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INTRODUCTION 

As part of the Consortium for Advanced Simulation of 

Light Water Reactors (CASL), the Virtual Environment for 

Reactor Applications (VERA) is being developed to provide 

high-fidelity multiphysics simulations of nuclear reactor 

cores [1,2]. The MPACT code being developed 

collaboratively by Oak Ridge National Laboratory and the 

University of Michigan includes the primary deterministic 

neutron transport solver available within VERA. 

MPACT employs the 2D/1D method to solve three-

dimensional problems, using 2D method of characteristics 

(MOC) radial transport solvers with 1D NEM-SP3 axial 

transport solvers, which are coupled using axial and radial 

transverse leakages [3]. A 3D coarse mesh finite difference 

(CMFD) solver [4] is used to provide accelerated 

convergence that is more stable.   

The Portable, Extensible Toolkit for Scientific 

Computation (PETSc) [5] generalized minimal residual 

(GMRES) iterative solver with a block Jacobi 

preconditioner has been used to solve the CMFD linear 

systems. This work focused on the addition of a red-black 

successive over-relaxation (RBSOR) solver to reduce 

overall runtime by reducing time spent solving the CMFD 

linear systems. 

 

THEORETICAL BACKGROUND 

 

Coarse Mesh Finite Difference (CMFD) 

    CMFD is one of the mostly widely used acceleration 

techniques for neutron transport solvers [4]. With this 

approach, the fine mesh used for the transport solvers, 

which can include sub-pin level resolution, is homogenized 

to produce coarse mesh-averaged cross sections and fluxes.  

The size of the coarse mesh can vary based on the method, 

but MPACT uses pin-wise coarse mesh cells. From the 

homogenized parameters, coupling coefficients are formed, 

one being the traditional finite difference coefficients and 

the other a nonlinear current coupling coefficient which uses 

the higher fidelity transport-tallied currents on the coarse 

mesh surfaces. The details of these coefficients will be 

omitted here, but they are well documented and can be 

found in several references, such as the MPACT theory 

manual [6]. 

    These coupling coefficients are then used to construct a 

linear system relating the multigroup coarse cells fluxes. 

This system can be solved by any number of means, though 

the parallel capabilities within the PETSc solver framework 

have become a popular and efficient means of solving 

systems like these. 

    Once the system is solved and the new coarse mesh 

fluxes have been obtained, the fine mesh fluxes are updated 

by multiplying them by a ratio of the new and old coarse 

mesh fluxes. 

 

Red-Black Gauss-Seidel 

    As previously mentioned, the CMFD linear systems can 

be solved through a variety of techniques. One of the most 

basic iterative solvers is the Gauss-Seidel scheme, which 

loops over the coarse mesh cells, solving for the flux in each 

cell using the most up-to-date neighboring cell data 

available. 

    There are several different techniques for determining the 

order in which the solution is obtained; one popular 

approach is the red-black scheme [7], which tags each 

coarse cell as red or black to produce a checkerboard pattern 

(as in Fig. 1 for a simple 7×7 problem). 

 

 
Fig. 1. Red-black indexing. 
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It should be noted that not all numerical index patterns will 

be lexicographic or naturally ordered as is observed in Fig. 

1. For example, the coarse cells in MPACT are naturally 

ordered within each quarter assembly, so it does not hold 

that core-wide indexing is lexicographic. 

    Figure 2 is a flow chart of the solver’s iteration strategy, 

which involves looping over and solving the fluxes for the 

red indexes, passing data as necessary, looping over the 

black indexes, and again passing data as necessary.   

 

 
Fig. 2. Red-black SOR CMFD iteration strategy. 

 

    Because the inner iteration convergence for Gauss-Seidel 

solvers tends to be slower than that for many other iterative 

solvers, each CMFD eigenvalue update iteration is restricted 

to performing a user-specified maximum number of 

iterations. In the results shown later, a maximum of 50–100 

inner iterations seems sufficient for 2D cases, but 3D cases 

with feedback perform best with a bound of 100–150 

iterations. Otherwise, the differences in the total number of 

outer iterations are noticeable. 

    To increase the applicability of the solver, both message 

passing interface (MPI) and open multi-processing 

(OpenMP) are currently available to provide parallelization. 

When MPACT is executed, the user provides inputs 

specifying the number of processors used for spatial 

decomposition (MPI), MOC angle decomposition (MPI), 

and MOC ray decomposition (OpenMP). The current solver 

takes advantage of the processors used for spatial 

decomposition, as well as the OpenMP threads, which are 

repurposed from the application to MOC to provide 

additional spatial decomposition during the sweeps over the 

red and black indexes. One advantage of this approach is 

that PETSc is restricted to using MPI [5], though a hybrid 

MPI/OpenMP approach is being considered by the PETSc 

development team. While future work should consider 

repurposing the processors dedicated to angle 

decomposition for MOC, this work only evaluates cases 

with spatial decomposition. 

 

Successive Over-Relaxation (SOR) 

    Gauss-Seidel is a special case of the successive over-

relaxation (SOR) solver, where the relaxation factor equals 

unity. However, SOR typically applies a relaxation factor 

larger than unity to accelerate the convergence of the 

system, as in Eq. 1 [7,8]: 
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where i denotes the iteration index, n denotes the cell index, 

and g denotes the group index. 

    The determination of optimal relaxation factors has been 

studied extensively. This implementation uses adaptive 

relaxation factors based on the Cyclic Chebyshev Semi-

Iterative (CCSI) method [8,9], where the red and black 

fluxes use different relaxation factors (Eqs. 2–3), which 

eventually converge to the same value. Equation 2 shows 

the initial relaxation factors, and Eq. 3 shows the relaxation 

factor for subsequent iterations: 
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These equations make use of the Jacobi spectral radius, 

which, in this work, is estimated during the first 10 inner 

iterations, applying no relaxation, to obtain the Gauss-Seidel 

spectral radius. The Gauss-Seidel spectral radius is then 

converted to the Jacobi spectral radius.   

    It is worth noting that these relaxation factors only seem 

to be valid when rotational symmetry is not applied to any 

boundaries. With rotational symmetry, some red-red and 

black-black neighbors will occur along those boundaries, 



which will likely invalidate the underlying theory of the 

derivation. The results presented in this work exclusively 

consider mirror symmetry, though roughly similar time 

reductions are observed with rotational symmetry where the 

relaxation is disabled. 

 

Global Iteration Strategy 

   What has been presented to this point pertains to the inner 

iteration strategy with RBSOR.  To clarify some of the 

results, information on the global iteration strategy is 

presented.  An “outer iteration” is considered to be a single 

CMFD converged solve plus a single MOC sweep.  A 

CMFD converged solve involves several eigenvalue 

iterations (maximum of 20) with the goal of reducing the 

residual (2-norm of Ax-b) by two orders of magnitude. Each 

eigenvalue iteration involves inner iterations as previously 

specified, where GMRES or RBSOR are used to solve the 

linear system.  An MOC sweep can also consist of a few 

inner iterations to resolve self- and up-scatter distributions.  

Outer iterations are repeated until global convergence of the 

eigenvalue and fission source is achieved. 

 

RESULTS 

    To demonstrate this new capability and compare it to the 

preexisting PETSc GMRES solver, a zero-power 2D quarter 

core problem known as VERA Problem 5-2D [10] is 

evaluated. This case was run on Titan [11] with 73 spatial 

decomposition cores. 

 

2D Quarter Core (VERA Problem 5a) 

    Figure 3 shows the assembly layout of the quarter core, 

including the enrichments (2.1%, 2.6%, and 3.1%), as well 

as the number of Pyrex burnable poison rods in each 

assembly. The problem also includes a core baffle and 

jagged reflector region. 

 
Fig. 3. Quarter core assembly layout [10]. 

 

    Tables I and II show the results for PETSc GMRES and 

the RBSOR solvers, varying the maximum number of inner 

iterations allowed in each eigenvalue update. With only 25 

inner iterations, the converged eigenvalue was ~150 pcm 

from the asymptotic value, despite the 1 × 10
-6

 convergence 

criteria on the eigenvalue. Even with 50 inner iterations, the 

eigenvalue is 2 pcm different. Therefore, at least 75 inner 

iterations are necessary to guarantee true convergence. Not 

surprisingly, as the number of inner iteration increases, the 

total number of outer iterations does not decrease, and more 

time is spent solving CMFD, to the detriment of the overall 

runtime. 

 

Table I. PETSc GMRES Results for 2D Quarter Core 

Inner 

Iterations 

Eigenvalue Outer 

Iterations 

Total 

Time 

(min) 

CMFD 

Solve Time 

(min) 

25 1.00159 11 5.35 2.49 

50 1.00310 11 7.43 4.62 

75 1.00312 11 8.64 5.83 

100 1.00312 11 9.99 7.20 

150 1.00312 11 13.06 10.28 

200 1.00312 11 13.84 11.05 

 

The RBSOR solver does bring some noteworthy reductions 

in the run time, with 50 inner iterations yielding the best 

performance, reducing the total run time by roughly 39% 

(5.26  min vs 8.64 min) and the CMFD solve time by 

slightly more than a factor of two (2.86 vs. 5.83 min). 

 

Table II. RBSOR Results for 2D Quarter Core 

Inner 

Iterations 

Eigenvalue Outer 

Iterations 

Total 

Time 

(min) 

CMFD 

Solve Time 

(min) 

25 1.00312 15 7.00 3.77 

50 1.00312 11 5.62 2.86 

75 1.00312 11 6.06 3.35 

100 1.00312 11 6.48 3.78 

150 1.00312 11 6.90 4.20 

200 1.00312 11 7.34 4.64 

  

CONCLUSIONS 

   Though the red-black SOR scheme is one of the most 

basic iterative methods, it performs well compared to more 

modern approaches like GMRES, at least within the context 

of these applications. For the 2D quarter core modelled, 

RBSOR does provide some notable reduction in the overall 

run time (~39%) by reducing the CMFD solve time by 

roughly a factor of two. 

    Additional developments such as incorporating advanced 

eigensolver techniques—as compared to the shifted power 

iteration used here—are already underway [12], and the 

RBSOR solver will provide for a more thorough 

comparison.  
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