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Special Nuclear Material - detection/imaging

emergency
response

AT at

Arms control treaty verification

SNM
characterization/imaging
Material properties

— Mass, multiplication, isotopics
High resolution required

— Fine detector segmentation
Multiple or extended sources




Motivation
Timing as a Unique Signature

Applications
— Treaty verification (e.g. New START)
— Emergency response

Requirements
— Portability

— The primary variables are mass, density,
morphology of nuclear material and
presence of shielding and moderators

Method

— Time-correlated particles are a unique
signature of the fission process and
therefore the nuclear material content

— SNM, by definition, exhibit these unique
properties




Principles of Fission and Chain Process
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Current Methods
Measurable Unique Signatures of Fissile Material

1. Gamma spectrum \
— Isotopic content p—
2. Total neutron rate | /
— Assay of the contents of specific materials }
1

3. Correlated counts ; . |
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Current Methods
Drawbacks and Limitations

1. Gamma spectrum
 Attenuation and self-shielding

2. Total neutron rate
 Requires administrative controls
 Spontaneous & induced fission and (a,n)
sources are indistinguishable

3. Correlated counts

* Requires high efficiency, necessitates large
detection system

e  Efficiency has to be well known

 Detector die-away time of 10-30 us
(“superfission concept”)

 Neutron energy information is lost due to
moderation

5 He-3 based
technologies




Thermal Neutron Detection

n+3He > 3H + 'H + 0.764 MeV
* High thermal cross section (efficiency)
* High Q-value (discrimination) n+18 > 7Li+ o +2.31 MeV

n+6Li >3H+o+4.78 MeV

Taken from ENDF database
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Fast Neutron Detection - Elastic

Deposited Neutron Energy
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Pulse Shape Discrimination

Pulse Shape Dependence on Interacting Bayesian Probability Map
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Fast Correlation Discrimination Capable Organic

Scintillators
New Approach

System advantages:

1. Can be low efficiency

2. Efficiency can beignored in

calculations

Detection systems can be portable

4. Neutron energy information is
preserved

5. Timing is within the resolution time

of a fission chain “The 8-shooter”
Potential: Array of Stillbene crystal scintillator

v PSD Capable
v" Fast Timing

w

1. Differentiate contributions from
spontaneous fission, induced fission
(fission chains), and (a, n) sources

2. Simultaneously solve for mass,
multiplication, and shielding




Neutron-Gamma Correlation — Same Fission
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Neutron-Gamma Correlation — Fission Chain
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Experiments

Computer/digitizer Stilbene array
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Time Of Flight Fixed by Energy Estimation
(TOFFEE) Distributions
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0-D Monte Carlo Model

Neutron Walk in Subcritical Assembly

M&
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Neutron Interaction Possibilities:
# Spontaneous Fission

# Induced Fission

% Capture

@ Scatter

Outcome

1) Capture
2) Fission

3) Reflections/Moderation

4) Escape Leakage

Fissile Material

Moderator (low Z) /
Reflector (high Z)

155

Factors

Coupling to surrounding
material

Type of surrounding
material
(moderator/reflector)
Mass & Density of
nuclear material
Cross-sections,
probabilities of
interaction

Geometry
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Fit Solutions (4 parameters)

1

7

Configuration Return Prob. Return Time Multiplication
(ns) (ns)

Bare
0.5in Fe
linFe
1.5in Fe
1in Ni

0.2615
0.2846
0.2850
0.2949
0.2926

2.188
2.11

2.989
2.801
3.121

0.0104
0.00224
0.0043

0.00219
0.003528

60.04
60.49
63.79
57.40
25.94

4.433
5.675
5.886
6.897
6.703




Fit Solutions (4 parameters
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Fit Solutions (4 parameters)

(ns) (ns)
Bare 0.2615 2.188 0.0150 57.72 4.433
0.5in Fe 0.2615 2.188 0.0171 23.52 5.675
1linFe 0.2615 2.188 0.0512 85.30 5.886
1.5in Fe 0.2615 2.188 0.0612 34.02 6.897

1in Ni 0.2615 2.188 0.0009 35.85 6.703




Conclusions

Demonstrated a new approach for SNM characterization
with organic scintillators

Developed a simple model for understanding fission
chain dynamics

Performed parametric study of a subcritical assembly
under different configurations

Fit physical parameters to measured data with limited
success
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TOFFEE for Cf-252
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Neutron-neutron Scatter
Objective 2

Cf-252 Simulation
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y-n-n Coincidence Imaging
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y-n-n 3D Reconstruction




Preliminary Reconstruction of Cf-252
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Neutron Coincidence Counting Equations

1. S=FeMvs,;(1+ )

FEZ];dMZ [ Us2 + ( Viq )Usl(l + “)Vlzl

2. D=

Fe3fiM3 M- i
— [Usz + ( ) [2V52vi2 + V51 (1 + @) Vi3] + 3 ( ) var (1 + v

Vi1~ Vi1
 F = spontaneous fission rate

* € = neutron detection efficiency

« M = neutron leakage multiplication,

« a = (a,n) to spontaneous fission neutron ratio

* f;= doubles gate fraction

« f;= triples gate fraction

* Vg, Vs, V3= factorial moments of the spontaneous fission neutron distribution

* V1, Vpp, V3= factorial moments of the induced fission neutron distribution




Feynman-Y Approach

e Measures correlated counts in
a fixed gate

 Fission chains create variance
in excess of Poisson
distribution

2
« Z=1+4Y
U

— o¢2: variance
— u:mean

Frequency (per event)

Feynman-Y

30

Measurement =—Poisson

Coincidence Gate: 1024 us

0 10 20 30 40 50 60 70

Multiplicity

" P Pl

0.5

4.5 kg Pu sphere in 7.6 cm poly

0 500 1000 1500 2000

Coincidence Gate (pus)

Figures courtesy of John Mattingly:
http://web.ornl.gov/sci/nsed/outreach/presen
tation/2011/Mattingly.pdf




Neutron Sources in Nuclear Fuel Cycle

Spontaneous Fission
— Pu-238/240/242, Cf-252
— Energy spectrum is Maxwellian (~2 MeV mean):
« Sqrt(E) exp(-E/1.43)
Induced Fission
— U-233/235, Pu-239
— Spectrum depend on the energy of incident neutron

(alpha, n) reactions
— Alpha + O-18 - Ne-21 +n
— Alpha + F-19 & Na-22 + n

— Spectrum depends on target isotope to second order alpha
energy




Note on TCPH Sensitivity

« Correlation measurements are sensitive to
multiplying sources because of the increasing
chance of correlating particles from different
chains

* Plot: Correlation probability vs. fission chain
length




MC-Fiss Overview

Assumptions:
* No special consideration,
infinite medium
* Leakage and absorption are
combined into single term
* No energy dependence
* C(Cross-sections
* Moderation

Input variables:
* vV, = 3: mean number of
neutrons per fission
* pr = 0.24: probability of fission
* Uy = 1.58 ns: meantime
between fission chains

Sample distributions:
* Binomial(n=vy, p=pr)
*  Number of fissions born in the next
generation.

* tr = Exponential(mean = ui¢) + £,
e Time from Oth generation fission

Pseudo code flow for each history:
1. Sample number of fissions and time
for each successful fission

2. Setty=ts
3. Call function recursively for each
fission time.




Measured Quantities from Organic

Scintillators

Deposited Neutron Energy

Incoming neutron E,
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3D Reconstruction Math

At =20 % [1]

Vn c

_ (d?+RR-R})
2d

X

X = Rn(ﬁ:l ' 55\) = Rpu [3]

R,, traces the surface of the cone
Substitute [1] and [3] into [2] and solve for R,;:

_ c*Atv, — dvju + JV2(c2d? — 2c2dAtv,p + (cv,At)? + (dv,p)? — (dv,)?)

n CZ—‘DZ

The solution is a parametric equation for R,, in terms of u, the cosine between cone
surface and unit vector between nyand y.

Equation [2] is part of a solution of the intersection of two spheres




