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Understanding Tribofilm Formation 
Mechanisms in Ionic Liquid 
Lubrication
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Ionic liquids (ILs) have recently been developed as a novel class of lubricant anti-wear (AW) additives, 
but the formation mechanism of their wear protective tribofilms is not yet well understood. Unlike 
the conventional metal-containing AW additives that self-react to grow a tribofilm, the metal-free ILs 
require a supplier of metal cations in the tribofilm growth. The two apparent sources of metal cations 
are the contact surface and the wear debris, and the latter contains important ‘historical’ interface 
information but often is overlooked. We correlated the morphological and compositional characteristics 
of tribofilms and wear debris from an IL-lubricated steel–steel contact. A complete multi-step formation 
mechanism is proposed for the tribofilm of metal-free AW additives, including direct tribochemical 
reactions between the metallic contact surface with oxygen to form an oxide interlayer, wear debris 
generation and breakdown, tribofilm growth via mechanical deposition, chemical deposition, and 
oxygen diffusion.

Tribological interfaces are crucial in modern machinery, including but not limited to manufacturing equipment, 
transportation vehicles, and wind turbines. Since the surface morphology, material composition, and contact 
condition all change rapidly, various approaches have been used to study the interface phenomena: on-line moni-
toring1–4, periodic oil analysis5, 6, and off-line worn surface analysis7. Oil-miscible ionic liquids (ILs) have recently 
been reported as novel lubricant anti-wear (AW) additives providing effective wear reduction that is widely attrib-
uted to the formation of a protective tribofilm on the contact area8–14. At the same phosphorus concentration, ILs 
offer potentially superior wear protection8 with less adverse impact on the exhaust emission catalysts15 compared 
with the conventional zinc dialkyldithiophosphates (ZDDPs).

ZDDPs are believed to decompose and then self-react to deposit a tribofilm primarily composed of zinc and 
iron phosphates and oxides16–18. Such a tribofilm growth model is not directly applicable to ILs, because ILs do 
not self-supply metal cations. Hence, there is urgency in understanding the mechanisms governing the IL tribo-
film growth.

Wear debris is a collection of materials removed from the contact area during the wear process and thus con-
tains important ‘historical’ interface information that, however, is often overlooked in the literature. While some 
IL tribofilms have been well characterized9, 11, 12, 19–22, there is no published literature on the wear debris resulted 
from the IL lubricated contacts. Wear debris produced in ZDDP-containing oils had been examined23–27 and 
its possible involvement in the tribofilm was proposed based on metallic ions exchange driven by the chemical 
hardness principle23, 25, 28, with Zn2+ in zinc phosphate (tribofilm amorphous matrix) exchanged with Fe3+ in iron 
oxide (wear debris).

We investigated the tribofilms and wear debris particles generated in a steel–steel sliding contact lubricated 
by a base oil containing a phosphonium–phosphate IL. This particular IL was selected because of its superior 
anti-scuffing and wear protection compared with conventional ZDDP or amine-phosphate8, 11, 19. This study 
reveals the morphology, nanostructure, and composition of the wear debris, and correlates them with the tri-
bofilm composition and evolution. The IL tribofilm formation is proposed as a multi-step process: direct tri-
bochemical reactions between the metallic contact surface with oxygen to form an oxide interlayer, wear debris 
generation and breakdown, tribofilm growth via mechanical deposition, chemical deposition, and oxygen diffu-
sion. Equilibrium eventually is reached between the tribofilm growth and wear. The revealed tribofilm formation 
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mechanism is expected to shed light on the fundamental understanding of the AW nature of IL and the design of 
next-generation lubricant additives.

Results
The wear volumes of the steel balls in the lubrication with and without IL additive were 3.4 ± 0.4  × 10−4 mm3 and 
8.7 ± 2.0 × 10−4 mm3, respectively. Wear on the steel flats was not measurable in either case. The addition of 1% IL 
effectively reduced the wear rate by >60%.

Tribofilm formed in the ionic liquid-containing oil.  Tribofilms were generated on the contact areas 
during tribotesting. Figure 1a shows the wear scar on a steel ball that rubbed against a steel flat lubricated by 
the 0W-30 base oil containing 1% IL. The dark patches could indicate relative thick tribofilm pads. Along the 
sliding direction, there are three brighter stripes with possible thinner tribofilms. Based on the 2D profile, the 
brighter stripes are slightly taller than the rest of the worn surface, hence, are expected to experience a higher 
contact stress during the wear test and, as a result, to retain a thinner tribofilm. In Fig. 1b, the cross-sectional 
STEM images clearly present an amorphous tribofilm of 50 nm thick, and in some conditions, with a porous top 
layer composed of very fine nanoparticles. EDS elemental mapping suggests that the tribofilm is rich in Fe, O, 
and P, indicating a composite of iron oxides and iron phosphates based on the previous chemical analysis21, 27–29. 
A good bonding between the substrate and the bulk of a tribofilm is essential for its growth. Figure 1c shows a 
good example of the tribofilm which grew on top of the ferrous part of the steel substrate but not on a chromium 
grain. Analogous to oxidation behavior of stainless steels, the chromium rich region tends to form a passivation 
layer of chromium(III) oxide (Cr2O3) when exposed to oxygen, which prevents further reaction between ILs and 
Cr-rich substrate underneath.

The APT reconstruction of the IL tribofilm is shown in Fig. 2a, with each ion or ionic species represented in a 
single dot of an assigned color. The collected iron oxide ions are labeled as FeOx. In the atom probe map, an oxide 
interlayer appears between the P-rich tribofilm and the steel substrate. In Fig. 2b, two isoconcentration surfaces, 

Figure 1.  Morphological and compositional characterization of the worn surface on the steel ball lubricated 
by the base oil with 1% IL. (a) SEM image of the wear scar with a 2D profile; the arrow indicating the sliding 
direction and the three brighter stripes are marked (note: the height and lateral distance are not proportional). 
(b) Cross-sectional BF-STEM images of the tribofilm at two locations showing an amorphous structure of 
50 nm and a two-layered structure (a porous top layer embedded with nanoparticles and an amorphous bottom 
layer); EDS elemental maps indicating the tribofilm is rich in Fe, O, and P. (c) A Cr grain with little tribofilm 
grew on top.
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i.e. 30 at.% O and 62.5 at.% Fe, were generated to categorize the layered structures. An oxide interlayer was found 
in between these two isosurfaces. The proximity histogram shows the composition evolution with respect to the 
distance away from the 30 at.% O isosurface. The P concentration in the tribofilm is as high as 15.0 ± 1.2 at.%.

Wear debris produced in the ionic liquid-containing oil.  Figure 3a presents the BF-STEM images of 
aggregated wear debris generated from the IL-containing oil lubrication test. The aggregation could occur either 
during or post the tribotest. The wear debris particles appear to have different morphologies that are likely related 
to chemomechanical processes at the contact interface. There are three major types of wear debris particles: acic-
ular (tens-hundreds nm long), flaky (tens-hundreds nm), and fine spherical (<10 nm). The acicular particles 
contain Fe, O, and P, indicating two possible routes of their origination and evolution: (i) removed tribofilm that 
contained iron oxides and phosphates and (ii) reaction products of metallic/metal-oxide debris with the IL. The 
flakey pieces were embedded with fine iron or iron oxide nanoparticles. This agrees with previous observations 
that the ZDDP wear debris flakes were embedded with iron or iron oxide nanoparticles23, 30. For the clusters of 
fine nanoparticles, EDS elemental mapping shows a high content of Fe and O but little P (Fig. 3b–3), suggesting 
oxidation to some extent. The square edges of the clusters hint that they might originally be spalled off the tribo-
film surface where a top porous layer is present (see Fig. 1a) rather than produced in the lubricant at the contact 
interface.

Worn surface and wear debris generated in the neat base oil.  For a direct comparison, the similar 
characterization was performed on the worn surface and wear debris produced in the 0W-30 base oil without any 
additives. This simple tribological system allows isolating any chemical complications induced by the IL. The SEM 
image (Fig. 4a) of the ball wear scar shows three distinctive regions: a central rough area, a dark stripe to the left, 
and the rest of the worn surface in a smoother appearance. The 2D profile displays grooving at the central rough 
strips and protrusion at the dark stripe. The central rough area was likely generated by a combination of two- and 
three-body abrasion, adhesion, and surface oxidation. The dark stripe endured a higher contact stress because of 
its protrusive nature and experienced an abundant supply of wear debris particles, especially from the adjacent 
exposed rough area, to cause a buildup of adhesive materials. In Fig. 4b, the cross-sectional STEM images exhibit 
a thin oxide film of a few nm and a layer of adhesive material buildup up to 200 nm thick with embedded nano-
particles, which were possibly wear debris being mechanically pressed in. The thin oxide film could be naturally 
occurring oxide that generated during storage. The EDS elemental maps indicate the composition of the surface 
layer is metallic iron and iron oxides.

The wear debris collected from the test in the neat base oil is shown in Fig. 4c. STEM images of the aggre-
gations of wear debris containing clusters of fine spherical nanoparticles and acicular particles, similar to those 
observed in the wear debris from the IL-containing oil, except no flaky debris was found here. The EDS elemental 
mapping identified simply two major elements, Fe and O, suggesting a mixture of metallic iron and iron oxides.

Figure 2.  3D APT reconstruction of the IL tribofilm showing a gradient layered structure. (a) Spatial 
distribution of Fe, FeOx, O, C, and P ionic species. (b) Isoconcentration surfaces of 30 at.% O and 62.5 at.% Fe, 
and the proximity histogram analysis with respect to 30 at.% O isoconcentration surface.
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Discussion
Within the aggregations of wear debris particles, flakes were seen when the IL was present in the oil, while acic-
ular and fine spherical particles were observed in both cases with and without the IL. When the steel flat was 
substituted with a much harder coating and in lubrication by the base oil plus 1% IL, the acicular and fine spher-
ical particles were observed but the flakes were not, as shown in Fig. S1, probably due to a much severe grinding 
process that has broken the flakes apart.

Flakey debris.  The origin of the flakes is likely the amorphous tribofilm, whose “digestion” of small grain 
particles is responsible for the removal of hard and thus abrasive iron oxide particles—one of the antiwear mech-
anisms of ZDDP tribofilm17. The formation of flakey debris is believed to begin with the crack initiation mecha-
nism upon external stress: the microcracks and voids formed around a single embedded nanoparticle or between 
particles, followed by surface decohesion between the particle surface and the amorphous matrix, and eventually 
a crack initiation that led to delamination. The flakes with embedded fine nanoparticles have also been observed 
in another ashless AW additive, acidic dialkyldithiophosphates, in a severe boundary lubrication regime31.

Acicular debris.  The generation of the acicular-shape wear debris might require a sharp asperity contact, 
as hypothetically illustrated in Fig. 5. Upon contact and sliding, a sharp asperity penetrates and scratches the 
counterface, removing a piece of relatively large acicular material. The grinding process at the interface gradually 
breaks down the large acicular particles to smaller pieces with the edges and vertices rounded.

Clusters of fine spherical nanoparticles.  The fine nanoparticles could be either fractured surface asperi-
ties or ground larger pieces including the acicular debris. These fine nanoparticles aggregate to form clusters and 

Figure 3.  Wear debris collected from the steel–steel contact lubricated by the base oil with 1% IL. (a) BF-STEM 
images of the aggregations of wear debris particles, with a magnified view showing a cluster of nanoparticles. (b) 
EDS elemental maps of the three types of particles: (b-1) acicular, (b-2) flaky, and (b-3) fine spherical.

http://S1
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may adhere to the contact area under pressure and later be spalled off. The fine nanoparticles could be the source 
of the porous top layer of the IL tribofilm as well as the thick buildup in base oil lubrication.

On a contact surface, the IL tribofilm is not homogenous, as seen in Fig. 1. It is believed that the tribofilm 
thickness and coverage are highly influenced by the surface local morphology and composition. The metal-free IL 
could share a similar mechanism with ashless extreme-pressure oil additives29. The tribofilm on the high plateaus, 
which experience relatively high normal and shear stresses, protects the substrate in a sacrificial manner. The 

Figure 4.  Worn surface on the steel ball lubricated by the neat base oil and the collected wear debris particles. 
(a) SEM image of the ball wear scar with a 2D profile (marked protrusion indicating adhesive material buildup). 
(b) Cross-sectional BF-STEM images of the worn surface showing a thin iron oxide film and an adhesive 
material buildup. (c) BF-STEM images of aggregated wear debris particles, with a magnified view of a cluster of 
fine nanoparticles. EDS elemental maps indicating mixed iron oxides and metallic iron.

Figure 5.  Schematic of an abraded acicular particle that is ground down.
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material worn off the sacrificial layer is then incorporated into the wear debris pool and later deposited predom-
inantly in the valleys where a thicker tribofilm forms.

Unlike the conventional ZDDP that self-reacts to grow a tribofilm, ILs require an external supply of metal 
cations, and the two apparent sources are the contact surface and the wear debris. Based on the characterization 
of tribofilms and wear debris, here we propose a complete multi-step formation mechanism for the IL tribofilm, 
as depicted in Fig. 6.

(1) Tribofilm initiation via direct surface reactions. The nascent ferrous surface reacts with oxygen to form a 
thin oxide interlayer. In Fig. 2, the APT composition mapping confirms the existence of such an iron oxides-based 
interlayer, which may provide a good bonding between the metal substrate and the tribofilm. On the other hand, 
the oxide interlayer could hinder the tribofilm growth by serving as a barrier between the metal and reducing 
surface defects for catalytic reaction sites32.

(2) Wear debris generation and breakdown. Upon asperity contact, material is removed from the nascent 
ferrous surface and the newly formed oxide interlayer. All the wear debris particles are included in the lubricant, 
with some trapped in the contact zone and others released to the outside. The grinding process at the contact zone 
breaks the large particles and removes their edges and vertices, hence gradually reducing the particle size.

(3a) Tribofilm growth via mechanical deposition. Wear debris particles may chemically react with reactive 
elements (oxygen, IL, and decomposition compounds of IL) upon the thermomechanical stresses at the contact 
interfaces. During contact and sliding, wear debris nanoparticles, reacted or not, are pressed onto the surface to 
form a porous top layer, as observed in Fig. 1 and in the literature9, 12, 19, 22. The top porous layer could spall off and 
re-enter the lubricant (Figs. 3a and 4c), or transform to the amorphous bulk tribofilm layer by mechanochem-
ical reactions. Wear particles may also be incorporated inside the tribofilm through mechanical mixing, which 
was previously seen in severe boundary lubrication with excessive wear debris9, 14. Since the material removal in 
steel-steel contact is moderate, the inclusion of nanoparticles within the tribofilm was at minimum presence. In 
one case of steel rubbing cast iron, Fe2O3 nanoparticles can be clearly seen inside the tribofilm (Fig. S2) on the cast 
iron surface. This is a good example of wear debris embedded in the tribofilm, likely through mechanical mixing 
during the wear process.

(3b) Tribofilm growth via chemical deposition. The wear debris particles continue the mechanical breakdown 
and chemical reactions in the contact zone. The resulting iron oxide and iron phosphate compounds serve as 
precursors to nucleate on top of the tribofilm leading to further film growth.

(3c) Tribofilm growth via oxygen diffusion. Oxygen could potentially diffuse through the tribofilm and react 
with the metal substrate. The product from this reaction contributes to the growth of the oxide interlayer, but the 
increased film thickness is minor compared to the overall tribofilm.

Equilibrium eventually is reached between the tribofilm growth and wear. The growth of a tribofilm is inho-
mogeneous due to localized temperature, stress, material composition, and lubricant chemistry, etc. Phosphate 
cross-linking and phosphate–iron oxide attraction could be critical for the IL tribofilm integrity, but yet to be 
investigated.

Figure 6.  Proposed wear debris evolution and tribofilm growth for a ferrous substrate lubricated by an IL-
containing lubricant. (1) Tribofilm initiation via direct surface reactions to generate an oxide interlayer mainly 
of iron oxide; (2) wear debris generation by (2a) asperity collisions, followed by (2b) breakdown through 
grinding process; (3) tribofilm growth via (3a) mechanical deposition, (3b) chemical deposition, and (3c) 
oxygen diffusion. Equilibrium eventually is reached between the tribofilm growth and wear.

http://S2
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Conclusion
In conclusion, characterization was conducted on the wear debris and tribofilms generated in a steel–steel contact 
lubricated by a base oil with and without a phosphonium–phosphate ionic liquid. Results revealed the morphol-
ogy, nanostructure, and composition of the wear debris, and correlated them with the corresponding tribofilms. 
We suggest a multi-step formation for the IL tribofilm, including direct surface reactions, wear debris generation 
and breakdown, mechanical deposition through pressing and mixing of wear debris, chemical deposition based 
on the nucleation of tribochemical reaction products between wear debris and reactive elements, and oxygen 
diffusion-facilitated oxide interlayer growth.

Materials and Methods
Tribotests were conducted using a ball-on-flat configuration lubricated by a base oil without and with 1 wt.% of 
an IL, trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P66614][DEHP]). This base oil is a mixture of 
Group III and IV base oils without containing any additive and is used for formulating an SAE 0W-30 engine oil 
(Chevron Corp., USA). The viscosity of this base oil is 26.6 cP at 23 °C, 13.8 cP at 40 °C, and 3.12 cP at 100 °C. The 
IL was synthesized following the procedure reported previously9. Tests were carried out on a reciprocating sliding 
tribometer (Plint TE77, Phoenix Tribology, UK) at a normal load of 100 N, an oscillation frequency of 10 Hz, a 
stroke of 10 mm, and a lubricant temperature of 100 °C. A 10-mm diameter grade 25 AISI 52100 bearing steel ball 
(Ra: 0.025–0.05 μm) was used to slide against a flat of hardened M2 tool steel (Ra: 0.06 μm). The initial Hertzian 
contact pressure is 2.19 GPa maximum and 1.46 GPa in average at the contact area. The minimum oil film thick-
ness, calculated using the Hamrock and Dowson formula33, at the initial contact is 0.02 μm at the stroke center 
and near zero at the stroke ends. The λ-ratio (ratio of oil film thickness and composite roughness)33 is less than 
0.3, indicating that the lubrication regime is boundary. The friction and wear results had been discussed in an 
early report, and this study focuses on the wear debris characterization. The wear volume was measured by using 
a 3D optical interferometer (Wyko NT9100). The wear volume on the steel flat was negligible and the depth of the 
ball wear scars was 1–2 orders of magnitude higher than the tribofilm thickness and thus the ball wear volume 
basically reflects the material loss. The tested wear debris particles were rinsed with isopropyl alcohol and then 
centrifuged to collect the precipitates. The washing and centrifugation process was repeated twice. The collected 
wear debris particles were deposited on a copper grid with a carbon layer.

The copper grid was examined using aberration-corrected scanning transmission electron microscopy 
(AC-STEM) and energy-dispersive X-ray spectroscopy (EDS). The AC-STEM instrument was a JEOL 2200 oper-
ated at 200 keV and equipped with a Bruker silicon drift detector (SDD) for X-ray analysis and elemental iden-
tification. Wear scars on the steel balls were imaged using scanning electron microscopy (SEM). Cross-sectional 
TEM samples of the tribofilms were prepared using focused ion beam (FIB). The process started with a car-
bon deposition of 50–60 nm in thickness on the surface to limit ion implantation into the tribofilm. A Hitachi 
NB5000 SEM/FIB system with a liquid gallium ion source was then used to extract a cross-section of the near 
surface zone. TEM bright field (BF) imaging and STEM/EDS of the lamella was performed at 300 keV using a 
Hitachi HF3300 instrument equipped with a Bruker Silicon Drift Detector (SDD) assembled EDS system. Atomic 
resolution STEM imaging was performed using an aberration-corrected Nion UltraSTEM operated at 100 keV. 
An FEI Nova 200 dual-beam FIB instrument was used to prepare the lift-outs of the specimen for atom probe 
tomography (APT). A wedge lift-out geometry was used to mount multiple samples on a Si micro-tip coupon to 
enable the fabrication of multiple APT needles from one wedge lift-out. The APT analysis was performed using 
a LEAP 4000X HR equipped with a pico-second 355 nm UV laser from CAMECA Instruments. The Integrated 
Visualization and Analysis Software (IVAS 3.6.12) from CAMECA Instruments was used to reconstruct the data.
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