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Abstract—Tasking is a prominent parallel programming
model. In this paper we conduct a first study into the feasi-
bility of task-parallel execution at the CUDA grid, rather than
the stream/kernel level, for regular, fixed in-out dependency
task graphs, similar to those found in wavefront computational
patterns, making the findings broadly applicable. We propose
and evaluate three CUDA task progression algorithms, where
threadblocks cooperatively process the task graph, and argue
about their performance in terms of tasking throughput, atomics
and memory IO overheads. Our initial results demonstrate
a throughput of 38 million tasks/second on a Kepler K20X
architecture.

I. INTRODUCTION

Tasking is a promising parallel programming model that
is often suggested as a candidate for future exascale systems
if scheduling and overheads issues can be overcome ([1], [2],

(31, [4D.

Programming unconventional computing devices, such as
GPGPU accelerators, remains a complex problem mainly due
to their programming model, which exhibits new levels of
concurrency, less guarantees on ordering and intricate forms of
scheduling, often programmable via high-level parallel APIs
([51, [61, [71, [8]). Defining or even implementing tasking
for GPUs is particularly challenging, with existing approaches
targeting coarser threads of execution ([9], [10], [11], [12]).
So dramatic are, however, the improvements when success-
fully tapping these devices’ performance, that makes the race
towards enabling parallel programming APIs, which are known
to address irregular and unstructured forms of parallelism, even
more important.

This work will show that it is possible to manage task
progression in its entirety on a GPU, using the threadblocks of
a single CUDA kernel as the means for doing so. specifically,
we will show that CUDA threadblocks can co-operate, in a
concurrent fashion, to notify each-other of task availability
without the host’s support.

Our work had originally targeted the KBA sweep algorithm
in an effort to enable tasking for the Denovo radiation transport
kernel ([13], [14]), but it immediately became clear that it
had broader application. The KBA sweep algorithm is used
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to solve problems in deterministic radiation transport. For
these problems, modeling the flux of particles flowing through
a spatial volume results in a coupling of the computations
between neighboring gridcells. In particular, for the 3D struc-
tured grid case which is commonly implemented, each gridcell
depends for the computation of its result on the neighbor
upstream gridcells in each of the three coordinate directions.
These dependencies lead to a restriction on the allowable
computational patterns or sequence of operations that could
be used to perform the computation. Problems of this type
are often solved by wavefront methods. Originally proposed
by Lamport [15], wavefront computations have had applica-
tions to diverse areas including linear equation solvers [16],
[17], sequence alignment [18] and radiation transport [19].
Their parallelization challenge lies in the inherently recursive
data coupling [20] which necessitates the decomposition of
the problem into wavefronts with restricted parallelism and
potential load imbalance.

Section II provides an overview of related work. Section
III, proceeds to describe our wavefront problem, its “taskifica-
tion”, and three CUDA grid-parallel algorithms for processing
the corresponding task graph. It is then followed by Section
IV, which presents some preliminary results and their analysis.
We finally conclude with some remarks on findings and next
steps.

II. RELATED WORK

There are several task parallel languages and runtime li-
braries that have been used to parallelize irregular and dynamic
applications. OpenMP task parallelism applies to dynamic
applications because it provides a mechanism for expressing
parallelism on irregular regions of code where dependencies
can be satisfied at runtime. It has been shown ([21], [22],
[23]) that OpenMP tasks are more efficient in parallelizing
wavefronts and graph-based applications than thread-level
parallelism because it is easier to express the parallelism
on unstructured regions while leaving the task scheduling
decisions to the runtime. However, such studies are limited
in how to map tasks to accelerators or applications with large
numbers of threads. Load imbalances, scheduling overheads
and work inflation (due to data locality) can adversely affect
the efficiency of task parallelism at scale [24]. These sources
of overhead need to be mitigated carefully in applications,
especially at large scale. OpenMP 3.1 provides mechanisms
to manage some of these overheads by allowing work stealing
with the untied clause to improve load balance, reducing the
memory overheads by merging the data environment of tasks
with the mergeable clause, and by reducing the task overhead
with the specification of undeferred and included tasks via the
if and final clauses. However, little is understood about how



these overheads will be affected when mapping tasks to accel-
erators, especially GPUs. Most approaches focus supporting
tasks at the CUDA/OpenCL kernel level, which manifests as
a host runtime that is capable of orchestrating the concurrent
launching of kernels on the devices and the transfer of data
back and forth, which are often modeled as tasks too ([9],
[10], [11], [12]). Efficiently isolating these responsibilities at
the device level is a prerequisite for making task programming
models a viable model for accelerator computing.

III. TASKED WAVEFRONT COMPUTATIONS

The left panel of Figure 2 depicts our source problem’s
data grid (cells) and their dependencies: to update each cell
(i,7) one needs to update the adjacent cells (i — 1,j) and
(i,7 — 1) first, if defined. In a typical wavefront loop, one
may imagine the computation proceeding as follows: cell (0,0)
first, then cells (1,0) and (0, 1), cells (2,0), (1,1) and (0, 2),
i.e. in “waves”. Waves have to be interleaved by a barrier to
prevent races such as working on (2, 0) before (1,0) has been
updated. Synchronization is an expensive operation. In task-
parallel mode, one decomposes work into tasks while defining
the order by which these tasks may be executed in. Tasking
runtimes operate on a task graph data structure — a dependency
graph variant that captures the dependencies among tasks.
The main responsibility of the runtime then is to notify the
processing elements (threads/processes) of tasks that are ready
to run. We will talk now about the structures that are specific
to our domain.

We have selected an ultra fine-grain decomposition, where
tasks are made to correspond directly to gridcells. Let us define
the dependency matrix D as an nrows X ncols matrix, with
its entries initialized as shown below. The value of D; ; is
the number of cells that cell (4,5) depends on. At runtime,
if D; ; has never been visited and is found equal to O, then
this signifies that task (7, j) is ready to run. Clearly, since cell
(0,0) is 0, the corresponding task is immediately ready to run.
The right panel of Figure 2 shows an initialized dependency

matrix.
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The algorithm shown in Figure 1 provides a generic, serial,
method for processing the task graph: find a cell (i, 7) with
D; ; equal to 0, execute it and notify those cells that depend
on it that one of their dependencies, i.e. the one due to (7,7)
has been satisfied. The next sections provide our three CUDA
grid-parallel implementations for this algorithm.

,ifi=0and =0

Listing 1 provides the implementation of lock/unlock prim-
itives that we built on top of CUDA atomics [25]. Each
CUDA threadblock owns a unique tag (assuming an 1D grid),
computed as WQ_LOCKED_OFFSET plus the block’s index
(blockIdx.x). The lock is expressed as a 32-bit integer such
that when its contents are set to WQ_UNLOCKED the lock
is considered unlocked, otherwise it is considered locked.
The locking primitive then proceeds as follows: given a lock
stored in laddr, the primitive attempts to swap its contents
with the threadblocks’ lock tag (self). If the lock has been
already acquired by another threadblock, then the atomicC AS

while tasks-exist() do
(i,5) +get-ready():
process((i, 7));
if i < nrows — 1 then
depmat(i + 1,7) < depmat(i +1,7) — 1;
if depmat(i + 1,7) = 0 then
| set-ready((i + 1,5));
end
end
if j < ncols — 1 then
depmat(i,j + 1) < depmat(i,j + 1) — 1;
if depmat(i, 5 + 1) = 0 then
| set-ready((i, j + 1));
end

end
end

Fig. 1. Progression algorithm for executing the graph’s tasks.
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Fig. 2. Dependency graph (left) and dependency matrix D (right).

will return a value other than WQ_UNLOCKED, i.e. the other
threadblock’s tag, and the acquisition will fail leading to a
retry. The unlock operation then proceeds by swapping the
threadblock’s tag with the unlocked tag (WQ_UNLOCKED),
which will allow other threads that may be invoking lock to
eventually acquire the lock. With this in mind, let us now
discuss the three implementations.

#define WQ _UNLOCKED 0
#define WQ_LOCKED_OFFSET 1

__device__ void trylock(tsint_tx laddr) {
const tsint_t self = WQ_LOCKED_OFFSET+
blockIdx .x;
return (atomicCAS (laddr ,WQ UNLOCKED, self)
== WQ_UNLOCKED) ;
}

__device__ void lock(tsint_t* laddr) {
while (!trylock(laddr));
}

__device__ void unlock(tsint_tx laddr) {
const tsint_t self =
WQ_LOCKED_OFFSET + blockldx .x;
atomicCAS (laddr , self , WQ_UNLOCKED) ;

}

Listing 1. CUDA CAS-based lock/unlock primitives.




while (xcounter != count) {
for (int r=0 ; r<nrows ; ++r)
for (int c=0 ; c<ncols ; ++c) {
// cell id (linear)
const int i = rxncols + c;

// if all dependencies have been satisfied ,
// try to lock the item:
if (depmat[i] ==
&& trylock (workqueue+i)) {
... // computational part
depmat[i] = 1; // any !=0 value is OK

// decrease dependencies for neighbor (on
// our right)
if (c!=(ncols—1)) {

const int i_right = rxncols + c+1;

// CUDA intrinsic for atomic depmat
[i_right]——;

atomicDec (depmat+i_right , 2);

}

// decrease dependencies for neighbor (below
// us)
if (r!=(nrows—1)) {
const int i_below = (r+l)*ncols+c;
atomicDec (depmat+i_below , 2);

}

atomiclnc (counter, count+1);

Listing 2. Naive, dependency matrix re-scanning approach.

A. Scanning

The first approach parallelizes the serial algorithm by
atomically updating the dependencies (depmat) using CUDA
atomics and via a per-task lock for claiming exclusive access
(workqueue); it is shown in Listing 2. Each threadblock
repeatedly scans (hence the naming) the dependency matrix
for zero-valued entries since that signifies the relative task’s
readiness. If exclusive access cannot be granted immediately
(trylock), the threadblock proceeds with processing the rest
of the matrix, and eventually a restart of the entire operation.
Otherwise, the threadblock proceeds with the computational
task and the signaling of those depending on it. A global
counter (counter) is atomically updated to reflect how many
tasks have finished. Note that there is no unlock operation
present as it is unnecessary: simply setting D; ; value to non-
zero will guarantee that the task will never appear in a ready
state again.

B. Single-task queue

The second approach implements a shared queue of tasks
protected by a single lock, thus allowing one threadblock
in at a time. The CUDA code is shown in Listing 3. The
queue occurs as a pre-allocated array, where tasks whose
dependencies have been satisfied are meant to be placed in;
the queue is initialized with task 0 (cell (0,0)) appended to it.
The queue has a fixed capacity of (nrows —1) x (ncols — 1),

while (xcounter != count) {

lock (qgstat);

int avail = xqsize;

if (avail >0) { // pop the last rask
int taskid = queue[avail —1];
xqsize ——;
unlock (gstat);

// computational part

bool append_right = false;
bool append_below = false;

// update the dependencies of our two
// neighbors:
const int i_right=...
const int i_below=...
if (c!=(ncols—1))
append_right =
atomicDec (depmat+i_right , 2)==1;
if (r!=(nrows—1))
append_below =
atomicDec (depmat+i_below , 2)==1;

if (append_right ||
lock(gstat);
int len = xqsize;
if (append_right) queue[len++]= i_right;
if (append_below) queue[len++]= i_below;
xqsize = len;
unlock (gstat);

append_below) {

atomiclnc (counter , count+1); // xcounter++
} else
unlock (gstat);

Listing 3.  Single task queue — accessible by a one threadblock at a time.

which corresponds to the maximum number of tasks that could
be in-flight at any time. As in the first implementation, a global
counter indicates completeness. Threadblocks atomically poll
the queue for available work, pulling one task out a time.
Once a threadblock is done with the computational part,
it updates dependencies similarly to the previous algorithm
(downcounting). However, while in the the previous algorithm
the threadblock goes on to finding a new task to work on, this
algorithm will immediately append those tasks (i_right and/or
i_below) whose dependencies were just found satisfied to the
queue.

C. Multi-task queue

The third approach, shown in Listing 4, uses multiple
task queues and two hash functions, hashl and hash2,
to map threadblock ids (blockIdz.x) and task ids to the
available queues, respectively. As before, each threadblock is
assigned a queue that remains fixed for the entirety of the
tasks’ processing, while tasks get distributed to the various
queues. The mechanism essentially relieves contention by
distributing the locking operations to multiple locks. Similarly
to before, threadblocks keep spinning until all tasks have
been completed. However, care must be taken to avoid the
following deadlock situation. In the CUDA model, kernels
launch with a configurable number of threadblocks. The con-



myid = hashl (blockldx.x);
while (xcounter != count) {
lock(qgstat[myid]) ;
int avail = xqsize[myid];
if (avail >0) { // pop the last task
int taskid = queue[myid][avail —1];
qsize [myid]——;
unlock (gstat[myid]);
. // computational part

bool append_right = false;
bool append_below = false;

// update the dependencies of our two
// neighbors:
const int i_right=...
const int i_below=...
if (c!=(ncols—1)) {
if (atomicDec(depmat+i_right, 2)==1) {
const int h = hash2(i_right);
lock(qgstat[h]);
queue[h][len++] = i_right;
qsize[h] = len;
unlock (gstat[h]);

// similarly for i_below
atomicInc (counter , count+1); // *xcounter++
} else
unlock (qstat[myid]) ;

Listing 4. Multiple task queues.

currency in threadblock execution, or whether all requested
threadblocks can be simultaneously active, is largely dependent
on resource availability — the so-called CUDA occupancy.
Under-resourcing leads to threadblock queuing, which means
that some threadblocks cannot start unless some others have
finished. For such, over-provisioning, threadblock counts tasks
may be placed in queues whose owners will never get the
chance to process them since the threadblocks which occupy
the resources cannot finish unless all tasks have finished. In
other words, we must chose a threadblock count that achieves
100% occupancy.

IV. EVALUATION

We present results for a problem size of 10,000 x 10, 000
cells, i.e. a total of 108 tasks (value of count in all algorithms).
We have profiled our algorithms on a Kepler K20X NVIDIA
GPU, using version 6.5 of the developers toolkit (CUDA
timing routines and nvprof hardware counter probing). All
algorithms are executed in a CUDA kernel context of 220
threadblocks with 32 threads each. The initialization of the
dependency matrix and the queues have been excluded from
our analysis due to their very low overhead. The computational
part of the task is set to a no-op, hence all figures depict
the task progression algorithms’ overheads. Although these
costs are likely to be hidden by a computationally-intense
workload, our focus in this study is to assess overheads as a
starting point in determining the granularity of computational
tasks that our algorithms can be supportive of. The multi-
queue algorithms have been profiled with three different queue

counts, which are shown in parentheses. They correspond to
100%, 50% and 25% of the threadblock count. Both multi-
queue algorithms use hashl(z) = x % QUEUE-COUNT.
Multi-queue algorithm ‘a’ implements hash2 identically to
hashl, while algorithm ‘b* uses (z + 3) % QUEUE-COUNT
for i_right and (z +5) % QUEUE-COUNT for i_below.

Figure 3a displays the task throughput, calculated as the
number of tasks divided by the total time, with performance
ranging between 315,000 to 38 million tasks/second. The sin-
gle queue algorithm is the slowest, with the scanning algorithm
and the multi queue algorithms improving performance 3-fold
and 100-fold, respectively. The multi-queue algorithms are 27
times faster than the scanning approach. Throughput improves
as queue count increases, with improvements being more
pronounced for counts greater than 25%. The hash function of
choice does play a significant role, with choice ‘b’ improving
performance by 6% (2:1 threadblock:queue ratio) and 13%
(1:1) over ‘a’. For lower queue counts, the hash function’s
gains are masked by other overheads, that we will discuss
shortly.

Figure 3b, which is in logarithmic scale, depicts the number
of atomic compare-and-swap operations as a function of the
task count (operations divided by tasks). One may, immedi-
ately, notice the correlation to Figure 3a: both scanning and
single experience a staggering amount — more than a 100 times
more — of CAS operations per task. For the single algorithm
we know that it is the common queue, which threadblocks
retry to acquire. For the scanning approach we believe it is
the naivety of the algorithm that causes a high CAS count.
Every time a threadblock completes a task, it then begins
rescanning the matrix looking for ready tasks. Looking at
memory overheads is supportive of this view. Figure 3c,
which is also in logarithmic scale, depicts the number of of
memory operations (load and store requests; gld_request
and gst_request hardware counters) per task, computed as
the sum of operations divided by the task count. The scanning
approach clearly accesses memory significantly more than the
rest of the algorithms — about ~20 more operations. This is a
result of scanning the matrix multiply due to both the restart,
i.e. having completed the for-loop while additional work
remains, but, most importantly, because every threadblock does
so redundantly.

V. CONCLUSION

We have presented three different parallel algorithms for
processing task graphs originating from wavefront programs
on CUDA devices. The algorithms are implemented at the
CUDA grid-level without any interference by the host and
serve as a proof of concept that fine-grain tasking models
can be supported efficiently at such a level. We are currently
investigating the application of these algorithms to irregular
patterns as well as different hash functions for better task load
balance.
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