
Optimization Modeling with

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.
SANDxxxx-xxxx Sandia Creative Group 284-2905

Algebraic Optimization

Pyomo Overview

Composable,
structured models

Stochastic
Programming

Open development
model

•	Explicit declarative (algebraic) modeling

•	 Equality or inequality constraints

•	 Linear or nonlinear equations

•	 Continuous or discrete decision variables

•	Solve problems to provable local or global optimality

•	For nonlinear problems we use exact first and second
derivatives (obtained using automatic differentiation)

•	Algebraic optimization is not:

•	 Derivative-free (blackbox) optimization

•	 Heuristic-based solution techniques (genetic algorithm, 		
			 simulated annealing, etc.)

Idea: a Pythonic framework for formulating optimization models
•	 Provide a natural syntax to describe mathematical models

•	 Formulate large models with a concise syntax

•	 Separate modeling and data declarations

•	 Enable data import and export in commonly used formats

Highlights:

•	Python provides a clean, 		
	 intuitive syntax

•	Python scripts provide a 		
	 flexible context forexploring 	
	 the structure of Pyomo 		
	 models

•	Explicitly represent 			
	 model algebra

Pyomo at a Glance

Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling
Objects NEOS

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

DAKOTA

MORE THAN JUST
MATHEMATICAL MODELING…

•	Unique differentiating capabilities

•	Structured, hierarchical modeling
•	 Capture physically (or logically) meaningful entities explicitly 	

		 	 in the optimization model

•	Extensible modeling environment

•	 More than just an “algebraic modeling language”

•	 Easily extendable to new modeling paradigms by adding new 	
			 constructs

•	Model transformations

•	 Support automated conversion of model from one problem 		
			 definition to another

•	 Allows automated conversion of non-algebraic constructs into 	
			 forms that can be solved by existing solvers

•	 Transformations can be “chained” to support a complicated 		
			 analyses											

																 cont’d

•	Advanced solution strategies

•	 Because Pyomo is embedded in Python, users have the full power 	
			 of a modern programming language at their fingertips

•	 Powerful framework to support the rapid development of new 		
			 optimization algorithms and custom solution strategies

•	 Blurring the traditional distinction between “optimization 			
			 modeling environment” and “optimization solver”

•	Object-based model

•	 Explicit structure

•	 High-level constructs for 		
		 more intuitive modeling

•	Standard algebraic model

•	 Flat representation

•	 Implicit structure

Compiled model sent to
optimization solver

Transformation-centric
workflows

+Model Data Compile Problem

Solve

Transform

•	Transformations

•	Project from one problem space to another

•	Standardize common reformulations or 						
		 approximations

•	Convert “unoptimizable” modeling constructs into 		
		 equivalent optimizable forms

•	 differential equations, disjunctions, complementarities, 			
		 	 bilevel models, etc.

•	Separate model expression from solution approach

•	Reduce errors due to manual implementation

DIFFERENT WAYS TO FORMULATE abs()

𝑎𝑎 = (𝑥𝑥 − 3)(+𝜖𝜖+

𝑎𝑎 =
2(𝑥𝑥 − 3)

1 + 𝑒𝑒/	
1/2
3
− 𝑥𝑥 + 3

𝑎𝑎 ≥ 𝑥𝑥 − 3
𝑎𝑎 ≥ 3 − 𝑥𝑥

𝑎𝑎 = 𝑏𝑏 + 𝑐𝑐
𝑥𝑥 − 3 = 𝑐𝑐 − 𝑏𝑏
𝑏𝑏 ≥ 0 ⊥ 𝑐𝑐 ≥ 0

𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥 − 3)

A TRANSFORMATION-CENTRIC VIEW OF abs()

0,0
)1(

0,0
0000

)(

³³
-£

£
-=
+=

Þ

³³

úû
ù

êë
é

=
¬Úúû

ù
êë
é

=

-=
+=

Þ
³^³

-=
+=

Þ=

-+

-

-

-+

-+

-+

+-

-+

-+

-+

-+

-+

xx
yMx

Myx
xxx
xxf

xx
x
Y

x
Y

xxx
xxf

xx
xxx
xxf

xabsf

model = ConcreteModel()
[…]

TransformationFactory(“abs.complements”).apply_to(model)
TransformationFactory(“mpec.disjunctive”).apply_to(model)
TransformationFactory(“gdp.bigm”).apply_to(model)

•	Multi-stage planning for uncertain environments

•	 Continuous / discrete decisions, linear / nonlinear models

•	 Deterministic equivalent

•	 Scenario-based and stage-based decomposition algorithms

•	 Supports serial, SMP workstation, HPC cluster environments

Scalable
optimization of
dynamic systems

•	Rapid development of dynamic models

•	 Directly express dynamics in a natural form (differential equations)

•	 Automatic conversion to a large-scale nonlinear optimization 			
		 problem

•	 Solution using state-of-the-art serial solvers; scalable parallel 			
		 decomposition strategies

•	 Compatible with other Pyomo extensions (e.g., stochastic dynamic 		
		 problems)

è è

•	Pyomo homepage (www.pyomo.org)

•	Public development process (hosted on GitHub)

•	Unrestrictive, commercial-friendly licensing (3-clause BSD)

•	Large user base

•	 Compatible with other Pyomo extensions (e.g., stochastic dynamic 	
		 problems)

•	Key funding for Pyomo development provided by ASCR and FE Chaining transformations

If we mean “𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥 − 3)”,
why don’t we write that in our models???

SAND2016-11221C

