

FINAL REPORT

Project title: “Experimental Neutrino Physics”

DOE Award number: DE-SC0011565

- Applicant/Institution: University of Washington
- Street Address/City/State/Zip: UW Office of Sponsored Programs, 4333 Brooklyn Ave NE, Box 359472, Seattle, WA 98195-9472
- Postal Address: University of Washington, Department of Physics, Box 351560, Seattle, WA 98195-1560
- Lead PI name, telephone number, email: Richard Jeffrey Wilkes, 206-543-4232, wilkes@uw.edu
- Administrative Point of Contact name, telephone number, email: Laurie Salehi, 206 543-4043, salehil@u.washington.edu
- DOE/Office of Science Program Office: Office of High Energy Physics

Contents:

- I. Overview 1**
- II. T2K 2**
- III. Super-Kamiokande 4**
- IV. Conclusion 6**
- Figures 7**
- References 10**
- Appendices 12**
 - A. Super-Kamiokande Publications**
 - B. T2K Publications**
 - C. Theses by supported students**
 - D. Major Equipment**

I. OVERVIEW

Introduction

The University of Washington (UW) HEP neutrino group performed experimental research on the physics of neutrinos, using the capabilities offered by the T2K Experiment and the Super-Kamiokande Neutrino Observatory. The UW group included senior investigator R. J. Wilkes, two PhD students, four MS degree students, and a research engineer, all of whom are members of the international scientific collaborations for T2K and Super-Kamiokande. During the period of support, within T2K we pursued new precision studies sensitive to new physics, going beyond the limits of current measurements of the fundamental neutrino oscillation parameters (mass differences and mixing angles). We began efforts to measure (or significantly determine the absence of)

the CP-violating phase parameter δ_{CP} and determine the neutrino mass hierarchy. Using the Super-Kamiokande (SK) detector we pursued newly increased precision in measurement of neutrino oscillation parameters with atmospheric neutrinos, and extended the current reach in searches for proton decay, in addition to running the most sensitive supernova watch instrument [Scholberg 2012], performing other astrophysical neutrino studies, and analyzing beam-induced events from T2K. Overall, the research addressed central questions in the field of particle physics. It included the training of graduate students (both PhD and professional MS degree students), and postdoctoral researchers. Undergraduate students also participated as laboratory assistants.

II. T2K: Background

T2K (Tokai-to-Kamioka) is a long-baseline neutrino oscillation experiment [T2K 2011] whose primary goals are to make precise measurements of the appearance of electron neutrinos and the disappearance of muon neutrinos at a distance where the oscillation is maximal for the neutrino beam energy [Pascoli 2013] [Balantekin 2013] (Fig. 1). Improved precision in neutrino oscillation analyses requires improved knowledge of neutrino interaction cross sections [McFarland 2013]; as an integral part of the research program, T2K near detectors simultaneously function as fixed-target neutrino experiments to provide these measurements.

T2K consists of an accelerator-generated neutrino beamline [Shibata 2008], a near detector complex 280 m downstream of the neutrino beam target [ND280 2012, 2009], and a far detector, Super-Kamiokande (SK, to be described below), located 295 km away at an angle of 2.5° away from the axis of the neutrino beam (Fig. 2). Neutrinos are generated using the 30 GeV proton beam of the Japan Proton Accelerator Research Complex (J-PARC), located in Tokai-mura on the east coast of Japan [J-PARC 2005]. The near detector complex is composed of a detector on the axis of the neutrino beam, called INGRID, and a set of detectors located 2.5° off axis, as is SK, called ND280. INGRID is used primarily to measure the beam profile and stability, and the ND280 off-axis detector suite is used to measure neutrino fluxes and neutrino interaction cross-section properties.

Each proton beam spill has 8 bunches (6 prior to June, 2010) spaced 581 ns apart. The extracted protons are directed toward a graphite target installed inside a magnetic horn that collects and focuses the positively charged mesons (mainly pions and kaons) generated by proton interactions in the target. Two additional magnetic horns are used to further focus the selected charged mesons before they enter a 96 m long decay volume filled with He. The mesons decay predominantly into highly boosted muons and muon neutrinos, which propagate roughly in the direction of the decaying mesons. A beam dump stops most of the particles in the beam that are not neutrinos. Some high-energy muons pass through the beam dump and are observed by a muon monitor at its end, providing information used to track the beam direction and stability. The database available for analysis was taken in several running periods, beginning in January, 2010, , representing a total of 2.3×10^{21} protons-on-target (POT) by early 2017, when beam power was at the 450 kW level, or more than 10^{14} protons per spill, at 2.5 s spill intervals (Fig. 3). The number of neutrino events in the near and far detectors is directly proportional to integrated POT. A main-ring upgrade in 2018 will raise the beam power

toward its final Phase-I design level of 750 kW.

The UW group joined T2K at its inception, after participating in its predecessor, the K2K experiment [K2K 2006]. UW has contributed to T2K construction and operation in three areas: the pi-zero detector (P0D) component of ND280 [P0D 2012], construction of custom electronics for neutrino beamline monitors, and primary responsibility for the GPS time synchronization system at both near and far detectors. Two UW students will complete their PhD theses using T2K data in 2014, and four UW Professional MS degree students are contributing to and will write their capstone project reports on T2K.

T2K: most significant results

In July, 2013, the T2K Collaboration announced definitive observation of muon neutrino to electron neutrino transformation, at the 7.5 sigma level of significance [T2Knue 2013]. We observed 28 electron neutrino candidate events at the far detector, with 4.64 ± 0.52 events expected for $\sin^2 2\theta_{13} = 0.0$. A max likelihood fit assuming $\nu_\mu \rightarrow \nu_e$ oscillations, comparing number of observed events with MC predictions in terms of electron momentum and angle (p_e, q_e), and taking $\sin^2(2\theta_{23}) = 1.0$, $\delta_{CP} = 0$ and $|\Delta m_{32}^2| = 2.4 \times 10^{-3}$ eV 2 , yields a value of $\sin^2(2\theta_{13}) = 0.152 + 0.041 - 0.034$ (stat.+syst.). This is consistent with previous results [PDG 2012], and gives confidence that future work to measure δ_{CP} using long-baseline techniques will be feasible. Increased precision for Δm_{32}^2 and θ_{23} will be required for δ_{CP} studies. T2K capabilities in this regard were recently demonstrated in a paper reporting new results on ν_μ disappearance [T2Knumu 2013]. Assuming three neutrino flavors, normal mass hierarchy and $\theta_{23} \leq \pi/4$ yields a best-fit mixing angle $\sin^2(2\theta_{23}) = 1.000$ and $|\Delta m_{32}^2| = 2.44 \times 10^{-3}$ eV $^2/c^4$. If $\theta_{23} \geq \pi/4$ is assumed, the best-fit mixing angle becomes $\sin^2(2\theta_{23}) = 0.999$ while the mass splitting remains unchanged. Thus, octant choice can significantly affect allowed-region contours; in future, results will give $\sin^2(\theta_{23})$ instead of $\sin^2(2\theta_{23})$.

UW contributed significantly to the data-taking and analysis effort. Goals included: (1) Increasing precision of measurements in ν_e appearance studies (θ_{13}); (2) Resolving octant degeneracy ($\theta < 45^\circ$ or $> 45^\circ$); (3) Increasing precision of measurements in ν_μ disappearance studies (Δm_{23}^2 , $\sin^2 \theta_{23}$), to reduce systematics and improve our ν_e appearance measurements (Fig. 4); (4) Performing a combined 3-flavor analysis on ν_e appearance and ν_μ disappearance; (5) Data-taking with the anti-neutrino beam; (6) Beginning R&D on future water targets for the P0D; (7) First studies of the CP-violating phase δ_{CP} , to exploit future beam intensity upgrades, near detector improvements, and (possibly) a megaton-scale far detector, Hyper-Kamiokande.

T2K: UW contributions

The UW HEP neutrino group was responsible for two critical subsystems in the T2K experiment. The P0D water target system design posed unusually difficult requirements: layers of water 3 cm thick but 2 m 2 transversely had to be inserted between scintillating bar tracking layers in the P0D. We helped to design, prototype, test, and construct the 25 water target layers required, along with the water supply, pumping, and monitoring system associated. Continuous monitoring while water is in the targets is required, due to the danger to other P0D components in case of water leaks.

UW group members play a leading role in operating, monitoring, and maintaining the time synchronization system that is critical to T2K far detector event identification.

The UW group also plays a leading role in the operation and maintenance of the T2K time synchronization system. We installed high-precision GPS receivers and associated equipment at both sites, and were responsible for monitoring and maintaining this equipment. The goal was to timestamp events in SK, and beam spill arrivals at the neutrino target at J-PARC, to nanosecond precision. (Fig. 5) The precision time system will permit T2K to take advantage of the fine bucket structure of the J-PARC beam spills to attempt a neutrino time of flight (TOF) measurement [Wilkes 2012]. The HEP community has been made well aware of the potential pitfalls (!) of such measurements [Opera 2013]. We worked with experts at US-NIST [Zhang 2013], and its Japanese counterpart NICT [Fujieda, 2010], to ensure that our measurements were as precise as currently practical.

Obtaining this level of precision required calibrations by transportation of atomic clocks between near and far sites. UW constructed the equipment necessary to house and operate laboratory Cs clocks in a stable thermal and power environment for the roughly 24 hr period required for a round trip, and UW students participated in several calibration expeditions. A team of four UW professional MS degree students, working for academic credit, made key contributions to this effort. The NICT group provided a Two-Way Satellite Time and Frequency Transfer (TWSTFT) calibration operation to confirm our calibrations.

One student, Paul DeStefano, made such critical contributions that he received a part-time RA appointment in order to devote full time to this effort. As the MS students finish their degrees, new MS students were recruited to help. (Wilkes is faculty coordinator for the UW Physics Department's Professional MS Program).

During the last year of the grant period, most of the UW research activity involved J. Wilkes, and H. Berns, who had primary responsibility for monitoring and maintaining the GPS time synchronization system critical for T2K operations. Monitoring of the GPS equipment was also performed by unsupported volunteer MS students at UW, who performed daily checks of data quality.

Following closeout of the UW grant, primary responsibility for the T2K side of the GPS time synch system has been taken over by the Stony Brook University T2K group, as of late 2016.

III. Super-Kamiokande: Background

Super-Kamiokande (SK, Fig. 6) is a 50-kiloton water Cherenkov detector located in the Kamioka Observatory in Japan, with ~1000 m of rock (2500 m water equivalent) overburden. Super-Kamiokande is contained in a cylindrical stainless steel tank, 39.3 m in diameter and 41.4 m in height, optically separated into two regions, an inner detector (ID), and an outer detector (OD). On the inner surface of the ID, 20-inch photomultiplier tubes (PMTs) are uniformly distributed to detect Cherenkov light radiated by relativistic charged particles. The OD, which surrounds the ID with a 2 m thickness of water and 1885 outward-facing 8-inch PMTs, is used to reject cosmic ray muon events and to tag

existing charged particles. The OD also serves as a shield from radioactivity from materials outside the detector wall. [SK 2003]. Detected “high energy” neutrino interactions (with estimated deposited energy greater than 100 MeV) come in several categories: fiducial-volume (FV, where the interaction vertex is reconstructed within the inner 22.5 kT of water volume); fully contained (FC, where the OD shows no significant signal, indicating the interaction products were contained within the ID); partially contained (where the OD shows exiting tracks); and upward-going muons (where the interaction vertex was in the rock beneath the detector). Fig. 7 shows an event display for a T2K beam-induced ν_e interaction categorized as FC-FV.

Super-Kamiokande: most significant results

The Super-Kamiokande experiment started data taking in April, 1996, and in 1998 announced the first undisputed evidence for non-zero neutrino mass [SK 1998]. Observations continued until detector maintenance began in July 2001. (This original configuration is called SK-I.) On November 2001, while refilling the tank with water after maintenance, an accidental implosion occurred which destroyed more than half of the PMTs. Surviving and on-hand spare PMTs were used to rebuild the detector with half the original density of photosensor coverage in the ID. Data-taking with this configuration (SK-II) ran from October 2002 to October 2005, when the full ID coverage was restored(SK-III). The reduced photomultiplier tube density during SK-II did not significantly affect data on high energy (atmospheric) neutrino interactions. Data-taking with the SK-III configuration started October 2006 and ended when the detector was upgraded with newly developed front-end electronics and online data systems, in September 2008 (SK-IV, currently ongoing).

To date, the SK collaboration has published its results in 130 papers in high-impact refereed journals (most of them in Phys. Rev. Letters, Phys. Letters, and Phys. Rev. D).

Super-Kamiokande: UW contributions

The UW HEP neutrino group contributed to the initial detector construction, its several reconstructions and upgrades, and its continuing operation, since it was commissioned in 1996. Our participation in data reduction and analysis lies primarily within the “atmospheric neutrino and proton decay” analysis subgroup.

Analysis effort at UW centered on two areas. One was the search for evidence of astrophysical point sources using the upward-going muon data set, the highest energy subset of neutrino interactions in SK (theses by K. Shiraishi and E. Thrane, leading to publications [Shiraishi 2008] [Thrane 2009]). The other was the search in SK fully-contained and upward muon data for evidence of non-standard neutrino interactions, and other exotic theoretical models that could mimic neutrino oscillation, such as the Mass Varying Neutrino (MaVaN) model developed by theorists Neal Weiner, Ann Nelson, and their students here at UW. The ability to interact closely with theorists interested in neutrinos and a team as powerful as that led by Ann Nelson is a great advantage for our experimental group, as well as for UW theory graduate students, who better understand the limitations of experimental measurements after working with us.

Five UW students have written their PhD theses using SK data [UW 1998ff], and eight UW Professional MS degree students have contributed to and performed their capstone independent-study projects in SK.

IV. Conclusion

During the period of grant support, the UW neutrino physics group led by Prof. R. Jeffrey Wilkes conducted research addressing contemporary central questions in the field of neutrino physics. Contributions to the field included construction, operation, and maintenance of critical components of both the T2K long baseline neutrino experiment, and the Super-Kamiokande Neutrino Observatory, as well as data reduction and analysis for both projects. A central feature of UW effort was the training of graduate students (both PhD and professional MS degree students), and postdoctoral researchers. Undergraduate students also participated as laboratory assistants.

FIGURES

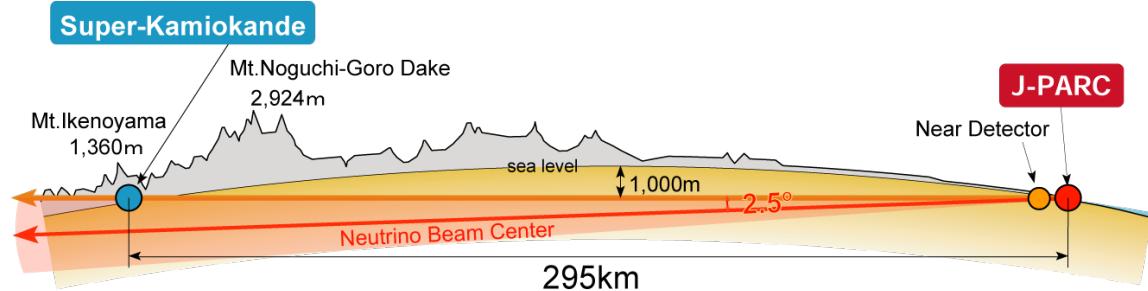


Figure 1: Overview of the T2K long-baseline neutrino experiment.

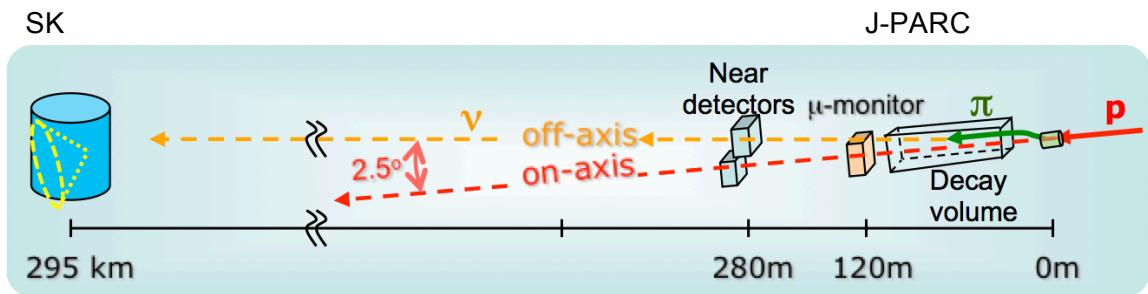


Figure 2: T2K neutrino production beamline, on- and off-axis near detectors, and far detector. (The potential Hyper-Kamiokande site is also located on the 2.5° off-axis cone.)

Figure 3: J-PARC proton beam intensity history, protons on target per pulse (red, right scale) and integrated POT (blue, left scale).

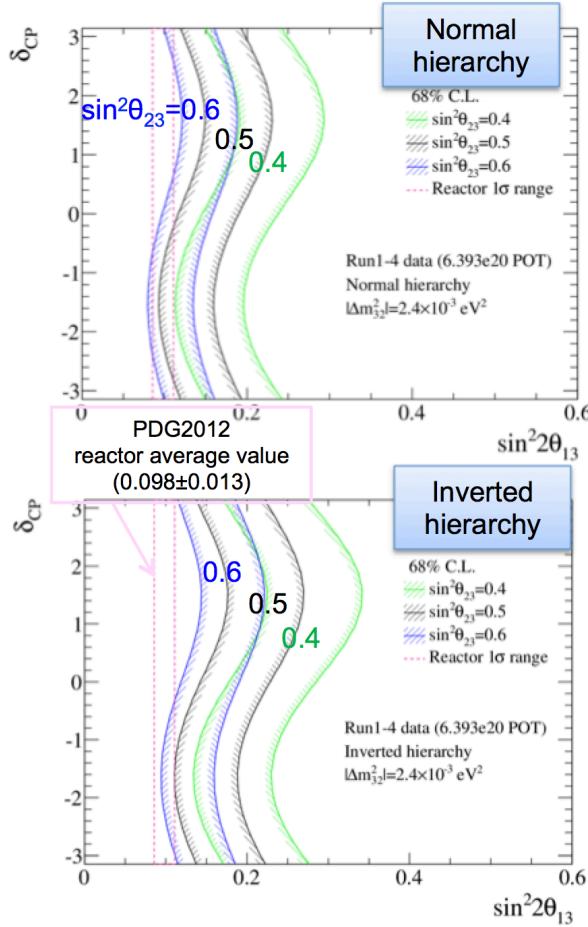


Figure 4: T2K sensitivity (using only data *already acquired*) to δ_{CP} vs $\sin^2 2\theta_{13}$, showing how $\sin^2 \theta_{23}$ and mass hierarchy (upper: normal; lower: inverted) affect results. Increased precision in θ_{23} will be critical.

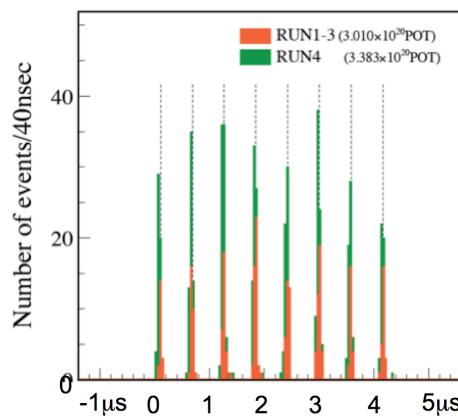
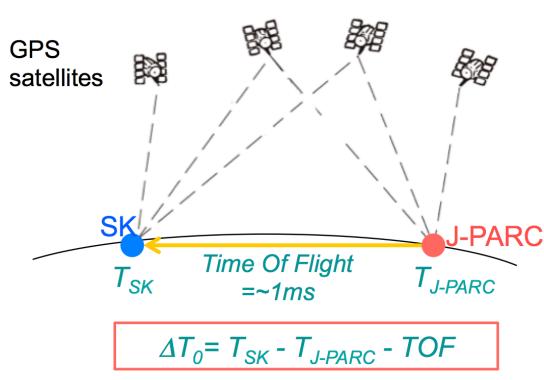



Figure 5: left: T2K GPS time synchronization scheme; right: beam-induced events in SK – timing accuracy displays the proton beam's bucket substructure.

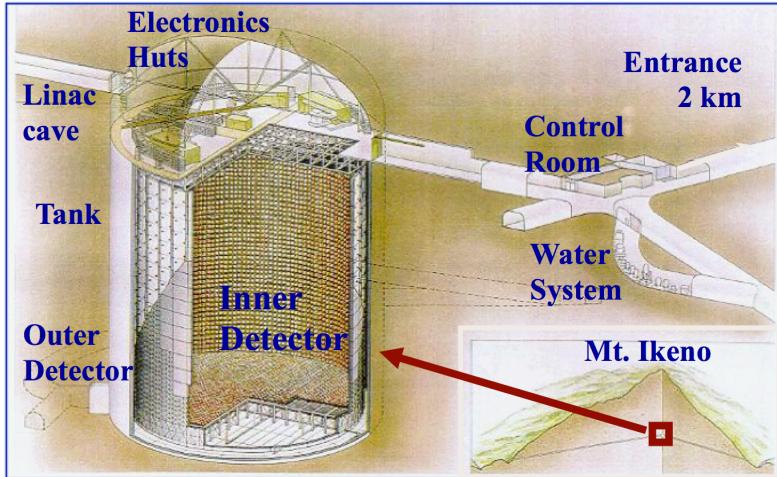


Figure 6: Super-Kamiokande underground neutrino detector.

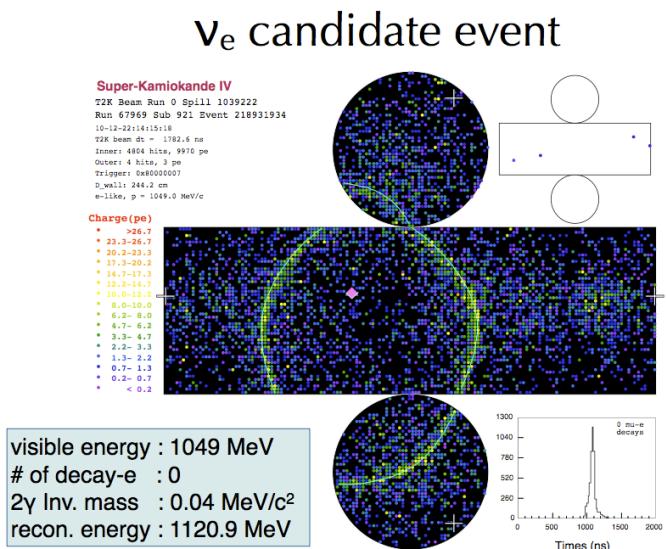


Figure 7: SK event display for a T2K electron neutrino appearance event.

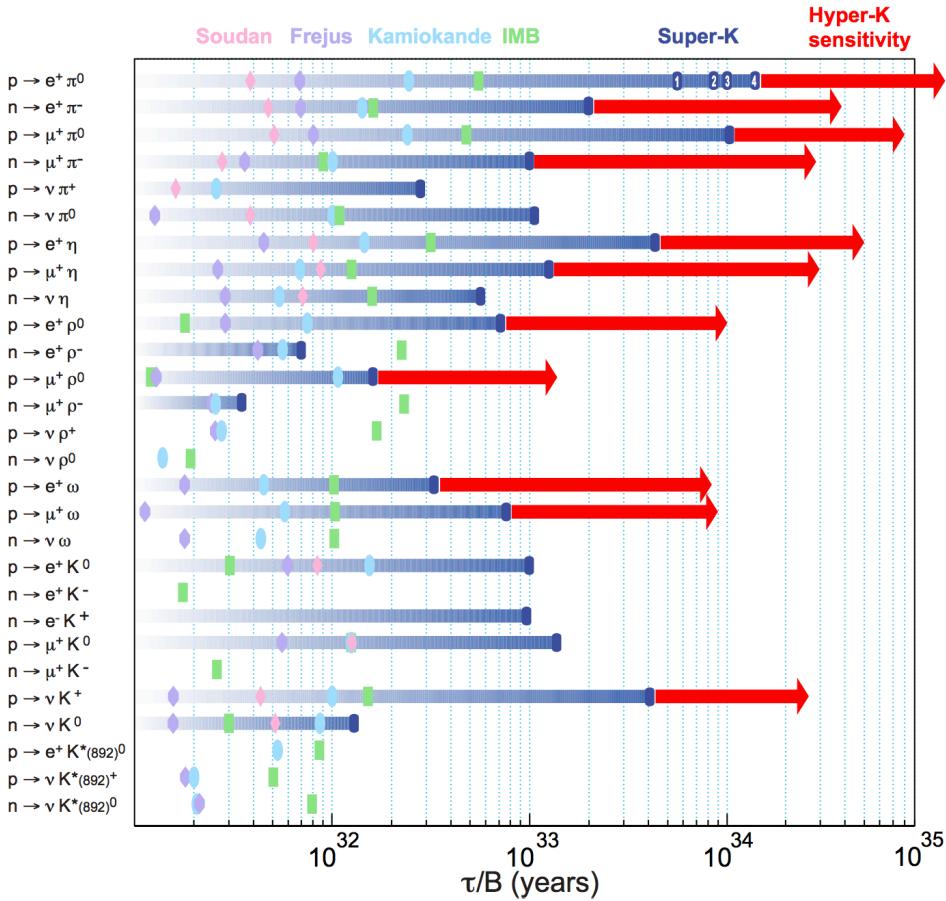


Figure 8: Super-K results on nucleon decay (latest 220 kt-yr data release), with potential for megaton-scale Hyper-K shown.

References

(Balantekin 2013) Balantekin, B. and Haxton, W., *Prog.Part.Nucl.Phys.* 71 (2013) 150

(Berns 2000) H. G. Berns and R. J. Wilkes, *IEEE Trans. Nucl. Sci.* 47 (2000) 340, DOI:10.1109/23.846177

(Fujieda 2010) H. Maeno, M. Fujieda, et al, *J. Natl. Inst. of Inform. and Communications Tech. (Japan)*, vol. 57, p. 188 (2010).

(HKWP 2013) “Hyper-Kamiokande Physics Opportunities”, White Paper submitted by the Hyper-Kamiokande Working Group to the 2013 Snowmass Summer Study

[IEEE 2000] H. G. Berns and R. J. Wilkes, *IEEE Trans. Nucl. Sci.* 47 (2000) 340, DOI: 10.1109/23.846177.

(J-PARC 2005) Yamazaki, Y., *AIP Conf.Proc.* 981 (2008) p. 29, DOI: 10.1063/1.2898968

(K2K 2006) M. H. Ahn, et al. (K2K Collaboration), *Phys. Rev. D* 74, 072003 (2006)

(McFarland 2013) McFarland, K.S., *Nucl. Phys. B (Proc. Suppl.)* 235–236 (2013) 143

(ND280 2009) Fererro, A., *AIP Conf. Proc.* 1189, p. 77, DOI: 10.1063/1.3274192

(ND280 2012) F. Retière, *Physics Procedia* 37 (2012) 1231

(NIM 2003) Y. Fukuda et al., *Nucl. Instrum. Methods Phys. Res., Sect. A* 501, 418

(2003).

(Opera 2013) M. Dracos, OPERA Collaboration, Nucl. Phys. B. (Proc. Suppl.) 235-236, 283 (2013)

(P0D 2012) S. Assylbekov et al. (T2K Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 686, 48 (2012)

(Pascoli 2013) Pascoli, S. and Schwetz, T., Adv.High Energy Phys. 2013 (2013) 503401

(PDG 2012) pdg.lbl.gov/2012/reviews/rpp2012-rev-neutrino-mixing.pdf

(Shibata 2008) Shibata, M., EPAC08, Conf. Proc. C0806233 (2008) THPP106

(Scholberg 2011) K. Scholberg, Ann. Rev. Nuc. Part. Sci. 2012, 62:81 (2012)

(Shiraishi 2008) K. Abe, et al, Phys. Rev. D **77**, 052001 (2008)

(SK 1998) “Evidence for oscillation of atmospheric neutrinos”, K. Abe et al, The Super-Kamiokande Collaboration, Phys.Rev.Lett. 81 (1998) 1562-1567

(SK 2003) Y. Fukuda et al., Nucl. Instrum. Methods Phys. Res., Sect. A 501, 418 (2003).

(Thrane 2009) E. Thrane, et al, Astrophys. J., 704:503, 2009, doi: 10.1088/0004-637X/704/1/503

(T2K 2011) K. Abe et al. (T2K Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 659, 106 (2011)

(T2Knue 2013) K. Abe et al. (T2K Collaboration), Phys. Rev. D 88, 032002 (2013)

(T2Knumu 2013) K. Abe et al. (T2K Collaboration), arXiv:1308.0465 [hep-ex], submitted to Physical Review Letters (2013)

(UW 1998ff) UW PhD Theses: Jeffrey George, 1998; Andrew Stachyra, 2002; Kiyoshi Shiraishi, 2006; Eric Thrane, 2008, Michael Dziomba, 2012

(Wilkes 2012) R. J. Wilkes, Time synchronization improvements in the T2K long11baseline neutrino experiment, 44th Precise Time And Time Interval Meeting (PTTI), session IV, paper 15 (2012)

(Yeh 2013) Minfang Yeh, private communication to W. Toki, 2013

(Zhang 2013) Victor Zhang, NIST/Boulder, private communications to J. Wilkes, 2013

V. Appendices

A. Super-Kamiokande Publications

Papers published in refereed journals only.

1. Measurement of radon concentration in Super-Kamiokande's buffer gas, Y. Nakano et al., Nucl. Instrum. Meth. A 867, 108-114 (2017), arXiv: 1704.06886
2. Search for proton decay via $p \rightarrow e + \pi^0$ and $p \rightarrow \mu + \pi^0$ in 0.31 megaton·years exposure of the Super-Kamiokande water Cherenkov detector, The Super-Kamiokande Collaboration, Phys. Rev. D 95, 012004 (2017), arXiv:
3. Search for Neutrinos in Super-Kamiokande associated with Gravitational Wave Events GW150914 and GW151226, The Super-Kamiokande Collaboration, Astrophys. J. L., 830, 1 (2016), arXiv: 1608.08745
4. Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation, E. Richard et al. (Super-Kamiokande Collaboration), Phys. Rev. D 94, 052001
5. Solar Neutrino Measurements in Super-Kamiokande-IV, The Super-Kamiokande Collaboration, Phys. Rev. D 94, 052010 (2016), arXiv: 1606.07538
6. Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande, The Super-Kamiokande Collaboration, Astropart. Phys. 81 (2016) 39-48, arXiv: 1601.04778
7. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV, Y. Zhang et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 93, 012004 (2016), arXiv
8. Search for Nucleon and DiNucleon Decays with an Invisible Particle and a Charged Lepton in the Final State at the Super-Kamiokande Experiment, V. Takhistov et al. (The Super-Kamiokande Collaboration), P
9. Search for dinucleon decay into pions at Super-Kamiokande, J. Gustafson et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 91, 072009 (2015), arXiv:1504.01041
10. Search for $n - \bar{n}$ oscillation in Super-Kamiokande, K. Abe et al. (The Super-Kamiokande Collaboration), Phys. Rev. D 91, 072006 (2015), arXiv:1109.4227
11. Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande, K. Choi et al. (The Super-Kamiokande Collaboration), Phys. Rev. Lett. 114, 141301 (2015),
12. Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, The Super-Kamiokande Collaboration, Phys. Rev. D 91, 052019 (2015), arXiv:1410.2008v2
13. Test of Lorentz invariance with atmospheric neutrinos, The Super-Kamiokande Collaboration, Phys. Rev. D 91, 052003 (2015)
14. Supernova Relic Neutrino Search with Neutron Tagging at Super-Kamiokande-IV, The Super-Kamiokande Collaboration, Astropart. Phys. 60, 41 (2015), arXiv:1311.3738

15. Search for proton decay via $p \rightarrow \nu K^+$ using 260 kiloton·year data of Super-Kamiokande, The Super-Kamiokande Collaboration, Phys. Rev. D 90, 072005 (2014), arXiv:1408.1195
16. Search for Trilepton Nucleon Decay via $p \rightarrow e + \nu \nu$ and $p \rightarrow \mu + \nu \nu$ in the Super-Kamiokande Experiment, The Super-Kamiokande Collaboration, Phys. Rev. Lett. 113, 101801 (2014), arXiv:1409.1947
17. Search for Nucleon Decay via $n \rightarrow \nu \pi^0$ and $p \rightarrow \nu \pi^0$ in Super-Kamiokande, The Super-Kamiokande Collaboration, Phys. Rev. Lett. 113, 121802 (2014), arXiv:1305.4391
18. Search for Dinucleon Decay into Kaons in Super-Kamiokande, The Super-Kamiokande Collaboration, Phys. Rev. Lett. 112 (2014)
19. First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation, The Super-Kamiokande Collaboration, Phys. Rev. Lett. 112, 091805 (2014), arXiv:1312.5176
20. Calibration of the Super-Kamiokande Detector, The Super-Kamiokande Collaboration, Nucl. Instr. & Meth, A 737C (2014), arXiv:1307.0162
21. A Measurement of the Appearance of Atmospheric Tau Neutrinos by Super-Kamiokande, The Super-Kamiokande Collaboration, Phys. Rev. Lett. 110, 181802 (2013), arXiv:1206.0328
22. Search for Nucleon Decay into Charged Anti-lepton plus Meson in Super-Kamiokande I and II, The Super-Kamiokande Collaboration, Phys. Rev. D, 85 112001 (2012), arXiv:1203.4030
23. Search for proton decay via $p \rightarrow \mu + K^0$ in Super-Kamiokande I, II, and III, The Super-Kamiokande Collaboration, Phys. Rev. D 86, 012006 (2012), arXiv:1205.6538
24. Search for GUT monopoles at Super-Kamiokande The Super-Kamiokande Collaboration, Astropart. Phys. 36, 131-136 (2012), arXiv: 1203.0940
25. Supernova relic neutrino search at super-Kamiokande. The Super-Kamiokande Collaboration, Phys. Rev. D 85, 052007 (2012)
26. Search for Differences in Oscillation Parameters for Atmospheric Neutrinos and Antineutrinos at Super-Kamiokande. The Super-Kamiokande Collaboration, Phys. Rev. Lett. 107, 241801 (2011)
27. An Indirect Search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande, The Super-Kamiokande Collaboration, Astrophys. J. 742, 78 (2011) arXiv:1108.3384
28. Solar neutrino results in Super-Kamiokande-III The Super-Kamiokande Collaboration, Phys. Rev. D 83, 052010 (2011), arXiv:1010.0118
29. Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, The Super-Kamiokande Collaboration, Phys. Rev. D 81, 092004 (2010), arXiv:1002.3471, Chi-Squared Map
30. High-speed charge-to-time converter ASIC for the Super-Kamiokande detector

H. Nishino et al., Nucl. Instrum. Meth.A 610(2009) 710-717, arXiv:0911.0986

31. Search for Astrophysical Neutrino Point Sources at Super-Kamiokande
 The Super-Kamiokande Collaboration, Astrophys. J. 704 (2009) 503-512,
 arXiv:0907.1594

32. Search for Neutrinos from GRB 080319B at Super-Kamiokande
 The Super-Kamiokande Collaboration, Astophys. J. 697, 730-734 (2009),
 arXiv:0903.0624

33. Kinematic reconstruction of atmospheric neutrino events in a large water
 Cherenkov detector with proton identification
 The Super-Kamiokande Collaboration, Phys. Rev. D 79 (2009) 112010,
 arXiv:0901.1645

34. Search for Proton Decay via $p \rightarrow e^+ \pi^0$ and $p \rightarrow \mu^+ \pi^0$ in a Large Water
 Cherenkov Detector
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 102, 141801 (2009) ,
 arXiv:0903.0676

35. First Study of Neutron Tagging with a Water Cherenkov Detector
 The Super-Kamiokande Collaboration, Astropart. Phys. 31, 320-328 (2009),
 arXiv:0811.0735

36. Solar neutrino measurements in Super-Kamiokande-II
 The Super-Kamiokande Collaboration, Phys. Rev. D 78, 032002 (2008),
 arXiv:0803.4312
 Pertinent SK information

37. Search for Matter-Dependent Atmospheric Neutrino Oscillations in Super-
 Kamiokande
 The Super-Kamiokande Collaboration, Phys. Rev. D 77, 052001 (2008) , hep-
 ex/arXiv:0801.0776

38. Study of TeV Neutrinos with Upward Showering Muons in Super-
 Kamiokande
 The Super-Kamiokande Collaboration, Astropart. Phys. 29, 42 (2008) , hep-
 ex/arXiv:0711.0053v1

39. Search for Supernova Neutrino Bursts at Super-Kamiokande
 The Super-Kamiokande Collaboration, Astrophys J. 669 (2007) 519, astro-
 ph/arxiv:0706.2283

40. Search for Neutral Q-balls in Super-Kamiokande II
 The Super-Kamiokande Collaboration, Phys. Lett. B 647 18-22 (2007), hep-
 ex/06008057

41. A Measurement of Atmospheric Neutrino Flux Consistent with Tau Neutrino
 Appearance
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 97, 171801 (2006), hep-
 ex/06007059

42. High energy neutrino astronomy using upward-going muons in Super-
 Kamiokande-I
 The Super-Kamiokande Collaboration, Astrophys.J. 652 (2006) 198, astro-
 ph/0606413

43. Search for Diffuse Astrophysical Neutrino Flux Using Ultra-High Energy
 Upward-Going Muons in Super-Kamiokande I

The Super-Kamiokande Collaboration, *Astrophys.J.* 652 (2006) 206-215, astro-ph/0606126

44. Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande
The Super-Kamiokande Collaboration, *Phys. Rev. D* 74, 032002 (2006), hep-ex/0604011

45. Solar neutrino measurements in Super-Kamiokande-I
The Super-Kamiokande Collaboration, *Phys. Rev. D* 73, 112001 (2006), hep-ex/0508053

46. Observation of the Anisotropy of 10 TeV Primary Cosmic Ray Nuclei Flux with the Super-Kamiokande-I Detector
The Super-Kamiokande Collaboration, *Phys. Rev. D* 75, 062003 (2007), astro-ph/0508468

47. Search for nucleon decay via modes favored by supersymmetric grand unification models in Super-Kamiokande-I
The Super-Kamiokande Collaboration, *Phys. Rev. D* 72, 052007 (2005), hep-ex/0502026

48. A Measurement of Atmospheric Neutrino Oscillation Parameters by Super-Kamiokande I
The Super-Kamiokande Collaboration, *Phys. Rev. D* 71, 112005 (2005), hep-ex/0501064

49. Evidence for an oscillatory signature in atmospheric neutrino oscillation
The Super-Kamiokande Collaboration, *Phys. Rev. Lett.* 93, 101801 (2004) hep-ex/0404034

50. Search for Dark Matter WIMPs using Upward Through-going Muons in Super-Kamiokande
The Super-Kamiokande Collaboration, *Phys. Rev. D* 70 (2004) 083523; hep-ex/0404025

51. Limit On the Neutrino Magnetic Moment Using 1496 Days of Super-Kamiokande-I Solar Neutrino Data
The Super-Kamiokande Collaboration, *Phys. Rev. Lett.* 93, 021802 (2004) hep-ex/0402015

52. Precise Measurement of the Solar Neutrino Day/Night and Seasonal Variation in Super-Kamiokande-I
The Super-Kamiokande Collaboration, *Phys. Rev. D* 69 (2004) 011104; hep-ex/0309011

53. A search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I
The Super-Kamiokande Collaboration, *Phys. Rev. D* 68 (2003) 092002; hep-ex/0307070

54. The Super-Kamiokande Detector
The Super-Kamiokande Collaboration, *Nucl. Instrum. Meth. A* 501(2003)418-462; (compressed PS file (gzip), 3.9MB) (PDF 3.3MB)

55. Search for anti-electron-neutrinos from the Sun at Super-Kamiokande-I
The Super-Kamiokande collaboration, *Phys. Rev. Lett.* 90(2003)171302; hep-ex/0212067

(compressed PS file (gzip), 124K) (PDF 156K)

56. Search for Supernova Relic Neutrinos at Super-Kamiokande
 The Super-Kamiokande collaboration, Phys. Rev. Lett 90, 061101 (2003); hep-ex/0209028
 (compressed PS file (gzip) 104K) (PDF 156K)

57. A Measurement of the Appearance of Atmospheric Tau Neutrinos
 by Super-Kamiokande., The Super-Kamiokande Collaboration,
 Phys. Rev. Lett. 110, 181802 (2013), arXiv:1206.0328

58. Search for Nucleon Decay into Charged Anti-lepton plus Meson
 in Super-Kamiokande I and II, The Super-Kamiokande Collaboration,
 Phys. Rev. D, 85 112001 (2012), arXiv:1203.4030

59. Search for proton decay via $p \rightarrow \mu + K_0$ in Super-Kamiokande I, II, and III,
 The Super-Kamiokande Collaboration, Phys. Rev. D 86, 012006 (2012),
 arXiv:1205.6538

60. Search for GUT monopoles at Super-Kamiokande
 The Super-Kamiokande Collaboration, Astropart. Phys. 36, 131-136 (2012), arXiv:
 1203.0940

61. Supernova relic neutrino search at super-Kamiokande.
 The Super-Kamiokande Collaboration, Phys. Rev. D 85, 052007 (2012)

62. Search for Differences in Oscillation Parameters for Atmospheric Neutrinos
 and Antineutrinos at Super-Kamiokande.
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 107, 241801 (2011)

63. An Indirect Search for WIMPs in the Sun using 3109.6 days of upward-going
 muons
 in Super-Kamiokande, The Super-Kamiokande Collaboration, Astrophys. J. 742, 78
 (2011) arXiv:1108.3384

64. Solar neutrino results in Super-Kamiokande-III
 The Super-Kamiokande Collaboration, Phys. Rev. D 83, 052010 (2011),
 arXiv:1010.0118

65. Atmospheric neutrino oscillation analysis with sub-leading effects
 in Super-Kamiokande I, II and III, The Super-Kamiokande Collaboration, Phys. Rev. D 81, 092004 (2010), arXiv:1002.3471, Chi-Squared Map

66. High-speed charge-to-time converter ASIC for the Super-Kamiokande
 detector
 H. Nishino et al., Nucl. Instrum. Meth.A 610(2009) 710-717, arXiv:0911.0986

67. Search for Astrophysical Neutrino Point Sources at Super-Kamiokande
 The Super-Kamiokande Collaboration, Astrophys. J. 704 (2009) 503-512,
 arXiv:0907.1594

68. Search for Neutrinos from GRB 080319B at Super-Kamiokande
 The Super-Kamiokande Collaboration, Astophys. J. 697, 730-734 (2009),
 arXiv:0903.0624

69. Kinematic reconstruction of atmospheric neutrino events in a large water
 Cherenkov detector with proton identification
 The Super-Kamiokande Collaboration, Phys. Rev. D 79 (2009) 112010,
 arXiv:0901.1645

70. Search for Proton Decay via $p \rightarrow e^+ \pi^0$ and $p \rightarrow \mu^+ \pi^0$ in a Large Water Cherenkov Detector
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 102, 141801 (2009) , arXiv:0903.0676

71. First Study of Neutron Tagging with a Water Cherenkov Detector
 The Super-Kamiokande Collaboration, Astropart. Phys. 31, 320-328 (2009), arXiv:0811.0735

72. Solar neutrino measurements in Super-Kamiokande-II
 The Super-Kamiokande Collaboration, Phys. Rev. D 78, 032002 (2008), arXiv:0803.4312
 Pertinent SK information

73. Search for Matter-Dependent Atmospheric Neutrino Oscillations in Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Rev. D 77, 052001 (2008) , hep-ex/arXiv:0801.0776

74. Study of TeV Neutrinos with Upward Showering Muons in Super-Kamiokande
 The Super-Kamiokande Collaboration, Astropart. Phys. 29, 42 (2008) , hep-ex/arXiv:0711.0053v1

75. Search for Supernova Neutrino Bursts at Super-Kamiokande
 The Super-Kamiokande Collaboration, Astrophys J. 669 (2007) 519, astro-ph/arxiv:0706.2283

76. Search for Neutral Q-balls in Super-Kamiokande II
 The Super-Kamiokande Collaboration, Phys. Lett. B 647 18-22 (2007), hep-ex/06008057

77. A Measurement of Atmospheric Neutrino Flux Consistent with Tau Neutrino Appearance
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 97, 171801 (2006), hep-ex/06007059

78. High energy neutrino astronomy using upward-going muons in Super-Kamiokande-I
 The Super-Kamiokande Collaboration, Astrophys.J. 652 (2006) 198, astro-ph/0606413

79. Search for Diffuse Astrophysical Neutrino Flux Using Ultra-High Energy Upward-Going Muons in Super-Kamiokande I
 The Super-Kamiokande Collaboration, Astrophys.J. 652 (2006) 206-215, astro-ph/0606126

80. Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Rev. D 74, 032002 (2006), hep-ex/0604011

81. Solar neutrino measurements in Super-Kamiokande-I
 The Super-Kamiokande Collaboration, Phys. Rev. D 73, 112001 (2006), hep-ex/0508053

82. Observation of the Anisotropy of 10 TeV Primary Cosmic Ray Nuclei Flux with the Super-Kamiokande-I Detector

The Super-Kamiokande Collaboration, Phys. Rev. D 75, 062003 (2007) , astro-ph/0508468

83. Search for nucleon decay via modes favored by supersymmetric grand unification models in Super-Kamiokande-I
 The Super-Kamiokande Collaboration, Phys. Rev. D 72, 052007 (2005), hep-ex/0502026

84. A Measurement of Atmospheric Neutrino Oscillation Parameters by Super-Kamiokande I
 The Super-Kamiokande Collaboration, Phys. Rev. D 71, 112005 (2005), hep-ex/0501064

85. Evidence for an oscillatory signature in atmospheric neutrino oscillation
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 93, 101801 (2004) hep-ex/0404034

86. Search for Dark Matter WIMPs using Upward Through-going Muons in Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Rev. D 70 (2004) 083523; hep-ex/0404025

87. Limit On the Neutrino Magnetic Moment Using 1496 Days of Super-Kamiokande-I Solar Neutrino Data
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 93, 021802 (2004) hep-ex/0402015

88. Precise Measurement of the Solar Neutrino Day/Night and Seasonal Variation in Super-Kamiokande-I
 The Super-Kamiokande Collaboration, Phys. Rev. D 69 (2004) 011104; hep-ex/0309011

89. A search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I
 The Super-Kamiokande Collaboration, Phys. Rev. D 68 (2003) 092002; hep-ex/0307070

90. The Super-Kamiokande Detector
 The Super-Kamiokande Collaboration, Nucl. Instrum. Meth. A501(2003)418-462;
 (compressed PS file (gzip), 3.9MB) (PDF 3.3MB)

91. Search for anti-electron-neutrinos from the Sun at Super-Kamiokande-I
 The Super-Kamiokande collaboration, Phys. Rev. Lett. 90(2003)171302; hep-ex/0212067
 (compressed PS file (gzip), 124K) (PDF 156K)

92. Search for Supernova Relic Neutrinos at Super-Kamiokande
 The Super-Kamiokande collaboration, Phys. Rev. Lett 90, 061101 (2003); hep-ex/0209028
 (compressed PS file (gzip) 104K) (PDF 156K)

93. Search for neutrinos from Gamma-Ray Bursts using Super-Kamiokande,
 The Super-Kamiokande collaboration, ApJ 578 (2002) 317-324; astro-ph/0205304

94. Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data
 The Super-Kamiokande Collaboration, Phys. Lett. B539(2002)179-187; hep-ex/0205075

(compressed PS file (gzip), 104K) (PDF file, 341K)

95. Constraints on Neutrino Oscillations Using 1258 Days of Super-Kamiokande Solar Neutrino Data
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 86(2001)5656-5660; hep-ex/0103033
 (compressed PS file (gzip), 101K) (PDF file, 208K)

96. 8B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 86(2001)5651-5655; hep-ex/0103032
 (compressed PS file (gzip), 98K) (PDF file, 199K)

97. ^{16}N as a calibration source for Super-Kamiokande
 The Super-Kamiokande Collaboration, Nucl. Instr. & Meth. A 458(2001)636-647; hep-ex/0005014
 (compressed PS file (gzip), 180K) (PDF file, 490K)

98. Tau neutrino favored over sterile neutrinos in atmospheric muon neutrino oscillations
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 85(2000) 3999-4003
 (compressed PS file (gzip), 218K) (PDF file, 218K)

99. Neutrino-induced upward stopping muons in Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Lett. B467(1999) 185
 (PS file, 290K) (compressed PS file (gzip), 66K) (PDF file, 270K)

100. Search for proton decay through $\text{p} \rightarrow (\text{anti})\backslash\text{nu} + \text{K}^{\{+}\}$ in a large water Cherenkov Detector
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 83(1999) 1529
 (PS file, 402K) (compressed PS file (gzip), 79K) (PDF file, 194K)

101. Observation of the East-West Anisotropy of the Atmospheric Neutrino Flux
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 82(1999) 5194
 (PS file, 231K) (compressed PS file (gzip), 77K) (PDF file, 158K)

102. Measurement of radon concentrations at Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Lett. 452(1999) 418-422
 (PS file, 578K) (compressed PS file (gzip), 123K)

103. Constraints on neutrino oscillation parameters from the measurement of day-night solar neutrino fluxes at Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 82 (1999) 1810-1814
 (PS file, 1610K) (compressed PS file (gzip), 274K) (PDF file, 534K)

104. Measurement of the flux and zenith-angle distribution of upward through-going muons by Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 82 (1999) 2644
 (PS file, 200K) (compressed PS file (gzip), 53K)

105. Measurement of the Solar Neutrino Energy Spectrum Using Neutrino-Electron Scattering
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 82 (1999) 2430
 (PS file, 1051K) (compressed PS file (gzip), 198K) (PDF file, 551K)

106. Calibration of Super-Kamiokande using an electron LINAC
 The Super-Kamiokande Collaboration, Nucl. Instr. Meth. A421 (1999) 113-129

(PS file, 3685K) (compressed PS file (gzip), 633K) (PDF file, 1095K)

107. Evidence for oscillation of atmospheric neutrinos
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1562-1567
 (PS file, 461K) (compressed PS file (gzip), 96K) (PDF file, 250K)

108. Measurements of the Solar Neutrino Flux from Super-Kamiokande's First 300 Days
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1158-1162
 (PS file, 1055K) (compressed PS file (gzip), 203K) (PDF file, 557K)

109. Search for Proton Decay via $p \rightarrow e^+ \pi^0$ in a Large Water Cherenkov Detector
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 3319
 (PS file, 569K) (compressed PS file (gzip), 106K) (PDF file, 268K)

110. Study of the atmospheric neutrino flux in the multi-GeV energy range
 The Super-Kamiokande Collaboration, Phys. Lett. B436 (1998) 33-41
 (PS file, 340K) (compressed PS file (gzip), 99K) (PDF file, 236K)

111. Measurement of a small atmospheric ν_μ / ν_e ratio
 The Super-Kamiokande Collaboration, Phys. Lett. B433 (1998) 9-18
 (PS file, 584K) (compressed PS file (gzip), 135K) (PDF file, 538K)

112. Search for neutrinos from Gamma-Ray Bursts using Super-Kamiokande,
 The Super-Kamiokande collaboration, ApJ 578 (2002) 317-324; astro-ph/0205304

113. Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data
 The Super-Kamiokande Collaboration, Phys. Lett. B539(2002)179-187; hep-ex/0205075
 (compressed PS file (gzip), 104K) (PDF file, 341K)

114. Constraints on Neutrino Oscillations Using 1258 Days of Super-Kamiokande Solar Neutrino Data
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 86(2001)5656-5660; hep-ex/0103033
 (compressed PS file (gzip), 101K) (PDF file, 208K)

115. 8B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 86(2001)5651-5655; hep-ex/0103032
 (compressed PS file (gzip), 98K) (PDF file, 199K)

116. ^{16}N as a calibration source for Super-Kamiokande
 The Super-Kamiokande Collaboration, Nucl. Instr. & Meth. A 458(2001)636-647; hep-ex/0005014
 (compressed PS file (gzip), 180K) (PDF file, 490K)

117. Tau neutrino favored over sterile neutrinos in atmospheric muon neutrino oscillations
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 85(2000) 3999-4003
 (compressed PS file (gzip), 218K) (PDF file, 218K)

118. Neutrino-induced upward stopping muons in Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Lett. B467(1999) 185
 (PS file, 290K) (compressed PS file (gzip), 66K) (PDF file, 270K)

119. Search for proton decay through $p \rightarrow (\text{anti})\nu + K^{\pm}$ in a large water Cherenkov Detector
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 83(1999) 1529
 (PS file, 402K) (compressed PS file (gzip), 79K) (PDF file, 194K)

120. Observation of the East-West Anisotropy of the Atmospheric Neutrino Flux
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 82(1999) 5194
 (PS file, 231K) (compressed PS file (gzip), 77K) (PDF file, 158K)

121. Measurement of radon concentrations at Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Lett. 452(1999) 418-422
 (PS file, 578K) (compressed PS file (gzip), 123K)

122. Constraints on neutrino oscillation parameters from the measurement of day-night solar neutrino fluxes at Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 82 (1999) 1810-1814
 (PS file, 1610K) (compressed PS file (gzip), 274K) (PDF file, 534K)

123. Measurement of the flux and zenith-angle distribution of upward through-going muons by Super-Kamiokande
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 82 (1999) 2644
 (PS file, 200K) (compressed PS file (gzip), 53K)

124. Measurement of the Solar Neutrino Energy Spectrum Using Neutrino-Electron Scattering
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 82 (1999) 2430
 (PS file, 1051K) (compressed PS file (gzip), 198K) (PDF file, 551K)

125. Calibration of Super-Kamiokande using an electron LINAC
 The Super-Kamiokande Collaboration, Nucl. Instr. Meth. A421 (1999) 113-129
 (PS file, 3685K) (compressed PS file (gzip), 633K) (PDF file, 1095K)

126. Evidence for oscillation of atmospheric neutrinos
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1562-1567
 (PS file, 461K) (compressed PS file (gzip), 96K) (PDF file, 250K)

127. Measurements of the Solar Neutrino Flux from Super-Kamiokande's First 300 Days
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1158-1162
 (PS file, 1055K) (compressed PS file (gzip), 203K) (PDF file, 557K)

128. Search for Proton Decay via $p \rightarrow e^+ \pi^0$ in a Large Water Cherenkov Detector
 The Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 3319
 (PS file, 569K) (compressed PS file (gzip), 106K) (PDF file, 268K)

129. Study of the atmospheric neutrino flux in the multi-GeV energy range
 The Super-Kamiokande Collaboration, Phys. Lett. B436 (1998) 33-41
 (PS file, 340K) (compressed PS file (gzip), 99K) (PDF file, 236K)

130. Measurement of a small atmospheric ν_μ / ν_e ratio
 The Super-Kamiokande Collaboration, Phys. Lett. B433 (1998) 9-18
 (PS file, 584K) (compressed PS file (gzip), 135K) (PDF file, 538K)

B. T2K Publications

Papers published in refereed journals only.

1. Measurement of the single π^0 production rate in neutral current neutrino interactions on water, T2K Collaboration (K. Abe et al.), arXiv:1704.07467 [hep-ex],
2. Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5×10^{21} protons on target, T2K Collaboration (K. Abe et al.), arXiv:1704.06409 [hep-ex],
3. Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline
4. Ko Abe et al., arXiv:1703.01361 [hep-ex], 10.1103/PhysRevD.95.111101, Phys. Rev. D95 (2017)* no. 11, 111101,
5. Combined Analysis of Neutrino and Antineutrino Oscillations at T2K, T2K Collaboration (K. Abe et al.), arXiv:1701.00432 [hep-ex], 10.1103/PhysRevLett.118.151801, Phys. Rev. Lett. 118 (2017)* no. 15, 151801,
6. First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector, T2K Collaboration (K. Abe et al.), arXiv:1605.07964 [hep-ex], 10.1103/PhysRevD.95.012010, Phys. Rev. D95 (2017)* no. 1, 012010,
7. Measurement of Coherent π^{\pm} Production in Low Energy Neutrino-Carbon Scattering, T2K Collaboration (K. Abe et al.), arXiv:1604.04406 [hep-ex], 10.1103/PhysRevLett.117.192501, Phys. Rev. Lett. 117 (2016)* no. 19, 192501,
8. Measurement of double-differential muon neutrino charged-current interactions on C_8H_8 without pions in the final state using the T2K off-axis beam, T2K Collaboration (Ko Abe et al.), arXiv:1602.03652 [hep-ex], 10.1103/PhysRevD.93.112012, Phys. Rev. D93 (2016)* no. 11, 112012,
9. Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam, T2K Collaboration (Ko Abe et al.), arXiv:1512.02495 [hep-ex], 10.1103/PhysRevLett.116.181801, Phys. Rev. Lett. 116 (2016)* no. 18, 181801,
10. Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1–3 GeV with the T2K INGRID detector, T2K Collaboration (K. Abe et al.), arXiv:1509.06940 [hep-ex], 10.1103/PhysRevD.93.072002, Phys. Rev. D93 (2016)* no. 7, 072002,
11. Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 π^0 detector, T2K Collaboration (K. Abe et al.), arXiv:1503.08815 [hep-ex], 10.1103/PhysRevD.91.112010, Phys. Rev. D91 (2015)* 112010,
12. Measurement of the ν_{μ} charged current quasielastic cross section on carbon with the T2K on-axis neutrino beam, T2K Collaboration (K. Abe et al.), arXiv:1503.08815 [hep-ex], 10.1103/PhysRevD.91.112010, Phys. Rev. D91 (2015)* 112010,

al.), arXiv:1503.07452 [hep-ex], 10.1103/PhysRevD.91.112002, Phys.Rev. D91 (2015)* no.11, 112002,

13. Upper bound on neutrino mass based on T2K neutrino timing measurements, T2K Collaboration (K. Abe et al.), arXiv:1502.06605 [hep-ex], 10.1103/PhysRevD.93.012006, Phys.Rev. D93 (2016)* no.1, 012006,

14. Measurements of neutrino oscillation in appearance and disappearance channels the T2K experiment with 6.6×10^{20} protons on target, T2K Collaboration (K. Abe et al.), arXiv:1502.01550 [hep-ex], 10.1103/PhysRevD.91.072010, Phys.Rev. D91 (2015)* no.7, 072010,

15. Measurement of the ν_μ charged-current quasielastic cross section on carbon with the ND280 detector at T2K, T2K Collaboration (K. Abe et al.), arXiv:1411.6264 [hep-ex], 10.1103/PhysRevD.92.112003, Phys.Rev. D92 (2015)* no.11, 112003,

16. Search for short baseline ν_e disappearance with the T2K near detector, T2K Collaboration (K. Abe et al.), arXiv:1410.8811 [hep-ex], 10.1103/PhysRevD.91.051102, Phys.Rev. D91 (2015)* 051102,

17. Neutrino oscillation physics potential of the T2K experiment, T2K Collaboration (K. Abe et al.), arXiv:1409.7469 [hep-ex], 10.1093/ptep/ptv031, PTEP 2015 (2015)* no.4, 043C01,

18. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector, T2K Collaboration (K. Abe et al.), arXiv:1407.7389 [hep-ex], 10.1103/PhysRevLett.113.241803, Phys.Rev.Lett. 113 (2014)* no.24, 241803,

19. Measurement of the inclusive ν_μ charged current cross section on iron and hydrocarbon in the T2K on-axis neutrino beam, T2K Collaboration (K. Abe et al.), arXiv:1407.4256 [hep-ex], 10.1103/PhysRevD.90.052010, Phys.Rev. D90 (2014)* no.5, 052010,

20. Time synchronization improvements in the T2K long-baseline neutrino experiment

21. R. Jeffrey Wilkes, PoS Neutel2013 (2013)* 083,

22. Measurement of the neutrino-oxygen neutral-current interaction cross section observing nuclear deexcitation γ rays, T2K Collaboration (K. Abe et al.), arXiv:1403.3140 [hep-ex], 10.1103/PhysRevD.90.072012, Phys.Rev. D90 (2014)* no.7, 072012,

23. Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector, T2K Collaboration (K. Abe et al.), arXiv:1403.2552 [hep-ex], 10.1103/PhysRevD.89.099902, 10.1103/PhysRevD.89.092003, Phys.Rev. D89 (2014)* 092003, Phys.Rev. D89 (2014)* 099902,

24. Precise Measurement of the Neutrino Mixing Parameter θ_{23} from Muon Neutrino Disappearance in an Off-Axis Beam, T2K Collaboration (K. Abe et al.), arXiv:1403.1532 [hep-ex], 10.1103/PhysRevLett.112.181801, Phys.Rev.Lett. 112 (2014)* no.18, 181801,

25. Observation of Electron Neutrino Appearance in a Muon Neutrino Beam, T2K Collaboration (K. Abe et al.), arXiv:1311.4750 [hep-ex], 10.1103/PhysRevLett.112.061802, Phys.Rev.Lett. 112 (2014)* 061802,

26. Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-axis Beam, T2K Collaboration (K. Abe et al.), arXiv:1308.0465 [hep-ex], 10.1103/PhysRevLett.111.211803, Phys.Rev.Lett. 111 (2013)* no.21, 211803,
27. Evidence of Electron Neutrino Appearance in a Muon Neutrino Beam, T2K Collaboration (K. Abe et al.), arXiv:1304.0841 [hep-ex], 10.1103/PhysRevD.88.032002, Phys.Rev. D88 (2013)* no.3, 032002,
28. Measurement of the inclusive ν_μ charged current cross section on carbon in the near detector of the T2K experiment, T2K Collaboration (K. Abe et al.), arXiv:1302.4908 [hep-ex], 10.1103/PhysRevD.87.092003, Phys.Rev. D87 (2013)* no.9, 092003,
29. T2K neutrino flux prediction, T2K Collaboration (K. Abe et al.), arXiv:1211.0469 [hep-ex], 10.1103/PhysRevD.87.012001, 10.1103/PhysRevD.87.019902, Phys.Rev. D87 (2013)* no.1, 012001, Addendum: Phys.Rev. D87 (2013)* no.1, 019902,
30. First Muon-Neutrino Disappearance Study with an Off-Axis Beam, T2K Collaboration (K. Abe et al.), arXiv:1201.1386 [hep-ex], 10.1103/PhysRevD.85.031103, Phys.Rev. D85 (2012)* 031103,
31. The T2K ND280 Off-Axis Pi-Zero Detector
32. S. Assylbekov et al., arXiv:1111.5030 [physics.ins-det], 10.1016/j.nima.2012.05.028, Nucl.Instrum.Meth. A686 (2012)* 48-63,
33. Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector
34. K. Abe et al., arXiv:1111.3119 [physics.ins-det], 10.1016/j.nima.2012.03.023, Nucl.Instrum.Meth. A694 (2012)* 211-223,
35. Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, T2K Collaboration (K. Abe et al.), arXiv:1106.2822 [hep-ex], 10.1103/PhysRevLett.107.041801, Phys.Rev.Lett. 107 (2011)* 041801,
36. The T2K Experiment, T2K Collaboration (K. Abe et al.), arXiv:1106.1238 [physics.ins-det], 10.1016/j.nima.2011.06.067, Nucl.Instrum.Meth. A659 (2011)* 106-135,

C. Theses by supported students

Paul DeStefano, The T2K Precise Time System, MS Thesis, University of Washington, 2015.

Kevin Connolly, Development Towards a Model-dependent Measurement of the $\nu\mu$ Charged Current Single π^+ Pion Momentum Spectrum, PhD Thesis, University of Washington, 2014

Scott Davis, Relative Cross Section Measurement of the Inclusive Charged Current Multiple Pion Production to Inclusive Charged Current from $\nu\mu$ at the Near Detector of the T2K Experiment, PhD Thesis, University of Washington, 2014

Eric Thrane, A Search for Astrophysical Neutrino Point Sources with Super-Kamiokande PhD Thesis, University of Washington, 2008

Kiyoshi Keola Shiraishi, Super-Kamiokande Atmospheric Neutrino Analysis of Matter-Dependent Neutrino Oscillation Models
PhD Thesis, University of Washington, Aug. 2006

Michael R. Dziomba, Study of neutrino Oscillation Models with Super-Kamiokande Atmospheric Neutrino Data, PhD Thesis, University of Washington, Aug. 2012

Andrew L. Stachyra, A Search for Astrophysical Point Sources of Neutrinos with Super-Kamiokande
PhD Thesis, University of Washington, Feb 2002

Jeffrey S. George, Experimental Study of the Atmospheric ν_μ / ν_e Ratio in the Multi-GeV Energy Range
PhD Thesis, University of Washington, Jun. 1998

D. MAJOR EQUIPMENT

Major items of equipment acquired for this project (as of 2017):

High-performance computer system

Location: Physics-Astronomy Building, University of Washington, Seattle, WA
Capabilities: rapid processing of extensive monte carlo and physics analysis data.
Two host computers with associated high-capacity data storage. Part of a nationwide T2K computing network managed by U. Colorado collaborators.

Super-Kamiokande Water Cherenkov Detector and Laboratory

Location: Kamioka Observatory, Higashi-Mozumi, Gifu Prefecture, Japan
Capabilities: World's largest underground neutrino detector; capable of observing interactions of neutrinos from 4 MeV to >100 GeV energies; detector for solar, atmospheric and supernova neutrinos. Laboratory includes large-scale computing and data-storage facilities.

T2K Pi-Zero detector (part of ND280 near detector complex)

Location: J-PARC Laboratory, Tokai, Ibaraki Prefecture, Japan
Capabilities: Accurate tracking and reconstruction of neutrino interactions in water target layers.

Precise GPS time synchronization system

Location: J-PARC Laboratory, Tokai, Ibaraki Prefecture, Japan, and Kamioka Observatory, Higashi-Mozumi, Gifu Prefecture, Japan
Capabilities: Provides time stamps for local events (proton beam spills at J-PARC, and neutrino interaction triggers at SK) with accuracy relative to UTC on the order of 30 ns, and using supplementary precision GPS receivers and offline processing, corrections to provide ~1 ns precision.