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Special Nuclear Material - detection/imaging
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SNM detection/localization

• Low signal rate
– Need large area detectors!

• Low signal to background
– Need background 

discrimination!

SNM
characterization/imaging

• Material properties

– Mass, multiplication, isotopics

• High resolution required

– Fine detector segmentation

• Multiple or extended sources

Standoff detection

Cargo screening Arms control treaty verification

emergency
response



Motivation
Timing as a Unique Signature

• Applications

– Treaty verification (e.g. New START)

– Emergency response 

• Requirements
– Portability

– The primary variables are mass, density, 
morphology of nuclear material and 
presence of shielding and moderators 

• Method
– Time-correlated particles are a unique 

signature of the fission process and 
therefore the nuclear material content

– SNM, by definition, exhibit these unique 
properties
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Principles of Fission and Chain Process
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http://www.atomicarchive.com/Fission/Fission2.shtml

gamma239Pu, 235U, 233U neutron

Fission by-products:
• 2-4 neutrons per fission (�̅�)
• 7-9 gammas per fission

Quantities of Interest:
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Subcritical multiplication – total neutrons 
created per source neutron:
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Current Methods 
Measurable Unique Signatures of Fissile Material

1. Gamma spectrum
– Isotopic content 

2. Total neutron rate
– Assay of the contents of specific materials 

3. Correlated counts
– Multiplicity analysis (singles, doubles, triples): 

fission rate, multiplication, (�, �) component

– Relative multiplication:
• Rossi-alpha distribution

• Feynman variance technique
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Plutonium Scrap Multiplicity 
Counter, used for accurate assays 
of plutonium metal, oxide, mixed 
oxide, or scrap (LANL PANDA 
Manual ).



Current Methods
Drawbacks and Limitations
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1. Gamma spectrum
• Attenuation and self-shielding 

2. Total neutron rate
• Requires administrative controls
• Spontaneous & induced fission and (�,n) 

sources are indistinguishable

3. Correlated counts
• Requires high efficiency, necessitates large 

detection system
• Efficiency has to be well known 
• Detector die-away time of 10-30 �s 

(“superfission concept”)
• Neutron energy information is lost due to 

moderation

He-3 based 
technologies



Thermal Neutron Detection
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Taken from ENDF database

n + 10B → 7Li +  + 2.31 MeV

n + 6Li → 3H +  + 4.78 MeV

n + 3He → 3H + 1H + 0.764 MeV
• High thermal cross section (efficiency)
• High Q-value (discrimination)



Fast Neutron Detection - Elastic
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Deposited Neutron Energy

�� =
4�

1 + � � cos� � ��

Incoming neutron ��

Target 
nucleus

�

Recoil 
Nucleus



Pulse Shape Discrimination
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Bayesian Probability Map

Figure from Glenn Knoll Radiation Detection & 
Measurement 3rd Edition

Pulse Shape Dependence on Interacting 
Particle 



Fast Correlation Discrimination Capable Organic 
Scintillators
New Approach
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System advantages:
1. Can be low efficiency
2. Efficiency can be ignored in 

calculations
3. Detection systems can be portable
4. Neutron energy information is 

preserved
5. Timing is within the resolution time 

of a fission chain 
Potential: 
1. Differentiate contributions from 

spontaneous fission, induced fission 
(fission chains), and (�, �) sources

2. Simultaneously solve for mass, 
multiplication, and shielding

“The 8-shooter”
Array of Stillbene crystal scintillator 

 PSD Capable
 Fast Timing



Neutron-Gamma Correlation – Same Fission
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Time of arrival 
difference 
between γ and 
neutron

Time-of-flight 
difference 
between γ and 
neutron

Detectors 

Δ��,� − Δt� ≤ 0

Observed:
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�

2��
−
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�
≤ 0

proton 
recoil

Measured Estimated



Neutron-Gamma Correlation – Fission Chain
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Δ���,�� > 0		if		�� = �	&	�� = �

Δ���,�� < 0		if		�� = �	&	�� = �

Δ���� 	− Δ�� ≤ 	Δ���,��

Estimated travel 
time difference 
between neutron 
and gamma

Measured time 
difference 
between neutron 
and nearest �

Time difference 
between fission 
events in a chainDetectors 

d

Spontaneous Fission
Induced Fission �

�

Distribution of times between fission events in a chain



Experiments
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Computer/digitizer Stilbene array

Beryllium Reflected Plutonium (BeRP) ball
in a 1” shell of High Density Polyethylene

Source
Distance 

(cm)
Total Time 
(minutes)

Rate of 
gamma-
Neutron 

Pairs (Bq)

BeRP 34 1730 136

BeRP + 0.5 
in Steel

34 600 211

BeRP + 1 
in Steel

34 1800 280

BeRP +1 in 
Nickel

34 1200 239

BeRP + 1.5 
in Steel

34 1200 243



Time Of Flight Fixed by Energy Estimation 
(TOFFEE) Distributions
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• Shape of the 
distribution changes 
with type of reflector 
and amount of reflector

• The spread of the 
distribution changes 
with multiplication

• Contains more 
information than simple 
rate of gamma-neutron 
correlations

• Correcting for distance 
makes it independent of 
geometry (source-to-
detector distance)

Source Multiplication

BeRP 4.433 ± 0.001

BeRP + 0.5 in 
Steel

5.716 ± 0.002

BeRP + 1 in
Steel

6.679 ± 0.002

BeRP +1 in 
Nickel

7.512 ± 0.002

BeRP + 1.5 in 
Steel

7.879 ± 0.002



0-D Monte Carlo Model
Neutron Walk in Subcritical Assembly
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3) Reflections/Moderation

Outcome Factors

• Coupling to surrounding 
material

• Type of surrounding 
material 
(moderator/reflector)

• Mass & Density of 
nuclear material 

• Cross-sections, 
probabilities of 
interaction

• Geometry

1) Capture

4) Escape Leakage

2) Fission

Spontaneous Fission
Induced Fission
Capture
Scatter

Neutron Interaction Possibilities:

Fissile Material

Moderator (low Z) / 
Reflector (high Z)



Fit Solutions (4 parameters)
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Fit Solutions (4 parameters)

Configuration Fission Prob Fission Time 
(ns)

Return Prob. Return Time 
(ns)

Multiplication 

Bare 0.2615 2.188 0.0104 60.04 4.433

0.5 in Fe 0.2846 2.11 0.00224 60.49 5.675

1 in Fe 0.2850 2.989 0.0043 63.79 5.886

1.5 in Fe 0.2949 2.801 0.00219 57.40 6.897

1 in Ni 0.2926 3.121 0.003528 25.94 6.703
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Fit Solutions (4 parameters)
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Fit Solutions (4 parameters)

Configuration Fission Prob Fission Time 
(ns)

Return Prob. Return Time 
(ns)

Multiplication 

Bare 0.2615 2.188 0.0150 57.72 4.433

0.5 in Fe 0.2615 2.188 0.0171 23.52 5.675

1 in Fe 0.2615 2.188 0.0512 85.30 5.886

1.5 in Fe 0.2615 2.188 0.0612 34.02 6.897

1 in Ni 0.2615 2.188 0.0009 35.85 6.703
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Conclusions
• Demonstrated a new approach for SNM characterization 

with organic scintillators

• Developed a simple model for understanding fission 
chain dynamics

• Performed parametric study of a subcritical assembly 
under different configurations

• Fit physical parameters to measured data with limited 
success
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EXTRA SLIDES
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TOFFEE for Cf-252

24



Neutron-neutron Scatter
Objective 2
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Cf-252 Simulation



�-n-n Coincidence Imaging 
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�-n-n 3D Reconstruction 
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Gamma Event
First Neutron Event
Second Neutron Event
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Preliminary Reconstruction of Cf-252
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Neutron Coincidence Counting Equations

1. � = ������ 1 + �
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• F = spontaneous fission rate 

• � = neutron detection efficiency

• M = neutron leakage multiplication,

• � = �, � to spontaneous fission neutron ratio

• ��= doubles gate fraction

• ��= triples gate fraction

• ���, ���, ���= factorial moments of the spontaneous fission neutron distribution

• ���, ���, ���= factorial moments of the induced fission neutron distribution
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Feynman-Y Approach

• Measures	correlated	counts	in	
a	fixed	gate

• Fission	chains	create	variance	
in	excess	of	Poisson	
distribution	

•
��

�
= 1 + �

– ��: variance

– �: mean 
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Figures courtesy of John Mattingly:
http://web.ornl.gov/sci/nsed/outreach/presen
tation/2011/Mattingly.pdf



Neutron Sources in Nuclear Fuel Cycle

• Spontaneous Fission
– Pu-238/240/242, Cf-252

– Energy spectrum is Maxwellian (~2 MeV mean):

• Sqrt(E) exp(-E/1.43)

• Induced Fission
– U-233/235, Pu-239

– Spectrum depend on the energy of incident neutron 

• (alpha, n) reactions
– Alpha + O-18  Ne-21 + n

– Alpha + F-19  Na-22 + n

– Spectrum depends on target isotope to second order alpha 
energy 
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Note on TCPH Sensitivity

• Correlation measurements are sensitive to 
multiplying sources because of the increasing 
chance of correlating particles from different 
chains

• Plot: Correlation probability vs. fission chain 
length 
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MC-Fiss Overview
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Sample distributions:
• Binomial(n=�̅�, p=��)

• Number of fissions born in the next 
generation. 

• �� = Exponential(mean = ��) + ��
• Time from 0th generation fission

Pseudo code flow for each history:
1. Sample number of fissions and time 

for each successful fission
2. Set �� = ��
3. Call function recursively for each 

fission time. 

Assumptions:
• No	special	consideration,	

infinite	medium
• Leakage	and	absorption	are	

combined	into	single	term
• No	energy	dependence

• Cross-sections
• Moderation	

Input variables:
• �̅� = 3: mean number of 

neutrons per fission
• �� = 0.24 : probability of fission

• �� = 1.58	��: mean time 

between fission chains



Measured Quantities from Organic 
Scintillators 
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90° 75° 60° 45° 30° 15° 0° = �
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Neutron-Gamma Timing
Deposited Neutron Energy

�� =
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1 + � � cos� � ��

Incoming neutron ��

Target 
nucleus

�

Recoil 
Nucleus



3D Reconstruction Math
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Δ� =
��

��
−

��

�
[1]

� =
�����

����
�

��
[2]

� = �� ��� ⋅ �� = ���	 [3] 

��� traces the surface of the cone
Substitute [1] and [3] into [2] and solve for ��:

�� =
������ − ���

��+ ��
� ���� − ��������� + �����

� + ����
� − ���

�

�� − ��

The solution is a parametric equation for �� in terms of �, the cosine between cone 
surface and unit vector between n0 and γ.

Equation [2] is part of a solution of the intersection of two spheres 

n0γ

Rn
Rγ

d

x


