds, Θ is negative, denoting predominantly AFM exchange interactions, and roughly

scales with the de Gennes factor, as expected. What is most striking, however, is that the

values for Θ are very consistent from system to system even though these compounds manifest

different compositions and structural classes. i-R-Mg-Zn, for example, is a ternary face-centred

(F-type) icosahedral quasicrystal characterized by Bergman-type clusters, whereas it has been

shown that i-R-Cd is a binary P-type icosahedral quasicrystal characterized by rhombic tri-

acontahedral clusters. Nevertheless, the strength of the AFM exchange, characterized by Θ,

and its monotonic dependence on the de Gennes factor, remains remarkably similar across the

spectrum of structures. This may simply be a consequence of the presence, in all cases, of a

similar electronic environment associated with the Hume-Rothery mechanism for the stabiliza-

tion of quasicrystals[76] or from close similarities in the local environments of the R ions for

all of these structures. Clearly, this point deserves further experimental and theoretical study.

Tmax is plotted against dG factor in Figs. 4.21(b). It shows a non-monotonic behavior. The

clear deviation from de Gennes scaling is evidenced by a higher Tmax of i-Tb-Cd and i-Dy-Cd

in Fig. 4.21(b). In magnetically ordered systems, it was argued that CEF effects can enhance

the ordering temperature in materials with a strong axial anisotropy[13; 158]. In quasicrystals,

although anisotropy is not well defined, the CEF effects do exist for rare earth ions that have a

finite orbital angular momentum of their 4f electrons. It might be possible that a small CEF

effect[151] helps to stabilize the freezing in this geometrically frustrated system. In Fig. 4.22,

Tmax is plotted against Θ. It shows a clear difference in Tmax/Θ between Gd3+ and the rest

of the members as indicated by the dashed lines. i-Gd-Cd has a lower Tmax for a given Θ.

In Ref. [157], this phenomena was associated with the difference between Heisenberg like ion

(Gd3+) and non-Heisenberg like ion (Tb3+-Tm3+). It is worth pointing out that, in addition to

the similarity in Curie-Weiss temperatures (Fig. 4.21(a)), the value for Tmax/Θ is also similar

for different rare earth bearing quasicrystal systems[67; 98; 99; 157]. In the plot of Tmax/Θ, the
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slope is ∼0.11 for Heisenberg-like ion and ∼0.25 for non-Heisenberg-like ions. Both numbers

indicate a moderate degree of geometrical frustration[159].

4.7 Conclusions

During this study, seven binary quasicrystals, i-R-Cd (R = Y, Gd-Tm), were discovered

via high-temperature solution growth technique, based on the proposal that quasicrystalline

phases may exist next to their corresponding approximant phases[131]. These newly discovered

quasicrystals represent the world’s first group of magnetic binary quasicrystals (except for

non-magnetic i-Y-Cd). They were characterized by detailed elemental analysis, structural,

thermodynamic and transport measurements.

Structurally, i-R-Cd has a primitive (P-type) quasilattice with Tsai-type clusters. Across

the rare earth series, the lanthanide contraction is followed. The magnetic susceptibility of

i-Y-Cd is essentially temperature-independent and weakly diamagnetic. The low-temperature

specific heat of i-Y-Cd reveals a Debye temperature of about 140 K. Supported by the magneti-

zation and specific heat data, i-Gd-Cd can be categorized as a spin-glass below Tf = Tmax = 4.6

K. The dc magnetization data of i-Tb-Cd and i-Dy-Cd do not show a typical cusp-like shape

but rather a broad feature with a clear temperature spacing between Tmax and Tirr. Further

study is needed to explain this unconventional behavior. However, based on the similarity of

temperature-dependent resistance and specific heat measurements, it is unlikely that i-Tb-Cd

or i-Dy-Cd exhibits long-range magnetic ordering. i-R-Cd (R = Ho-Tm) show conventional

spin-glass behavior in their magnetization, but with the maximum in the magnetic component

of specific heat occurring at temperatures closer and closer to Tmax. Further investigation is

needed to explain this trend. A deviation from the de Gennes scaling for the moment-bearing

members was observed. It is likely this deviation is a consequence of CEF effects, which helps

to stabilize the freezing state of magnetic rare earth ions with finite orbital angular momentum.

Resemblance was also noted in the value of Tf/Θ between i-R-Cd and another rare earth based

quasicrystal systems. Long range magnetic ordering in quasicrystals is still missing. However,

further studies on antiferromagnetically ordered RCd6 and spin glass i-R-Cd may reveal hints

of how to achieve a long rang magnetic order in quasicrystals, if it exists.
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CHAPTER 5. PHYSICAL PROPERTIES OF SINGLE CRYSTALLINE

RMg2Cu9 (R = Y, Ce-Nd, Gd-Dy, Yb) AND THE SEARCH FOR

IN-PLANE MAGNETIC ANISOTROPY IN HEXAGONAL SYSTEMS

Now we move on to conventional lattices where translational symmetry exists. In this

chapter, we focus on the magnetic anisotropy of rare earth local moments. This work has now

been posted in Ref. [160]

Rare earth compounds are often studied for their magnetic properties when the rare earth

ion is the only moment bearing element and when the rare earth fully occupies a single crys-

tallographic site[5; 15; 161; 162; 163; 164; 165]. Magnetic anisotropies that are consistent with

Heisenberg, Ising, and 4-state-clock models can be found originating from rare earth ions in the

appropriate site symmetries[15; 162; 163; 164; 165; 166]. One of the interests is to look for in-

plane magnetic anisotropy in a strongly planar system. Over the past decades, several studies

had been carried out for systems with tetragonal symmetry, for example: HoNi2B2C[162] and

DyAgSb2[163] where a 4-state clock model was realized. Several attempts had been made to

find an analogy in a hexagonal symmetry[164; 165]. However, the local symmetries of rare earth

ions in Ref. [164; 165] are of orthorhombic m2m symmetry, even though the crystal structures

have a hexagonal space group.

The RMg2Cu9 series of compounds were recently systematically synthesized and struc-

turally identified[167]. Their structure can be derived from the CeNi3 type by replacing one of

the two distinct rare earth sites with Mg atoms. As a consequence, there is only one rare earth

site left in RMg2Cu9 and it has a hexagonal site symmetry of 6̄m2. The environment of R in

RMg2Cu9 is very similar to that in RCu5 and each layer that contains R ions is separated from

another by a layer of Cu-centered Cu6Mg6 icosahedra (see Fig. 5.1). RMg2Cu9 is reported to

exist for R = Y, La-Nd, Sm-Ho, Yb. The reported lattice parameters follow a rough lanthanide
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Figure 5.1 Unit cell of TbMg2Cu9. Elements are represented by solid spheres: Tb(red),

Cu(blue) and Mg (cyan).

contraction, except for possibly divalent Eu and Yb[167].

Little had been characterized in terms of the physical properties for these compounds. Prior

to the structural study, single crystals of CeMg2Cu9 were grown by melting and slow cooling of

a stoichiometric composition[168; 169]. It was reported to have an antiferromagnetic transition

at 2.5 K. The magnetic transition temperature decreases with increasing pressure and seems

to disappear at ∼2.5 GPa[168; 169]. Polycrystalline EuMg2Cu9 seems to have a ferromagnetic

transition at around 25 K[170]. TbMg2Cu9 was studied as part of a search for hydrogen storage

materials and was reported to order antiferromagnetically at around 10 K[171].

In RMg2Cu9, since the rare earth is the only moment-bearing element and has one unique

site, these compounds could potentially be good candidates to realize a 6-state-clock model.
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In this chapter, we present the results of structural measurements as well as temperature-

dependent specific heat, temperature- and field-dependent electrical resistivity and temperature-

, field- and angle-dependent magnetization on RMg2Cu9 single crystals. Motivated by these

results, in-plane magnetic anisotropy measurements on Y diluted TbMg2Cu9 and DyMg2Cu9

were made and will be discussed in the context of crystal electric field splitting.

5.1 Crystal structure

Single crystals ofRMg2Cu9 were grown using a high-temperature solution growth method[108].

Starting elements were held in a 3-cap tantalum crucible[83] and sealed in a silica jacket under

vacuum. Due to the complexity of the R-Mg-Cu ternary phase space, the starting stoichiome-

tries vary. For R = Ce-Nd, Tb, the starting elemental ratio was: R:Mg:Cu=2.5:20.4:77.1. For

R=Y, Gd, Dy, Yb and Y with 1% Tb/Dy, the starting elemental ratio was : R:Mg:Cu=5:18:77.

The ampoule assemblies were gradually heated up to 1180 oC and decanted, after a 3-day slow

cooling. For R = Ce-Nd, Dy, the growths were decanted at 730 oC; for R = Y, Gd, the growths

were decanted at 745 oC; for R = Tb, Yb, the growths were decanted at 760 oC. Single crystals

are pale-copper-metallic in color and plate-like with the crystallographic c-axis perpendicular

to the plate. In Fig. 5.2(d), a typical sample of PrMg2Cu9 is shown on a millimeter grid paper.

A clear six-fold rotational symmetry can be seen from the Laue pattern when measuring along

[001] [Fig. 5.2(a)]. In-plane orientation in real space was also identified and corresponding Laue

patterns are illustrated in Fig. 5.2(b-c).

Crystallographic information was obtained by both single crystal x-ray diffraction and pow-

der x-ray diffraction. Single crystal x-ray diffraction data were collected using a Bruker SMART

APEX II CCD area-detector diffractometer[172] equipped with Mo Kα (λ = 0.71073Å) radi-

ation. Integration of intensity data was performed by the SAINT-Plus program, absorption

corrections[173] by SADABS , and least-squares refinements by SHELXL[174], in the SMART

software package. Powder x-ray diffraction data were collected using a Rigaku Miniflex II

diffractometer and analysed using GSAS, as described in Chapter 3. Single crystal refinement

data and atomic coordination information for TbMg2Cu9 are listed in Table 5.1 and Table 5.2.

A unit cell of TbMg2Cu9 is illustrated in Fig. 5.1.
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Figure 5.2 Laue pattern of RMg2Cu9 along (a) [001] (b) [210] and (c) [010]. (d) Single crystal

of PrMg2Cu9 on a millimeter grid paper. [001] is perpendicular to the facet shown.

Lattice parameters and unit cell volumes obtained from powder x-ray diffraction are listed

in Table 5.3 and unit cell volumes are plotted against the rare earth atomic number in Fig. 5.3.

Generally, the lanthanide contraction is followed. YMg2Cu9 has a volume close to TbMg2Cu9

and DyMg2Cu9. The volume of YbMg2Cu9 is significantly larger than what would be expected

from the lanthanide contraction for Yb3+. This is consistent with the larger size of divalent

Yb. Results from the current study agree with previously reported values[167].



85

Table 5.1 Single crystal crystallographic data for TbMg2Cu9 at room temperature.

Chemical formula TbMg2Cu9

Formula weight (g/mol) 779.40

Space group P63/mmc

Unit cell dimensions (Å) a = 5.0050(7)

c = 16.207(3)

Volume (Å3) 351.59(12)

Z 2

Density (g/cm3) 7.362

Absorption coefficient (mm−1) 36.605

Reflections collected 1571 [R(int)=0.0527]

Data/restraints/parameters 213/0/8

Goodness-of-fit on F2 1.014

Final R indices [I > 2sigma(I)] R1=0.0385,wR2=0.0936

R indices (all data) R1=0.0464,

wR2=0.0983

Largest diff. Peak and hole (e/Å3) 2.823 and -3.034

Table 5.2 Atomic coordinates and equivalent isotropic displacement parameters for

TbMg2Cu9 with full occupancy.

Atoms Wyck. Symm. x y z Ueq

(Å2)

Tb 2d -6m2 2/3 1/3 1/4 0.016(1)

Mg 4f 3m. 2/3 1/3 0.4669(5) 0.012(1)

Cu1 12k .m. 0.1682(2) 2x 0.3768(1) 0.014(1)

Cu2 2c -6m2 1/3 2/3 1/4 0.015(1)

Cu3 2b -6m2 0 0 1/4 0.018(1)

Cu4 2a -3m 0 0 1/2 0.015(1)

5.2 Physical properties of RMg2Cu9

5.2.1 YMg2Cu9

Y does not have a 4f shell and bears no local-moment. Generally, a relatively temperature-

independent magnetic susceptibility is expected due to Pauli paramagnetic, Landau diamag-

netic, and core diamagnetic contributions. Details in Fermi surface may result in, albeit slight,

magnetic anisotropies[15; 175]. The magnetic susceptibility of YMg2Cu9 is weakly temperature-

dependent as shown in Fig. 5.4(a). The compound is diamagnetic at room temperature with

|χc| < |χab|. As temperature decreases, a broad minimum develops at around 100 K, after
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Table 5.3 Lattice parameters and unit cell volumes of RMg2Cu9 (R = Y,Ce-Nd,Gd-Dy,Yb)

obtained from powder x-ray diffraction. The uncertainty is about 0.2% for lattice

parameter values.

Compound a (Å) c (Å) Volume (Å3)

YMg2Cu9 5.00 16.19 351.1

CeMg2Cu9 5.05 16.29 359.5

PrMg2Cu9 5.04 16.26 357.6

NdMg2Cu9 5.03 16.27 357.1

GdMg2Cu9 5.02 16.21 353.2

TbMg2Cu9 5.00 16.21 351.4

DyMg2Cu9 5.00 16.20 351.1

YbMg2Cu9 5.02 16.18 353.7

which the magnetization increases. At 2 K, χc > 0. This is consistent with field-dependent

magnetization data measured at 2 K [Fig. 5.4(d)]. It is possible that some very low-level of

magnetic impurities contribute to the low-temperature broad rise in magnetization as well as

the non-linear, low-temperature M(H) data.

The temperature-dependent specific heat data for YMg2Cu9 are shown in Fig. 5.4(c). From

the linear fit of C/T versus T 2, we estimated the Debye temperature to be around 320 K

and the electronic specific heat, γ, to be around 15 mJ/mol-K2 or ∼1 mJ/mole-atomic-K2.

In order to estimate the magnetic specific heat, Cmag, associated with other local-moment-

bearing members, the specific heat of YMg2Cu9 was used to estimate the non-magnetic part

of the specific heat, Cnon−mag, with the molar mass difference taken into account according to

the Debye model[33].

The resistivity of YMg2Cu9 shows typical metallic behavior. The residual resistance ratio

(RRR) is about 2.2. Magnetoresistance measured at 1.9 K roughly follows H1.5 with an increase

of 6% at 55 kOe.

5.2.2 CeMg2Cu9

The magnetic susceptibility of CeMg2Cu9 is anisotropic with χab > χc. Fig. 5.5(a) shows

a very clear Curie-Weiss behavior (especially for χpoly = (χc + 2χab)/3) with estimated ef-
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Figure 5.3 Unit cell volumes of RMg2Cu9 as a function of rare earth atomic number.

fective moment of Ce, µeff = 2.3 µB, close to the theoretical value for Ce3+ (2.5 µB). The

anisotropic Curie-Weiss temperatures are: Θc = -43 K, Θab = -1 K and polycrystalline average

Θpoly = -12 K. At around 2 K, a change in M(T )/H [inset of Fig. 5.5(a)] suggests a possible

antiferromagnetic transition.

In addition to the reported magnetic transition at around 2 K[168; 169], one more phase

transition at around 1.5 K was observed in the present study. Features appear in resistiv-

ity [Fig. 5.5(b)] are consistent with the temperature-dependent specific heat data shown in

Fig. 5.5(c). The inset to Fig. 5.5(c) shows Cp(T ), and dρ/dT data on and enlarged, low-

temperature scale. Transitions at around 2.1 K and 1.5 K are apparent.

The electronic specific heat estimated above the transition temperature from 10 to 15 K

is γ ∼ 58 mJ/mol-K2, which is about 4 times higher than that for YMg2Cu9. It should be

noted, though, that this value is smaller than previously reported values (115-160 mJ/mol-
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Figure 5.4 (a) Anisotropic temperature-dependent magnetization of YMg2Cu9 measured at 70

kOe. (b) Temperature-dependent resistivity. Inset: magnetoresistance measured

at 1.9 K up to 55 kOe. (c) Temperature-dependent, zero-field specific heat (Inset:

C/T as a function of T 2. Red line shows the linear fit from base temperature to 9

K). (d) Magnetization isotherms measured at 2 K.

K2)[168; 169]. The discrepancy can be reduced by using the same temperature range of fitting;

in between 8 and 10 K, the linear fit to C/T versus T 2 gives a γ value of ∼ 90 mJ/mol-

K2. However, in that temperature range, our data already show a certain degree of non-

linearity. To this extent, for this compound, it is not clear if extracting a value for γ is useful or

constructive. In Fig. 5.5(c), the red dashed line represents the non-magnetic part of the specific

heat, Cnon−mag, estimated from the specific heat of YMg2Cu9. Blue solid line represents the

remaining, magnetic part of the specific heat, Cmag. Magnetic entropy estimated from Cmag is

close to Rln2 by the ordering temperature.
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Figure 5.5 (a) Anisotropic inverse magnetic susceptibility of CeMg2Cu9 measured at 10 kOe

(Inset: low-temperature magnetic susceptibility measured at 1 kOe). (b) Temper-

ature-dependent resistivity (Inset: expanded view on the low temperature part of

the resistivity). (c) Temperature-dependent, zero-field specific heat. Red dashed

line and blue solid line represent Cnon−mag and Cmag respectively. Inset: low tem-

perature specific heat. Green dotted line represents dρ/dT in arbitrary units. (d)

Magnetoresistance (blue) on the left and magnetization isotherms (black and red)

on the right.
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The temperature-dependent resistivity has a lower RRR (∼1.2) than YMg2Cu9. It stays

relatively constant down to 20 K, which could result from a distribution of local Kondo tem-

peratures for a small number of the Ce sites affected by the disorder giving rise to the residual

scattering[176]. The RRR of single crystals under study is lower than previously reported

values.

The field-dependent magnetization and resistivity at ∼1.8 K suggest a possible metam-

agnetic transition near 40 kOe. The metamagnetic transition is likely broadened because of

the proximity of two phase transitions to the measurement temperature of 1.8 K. In the basal

plane, the magnetization of 0.9 µB/Ce at 70 kOe is nearly a half of the saturated moment of

Ce3+ (2.1 µB). More metamagnetic transition could exist at higher applied magnetic fields as

suggested by the magnetoresistance data.

5.2.3 PrMg2Cu9

Data measured on PrMg2Cu9 single crystals are shown in Fig. 5.6. The magnetization

is anisotropic with χab > χc. Θc = -82 K, Θab = 19 K and Θpoly = 1 K. A linear fit of

the polycrystalline averaged inverse magnetic susceptibility above 100 K yielded an effective

moment of 3.3 µB, close to the theoretical value of 3.6 µB for Pr3+. As temperature decreases

below 25 K, the magnetization seems to roll over to a non-magnetic ground state. No magnetic

ordering was observed down to 2 K in magnetization.

Specific heat of PrMg2Cu9 was measured down to 0.5 K and no phase transition was ob-

served. At around 8 K, a broad dome in specific heat is consistent with a Schottky anomaly

due to thermal population of excited CEF levels. The magnetic entropy increases to nearly

Rln5 by 35 K. More discussions on the potential CEF level schemes will be presented in the

next section.

The temperature-dependent resistivity of PrMg2Cu9 has a RRR of 1.8. The broad shoulder-

like feature around 8 K coincides with the Schottky anomaly observed in the specific heat data.

No signature of any ordering was observed down to the base temperature.

Fig. 5.6(d) shows the field-dependent magnetization measured at 2 K. When the field is

applied along c-axis, the magnetization slowly increase linearly with increasing field. For field
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Figure 5.6 (a) Anisotropic inverse magnetic susceptibility of PrMg2Cu9 measured at 20 kOe.

Inset shows the magnetic susceptibility at low temperature. (b) Temperature-de-

pendent resistivity. Inset shows low temperature part of the resistivity. (c) Tem-

perature-dependent, zero-field specific heat. Red dashed line and blue solid line

represent Cnon−mag and Cmag respectively. (d) Magnetization isotherms measured

at 2 K.
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along the ab-plane, the magnetization is much larger but the in-plane magnetization is still far

from the saturation value (3.2 µB) at 70 kOe.

5.2.4 NdMg2Cu9

Figure 5.7 (a) Anisotropic inverse magnetic susceptibility of NdMg2Cu9 measured at 20 kOe

(Inset: low-temperature magnetic susceptibility measured at 1 kOe). (b) Tem-

perature-dependent resistivity (Inset: expanded view on the low temperature part

of the resistivity. Arrow indicates the magnetic ordering temperature, TN .). (c)

Temperature-dependent, zero-field specific heat. Red dashed line and blue solid

line represent Cnon−mag and Cmag respectively. Inset shows an expanded view

on the low-temperature specific heat. Green dotted lines represents d(χpolyT )/dT

in arbitrary units. (d) Magnetoresistance (blue) on the left and magnetization

isotherms (black and red) on the right.

The magnetic anisotropy of NdMg2Cu9 in the paramagnetic state is similar to that observed

in PrMg2Cu9 as shown in Fig. 5.7(a). From the high-temperature, linear fit of inverse magnetic
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susceptibility, we obtained: Θc = -66 K, Θab = 12 K and Θpoly = -5 K. The calculated effective

moment is 3.5 µB (theoretical value 3.6 µB). A magnetic transition was observed at 3.2 K as

featured by a kink in magnetization and a peak in d(χpolyT )/dT (Fig. 5.7(c) inset). Below the

magnetic ordering temperature, the magnetization becomes roughly temperature independent.

The temperature-dependent resistivity has a RRR of 2.0. As the temperature decrease

down to the magnetic ordering temperature, the resistivity first increases slightly, suggesting a

possible superzone gap opening due to magnetic ordering. The transition temperature inferred

from magnetization and specific heat data is indicated in the inset of Fig. 5.7(b) by a vertical

arrow. The resistivity then continues decreasing at lower temperature. Clearer examples of a

similar feature will be seen for TbMg2Cu9 and DyMg2Cu9 below.

Consistent with the magnetization data, the specific heat feature confirms a magnetic tran-

sition at 3.2 K. A small hump at around 7 K is most probably related to thermal population of

excited CEF levels. Below the ordering temperature, an entropy of roughly Rln2 is removed.

Both field-dependent magnetization and resistivity show a metamagnetic transition at

around 20 kOe. The change of slope observed in magnetoresistance at 5 kOe with field applied

along [210], however could not be well resolved in the magnetization data. Field-dependent,

in-plane, magnetization was measured up to 140 kOe in order to search for more, high field,

metamagnetic transitions, but none were observed. The magnetization reaches 2 µB/Nd at 140

kOe, a value that is still not reaching the saturated value for Nd3+ (3.3 µB). It is possible that

more metamangetic transitions may occur at higher applied field values. For field along the

c-axis, the magnetization increases linearly with increasing field up to 70 kOe.

5.2.5 GdMg2Cu9

Because Gd3+ has a half-filled 4f shell and thus zero angular moment, L=0, an essentially

isotropic paramagnetic state is expected. Fig. 5.8(a) shows just this for GdMg2Cu9, with

Θc=Θab=Θpoly = -3 K. The effective moment is 8.1µB, consistent with the expected value for

Gd3+ (7.9 µB). Upon ordering near 10 K, the magnetic susceptibility for the field in-plane

magnetic susceptibility keeps increasing and for field along the c-axis, magnetic susceptibility

stays constant.
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Figure 5.8 (a) Anisotropic inverse magnetic susceptibility of GdMg2Cu9 measured at 10 kOe

(Inset: low-temperature magnetic susceptibility measured at 1 kOe. (b) Temper-

ature-dependent resistivity (Inset: expanded view on the low temperature resis-

tivity). (c) Temperature-dependent, zero-field specific heat. Red dashed line and

blue solid line represent Cnon−mag and Cmag respectively. Inset shows an expanded

view on the low-temperature specific heat. Green dashed line (brown solid line)

represents dρ/dT (d(χpolyT )/dT ) in arbitrary units. (d) Magnetoresistance (blue)

on the left and magnetization isotherms (black and red) on the right.
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The temperature-dependent resistivity [Fig. 5.8(b)] shows a clear drop at the ordering tem-

perature due to a loss of spin-disorder scattering. Unlike what was observed for NdMg2Cu9,

no super-zone-gap-like feature was observed. The RRR of GdMg2Cu9 is around 2.3.

The temperature-dependent specific heat data [Fig. 5.8(c)] does not show a clear λ-type

anomaly and seem to suggest multiple transitions around 10 K. It first jumps at ∼10.5 K and

then reaches a maximum at ∼9.6 K. Both d(χpolyT )/dT and dρ/dT show similar features.

If only taking the peak positions in all three types of measurements, the magnetic transition

temperature is at 9.7 K. The total specific heat jump at 9.7 K, ∼ 20 J/mol K, in addition, may

suggest an equal-moment magnetic ordering instead of an amplitude-modulated case where

moment amplitude varies from one site to another[177]. The broad shoulder near around 5 K

is common for Gd based compound and arises from a (2J+1)-fold degenerate multiplet[177;

178; 175]. Rln8 magnetic entropy is recovered by ∼ 17 K but since the non-magnetic part of

the specific heat is not perfectly modelled by the YMg2Cu9 data, as evidenced by a crossing of

Cnon−mag and total specific heat, the magnetic entropy inferred is only qualitative.

The field-dependent magnetization of GdMg2Cu9 [Fig. 5.8(d)] is close to isotropic up to 70

kOe. The in-plane magnetization is only slightly larger than the out-of-plane magnetization

below 20 kOe. A single metamagnetic transition was observed at around 100 kOe, above which

the magnetic moment is saturated to 7 µB/Gd, the same with theoretically predicted value.

Magnetoresistance drops at the metamagnetic transition and increases with increasing field for

both higher field and lower fields.

5.2.6 TbMg2Cu9

Data for TbMg2Cu9 are shown in Fig. 5.9. The magnetization anisotropy of TbMg2Cu9 is

strongly planar. A linear fit to the inverse magnetic susceptibility yields: Θc = -214 K, Θab =

19 K and Θpoly = 5 K. The inverse magnetic susceptibility of the polycrystalline averaged data

remain linear down to much lower temperature even though the CEF splitting leads to much

higher temperature anisotropic magnetic susceptibility[106]. The calculated effective moment

is 9.8 µB, close to expected value for Tb3+ (9.7 µB).
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Figure 5.9 (a) Anisotropic inverse magnetic susceptibility of TbMg2Cu9 measured at 20 kOe

(Inset: magnetic susceptibility at low temperature). Solid lines are calculated from

proposed CEF levels (see text). (b) Temperature-dependent resistivity (Inset: low

temperature part of the resistivity. Arrow indicates the magnetic ordering temper-

ature, TN .). (c) Temperature-dependent, zero-field specific heat. Red dashed line

and blue solid line represent Cnon−mag and Cmag respectively. Inset shows an ex-

panded view on the low-temperature specific heat. Green dashed line (brown solid

line) represents dρ/dT (d(χpolyT )/dT ) in arbitrary units. (d) Magnetoresistance

(blue) on the left and magnetization isotherms (black and red) on the right.
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The temperature-dependent resistivity of TbMg2Cu9 [Fig. 5.9(b)] has a RRR of 2.1. Upon

magnetic ordering, the resistivity shows behavior similar to NdMg2Cu9, suggesting the opening

of a superzone gap.

The specific heat, resistivity and magnetic susceptibility data all show consistent transition

temperature values of TN=11.9 K [Fig. 5.9(c)]. The magnetic entropy was estimated to be close

to Rln2 by the ordering temperature. Similar to GdMg2Cu9, magnetic entropy for TbMg2Cu9

upon ordering might be slightly different from that estimated here due to the inperfect nature

of the YMg2Cu9 background subtraction, even after the mass correction for Tb instead of Y

(see experimental methods).

Metamagnetic transitions were observed in both electrical transport and magnetization

measurements at ∼20 kOe and ∼60 kOe [Fig. 5.9(d)]. For H ⊥c, the magnetoresistance

decreases below 60 kOe with a change in slope at 20 kOe. Above 60 kOe, the magnetoresistance

increases linearly in field. The out-of-plane magnetization shows a weak up-curvature up to 70

kOe. The in-plane magnetization of TbMg2Cu9 is close to, but not yet reached the saturated

moment of Tb3+ (9 µB) by 140 kOe.

5.2.7 DyMg2Cu9

The anisotropy of the temperature-dependent magnetization of DyMg2Cu9 [Fig. 5.10(a)]

is similar to that of TbMg2Cu9. χab is much larger than χc. At temperatures just above

the magnetic ordering, χab/χc ∼20. The Curie-Weiss temperatures extracted from inverse

magnetic susceptibility are: Θc = -245 K, Θab = 25 K and Θpoly = -4 K. The effective moment

is 10.9 µB (theoretical value: 10.6 µB). Below ∼ 9 K, DyMg2Cu9 orders antiferromagnetically

as suggested by the drop in magnetic susceptibility.

As shown in Fig. 5.10(b), the RRR of DyMg2Cu9 is about 1.6. A very clear increase of

resistivity was observed at the magnetic transition temperature, similar to TbMg2Cu9.

Features for the magnetic transition in DyMg2Cu9 as seen from magnetic susceptibility

and resistivity are consistent with λ-like anomaly in specific heat [Fig. 5.10(c)]. The magnetic

transition temperature TN is inferred to be 9.0 K. There is roughly Rln4 magnetic entropy

removed below the ordering temperature.



98

Figure 5.10 (a) Anisotropic inverse magnetic susceptibility of DyMg2Cu9 measured at 30 kOe

(Inset: low-temperature magnetic susceptibility measured at 1 kOe). Solid lines

are calculated from proposed CEF levels (see text). (b) Temperature-dependent

resistivity (Inset: low temperature part of the resistivity. Arrow indicates the

magnetic ordering temperature, TN ). (c) Temperature-dependent, zero-field spe-

cific heat. Red dashed line and blue solid line represent Cnon−mag and Cmag

respectively. Inset shows an expanded view of low-temperature specific heat.

Green dashed line (brown solid line) represents dρ/dT (d(χpolyT )/dT ) in arbi-

trary units. (d) Magnetoresistance (blue) on the left and magnetization isotherms

(black and red) on the right.
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There are two metamagnetic transitions observed at ∼20 kOe and ∼50 kOe [Fig. 5.10(d)],

above which the in-plane magnetization approaches the theoretical saturation value of 10 µB.

Overall, the field-dependent magnetization, specific heat and resistance are similar with what

were observed in TbMg2Cu9. Magnetoresistance decreases with increasing field below 50 kOe

and then increases linearly afterwards. The metamagnetic transition is marked by a change of

slope. Magnetization along the c-axis increases monotonically up to 70 kOe.

5.2.8 YbMg2Cu9

Given that the lattice parameters and unit cell volume of YbMg2Cu9 strongly deviate from

the lanthanide contraction of R3+ ions (Fig. 5.3), it is not surprising that the Yb ions appears

to be Yb2+. The temperature-dependent magnetization of YbMg2Cu9 is shown in Fig. 5.11(a).

The low-temperature Curie-tail and the cusp in magnetic susceptibility at around 2.5 K can

be accounted for by about 0.5% molar contamination of Yb2O3 on or in the sample[179].

The intrinsic magnetic susceptibility of YbMg2Cu9 can be inferred to be paramagnetic and

temperature-independent with a magnitude of ∼ 5×10−4 emu/mol. This is comparable in

magnitude to what was found for the non-magnetic YMg2Cu9. However, the difference in

the core diamagnetism of Yb2+ and Y3+ is not sufficient to explain the exact change of the

magnetic susceptibility[180]. The Fermi surfaces of the two are likely different due to an extra

electron provided to the conduction band by Y3+.

Fig. 5.11(b) shows the resistivity of YbMg2Cu9. It has a RRR value of 1.6. There is no

indication of a phase transition down to 2 K. Magnetoresistance measured at 1.9 K increases

by 1% 55 kOe.

5.3 Trends across the RMg2Cu9 series

Anisotropic Curie-Weiss temperatures, effective moment in the paramagnetic state and the

ordering temperatures for compounds under study are summarized in Table 5.3. Apart from

isotropic GdMg2Cu9, the other local-moment-bearing compounds exhibit magnetic anisotropy

with greater in-plane magnetization. The most extreme examples, TbMg2Cu9 and DyMg2Cu9,

have χab an order of magnitude larger than χc for T ≥ TN
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Figure 5.11 (a) Anisotropic magnetic susceptibility of YbMg2Cu9 measured at 10 kOe (inset:

low-temperature magnetic susceptibility). (b) Temperature-dependent resistivity

(inset: magnetoresistance measured at 1.9 K).
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Table 5.4 Anisotropic Curie-Weiss temperatures (Θc, Θab and Θpoly), effective magnetic mo-

ment in paramagnetic state (µeff ) and magnetic transition temperatures (TN ) of

RMg2Cu9 (R = Y, Ce-Nd, Gd-Dy, Yb). Magnetic transition temperatures are in-

ferred from the peak temperatures of d(χpolyT )/dT [181], dρ/dT [182] and specific

heat. *: There could be multiple transitions around this temperature up to 10.5 K.

R Θc (K) Θab (K) Θpoly (K) µeff (µB) TN (K)

Y - - - - -

Ce -43 -1 -12 2.3 2.1, 1.5

Pr -82 19 1 3.3 -

Nd -66 12 -5 3.5 3.2

Gd -3 -3 -3 8.1 9.7*

Tb -214 19 5 9.8 11.9

Dy -245 25 -4 10.9 9.0

Yb - - - - -

Ignoring the CEF effect and anisotropic exchange interaction, de Gennes argued that the

Curie-Weiss temperatures and therefore, the magnetic ordering temperatures, in mean field

theory, will be scaled with de Gennes factor[11]: dG = (gJ−1)2J(J+1). The magnetic transition

temperatures listed in Table. 5.3 are plotted as a function of de Gennes factor in Fig. 5.12. As

can be seen, such simple de Gennes scaling is not followed with TbMg2Cu9 and DyMg2Cu9

having higher transition temperatures than expected. In practice, both anisotropy in exchange

interaction and CEF effect can, arguably, modify this scaling[12; 13]. In addition, since the

magnetic anisotropy is mainly due to CEF effect, the strength of the exchange interaction that

is responsible for low-temperature magnetic ordering may not be completely captured in the

polycrystalline averaged Curie-Weiss temperatures (see Table 5.3). This may account for the

inconsistency of Θpoly values with de Gennes scaling. Experimentally, deviation from de Gennes

scaling is not uncommon and has been observed in a variety of systems[158; 175; 183].

In the presence of the CEF effect, the ground state degeneracy will be lifted. In the case of

PrMg2Cu9, both temperature-dependent magnetization and specific heat data are consistent

with a singlet ground state. From temperature-dependent Cmag data, PrMg2Cu9 likely has a

singlet excited state at ∼12 K and a doublet at ∼ 25 K. As temperature drops below 10 K

there is a gradual depopulation of the excited CEF levels that results in a rounded feature
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Figure 5.12 Magnetic ordering temperatures of RMg2Cu9 as a function of de Gennes fac-

tor dG = (gJ − 1)2J(J + 1). Potential multiple transitions for GdMg2Cu9 are

represented by an error bar. Dotted line is a guide for the eyes.
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in temperature-dependent magnetization and a broad dome in Cmag. PrMg2Cu9, therefore,

may be another example of a Pr-based intermetallic compound with a non-moment bearing,

singlet CEF ground state[16; 184]. The lift of degeneracy due to the CEF effect is also the

dominating factor for the magnetic anisotropy that is observed in RMg2Cu9. Quantitatively,

the CEF Hamiltonian for the hexagonal rare earth site in this series can be written as[21]:

HCEF = B0
2O

0
2 +B0

4O
0
4 +B0

6O
0
6 +B6

6O
6
6 (5.1)

where Bm
n are CEF parameters, Om

n are Steven operators[19; 21]. In the point charge model,

the CEF parameters can be expressed as Bm
n = Amn 〈rn〉θn, where θ2 = αj ; θ4 = βj ; θ6 = γj are

Steven’s factors. 〈rn〉 is the expectation value of the 4f radial function to the nth power. Amn

can often be viewed as a constant given the same crystalline neighboring environment. For uni-

axial systems, B0
2 is the leading term in determining the anisotropic Curie-Weiss temperatures,

or in another word, being more planar or more axial[25]. Since A0
2 does not change much from

one rare earth to another in the same series of compounds and 〈r2〉 is always positive, the sign

change of αj will alter the axial/planar magnetic anisotropy. From theoretically calculated

values for αj [19; 22; 21], one can predict that the axial/planar magnetic anisotropy will be

the same for R = Ce-Nd, Tb-Ho trivalent ions. This is consistent with the data observed in

RMg2Cu9 series of compounds. In the following section, more detailed discussion on the CEF

effect with respect to in-plane magnetic anisotropy will be presented.

5.4 Angular dependent magnetization

In rare earth compounds, the interplay between strong magnetic anisotropy and exchange

interaction can often result in complex phase diagrams. For example, in strong axial systems,

the Ising model with competing interactions was proposed to exhibit an infinite number of

commensurate phases, also know as the devil’s staircase[185]. Experimentally, many rare-

earth-based systems, such as TbNi2Ge2[15], CeSb[186; 187], TbNi2Si2[188] have been studied

as possible candidates. In the same manner, in strong planar systems, the 4-state-clock model

was proposed in which moments in a tetragonal site symmetry are not only confined in-plane
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but also along a specific direction (an easy-axis)[162; 189]. Deviating from the easy-axis, the

longitudinal magnetization decreases as a function of cos(θ) where θ is the angle between the

direction of measurement and the nearest easy-axis. Such a model was motivated by and then

used to understand complex phase diagrams and angular-dependent magnetization in tetragonal

systems such as HoNi2B2C[162] and DyAgSb2[163]. Similarly, the complex phase diagrams of

hexagonal compounds TbPtIn and TmAgGe have been interpreted in a modified 6-state-clock

model based on three, crossed, in-plane Ising-like moments, caused by the orthorhombic site

symmetry of the rare earth ions[165]. A model system of a strongly planar, rare-earth-based

compound with a hexagonal site symmetry has been, up to now, missing. In RMg2Cu9, most

of the investigated members in this study manifest promising features for such a study. There

is a single rare earth site in a hexagonal site symmetry with a strong planar magnetization.

Additionally, field-induced metamagnetic transitions were observed in all ordered members,

even though not being very sharp compared to aforementioned 4-state-clock systems. Therefore,

extremely planar members, DyMg2Cu9 and TbMg2Cu9, were examined more in detail with

angular-dependent magnetization measurements.

The confinement of the local-moments in plane is a critical requirement for the clock-type

model. The CEF effect was considered as the primary contributor of such anisotropy for

HoNi2B2C[162] and DyAgSb2[163]. Since CEF splitting is fundamentally a single ion effect, in

order to better investigate the single ion magnetic anisotropy due to CEF splitting, 1% Dy or

Tb was substituted into non-magnetic YMg2Cu9 in order to minimize the influence of magnetic

interaction between local moments. In Fig. 5.13, both in-plane to out-of-plane, as well as purely

in-plane, angular-dependent magnetization measurements are shown for Y0.99Dy0.01Mg2Cu9.

Fig. 5.13(a) shows a large axial-to-planar anisotropy. The in-plane magnetization is nearly

two orders of magnitude larger than the out-of-plane magnetization. This is consistent with

the magnetic anisotropy observed in pure DyMg2Cu9 (Fig. 5.10). It also suggests that most

of the magnetic anisotropy observed in the paramagnetic state comes from the single ion CEF

effect. The in-plane anisotropy [Fig. 5.13(b)], on the other hand, is field-dependent and, even

at H=50 kOe, only weakly angular-dependent. The magnetization measured at 10 kOe shows

little indication of any 6-fold magnetic anisotropy. Under 50 kOe, the 6-fold modulation is only
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∼ 3% of the total magnetization [inset in Fig. 5.13(b)]. A closer look at the data measured at

both 10 kOe and 50 kOe reveals an additional 2-fold angular-dependence. This is likely due

to an angular-dependent radial displacement of the sample from the centerline of the SQUID

pick-up coil[118] associated with the sample mounting. Similar 2-fold modulation was observed

for other systems when this rotating sample stage was utilized[67].

Given that our experience has been that when a system has enough CEF splitting to

manifest extreme planar anisotropy, it also manifests clear in-plane anisotropy in magnetic

field[162; 163; 165], these results require some study. One possible, extrinsic cause of the co-

existent of a strong planar and a weak in-plane magnetic anisotropy is a random twinning or

crystalline domain formation such that the in-plane crystalline orientation is close to polycrys-

talline. This scenario was ruled out by conducting Laue measurements on different locations

of the same crystal of sample at different depths (achieved by polishing).

CEF splitting, without any extrinsic disorder, was then considered in order to explain the

phenomena. In the presence of magnetic field, an additional Zeeman term, -~µ · ~B, needs to be

added into Equation (5.1). Magnetization under applied field can then be calculated based the

derivative of free energy with field. Whereas B0
2 determines axial/planar magnetic anisotropy,

the mixture of different Jz states is essential to the existence of in-plane magnetic anisotropy.

In the current case, only applied magnetic field and B6
6O

6
6 will mix different states. Worth

noting, B6
6O

6
6 by itself, or in a more general statement, pure CEF effect will not produce an

in-plane magnetic anisotropy without the presence of magnetic field, be it externally applied

or internal[190]. More detailed example will be illustrated and discussed below.

The temperature-dependent magnetic susceptibility of pure DyMg2Cu9, rather than the

diluted, Y0.99Dy0.01Mg2Cu9, was used to compare with calculated values. This avoid problems

caused by the weak temperature-dependence of YMg2Cu9’s magnetic susceptibility. And since

the magnetic exchange interaction responsible for the low-temperature magnetic ordering of

DyMg2Cu9 probably does not influence the magnetic anisotropy in its paramagnetic state by

much (e.g. as can be seen in Table 5.3, Θpoly � Θab � Θc), the magnetic susceptibility of pure

DyMg2Cu9 is a good approximation. In Fig. 5.10(a), solid lines show the calculated inverse

magnetic susceptibility at 30 kOe with constraints of temperature-dependent magnetic entropy
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above the transition temperature, estimated from specific heat measurements. CEF parameters

used are: B0
2 = 1.99 K, B0

4 = -1.00×10−4 K, B0
6 = -1.70×10−5 K and B6

6 = -7.50×10−4 K. The

angular-dependent magnetization was then calculated based on this set of CEF parameters. In

Fig. 5.13, solid lines show results of the calculated angular-dependent magnetization at various

applied magnetic fields. For the in-plane to out-of-plane magnetization, the calculated values

matches with measured values quite well. The calculated magnetization value for H ‖[001] does

not go to zero because the ground state doublet, Γ8,c, which is a mixture of |∓ 7
2 > and |± 5

2 >,

has a finite, but small, magnetization along c-axis. The calculated in-plane anisotropy is very

small at 10 kOe, consistent with what was observed even though the value of magnetization

is smaller than the actual measured value. Taking into account a |cosθ|-dependent radial

displacement of the sample from the centerline of the pick-up coil during rotation with a

maximum value of 2 mm, the calculated in-plane magnetic anisotropy at 50 kOe seems to

qualitatively agree with experimentally observed results. The calculated magnetization at 300

kOe, as shown by green solid line, has a much clearer in-plane anisotropy. And the angular

dependence is close to what would be expected if the moment can be simplified as a dipole with

a preferred in-plane orientation (i.e. what would be called a 6-state-clock model). However,

such a high magnetic field could not be accessed due to instrumental limitations.

The origin of the in-plane magnetization can be better understood by looking at evolution

of the CEF levels with applied field. In Fig. 5.14, the field-dependent CEF levels for DyMg2Cu9

are plotted up to 70 kOe with applied field along three characteristic orientations for a hexagonal

structure. In zero-field, the total CEF splitting is close to 350 K with the first excited and second

excited states lying about 20 and 40 K above the ground state. Each CEF level of the Kramer’s

ion, Dy3+, is a doublet. The label of each state follows the nomenclature used in Ref. [24]. At

low-temperatures, only the low-lying states contribute to the single ion magnetization. When

field is applied along the c-axis, the energies of the three low-lying doublets only change slightly

with field indicating a very small moment. All the levels with large c-axis magnetization values

are high in energy and therefore not populated at any significant level at 1.85 K. When field

is applied in-plane, the CEF splitting only becomes markedly different above around 20 kOe

where the first excited state Γ9,b evolves differently for the [100] and [210] directions. The
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Figure 5.13 (a) In-plane to out-of-plane magnetization measured at 1.85 K with 50 kOe. Red

solid line represents results of CEF calculations. Field orientations are indicated

by Miller indices. (b) In-plane magnetization measured at 1.85 K with 10 kOe,

50 kOe as a function of angle starting from [210]. Solid lines are calculated based

on proposed single ion anisotropy of Dy due to CEF for H=10 kOe, 50 kOe and

for comparison a hypothetical 300 kOe. Inset: expanded view of H=50 kOe data

and results of CEF calculations.
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mixing between Γ9,b and the ground state, Γ8,c, plays an important role in the in-plane magnetic

anisotropy. As a consequence, the variation of in-plane magnetization is small at 10 kOe. With

increasing field, the difference in mixing among the low-lying states becomes more and more

pronounced. This leads to a stronger in-plane anisotropy. The calculated in-plane magnetic

anisotropy of the ground state (Γ8,c) at 50 kOe is around 4% which is similar to the measured

results.

Figure 5.14 Field-dependent CEF level energies for DyMg2Cu9 with H along (a) [100], (b)

[210] and (c) [001]. The label on the left side was adapted from Ref. [24].

A similar fit can be done to TbMg2Cu9 which gives B0
2 = 3.38 K, B0

4 = 4.12×10−4 K, B0
6

= 1.88×10−5 K and B6
6 = 8.48×10−4 K. In Fig. 5.9(a), the modelled temperature-dependent
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magnetic susceptibility data at 20 kOe are shown together with the measured values. It quali-

tatively well matches experimentally obtained values above 150 K. Below 100 K, the calculated

out-of-plane magnetization is smaller than measured data. This lower-temperature range can

suffer from magnetic ordering and/or large, in-plane magnetization contribution from slightly

misalignment of the sample. By a small, 10o, misalignment from the c-axis as shown by the

dashed line in Fig. 5.9, the modelled magnetic susceptibility agrees much better with the ex-

perimentally measured data.

Using the CEF parameters for Tb3+, the angular-dependent magnetization can be calcu-

lated and compared to the experimental data. As shown in Fig. 5.16, the ground state of

TbMg2Cu9, Γ1,o, is a singlet. In addition, higher order terms such as Van Vleck contribution

can only come from the mixture of Γ1,o and Γ2. But as can be seen in Fig. 5.16, these levels

are very far apart in energy. As a consequence, the magnetization along c-axis is nearly zero.

Only a very small c-axis magnetization can arise from the mixing of the lowest lying states

Γ1,o and Γ6,a. That would give rise to a big in-plane to out-of-plane magnetic anisotropy. At

1.85 K, the measured in-plane to out-of-plane magnetization of Y0.99Tb0.01Mg2Cu9 resembles

what was observed in Y0.99Dy0.01Mg2Cu9. The red solid line, representing the calculated value

matches the experimental data very well. Note that the experimental magnetization value

along [001] indeed goes toward zero for the systematically rotated sample, further suggesting

that the low-temperature disagreement between data and CEF modelling in Fig. 5.9(a) is due

to slight misalignment.

In-plane angular-dependent magnetization measured at both 10 kOe and 50 kOe show little

angular-dependence. This behavior is also well reproduced by the calculations and can be

understood by considering the similar evolution of the low lying CEF levels with field in the

[100] and [210] as shown in Fig. 5.16. Even above 20 kOe, the majority of the ground state

mixing is very similar between [100] and [210] that does not show a strong in-plane magnetic

anisotropy.

Based on theoretically calculated values for 〈rn〉 and θn in the point charge model listed

in Fig. 1.2[19; 22; 21], the CEF parameters for Tb3+ can also be directly predicted from the

values obtained for Dy3+, which would be: B0
2 = 3.33 K, B0

4 = 2.27×10−4 K, B0
6 = 2.09×10−5
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K and B6
6 = 9.21×10−4 K. These theoretically predicted parameters are close to the parameters

that are directly obtained from experimental fitting shown above. Both sets of parameters give

almost identical CEF level schemes as well as their field-dependences. The agreement between

the point charge model prediction and the experimental fitted results in this case also partly

validate our previous model used to understand the CEF effect in DyMg2Cu9. In general,

angular-dependent magnetization observed here can be well modelled with CEF.

Comparing these results with HoNi2B2C and DyAgSb2, where the 4-state-clock model is

robust, TbMg2Cu9 and DyMg2Cu9 do not show comparable in-plane magnetic anisotropy under

50 kOe, even though the condition of a strong planar magnetization is satisfied. As described

above, within the single ion picture, the CEF ground state will always have an isotropic, or

XY-like, in-plane magnetization. It is only by mixing excited CEF levels in magnetic field that

in-plane anisotropy can be realized. Of course, once the magnetic field becomes sufficiently

strong, it will swamp the CEF splitting and remove any anisotropy, but that generally is at

very large fields. Therefore there will be a ”sweet spot”, where the magnetic field can maximize

the in-plane anisotropy. In TbMg2Cu9 and DyMg2Cu9, 50 kOe is very likely below that sweet

spot. However, as shown in Fig. 5.13(b), the ideal max[cos(θ-nπ/3] modulation of in-plane

magnetization could potentially still be realized in DyMg2Cu9 for larger fields (300 kOe).

On one hand, in this single ion situation, we can adjust the external applied magnetic

field to find that sweet spot. On the other hand, in realizing a clock model in magnetically

ordered compounds, the internal magnetic field due to exchange interaction, as a mean-field

that originates from neighboring magnetic ions, can also induce the anisotropy. Essentially, the

anisotropy of the moments (~Si) depends on the effective magnetic field they feel ( ~Hi). Once the

mean-field on each site, ~Hi =
∑

j Jij
~Sj( ~Hj) becomes non-zero, below magnetic transition, they

will develop an in-plane anisotropy, similar to ~Si( ~Hi) shown in the single-ion magnetization.

This dependence leads to a slightly more complicated non-linear mean-field theory, where the

energy from H =
∑

ij Jij
~Si( ~Hi) · ~Sj( ~Hj) need to be minimized self-consistently with ~Hi =∑

j Jij
~Sj( ~Hj).

In searching for an in-plane state-clock model system, one needs a mixture of low-lying CEF

states, which are well separated from higher-lying CEF states. In addition, in-plane magnetic
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Figure 5.15 (a) In-plane to out-of-plane magnetization measured at 1.85 K with 50 kOe. Red

solid line represents results of CEF calculations. Field orientations are indicated

by Miller indices. (b) In-plane magnetization measured at 1.85 K with 10 kOe,

50 kOe as a function of angle starting from [210]. Solid lines are calculated based

on proposed single ion anisotropy of Tb due to CEF effect.
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Figure 5.16 Field-dependent CEF level energies for TbMg2Cu9 with H along (a) [100], (b)

[210] and (c) [001]. The label on the left side was adapted from Ref. [24].
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anisotropy requires a very subtle balance between CEF effect, internal magnetic field and

applied magnetic field. For example, decreasing the energy difference between low-lying states

will increase the relative strength of a given applied magnetic field. In the case of DyMg2Cu9,

by reducing the splitting between of the three lower-lying doublets (Γ8,c, Γ9,b, Γ7,a) from 40 K

to 10 K, a nearly ideal 6-state-clock state like that shown by green solid line in Fig. 5.13(b)

can be realized at 50 kOe (as opposed to 300 kOe for the real compound). In the proposed

CEF schemes for HoNi2B2C[191], the 3 lowest-lying CEF levels in fact only have a span of ∼

10 K and nearly 90 K away from higher CEF levels. This condition favors a clock-state-model

at a moderate, reachable applied magnetic field as observed[162]. However, angular-dependent

magnetization data at different magnetic fields have not been measured on HoNi2B2C, nor on

other 4-state-clock model systems[162; 163], which would be helpful to investigate the effect of

this interplay between CEF and magnetic field on in-plane magnetic anisotropy.

5.5 Conculsion

Single crystals of RMg2Cu9 (R= Y, Ce-Nd, Gd-Dy, Yb) have been synthesized using a high-

temperature solution growth technique and characterized by magnetization, resistivity and spe-

cific heat measurements. YMg2Cu9 is non-magnetic. Ce is trivalent in CeMg2Cu9. It undergoes

two magnetic transitions at 2.1 and 1.5 K respectively. PrMg2Cu9 does not order down to 0.5

K and appears to have a non-magnetic singlet ground state based on temperature-dependent

magnetization and specific heat data. Yb is divalent, and therefore non-moment-bearing, in

YbMg2Cu9. All the other local-moment-bearing members order antiferromagnetically at low-

temperature. The ordering temperature of TbMg2Cu9 (11.9 K) is higher than that found in

GdMg2Cu9 (9.7 K), indicating a deviation from de Gennes’ scaling. Magnetic anisotropies

were observed for RMg2Cu9 (R = Ce-Nd, Tb, Dy) with all of them showing a χab > χc in

their paramagnetic states. Angular-dependent magnetization was studied in more detail for

TbMg2Cu9 and DyMg2Cu9. Even though they have a strong planar magnetization, their in-

plane magnetic anisotropy is small and field-dependent. This phenomena can be explained by

single ion CEF effect where the laboratory magnetic field is not large enough to observe a clear

clock-state given the CEF splitting. To observe an in-plane state-clock-model at low applied
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magnetic fields, the lower-lying CEF levels that can give rise to a large in-plane magnetization,

as compared to out-of-plane magnetization, need to be relatively closely spaced in tempera-

ture and well separated from the higher-lying levels. Such a condition was met in the case of

HoNi2B2C. However, a model system for a 6-clock-state is yet to be found.
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CHAPTER 6. TUNING THE KONDO EFFECT IN Yb(Fe1−xCox)2Zn20

The RTM2Zn20 (R = rare earth elements. TM = transition metals) series of compounds

were discovered two decades ago, in 1997[192]. They crystallize in a cubic, CeCr2Al20 type

structure (space group Fd3̄m) where R ions occupy a single crystallographic site. The nearest,

and next-nearest neighbors of R ions are all Zn and thus varying the transition metal does

not significantly alter the local environment of the R3+. Even though more than 85% of the

atomic constituents are zinc, these compounds exhibit myriad physical properties depending

on the rare earth and transition metal that are involved[193; 194; 195; 196; 197]. When the

rare earth element is Yb, there are six closely related YbTM2Zn20 heavy fermion compounds

for TM = Fe, Ru, Os, Co, Rh, Ir[197; 198]. Among these six compounds, YbCo2Zn20 has the

largest Sommerfeld coefficient, γ ∼7900 mJ/mol-K2. This value is comparable to the record

holding YbBiPt[199], and is more than an order of magnitude larger than the other members

in this family, which have γ values ranging from 520 mJ/mol K2 for YbFe2Zn20 to 740 mJ/mol

K2 for YbRh2Zn20[197]. The reason behind the dramatic difference between YbCo2Zn20 and

the other five YbTM2Zn20 compounds is still not clear, although band structure calculations

reveal that the 4f level is closer to the Fermi level in YbCo2Zn20 than in YbFe2Zn20. Upon

Co substitution, the d band is gradually filled, which is accompanied by a drop in d band

energy[200].

Being the heaviest of the YbTM2Zn20 compounds, YbCo2Zn20 has been studied intensively

ever since its discovery[197]. Upon application of pressure, there is an indication that the

heavy Fermi liquid regime can be suppressed, followed by the appearance of an antiferromag-

netic ordering for P > 1 GPa[201]. It has, therefore, been argued that YbCo2Zn20 is close to

a quantum critical point (QCP)[201; 202]. Similar suppressions of Fermi liquid regime under

pressure were also observed for TM = Fe/Rh/Ir[203; 204; 205]. In the case of YbFe2Zn20,
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γ = 520 mJ/mol K2, and is thus likely to be further away from a QCP in terms of the Do-

niach diagram, indeed, a much higher critical pressure, around 10 GPa was proposed in order

to reach a QCP[203]. With an effective negative pressure induced by Cd substitution, the

hybridization between Yb3+ 4f electrons in YbFe2Zn20 and the conduction electrons becomes

weaker[206]. Apart from pressure induced ordering, metamagnetic transitions were reported

for YbCo2Zn20 at high magnetic fields[207; 208; 209; 210]. Crystalline electric field (CEF)

schemes for YbCo2Zn20 have been proposed based on specific heat and anisotropic magnetiza-

tion measurements. The first and the second excited CEF levels are around 10 K and 25 K

above the ground state doublet[211; 53]. Inelastic neutron scattering measurements show some

excitations that might be related to these proposed CEF schemes[212]. Experimentally, band

structure had only been reported for YbCo2Zn20 via quantum oscillations[213], with heavy

ground state being strongly suppressed by increasing field. In a zero field limit, the mass of

the quasiparticles was extrapolated to be 100-500 times the free electron mass.

Given that (i) the first and second nearest neighbors of Yb3+ in YbTM2Zn20 do not have

TM and (ii) as TM changes from Fe to Co the values of TK and γ change by an order

of magnitude, it is of interest to see how the strongly correlated electron state evolves in

Yb(Fe1−xCox)2Zn20 for 06x61. In this paper, we report the temperature-dependent resistivity

and specific heat data on 19 members of the Yb(Fe1−xCox)2Zn20 series and track the effects

of band filling and disorder on the coherence and Kondo temperatures as well as amounts of

entropy removed by thermal depopulation of CEF levels versus Kondo state. This work has

now been posted in Ref. [115]

6.1 Experimental Results

Single crystals were grown using a high temperature solution growth technique[193; 197].

The starting molar stoichiometry was Yb:TM :Zn = 2:4:94. Bulk elemental material (Yb

from Ames Laboratory Material Preparation Center (99.9% absolute purity); Fe (99.98%),

Co (99.9+%) and Zn (99.999%) from Alfa Aesar) were packed in a frit-disc crucible set[111]

and sealed in a silica tube under ∼0.25 bar of Ar atmosphere. The ampoule assembly was then

heated up to 900 ◦C over three hours; dwelt at 900 ◦C for 10 hours and then cooled to 600 ◦C
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over 100 hours. At 600 ◦C, the remaining Zn rich solution was decanted from the crystals that

formed on cooling.

Fig. 6.1 shows the WDS determined Co concentration as a function of nominal Co concen-

tration. Although the average value of the WDS determined concentration changes close to

linearly with the nominal concentration, in the middle of the substitution range, the variation

of the substitution level is large. The variation is based on WDS results measured at different

spots on the sample as well as different samples in the same batch. Near the two ends of the

series, the variation in substitution level is significantly smaller.
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Figure 6.1 Co concentrations determined by WDS as a function of nominal Co concentration

values. Solid squares represent averaged WDS values. Hollow circle data points

show measured values at different spots of samples. Dashed line is a guide for the

eyes with a slope of 1.

Fig. 6.2 shows the temperature-dependent resistivity data of Yb(Fe1−xCox)2Zn20 on semi-

log plots. Fig. 6.2(a) shows data closer to the pure YbFe2Zn20 side. At x = 0, the resistivity of

YbFe2Zn20 shows a broad shoulder at ∼ 40 K, after which it goes into a Kondo coherence. At
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Figure 6.2 Zero-field temperature-dependent resistivity of Yb(Fe1−xCox)2Zn20 for a selective

of Co concentrations on semi-log plots. Resistivity of non-magnetic LuFe2Zn20 and

LuCo2Zn20 are also shown for comparison.



119

low-temperature, YbFe2Zn20 manifests a T 2 temperature-dependence with the coefficient of T 2

resistivity, A = 0.054 µΩ cm/K2[[197]]. As the Co concentration increases, the resistivity value

at 300 K increases, most likely as a result of increasing amount of scattering due to chemical

disorder (i.e. Fe/Co). In addition, the temperature at which resistivity starts to decrease,

after the low temperature shoulder or local maximum, gradually shifts to lower temperatures,

indicating a lowering of the Kondo coherence temperature. At x = 0.064, the low-temperature

resistivity still follow a T 2 behavior with A = 0.113 µΩ cm/K2. This value doubles the value

for YbFe2Zn20 (x = 0). The A coefficient keeps increasing with Co concentration: ∼0.173 µΩ

cm/K2 for x = 0.129 and ∼0.197 µΩ cm/K2 for x = 0.170. At x = 0.375, the low-temperature

resistivity does not show a decrease and seems to saturate down to 500 mK. As x increases

from 0 to 0.375, Yb(Fe1−xCox)2Zn20 evolves from a system with a clear Fermi liquid signature

in transport to one that does not.

Fig. 6.2(b) shows resistivity data in the middle of the substitution range (0.3756x60.875).

None of the data shown have a clear signature of a resistivity drop that would be associated

with a Kondo coherence. For x = 0.628 (blue star) and 0.719 (green dotted circle), the low-

temperature resistivity data show a minor decrease which is followed by an secondary increase

at a lower temperature. This is reminiscent of what one would expect from a CEF feature

when lowering the temperature depopulates the CEF levels and thus change the degeneracy

participating in the Kondo effect[48]. However, it is unclear at this point if a coherence might

be reached for these substitution levels for temperatures below 500 mK.

Fig. 6.2(c) presents data close to the pure YbCo2Zn20 side (0.8756x61). Black hollow

triangles show the resistivity data for pure YbCo2Zn20 which are consistent with the previously

reported results[197]. The resistivity increases with decreasing temperature below ∼50 K,

indicative of a Kondo effect. The drop of resistivity below 2 K is an indication of Kondo

coherence. With a small amount of substitution of Fe for Co, shown by the blue hollow circles

(x = 0.991) and green hollow squares (x = 0.986), the temperature at which resistivity starts

to drop decreases. With further Fe substitution, the Kondo coherence signature in resistivity

could not be observed down to 500 mK as illustrated by purple bar (x = 0.957) and red star

data (x = 0.875). Since the coherence temperature of YbCo2Zn20 is much lower than that for
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YbFe2Zn20, it takes less Fe substitution to suppress the coherence temperature of YbCo2Zn20

to below 500 mK.
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Figure 6.3 Temperature-dependent resistivity for Yb(Fe0.83Co0.17)2Zn20 on a semi-log plot.

Black squares show the total resistivity. Red circles show the magnetic part of the

resistivity. Blue diamonds and green triangles represent magnetic part of resistivity

by subtracting the resistivity of pure LuFe2Zn20 or LuCo2Zn20 (see text). Arrows

indicate criteria for determining Tmax from the ρmag data.

Fig. 6.3 illustrates the criteria that were used to infer characteristic temperatures for the

Yb(Fe1−xCox)2Zn20 compounds from the resistivity data. The magnetic part of resistivity was

estimated by subtracting a combination of the resistivity for the non-magnetic LuFe2Zn20 and

LuCo2Zn20 with the same Fe/Co ratio. For example, in Fig. 6.3, the non-magnetic part of the

resistivity data for Yb(Fe0.83Co0.17)2Zn20 were estimated as 0.83ρLuFe2Zn20 + 0.17ρLuCo2Zn20 .

Note, however, such subtraction does not take into account the disorder scattering introduced

by Fe/Co substitution. The temperature of the maximum in ρmag was tracked as Tmax. For

comparison, the magnetic part of the resistivity estimated by subtracting the resistivity of

pure LuFe2Zn20 (blue diamonds) and LuCo2Zn20 (green triangles) as well as the resistivity
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of Yb(Fe0.83Co0.17)2Zn20 (black squares) are also shown in Fig. 6.3. The temperatures of the

maximum in all these data sets are similar and consistent. In the absence of low-temperature

data for non-magnetic subtraction below 1.8 K, the total resistivity data were then used to

extract characteristic temperatures.

The temperature-dependent magnetic specific heat data for Yb(Fe1−xCox)2Zn20 are shown

in Fig. 6.4. Similar to the magnetic part of the resistivity, the specific heat of LuCo2Zn20

and LuFe2Zn20 were used to perform non-magnetic background subtraction. Quantitatively,

subtracting LuFe2Zn20 or LuCo2Zn20 only results in a .2% difference in the magnetic specific

heat value and a .5% change in characteristic temperature values. Therefore, for all the doped

samples, a consistent non-magnetic background specific heat of LuCo2Zn20 was subtracted.

The magnetic specific heat of YbFe2Zn20 (black squares in Fig. 6.4(a)) can be well explained

by a N = 8 Kondo resonance as shown by the brown solid line[47]. With Co substitution,

the Kondo resonance peak moves towards lower temperature accompanied by a decrease in

maximum value. At x = 0.064, the electronic specific heat, γ, increases from 520 mJ/mol

K2 for YbFe2Zn20[197] to 690 mJ/mol K2. With more Co substitution, γ increases to ∼790

mJ/mol K2 for x = 0.129 and ∼890 mJ/mol K2 for x = 0.170. Together with the increase in the

coefficient of T 2 resistivity, the positions of Yb(Fe1−xCox)2Zn20 (x = 0.064, 0.129 and 0.170)

on the generalized Kadowaki-Woods plot gradually move toward the YbCo2Zn20 side[197] as

shown in the inset of Fig. 6.4(c). As Co substitution increases further, the single peak in

YbFe2Zn20 gradually evolves to two maxima, as a result of competing energy scale of CEF

splitting and the Kondo effect[52].

In between 0.375.x.0.719, the magnetic specific heat data show very similar behavior.

We keep track of the two maxima temperatures as Chigh (maxima that locates at a higher

temperature) and Clow (maxima that locates at a lower temperature) [Fig. 6.4(b)]. For x =

0.628, the specific heat was measured down to 50 mK. An upturn at below 100 mK was observed

and will be discussed later. With more Co substitution, Chigh starts to move towards lower

temperature.

Fig. 6.4(c) shows magnetic specific heat data close to the pure YbCo2Zn20 side. From a

generalized Kadowaki-Woods plot, the degeneracy that is responsible for Kondo coherence for
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Figure 6.4 Temperature-dependent magnetic specific heat of Yb(Fe1−xCox)2Zn20 for a various

of Co concentrations. Solid lines in (a) and (c) represent magnetic specific heat

of the Coqblin-Schrieffer model for J = 7/2 and 1/2[46; 47]. The brown dashed

line in (b) represents calculated magnetic specific heat based on a model proposed

in Ref. [53] (see text). Green arrows indicate the criteria for determining Chigh

and Clow. Inset in (c) is a generalized Kadowaki-Woods plot with N denoting the

degeneracy that is responsible for the Kondo effect[59] and data points representing

Yb(Fe1−xCox)2Zn20 (x = 0, 0.064, 0.129, 0.170 and 1).
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YbCo2Zn20 is in between 2 and 4. The specific heat can be tentatively understood with a spin

1/2 Kondo resonance with additional contribution from higher temperature Schottky peak-

features due to CEF splitting[211; 53]. The brown solid line presents the magnetic specific heat

due to a spin 1/2 Kondo resonance[47]. It captures, for the most part, the low-temperature

part of the measured data (black triangles), with differences at higher temperatures coming

from CEF effects, suggesting a doublet CEF ground state. With addition of Fe, the high-

temperature maximum moves towards higher temperature, indicating a small increase of CEF

splitting. In the mean time, the low-temperature part of the specific heat sees a slight increase

(green squares) at the base temperature. This feature may eventually evolve to an upturn seen

for x = 0.628.

6.2 Discussion

Summarizing resistive and specific heat features presented above, we can plot characteristic

temperatures of Yb(Fe1−xCox)2Zn20 as a function of Co concentration, x. In Fig. 6.5, the

green diamonds and cyan triangles represent characteristic temperatures inferred from specific

heat data and black circles were inferred from resistivity measurements. At a gross level, the

phase diagram can be divided into three regions. Two regions are on the pure YbFe2Zn20 or

YbCo2Zn20 sides where the original Kondo lattice characteristic temperatures gradually evolve

with Fe/Co substitution. The third region is in the middle where all feature temperatures are

relatively similar and do not significantly change or evolve with x.

We first look at the two regions close to the pure YbFe2Zn20 and YbCo2Zn20 sides. The

crossover from a high-temperature, single ion regime to a low-temperature coherent regime can

usually be seen and inferred from temperature-dependent resistivity measurements[214; 215].

In the coherent regime, the resistivity drops at low-temperature, becoming a heavy Fermi-liquid

state. Both YbFe2Zn20 and YbCo2Zn20 have a heavy Fermi liquid ground state down to 50

mK as evidenced by linear specific heat and a T 2 dependence in resistivity[197; 196]. On the

YbFe2Zn20 side, Co substitution suppresses Tmax at roughly 1.8 K/%Co. At x = 0.222, the

Tmax is suppressed to 3 K. With more Co substitution, Tmax was suppressed below the base

temperature of measurements. A similar situation happens on the YbCo2Zn20 side. Tmax is



124

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0

1 0

2 0

3 0

4 0

5 0
Y b ( F e 1 - x C o x ) 2 Z n 2 0  C h i g h

 C l o w
 T m a x

T (
K)

x  ( W D S )

Figure 6.5 Characteristic temperatures as a function of Co concentration in

Yb(Fe1−xCox)2Zn20. Green solid diamond and cyan triangle represent spe-

cific heat maxima temperatures at high temperature and low temperature

respectively. Black circles represent Tmax values extracted from resistivity data as

illustrated in Fig. 6.3. Arrows at the bottom indicate samples that were measured

resistively but showed no Tmax down to 2 K (x = 0.426, 0.921) or 500 mK (x =

0.375, 0.875, 0.957). Brown crosses indicate the estimated energy of excited CEF

levels for x = 0.628 and 1. The grey shaded area separates the phase diagram

into three regions as described in the text.

suppressed upon Fe substitution at roughly 1 K/%Fe. Given a much smaller, initial Tmax value

to start with, the trackable features quickly disappears to below 50 mK.

Magnetoresistance is sometimes used to probe the Kondo state at low temperature as

well[216]. The single ion Kondo regime has been theoretically calculated to show a nega-

tive magnetoresistance[217]. In the coherent regime, the compound is essentially a heavy

Pauli-paramagnetic metal. Magnetoresistance therefore is most commonly positive. The mag-

netoresistance for YbFe2Zn20 is positive at 1.8 K, which is consistent with a coherent state

(Fig. 6.6). For YbCo2Zn20, prior to the metamagnetic transition, the magnetoresistance is also

positive below 0.1 K whereas shows negative magnetoresistance above 3 K[218; 210].
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Magnetoresistance data are shown for various Co concentrations at 1.8 K in Fig. 6.6. Sam-

ples were cut and polished so that magnetic field is applied along the [111] crystallographic

direction. Positive magnetoresistances for Co concentrations x . 0.170 suggest a coherence at

1.8 K. Other members (x>0.222) show negative magnetoresistances that suggest a single ion

state. Assuming that the Tmax is commensurate with coherence temperature, together with

the magnetoresistance data, the coherence is suppressed on both ends of the phase diagram

(Fig. 6.5). In the middle of the substitution range, however, no clear indication of coherence

could be determined at 1.8 K.
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Figure 6.6 Magnetoresistance of Yb(Fe1−xCox)2Zn20 measured at 1.8 K up to 90 kOe.

Specific heat features close to the pure YbFe2Zn20 and YbCo2Zn20 sides evolve gradually

with chemical substitution. On the YbFe2Zn20 side, with Co substitution, Chigh moves to lower

temperature, indicating a lowering of Kondo temperature[47]. On the pure YbCo2Zn20 side,

where the Kondo temperature is smaller than the CEF splitting, with Fe substitution, Chigh

moves towards higher temperature, indicating a slight increase of CEF splitting.
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The Kondo coherence feature in specific heat is much more subtle and under debate. Var-

ious models have proposed a decrease of density of states at the Fermi energy due the for-

mation of coherence[219; 220; 34; 35]. Experimentally, this decrease of density of states was

used to explain the low-temperature drop in C/T (or γ) in different systems, for example, in

CeAl3[221; 222], CuCu6[223], CeNi2Ge2[224] and CeCu2Si2[222]. However, a feature associated

with coherence in specific heat is not always so apparent and is commonly missing, for exam-

ple in YbNi2B2C[225], YbCuAl[226], CeCoGe2[227], YbAgCu4[228; 229] and CeNi9Si4[230]. A

single ion model based on a Coqblin-Schrieffer analysis[46; 47] seems to describe these Kondo

lattice systems very well, even in the coherent regime. For YbTM2Zn20, despite the fact that

coherence emerges in resistivity at low-temperature, specific heat can be well captured by single

ion Kondo effect[197].

Close to pure YbFe2Zn20 and YbCo2Zn20, it is shown above that upon Fe/Co substitution,

the coherence temperatures on both sides are suppressed. The suppression of coherence is

commonly achieved by substituting the moment bearing ions with non-moment bearing ions[44].

In the case of Yb(Fe1−xCox)2Zn20, moment bearing Yb-sites are always fully occupied and

ordered. Substituting Fe/Co, however, will inevitably bring in chemical disorder as well as a

change in band filling. As a consequence of chemical disorder, the decrease in mean free path of

the conduction electrons, as can be represented by the increase of residual resistivity, may lead

to a suppression of Kondo coherence temperature[231]. This is sometimes also seen in systems

with artificially created defects with irradiation[232]. Theoretically, it is proposed that disorder

on the moment-bearing site (f-site) affects Kondo coherence more efficiently than disorder on the

conduction-electron sites. To produce the same suppression of Kondo coherence temperature,

energetically, f-sites disorder need to be equivalent to TK whereas conduction-electron sites

need to be comparable to the band width of the conduction band, which is more difficult[233].

However, with a change of band filling due to Fe/Co substitution, disorder in the conduction

electron sites could affect Kondo coherence in these Yb(Fe1−xCox)2Zn20 compounds.

The change in band filling due to Fe/Co substitution, on one hand, could be part of the

disorder in conduction electrons in aforementioned theoretical model. On the other hand, it

may lead to a change in the ratio of Kondo coherence temperature over Kondo temperature,
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Tcoh/TK [37]. At half-filling, it is proposed that Tcoh is larger than TK . Away from half-filling,

Tcoh drops quickly below TK [37]. It is possible that with changing band filling, Tcoh decreases

from both the YbFe2Zn20 and YbCo2Zn20 sides, which leaves a clear single ion Kondo effect

with features associated with CEF population whereas showing no coherence or a very low

coherence temperature. Such an extended range of low Tcoh is observed in the middle region

of the phase diagram. A change in band filling may be inferred from the density of states at

Fermi energy. It worth noting that the density of states for YFe2Zn20 experiences a quick drop

upon adding Co and stays relatively constant above 20% Co substitution[193]. This is very

similar to the suppression of Tmax close to the YbFe2Zn20 side. Close to the YCo2Zn20 side,

though, there are not enough data density to make similar comparison to YbCo2Zn20.

We now move onto the middle region of the phase diagram shown in Fig. 6.5. Whereas there

are clear changes of characteristic temperatures as the sample departs from perfect chemical

order, in the middle region, for 0.4.x.0.9, characteristic temperatures stay fairly constant.

It worth noting though, as shown in Fig. 6.1, the variation in concentration across a sample

in this middle region may make the data blurred and offer only more qualitative information

rather than quantitative.

In a single ion Kondo picture, different local moment degeneracy can give rise to unique

features in thermodynamic and transport properties[46; 48; 49]. In the presence of crystalline

electric field, features can be observed in temperature-dependent transport measurements, ex-

hibited as broad maxima in resistivity, for example in CeAl2[234], CeCu2Si2[235], CePdIn[236],

CeZn11[237]. This was observed for several members of Yb(Fe1−xCox)2Zn20 series, in the mid-

dle substitution range, for example, x = 0.628 and 0.719. However, the CEF feature is not

as clear as systems mentioned above. If the CEF levels are not well separated, given a cer-

tain combination of density of states and Kondo coupling, these broad maxima can be hard

to observe[48]. In the case of YbTM2Zn20, the CEF splitting is indeed small and may cause

the CEF feature to be difficult to observe. Impurity scattering can also lead to a smear of

Kondo CEF features. In YbNi2B2C, the improved sample quality after annealing dramati-

cally changed the temperature-dependent transport properties. This can be attributed to a

distribution of Kondo temperature in a non-ideal lattice with local defects and strain[238]. In
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Yb(Fe1−xCox)2Zn20, the substitution variation in the sample may cause such disorders even

though transition metal is not in the direct neighborhood of the Yb ions.

To understand what happens in the middle of the substitution range in Yb(Fe1−xCox)2Zn20,

more insights can be obtained from the specific heat data. In the presence of crystal fields, the

temperature-dependence of magnetic specific heat in Kondo systems is complicated. An arbi-

trary CEF splitting has only been recently studied numerically for Ce-based compounds[52]. For

Yb, more degeneracy, and levels, are involved. A quantitative interpretation of the temperature-

dependent specific heat can be approached by combining a resonance model solution together

with a, CEF, Schottky-like contribution[53]. In a cubic symmetry, Yb will be split into two dou-

blets and a quartet. Assuming the quartet is at higher temperature, the temperature-dependent

specific heat can be written as[53]:

Cmag = C2d −
1

kBT 2

[
∆2e−∆/kBT

(1 + e−∆/kBT )2

]
+ Cs (6.1)

in which,

C2d = − kB
2(πkBT )2

Re

1∑
j=0

{
(Γj + i∆j)

2

[
4ψ′(

Γj + i∆j

πkBT
)

− ψ′(Γj + i∆j

2πkBT
)

]}
+

Γ0 + Γ1

πT
(6.2)

Cs =
1

kBT 2
[(∆1)2e−∆1/kBT + 2(∆2)2e−∆2/kBT

+ 2(∆2 −∆1)2e−(∆1+∆2)/kBT ](1 + e−∆1/kBT + 2e−∆2/kBT )−2 (6.3)

Here, C2d is the Kondo resonance contribution from the lower lying two doublets. Γj

represents the half-width at half-maximum of the spectral density for each crystal field level.

ψ′ is the derivative of the digamma function and Cs is th Schottky expression for a three level

system. ∆j represents the excited CEF energies. The second term in Eq.(1) accounts for the

double counting of the Schottky contribution. ∆ equals to ∆1 ignoring complications of the
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ground state doublet[53]. ∆0 for the ground state doublet is introduced to account for the

resonance that is displaced away from the Fermi energy[53].

In Fig. 6.4(b), data for Yb(Fe0.372Co0.628)2Zn20 could be best fitted by the brown dashed

line with parameters: ∆0 = 1 K, ∆1 = 10 K, ∆2 = 25 K, Γ0 = 0.87 K, Γ1 = 4 K. The low-

temperature rise is omitted in the fit and will be discussed below. Clow mainly comes from the

Kondo effect for the ground state doublet and Chigh largely comes from Schottky contribution

due to CEF population. Therefore, the temperature of Chigh also reflects an upper limit of the

total CEF splitting.

The calculated value qualitatively agrees with experimental data. Higher calculated values

around 10 K might due to an error caused by non-magnetic background subtraction as illus-

trated by a negative value of Cmag for T > 20 K. It could also due to a lack of bandwidth

information for the highest lying quartet in the theoretical model[53]. In general, the best

fit indicates that the two CEF levels are at around 10 K and 25 K, which is similar to what

had been proposed for YbCo2Zn20[211; 53]. Thus at least to this level of Co substitution, as

shown in Fig. 6.5 for Co-rich side of the phase diagram, the CEF splitting does not change

significantly from the pure YbCo2Zn20. In addition, since the temperature of Chigh sets an

upper limit of the total CEF splitting, the total CEF splitting does not change much across

the whole substitution range and may have increased slightly when approaching the YbFe2Zn20

side. In contrast, the CEF effect is more apparent for YbCo2Zn20. The difference in Kondo

physics between YbFe2Zn20 and YbCo2Zn20 most likely originate from the difference in density

of states as well as Kondo coupling strength.

Going back to the generalized Kadowaki-Woods plot shown in Fig. 6.4(c), upon Co sub-

stitution up to x = 0.170, the degeneracy that is responsible for the Kondo effect is still very

close to the full degeneracy: N = 8. However, the temperatures at which Kondo coherence is

developed have become comparable or even smaller than the estimated CEF splitting. This

trend can be clearly represented by Tmax shown in Fig. 6.5. It may be possible that, for x =

0.170 as an example, the Kondo temperature is still at a relatively higher temperature than

the CEF splitting, which quenches the local moment with a degeneracy close to 8[52]. On

the other hand, Kondo coherence, as tracked by Tmax, does not significantly affect the way
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magnetic entropy is removed. With an even lower Kondo energy scale, the CEF feature would

have enough room to be more apparent, like in the case for x = 0.222.

Finally, as for the low-temperature rise in the specific heat of Yb(Fe0.372Co0.628)2Zn20, since

there is no magnetic ordering or applied magnetic field, there should not be a nuclear Schottky

anomaly due to Zeeman splitting of nuclear levels in specific heat measurement. However, the

low-temperature upturn in the specific heat data observed below 100 mK could still come from

a nuclear quadrupolar splitting of the 173Yb nuclear moment[239]. Such quadrupole splitting

for Yb in a cubic point symmetry may arise from the electric field gradient caused by chemical

substitution induced distortion. Even though transition metal is not the first, nor the second

nearest neighbors of Yb, as substitution increases, the distortion to the original cubic symmetry

increase. This is consistent with our observation that the low-temperature rise only emerges

with chemical substitution and becomes more pronounced in the middle of the doping range.

An alternative scenario is that the upturn is of a Kondo origin. However, that requires a

decreasing CEF split energies upon substitution and a very small first excited CEF energy

which was not observed in specific heat data. Instead, the Clow feature stays unchanged for

the majority of the substitution range which otherwise should also evolve and split.

We would also like to mention a similar doping series: CeNi9X4 (X = Si, Ge)[240]. Changing

from CeNi9Ge4 to CeNi9Si4, the Kondo temperature increases from ∼4 K to ∼70 K with ground

state CEF degeneracy changing from 4 for X = Ge to 6 for X = Si[240]. Upon doping, the

coherence temperature drops quickly from both sides. In the middle of the doping, specific

heat shows continuous evolution from high γ, Ge side, to the low γ, Si side. Understanding

the suppression of Kondo coherence in these two systems might offer useful insights into the

formation of Kondo coherence.

6.3 Conclusions

In conclusion, we studied the evolution of Kondo effect in Yb(Fe1−xCox)2Zn20 via resistivity

and specific heat measurements. With Co substitution, the Kondo coherence temperature of

YbFe2Zn20 decreases gradually with emerging features in specific heat that can be associated

with CEF effect. On the YbCo2Zn20 side, the coherence temperature is also suppressed at
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the beginning of Fe substitution. In between, 0.4.x.0.9, CEF features can be observed in

both resistivity and specific heat data whereas showing no clear feature of coherence down to

500 mK. However, only qualitative information can be obtained in this middle substitution

region due to a large substitution level variation. Comparing all the experimental results, the

CEF splitting stays roughly unchanged across the substitution series. The ground state of the

compound evolves from a N = 8 coherent state for YbFe2Zn20 to a N = 2 coherent state in

YbCo2Zn20. More measurements are needed to reveal the mechanism behind the suppression

of coherence on the YbFe2Zn20 and YbCo2Zn20 side.
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APPENDIX. SUMMARY OF OTHER RESEARCH AND

PUBLICATIONS

During my graduate school years, I was also heavily involved in the following projects.

RCo2Ge2 (R = Y, La-Nd, Sm-Tm)

In this project, single crystals of RCo2Ge2 (R = Y, La-Nd, Sm-Tm) were grown using a self-

flux method and were characterized by room-temperature powder x-ray diffraction; anisotropic,

temperature and field dependent magnetization; temperature and field dependent, in-plane re-

sistivity; and specific heat measurements. In this series, the majority of the moment-bearing

members order antiferromagnetically; YCo2Ge2 and LaCo2Ge2 are non-moment-bearing. Ce

is trivalent in CeCo2Ge2 at high temperatures, and exhibits an enhanced electronic specific

heat coefficient due to Kondo effect at low temperatures. In addition, CeCo2Ge2 shows two

low-temperature anomalies in temperature-dependent magnetization and specific heat mea-

surements. Three members (R = Tb-Ho) have multiple phase transitions above 1.8 K. Eu

appears to be divalent with total angular momentum L = 0. Both EuCo2Ge2 and GdCo2Ge2

manifest essentially isotropic paramagnetic properties consistent with J = S = 7/2. Clear

magnetic anisotropy for rare-earth members with finite L was observed, with ErCo2Ge2 and

TmCo2Ge2 manifesting planar anisotropy and the rest members manifesting axial anisotropy.

The experimentally estimated crystal electric field (CEF) parameters B0
2 were calculated from

the anisotropic paramagnetic θab and θc values and follow a trend that agrees well with the-

oretical predictions. The ordering temperatures, TN , as well as the polycrystalline averaged

paramagnetic Curie-Weiss temperature, Θavg, for the heavy rare-earth members deviate from

the de Gennes scaling, as the magnitude of both are the highest for Tb, which is sometimes seen
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for extremely axial systems. Except for SmCo2Ge2, metamagnetic transitions were observed

at 1.8 K for all members that ordered antiferromagnetically.

This was the first project I participated. Before my existence, most of the single crystals

had been synthesized by previous group members. I regrew some LaCo2Ge2 single crystals

with the help of Mandi Buffon. Physical properties were measured with many helps from Dr.

Lin and Dr. Bud’ko. This work was published in Ref. [175].

K2Cr3As3 superconductor

K2Cr3As3 is a newly discovered superconductor with a superconducting temperature, Tc

= 6.1 K[241]. It was proposed to be a rare example of unconventional, quasi-one-dimensional,

superconductor. In this project, single crystalline K2Cr3As3 was synthesized and character-

ized. In zero-field, the temperature-dependent resistivity is metallic. Deviation from a linear

temperature-dependence is evident below 100 K and a T 3-dependence is roughly followed from

just above Tc (∼10 K) to ∼ 40 K. The electronic specific heat coefficient, γ, just above Tc, is

73 mJ/mol K2; the Debye temperature, ΘD, is 220 K. The specific heat jump at the supercon-

ducting transition ∆C ∼ 2.2 γTc. For hydrostatic pressures up to ∼7 kbar, Tc decreases under

pressure linearly at a rate of -0.034 K/kbar.

Anisotropic Hc2(T ) data were measured up to 600 kOe and T > 0.6 K with field applied

along (H
‖
c2(T )) and perpendicular (H⊥c2(T )) to the rod-like crystals. Close to Tc, the initial slope

of Hc2(T ) is ∼-70 kOe/K for the applied field perpendicular to the rod, and ∼-120 kOe/K for

field applied along the rod. With increasing field, H
‖
c2(T ) exhibits a paramagnetically-limited

behavior, whereas the shape of the H⊥c2(T ) curve has no evidence of paramagnetic effects. As

a result, the curves H⊥c2(T ) and H
‖
c2(T ) cross at T ≈ 4 K, so that the anisotropy parameter

γH(T ) = H⊥c2/H
‖
c2(T ) increases from γH(Tc) ≈ 0.35 near Tc to γH(0) ≈ 1.7 at 0.6 K. This

behavior of H
‖
c2(T ) is inconsistent with triplet superconductivity but suggests a form of singlet

superconductivity with the electron spins locked onto c-axis.

In this project, I grew the samples and performed the basic physical property character-

ization. Measurements under pressure was performed by Dr. Bud’ko. High magnetic field

measurements were performed by Dr. Balakirev et al. at Los Alamos National High Magnetic
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Field Laboratory. Theoretical explanation was put forward by Dr. Gurevich. This work was

published in Refs. [113; 242].

V1−xTixO2 (0 < x < 0.187)

Free standing, low strain, single crystals of pure and titanium doped VO2 were grown out of

an excess of V2O5 using high temperature solution growth techniques. At TMI ∼ 340 K, pure

VO2 exhibits a clear first-order phase transition from a high-temperature paramagnetic tetrag-

onal phase (R) to a low-temperature non-magnetic monoclinic phase (M1). With Ti doping,

another monoclinic phase (M2) emerges between the R and M1 phases. The phase transition

temperature between R and M2 increases with increasing Ti doping while the transition tem-

perature between M2 and M1 decreases. The size of the magnetic susceptibility change at each

transition was studied. The fact that the magnetic susceptibility change at R-M2 and M1-M2

are not equivalent suggests that there may be a preference for pairing V4+ ions (rather than

Ti4+-V4+ ions) in the M2 phase.

In this project, crystals were grown by Dr. Canfield and M. Masters. I performed the

measurements and analysed the data. It was published in Ref. [243]. These samples were later

studied by infrared spectroscopy and imaging to reveal more details of the phase transitions in

nanoscale[244].

frit-disc crucible sets

Solution growth of single crystals from high temperature solutions often involves the separa-

tion of residual solution from the grown crystals. For many growths of intermetallic compounds,

this separation has historically been achieved with the use of plugs of silica wool. Whereas this

is generally efficient in a mechanical sense, it leads to a significant contamination of the de-

canted liquid with silica fibers. Dr. Canfield developed a simple design for frit-disc alumina

crucible sets that has made their use in the growth single crystals from high temperature so-

lutions both simple and affordable. An alumina frit-disc allows for the clean separation of the

residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either
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for further growth of the same phase, or for subsequent growth of other, related phases. I was

partly involved in the calibrating and testing of this new design. A detailed description can be

found in Ref. [111]

CaKFe4As4 superconductor

CaKFe4As4 is a newly recognized, Fe-based, superconductor with a Tc of 35 K[245]. During

this project, we provided basic physical property information of this new compound. Single

crystalline, single phase CaKFe4As4 has been grown out of a high temperature, quaternary melt.

Temperature dependent measurements of x-ray diffraction, anisotropic electrical resistivity, ela-

storesistivity, thermoelectric power, Hall effect, magnetization and specific heat, combined with

field dependent measurements of electrical resistivity and field and pressure dependent mea-

surements of magnetization indicate that CaKFe4As4 is an ordered, stoichiometric, Fe-based

superconductor with a superconducting critical temperature, Tc = 35.0± 0.2 K. Other than

superconductivity, there is no indication of any other phase transition for 1.8 K ≤ T ≤ 300 K.

All of these thermodynamic and transport data reveal striking similarities to that found for

optimally- or slightly over-doped (Ba1−xKx)Fe2As2, suggesting that stoichiometric CaKFe4As4

is intrinsically close to what is referred to as ”optimal-doped” on a generalized, Fe-based su-

perconductor, phase diagram. The anisotropic superconducting upper critical field, Hc2(T ), of

CaKFe4As4 was determined up to 630 kOe. The anisotropy parameter γ(T ) = H⊥c2/H
‖
c2, for

H applied perpendicular and parallel to the c-axis, decreases from ' 2.5 at Tc to ' 1.5 at 25

K which can be explained by interplay of paramagnetic pairbreaking and orbital effects. The

slopes of dH
‖
c2/dT ' −44 kOe/K and dH⊥c2/dT ' −109 kOe/K at Tc yield an electron mass

anisotropy of m⊥/m‖ ' 1/6 and short Ginzburg-Landau coherence lengths ξ‖(0) ' 5.8 Å and

ξ⊥(0) ' 14.3 Å. The value of H⊥c2(0) can be extrapolated to ' 920 kOe, well above the BCS

paramagnetic limit.

I proposed the initial project and was heavily involved in the single crystal synthesis,

anisotropic magnetization and transport measurements, and Hc2 determination. This work

has been published in Ref. [246]. I was also involved in several other projects, which study the

Fermi surface, penetration depth and vortex lattice of CaKFe4As4[247; 248; 249].
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Miscellaneous

As a part of research collaboration, I provided samples to many groups around the world.

For i-R-Cd quasicrystals, I synthesized samples for optical conductivity measurements[250] and

also for structural refinement[139]. In addition, isotopic Cd was used to prepare samples for

neutron scattering experiments (results will be published later). I synthesized TmB4 samples for

the study of the magnetism in geometrically frustrated Shastry-Sutherland lattice[251; 252]. For

the semimetals, I synthesized samples for the study of Cd3As2[253] and LaBi[254]. RFe2Zn20

(R = Lu, Yb and Gd) samples were synthesized for the study of Mössbauer effect[255].
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tronic structure of icosahedral Al-Pd-Mn alloys and approximant phases. Phys. Rev. B,

51:17355–17378, Jun 1995.

[87] X. Wu, S. W. Kycia, C. G. Olson, P. J. Benning, A. I. Goldman, and D. W. Lynch.

Electronic Band Dispersion and Pseudogap in Quasicrystals: Angular-Resolved Photoe-

mission Studies on Icosahedral Al70Pd21.5Mn8.5. Phys. Rev. Lett., 75:4540–4543, Dec

1995.

[88] Z. M. Stadnik, D. Purdie, M. Garnier, Y. Baer, A.-P. Tsai, A. Inoue, K. Edagawa,

S. Takeuchi, and K. H. J. Buschow. Electronic structure of quasicrystals studied by

ultrahigh-energy-resolution photoemission spectroscopy. Phys. Rev. B, 55:10938–10951,

Apr 1997.



145

[89] J. Nayak, M. Maniraj, Abhishek Rai, Sanjay Singh, Parasmani Rajput, A. Gloskovskii,

J. Zegenhagen, D. L. Schlagel, T. A. Lograsso, K. Horn, and S. R. Barman. Bulk Elec-

tronic Structure of Quasicrystals. Phys. Rev. Lett., 109:216403, Nov 2012.

[90] Hirofumi Akiyama, Tatsuo Hashimoto, Tadaharu Shibuya, Keiichi Edagawa, and Shin

Takeuchi. Electrical Resistivities of Al-Pd-Mn Icosahedral Quasicrystals. J. Phys. Soc.

Jpn., 62(2):639–646, 1993.

[91] C. A. Swenson, I. R. Fisher, N. E. Anderson, P. C. Canfield, and A. Migliori. Icosa-

hedral quasicrystal Al71Pd21Mn08 and its ξ
′

approximant: Linear expansivity, specific

heat, magnetic susceptibility, electrical resistivity, and elastic constants. Phys. Rev. B,

65:184206, May 2002.

[92] A. L. Pope, T. M. Tritt, R. Gagnon, and J. Strom-Olsen. Electronic transport in Cd-Yb

and Y-Mg-Zn quasicrystals. Appl. Phys. Lett, 79(15):2345–2347, 2001.

[93] Ron Lifshitz. Symmetry of Magnetically Ordered Quasicrystals. Phys. Rev. Lett.,

80:2717–2720, Mar 1998.

[94] Stefan Wessel, Anuradha Jagannathan, and Stephan Haas. Quantum Antiferromagnetism

in Quasicrystals. Phys. Rev. Lett., 90:177205, May 2003.

[95] E. Y. Vedmedenko, U. Grimm, and R. Wiesendanger. Noncollinear Magnetic Order in

Quasicrystals. Phys. Rev. Lett., 93:076407, Aug 2004.

[96] Stefanie Thiem and J. T. Chalker. Long-range magnetic order in models for rare-earth

quasicrystals. Phys. Rev. B, 92:224409, Dec 2015.

[97] Alan I Goldman. Magnetism in icosahedral quasicrystals: current status and open ques-

tions. Sci. Technol. Adv. Mater., 15(4):044801, 2014.

[98] S. E. Sebastian, T. Huie, I. R. Fisher, K. W. Dennis, and M. J. Kramer. Magnetic

properties of single grain R-Mg-Cd primitive icosahedral quasicrystals (R=Y, Gd, Tb or

Dy). Philos. Mag., 84(10):1029–1037, 2004.



146

[99] Zbigniew M. Stadnik, Khalid Al-Qadi, and Pu Wang. Magnetic properties and 155Gd

Mossbauer spectroscopy of the icosahedral quasicrystal Ag50In36Gd14. J. Phys:. Condens.

Matter, 19(32):326208, 2007.

[100] Tai Kong, Sergey L. Bud’ko, Anton Jesche, John McArthur, Andreas Kreyssig, Alan I.

Goldman, and Paul C. Canfield. Magnetic and transport properties of i-R-Cd icosahedral

quasicrystals (R=Y, Gd-Tm). Phys. Rev. B, 90:014424, Jul 2014.

[101] Akinobu Mori, Hisashi Ota, Shingo Yoshiuchi, Ken Iwakawa, Yuki Taga, Yusuke Hirose,

Tetsuya Takeuchi, Etsuji Yamamoto, Yoshinori Haga, Fuminori Honda, Rikio Settai,
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Honda, Rikio Settai, and Yoshichika Ōnuki. Metamagnetic behavior in a heavy fermion

compound YbCo2Zn20. J. Phys. Conf. Ser., 273(1):012059, 2011.

[209] Yasuyuki Shimura, Toshiro Sakakibara, Shingo Yoshiuchi, Fuminori Honda, Rikio Set-
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