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Executive Summary 
 

Plasma is a state of matter that exhibits a very rich range of phenomena.  To begin with, plasma 
is both electrical and mechanical – bringing together theories of particle motion and the 
electromagnetic field.  Furthermore, and especially important for this project, a weakly-
collisional plasma, such as is found in high-temperature (fusion energy) experiments on earth 
and the majority of contexts in space and astrophysics, has many moving parts.  For example, 
sitting in earth’s atmosphere we are immersed in a mechanical wave field (sound), a possibly 
turbulent fluid motion (wind), and an electromagnetic vector wave field with two polarizations 
(light).  This is already enough to produce a rich range of possibilities.  In plasma, the 
electromagnetic field is coupled to the mechanical motion of the medium because it is ionized.  
Furthermore, a weakly-collisional plasma supports an infinite number of mechanically 
independent fluids.  Thus, plasmas support an infinite number of independent electromechanical 
waves.  Much has been done to describe plasmas with “reduced models” of various kinds.  The 
goal of this project was to both explore the validity of reduced plasma models that are in use, and 
to propose and validate new models of plasma motion.   
 
The primary means to his end was laboratory experiments employing both electrical probes and 
laser spectroscopy.  Laser spectroscopy enables many techniques which can separate the 
spectrum of independent fluid motions in the ion phase-space.  The choice was to focus on low 
frequency electrostatic waves because the electron motion is relatively simple, the experiments 
can be on a spatial scale of a few meters, and all the relevant parameters can be measured with a 
few lasers systems.  No study of this kind had previously been undertaken for the study of 
plasmas.  The validation of theories required that the experimental descriptions be compared 
with theory and simulation in detail. 
 
It was found that even multi-fluid theories leave out a large part of the complexity of plasma 
motion.  Reduced descriptions were found to fail under most circumstances. A new technique 
was developed that enabled a measurement of the phase-space resolved ion correlation function 
for the first time.  The wide range of plasma dynamics possible became clear through this 
technique.  It was found that collisionless (Vlasov) theory has a large field of application even 
when the plasma is weakly-collisional.  A new approach, the kinetic wave expansion, was 
proposed, tested and found to be very useful for describing electrostatic ion waves.  This project 
demonstrated a new way of looking at the “degrees-of-freedom” of plasmas and provided 
significant validation tests of fluid and kinetic plasma descriptions. 
 
Summary of work 

The funding period covers 17 years of work. A brief summary will be given of the scope of the work 
accomplished followed by a list of publications, invited talks, and contributed papers. 

Experimental facilities 

The first task was to construct and test new experimental facilities.  Much of the construction 
cost was paid for by the PI’s start-up funding, but everything was designed for the purposes of 
the project being summarized here and the student and PI time used for construction and testing 
were supported by the project.  Initially, the project supported a post-doc, but for the remaining years 
the project was performed by the PI with undergraduate and graduate students with occasional outside 
collaborators. 
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Figure 1.  Major experimental facilities constructed for the project. Top left – unmagnetized plasma 
chamber, right – magnetized chamber, bottom – laser systems. 
 
 
The experimental facilities were designed to optimize the signal from laser spectroscopic diagnostics.  
The unmagnetized plasma chamber is outfitted with a large window port enabling remote imaging of a 
small viewing volume with sub-Debye length spatial resolution.  The magnetized plasma chamber has 
two parallel optical periscopes on motorized carriages which facilitate imaging and two-point correlation 
studies with sub-Debye length and sub-Larmor radius spatial resolution.  In the magnetized plasma 
chamber the magnetic field is uniform and constant to 0.1%  The laser systems developed include single 
frequency dye, two single frequency diode, and one narrow-band home-made diode-pumped Nd-YLF 
lasers together with many associated measurement systems purchased or built and in some cases designed 
by the PI together with students.  Sketches of the major experimental facilities using in the project are 
shown in Figure 1. 
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Workforce development 
 
In addition to the one post-doc who was involved in the construction and initial operation of the new 
facilities, 21 undergraduate students and fourteen graduate students were trained in experimental plasma 
physics and laser spectroscopy during the project nine of whom were PhD students under my direction.  
Funding generally supported the PI and one or two graduate students at any one time.  Some students 
were paid through the project, some worked on projects for course credit, and some participated through 
collaboration.  Training of students was a significant part of the project activities. 
 
New experimental observables 
 
Part of the effort in validation involved new types of measurements.  The most significant new 
measurement was of phase-space resolved two-point correlation functions: 
 

Equation 1 
 

The process starts with optimization of the laser spectroscopic (laser-induced fluorescence - LIF) signal.  
Even after reaching a LIF signal to noise of 1000, further efforts are needed to resolve the correlation 
function.  Averaging over large data sets is required and this requires stabilization of the experiment over 
run periods of many days.  From the correlation function, arrays of power spectra and cross-power spectra 
were measured.  Additionally higher-order correlation functions (involving the product of three 
fluctuation amplitudes and two independent delay times as opposed to equation 1 with one delay time and 
two fluctuating amplitude).  Higher-order correlation functions permit the calculation of higher-order 
spectra such as bispectra and bicoherence which indicate three-wave coupling.  These quantities had not 
been experimentally acquired previously in a plasma. 
 

 
Figure 2.  Typical plots of higher-order spectra obtained from LIF. 
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Survey of results 

In addition to new discoveries of plasma kinetic modes and nonlinear couplings between modes – some of 
which are still not fully explained, the goal of validation was a major preoccupation of the project.  We 
will provide some examples here.  The multi-fluid theory of the ion-acoustic wave makes simple 
predictions for the real and imaginary part of the ion plasma response.  When the phase is adjusted to the 
phase of the local density perturbation the eigenfunction for the ion response should be mostly real and 
invariant with respect to translation in space.  Figure 3 shows that this was observed to not be the case for 
observed monochromatic plasma excitations.  The two figures show two measurements of the ion wave 
function resolved in space and velocity and separated by 1 cm in space.  The imaginary parts are not small 
and the two figures are very different.  This is a dramatic failure of the fluid theory. 

 

 
Figure 3.  Ion wave functions resolved in phase-space at two adjacent locations. 

 

However, if one takes the measured data it is possible to directly compute terms of the kinetic (Vlasov) 
equation and to compare them.  An example of this is shown in figure 4.  This approach can be extended 
to computations of wave energy and of nonlinear terms which is ongoing research. 

 

 

Figure 4.  Sample validation of the Vlasov description of the ion-acoustic wave. 
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Probably one of the most surprising validations has to do with computation of the Morrison G-transform 
(projection on to Case-Van-Kampen modes).  Using this analysis it is possible to reconstruct wave fields 
over a region based on a measured distribution function at a single point.  An example of this is shown in 
Figure 5.  The figure on the left shows a direct comparison of wave fields determined in two different 
ways experimentally.  One way is to directly measure the perturbed ion density.  The other technique 
involves a measurement of the perturbed ion distribution function at a single location and application of 
an integral transform to find the amplitudes of the continuous spectrum.  What is surprising is that 
collisions are a singular perturbation of the theory so one might expect all trace of the continuous 
spectrum to be gone.  This study showed the robustness of the Vlasov description. 

 

 

Figure 5.  Predictions of wave fields and externally applied fields from the CVK spectrum using the 
Morrison G-transform. 

 

From the measured data it is also possible to compute moments and to verify the satisfaction of continuity 
(which may be better thought of as a test of the experimental technique).  This is not the same thing as a 
test of fluid theory.  One such test is shown in Figure 6. 

 
Figure 6.  Test of the first-moment of the kinetic equation.  The curve labeled S is a term caused by 
charge-exchange collisions. 
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Although we were not able to compute a complete nonlinear theory, many nonlinear phenomena were 
observed and reported.  Figure 7 shows a contour plot of the nonlinear second-order ion response at 92 
kHz to two waves at 32 and 60 kHz respectively.  The data have been Fourier transformed in space to 
enable a v-phase axis.  The red lines correspond to wave-particle resonances. 

 
Figure 7.  V-phase – V-particle plots of the nonlinear second-order ion response. 

 

The process of making quantitative comparisons and of data requires attention to a wide array of possible 
systematic effects.  This involves making a very accurate model of the LIF measurement process.  A 
significant quantity of work was focused on the effects of optical pumping – which can also be used as a 
diagnostic technique as the means for “optical tagging”. 
 
The most difficult measurement, and the crowning achievement of this project, was the successful 
implementation of incoherent wave detection using the two-point correlation technique.  This is a way to 
discover the active degrees of freedom in the ion motions without assuming a particular theory.  The 
technique is statistical in nature.  If one measures the quantity in equation 1 for the two spatial coordinates 
being equal and for velocities over a square grid, then once this square array has been Fourier transformed 
over the delay time – the matrix is Hermitian with respect to the velocity indices.  The rank of this matrix 
is then the observed number of active wave modes.  Sean Mattingly, one of the most recent students, did a 
thesis on this and was invited to speak at the 2017 DPP meeting.  His paper was also selected by the 
editor of Physics of Plasmas for a press release.  Figure 8 shows on the left, the diagonal of the correlation 
matrix which can be normalized such that it equals the Kruskal-Oberman energy density.  This is the 
kinetic wave energy of the ions according to the Vlasov theory and has not been measured for incoherent 
fluctuations previously.  The plot on the right shows the power spectra of the eigenvalues of the 
correlation matrix which pertain to the independent fluctuations of different plasma modes.  Much 
remains to be done in understanding plasma dynamical behavior, but the project successfully began the 
detailed phase-space validation of plasma wave descriptions. 
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Figure 8.  The left frame is the diagonal of the velocity correlation matrix (real and positive definite) 
normalized to be equal to the Kruskal-Oberman energy density.  The frame on the right is a power 
spectrum of the eigenvalues of the matrix showing the frequency dependence of the many independent 
active plasma modes. 
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