Implementation of a Red-Black SOR CMFD Solver in MPACT
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INTRODUCTION

As part of the Consortium for Advanced Simulation of
Light Water Reactors (CASL), the Virtual Environment for
Reactor Applications (VERA) is being developed to provide
high-fidelity multiphysics simulations of nuclear reactor
cores [1,2]. The MPACT code being developed
collaboratively by Oak Ridge National Laboratory and the
University of Michigan includes the primary deterministic
neutron transport solver available within VERA.

MPACT employs the 2D/1D method to solve three-
dimensional problems, using 2D method of characteristics
(MOC) radial transport solvers with 1D NEM-SP; axial
transport solvers, which are coupled using axial and radial
transverse leakages [3]. A 3D coarse mesh finite difference
(CMFD) solver [4] is used to provide accelerated
convergence that is more stable.

The Portable, Extensible Toolkit for Scientific
Computation (PETSc) [5] generalized minimal residual
(GMRES) iterative solver with a block Jacobi
preconditioner has been used to solve the CMFD linear
systems. This work focused on the addition of a red-black
successive over-relaxation (RBSOR) solver to reduce
overall runtime by reducing time spent solving the CMFD
linear systems.

THEORETICAL BACKGROUND

Coarse Mesh Finite Difference (CMFD)

CMFD is one of the mostly widely used acceleration
techniques for neutron transport solvers [4]. With this
approach, the fine mesh used for the transport solvers,
which can include sub-pin level resolution, is homogenized
to produce coarse mesh-averaged cross sections and fluxes.
The size of the coarse mesh can vary based on the method,
but MPACT uses pin-wise coarse mesh cells. From the
homogenized parameters, coupling coefficients are formed,
one being the traditional finite difference coefficients and
the other a nonlinear current coupling coefficient which uses
the higher fidelity transport-tallied currents on the coarse
mesh surfaces. The details of these coefficients will be
omitted here, but they are well documented and can be

found in several references, such as the MPACT theory
manual [6].

These coupling coefficients are then used to construct a
linear system relating the multigroup coarse cells fluxes.
This system can be solved by any number of means, though
the parallel capabilities within the PETSc solver framework
have become a popular and efficient means of solving
systems like these.

Once the system is solved and the new coarse mesh
fluxes have been obtained, the fine mesh fluxes are updated
by multiplying them by a ratio of the new and old coarse
mesh fluxes.

Red-Black Gauss-Seidel

As previously mentioned, the CMFD linear systems can
be solved through a variety of techniques. One of the most
basic iterative solvers is the Gauss-Seidel scheme, which
loops over the coarse mesh cells, solving for the flux in each
cell using the most up-to-date neighboring cell data
available.

There are several different techniques for determining the
order in which the solution is obtained; one popular
approach is the red-black scheme [7], which tags each
coarse cell as red or black to produce a checkerboard pattern
(as in Fig. 1 for a simple 7x7 problem).

Fig. 1. Red-black indexing.
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It should be noted that not all numerical index patterns will
be lexicographic or naturally ordered as is observed in Fig.
1. For example, the coarse cells in MPACT are naturally
ordered within each quarter assembly, so it does not hold
that core-wide indexing is lexicographic.

Figure 2 is a flow chart of the solver’s iteration strategy,
which involves looping over and solving the fluxes for the
red indexes, passing data as necessary, looping over the
black indexes, and again passing data as necessary.
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Fig. 2. Red-black SOR CMFD iteration strategy.

Because the inner iteration convergence for Gauss-Seidel
solvers tends to be slower than that for many other iterative
solvers, each CMFD eigenvalue update iteration is restricted
to performing a user-specified maximum number of
iterations. In the results shown later, a maximum of 50-100
inner iterations seems sufficient for 2D cases, but 3D cases
with feedback perform best with a bound of 100-150
iterations. Otherwise, the differences in the total number of
outer iterations are noticeable.

To increase the applicability of the solver, both message
passing interface (MPI) and open multi-processing
(OpenMP) are currently available to provide parallelization.

When MPACT is executed, the user provides inputs
specifying the number of processors used for spatial
decomposition (MPI), MOC angle decomposition (MPI),
and MOC ray decomposition (OpenMP). The current solver
takes advantage of the processors used for spatial
decomposition, as well as the OpenMP threads, which are
repurposed from the application to MOC to provide
additional spatial decomposition during the sweeps over the
red and black indexes. One advantage of this approach is
that PETSc is restricted to using MPI [5], though a hybrid
MPI/OpenMP approach is being considered by the PETSc
development team. While future work should consider
repurposing  the  processors dedicated to angle
decomposition for MOC, this work only evaluates cases
with spatial decomposition.

Successive Over-Relaxation (SOR)

Gauss-Seidel is a special case of the successive over-
relaxation (SOR) solver, where the relaxation factor equals
unity. However, SOR typically applies a relaxation factor
larger than unity to accelerate the convergence of the
system, as in Eq. 1 [7,8]:
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where i denotes the iteration index, n denotes the cell index,
and g denotes the group index.

The determination of optimal relaxation factors has been
studied extensively. This implementation uses adaptive
relaxation factors based on the Cyclic Chebyshev Semi-
Iterative (CCSI) method [8,9], where the red and black
fluxes use different relaxation factors (Eqgs. 2-3), which
eventually converge to the same value. Equation 2 shows
the initial relaxation factors, and Eq. 3 shows the relaxation
factor for subsequent iterations:
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These equations make use of the Jacobi spectral radius,

which, in this work, is estimated during the first 10 inner
iterations, applying no relaxation, to obtain the Gauss-Seidel
spectral radius. The Gauss-Seidel spectral radius is then
converted to the Jacobi spectral radius.

It is worth noting that these relaxation factors only seem
to be valid when rotational symmetry is not applied to any
boundaries. With rotational symmetry, some red-red and
black-black neighbors will occur along those boundaries,



which will likely invalidate the underlying theory of the
derivation. The results presented in this work exclusively
consider mirror symmetry, though roughly similar time
reductions are observed with rotational symmetry where the
relaxation is disabled.

Global Iteration Strategy

What has been presented to this point pertains to the inner
iteration strategy with RBSOR. To clarify some of the
results, information on the global iteration strategy is
presented. An “outer iteration” is considered to be a single
CMFD converged solve plus a single MOC sweep. A
CMFD converged solve involves several eigenvalue
iterations (maximum of 20) with the goal of reducing the
residual (2-norm of Ax-b) by two orders of magnitude. Each
eigenvalue iteration involves inner iterations as previously
specified, where GMRES or RBSOR are used to solve the
linear system. An MOC sweep can also consist of a few
inner iterations to resolve self- and up-scatter distributions.
Outer iterations are repeated until global convergence of the
eigenvalue and fission source is achieved.

RESULTS

To demonstrate this new capability and compare it to the
preexisting PETSc GMRES solver, a zero-power 2D quarter
core problem known as VERA Problem 5-2D [10] is
evaluated. This case was run on Titan [11] with 73 spatial
decomposition cores.

2D Quarter Core (VERA Problem 5a)

Figure 3 shows the assembly layout of the quarter core,
including the enrichments (2.1%, 2.6%, and 3.1%), as well
as the number of Pyrex burnable poison rods in each
assembly. The problem also includes a core baffle and
jagged reflector region.
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Fig. 3. Quarter core assembly layout [10].

Tables I and II show the results for PETSc GMRES and
the RBSOR solvers, varying the maximum number of inner
iterations allowed in each eigenvalue update. With only 25
inner iterations, the converged eigenvalue was ~150 pcm
from the asymptotic value, despite the 1 x 10 convergence
criteria on the eigenvalue. Even with 50 inner iterations, the
eigenvalue is 2 pcm different. Therefore, at least 75 inner
iterations are necessary to guarantee true convergence. Not
surprisingly, as the number of inner iteration increases, the
total number of outer iterations does not decrease, and more
time is spent solving CMFD, to the detriment of the overall
runtime.

Table I. PETSc GMRES Results for 2D Quarter Core

Inner Eigenvalue Outer Total CMFD
Iterations Iterations Time  Solve Time
(min) (min)
25 1.00159 11 5.35 2.49
50 1.00310 11 7.43 4.62
75 1.00312 11 8.64 5.83
100 1.00312 11 9.99 7.20
150 1.00312 11 13.06 10.28
200 1.00312 11 13.84 11.05

The RBSOR solver does bring some noteworthy reductions
in the run time, with 50 inner iterations yielding the best
performance, reducing the total run time by roughly 39%
(526 min vs 8.64 min) and the CMFD solve time by
slightly more than a factor of two (2.86 vs. 5.83 min).

Table II. RBSOR Results for 2D Quarter Core

Inner  Eigenvalue  Outer Total CMFD
Iterations Iterations Time  Solve Time
(min) (min)
25 1.00312 15 7.00 3.77
50 1.00312 11 5.62 2.86
75 1.00312 11 6.06 3.35
100 1.00312 11 6.48 3.78
150 1.00312 11 6.90 4.20
200 1.00312 11 7.34 4.64
CONCLUSIONS

Though the red-black SOR scheme is one of the most
basic iterative methods, it performs well compared to more
modern approaches like GMRES, at least within the context
of these applications. For the 2D quarter core modelled,
RBSOR does provide some notable reduction in the overall
run time (~39%) by reducing the CMFD solve time by
roughly a factor of two.

Additional developments such as incorporating advanced
eigensolver techniques—as compared to the shifted power
iteration used here—are already underway [12], and the
RBSOR solver will provide for a more thorough
comparison.
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