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Abstract—This paper presents experimental validation of a
high-fidelity toroid inductor modeling technique. The aim of this
research is to accurately model the instantaneous magnetization
state and core losses in ferromagnetic materials. Quasi–static
hysteresis effects are captured using a Preisach model. Eddy
currents are included by coupling the associated quasi-static
Everett function to a simple finite element model representing the
inductor cross sectional area. The modeling technique is validated
against the nonlinear frequency response from two different
series RLC resonant circuits using inductors made of electrical
steel and soft ferrite. The method is shown to accurately model
shifts in resonant frequency and quality factor. The technique also
successfully predicts a discontinuity in the frequency response of
the ferrite inductor resonant circuit.

I. INTRODUCTION

The macroscopic electromagnetic characteristics of ferro-
magnetic materials are the result of a set of intertwined
phenomena occurring at several different length scales [1]–[3].
Predicting losses in ferromagnets can greatly aid in the design
and optimization of electric components such as transformers,
resonant circuits, and electric machines. An overview of core
losses and their physical origins can be found in [4]. Nonlinear
amplitude variation, phase shifts, harmonic generation, and
damping all greatly impact the accuracy of simulated resonant
behavior compared to linear circuits. Unfortunately, simulating
whole magnetic materials by fully coupling atomistic, domain,
and bulk material scale phenomena is still a difficult problem
on today’s most powerful supercomputers.

Purely mathematical models of macroscopically observed
hysteresis exists independently – although often inspired by –
the physical origins of magnetic hysteresis [5]. These methods
abstract away some details of the atomistic and domain scales
while guaranteeing certain model characteristics and accuracy
when identified from suitable experimental data. Mathematical
models also permit separating quasi–static hysteresis behavior
from the high–frequency eddy current phenomenon. It has
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been demonstrated that quasi-static scalar models of hysteresis
may be extended to include frequency dependent effects based
on suitable analysis of Faraday’s law [6].

Most investigations into coupled hysteresis/resonant circuit
models have focused on ferro-resonant phenomenon observed
in transformers. A parametric Preisach function was used to
study the existence of bifurcations leading to a subharmonic
resonant solution in an RLC circuit [7]. The authors noted
this behavior was not apparent in models with single-valued
magnetization curves. They raised a note of skepticism about
using non-hysteretic inductor characteristic in the analysis of
even the simplest of ferro-resonant circuits. Subsequently, a
more detailed model including eddy currents was used to
examine parameter dependent bistable operating regions [8].
A comparative study showed that models with similar major
loops can respond quite differently with respect to their abil-
ity to capture noise-induced resonance [9]. This emphasizes
the need to carefully validate models in the context of the
phenomenon under investigation.

This paper presents a sequence of mathematical techniques
and experimental measurements which are composed to con-
struct and validate high-fidelity inductor models. The sequence
begins with a set of quasi-static major loop measurements
used to identify a Preisach model to represent the quasi-
static hysteresis behavior. Next, core geometry and material
conductivity are used to construct a finite-element model
which captures eddy currents at higher frequencies. Finally,
a method for coupling field based inductor models to a simple
series RLC circuit is demonstrated. Simulations accurately
track measured changes in resonant frequency and quality
factor as source amplitude and frequency are varied. The
model also successfully predicts a measured discontinuity in
the frequency response of one of the resonant circuit.

II. HYSTERESIS

The quasi-static hysteresis characteristics of ferromagnetic
toroid inductors can be accurately modeled using a scalar
Preisach model. Identifying such models requires measuring
major hysteresis loops over a range of peak flux-density values.
The measurements must be taken at a frequency low enough
such that the loops appear constant with respect to reason-
able frequency variations. This requirement ensures that eddy
currents have a negligible effect on the observed macroscopic



Fig. 1. M19 hysteresis loop with a 400mT amplitude measured at 5Hz

hysteresis loops. The required measurement frequency range
can be determined by requiring that the skin-depth of the
inductor material is much larger than the height and radial
width of core.

We assume the core material has associated with it a
nonlinear function describing the relationship between field-
intensity H and flux-density B given by

B = µo (H +M (H)) . (1)

The magnetization state M of the core represents the nonlinear
part of the B-H relationship. The value µoM is referred to
as the magnetic polarization. Assume we have taken a set of
major loop measurements (Hm (t) ,Mm (t)) at a frequency
f = 1/T . For simplicity, we assume the ascending branch of
the hysteresis loop occurs for t ∈ [0, T/2] and the descending
branch for t ∈ [T/2, T ]. The minimum and maximum values
of Mm (t) occur at t = 0 and t = T/2, respectively.

The scalar Preisach model assumes the output state of a
material exhibiting hysteresis can be described as an integral
over a two-dimensional space describing the internal state of
a distribution of hysterons (i.e. two state relays). Let γα,β be
the hysteron which switches to a value of +1.0 for x > α and
−1.0 for x < β. The output of the Preisach hysteresis model
with density function P is given by

y =

∫
S+
P (α, β) dαdβ −

∫
S−
P (α, β) dαdβ, (2)

where S+ is the set of all (α, β) such that γα,β = +1.0
and S− is the set of all (α, β) such that γα,β = −1.0. A
hysteron with β > α is typically thought to be nonphysical
for ferromagnetic materials and P (α, β) = 0 is assumed in
this region. The asymmetric switching of individual hysterons
gives rise to internal memory and is the cause of hysteresis
observed on a macroscopic scale. The continuous distribution
of hysterons ensures a smooth output variation with the applied
field [5].

Direct determination of P is difficult due to the need
to twice differentiate noisy experimental data. However, the
measured major hysteresis loop ascending and descending

Fig. 2. M19 hysteresis loop with a 1.6T amplitude measured at 5Hz

branches can be transformed directly into an equivalent Everett
function model. The Everett function E (α, β) is given by

E (Hm (0) , Hm (t)) = Mm (t)−Mm (0) , (3)

for the ascending branch with t ∈ [0, T/2] and

E (Hm (T/2) , Hm (t)) = Mm (t)−Mm (T/2) (4)

for the descending branch descending with t ∈ [T/2, T ]. In
words, the line (x, y) described by y = E (h, x) for h > 0,
x ∈ [−h, h] is exactly the ascending hysteresis loop branch
measured for the peak field h, shifted up by the corresponding
peak magnetization. The Preisach density function can be
calculated from the Everett function as

P = − ∂2E
∂α∂β

. (5)

The material state of a scalar Preisach system is completely
described by a set of past input extrema. The line defined
by L (t) = S+

⋂
S− associated with the waveform H (τ) for

τ ∈ [0, t] is composed of a set of horizontal and vertical lines
(or links) whose vertices generate a sequence of Nn values
{Hn}. Using this sequence, the magnetization state at time t
is given by

M = −1

2
E (−Hmax, Hmax) +

Nn−1∑
n=1

E
(
Hn, Hn+1

)
, (6)

where HNn = H (t) and Hmax is the maximum absolute
value of {Hn}. The exact method required to track the
evolution of L (t) given H (τ) is described in [5].

A sample of measured and experimental hysteresis loops
are given in Fig. 1 and Fig. 2 for a toroid core constructed of
several sheets of M19 electrical steel. The measurements were
taken at 5Hz to minimize frequency dependent effects. The
experimental hysteresis loop data was filtered to remove noise
and Bézier splines are used to interpolate the Everett function
between measured values. At both low and high flux-density
levels, the Everett function faithfully reproduces the measured
behavior.



Fig. 3. M19 hysteresis loop with a 400mT amplitude measured at 50Hz

III. EDDY CURRENTS

The macroscopically observed B-H loops of ferromagnetic
materials are known to widen as excitation frequency in-
creases. This is due to the development of eddy currents in the
material body as the skin depth decreases below the smallest
dimension of the sample perpendicular to the field direction.
This phenomenon is not hysteresis – it appears in non-
magnetic materials such as copper – but is an additional source
of core losses. To a first approximation, quasi-static hysteresis
loops can be considered a property of the bulk material while
the way the loops widen with frequency depends on the
geometry of the sample.

The main equations used to describe the field dynamics in
this work are Ampere’s law,

∇× ~H = ~J, (7)

and Faraday’s law,

∇× ~E = −∂
~B

∂t
. (8)

Toroidal cores can be modeled in axisymmetric coordinates
with Hθ and Bθ the only non-zero components of the field-
intensity and flux-density, respectively. Restricting our atten-
tion to the interior of the core and assuming ohmic conduction,

~J = σ ~E, (9)

with material conductivity σ, we may rewrite Ampere’s law,

σEr = −∂Hθ

∂z
, (10)

σEz =
1

r

∂rHθ

∂r
, (11)

and Faraday’s law,

−∂Bθ
∂t

=
∂Er
∂z
− ∂Ez

∂r
. (12)

Combining (10)-(12) gives

σ
∂Bθ
∂t

=
∂2Hθ

∂z2
+

∂

∂r

1

r

∂rHθ

∂r
, (13)

which is simply the non-linear diffusion equation

σ
∂Bθ
∂t

= ∇2Hθ (14)

Fig. 4. M19 hysteresis loop with a 400mT amplitude measured at 500Hz

in axisymmetric coordinates.
Equation (13) is solved using finite element analysis. Given

shape functions wi, the corresponding weight functions are
chosen to be rwi. Multiplying (13) by rwi and integrating
over the core cross section Ω gives∫

Ω

rwiσ
∂Bθ
∂t

drdz =

∫
Ω

rwi
∂2Hθ

∂z2
drdz

+

∫
Ω

rwi
∂

∂r

1

r

∂rHθ

∂r
drdz.

(15)

The domain Ω = [rid, rod]× [−hz/2, hz/2] where rid and rod
are the inner and outer radius, respectively, and hz is the core
height. Using integration by parts on (15) and expanding the
partial derivatives with respect to r reveals the corresponding
symmetric weak form:∫

Ω

wiσ
∂Bθ
∂t

rdrdz +

∫
Ω

∂wi
∂z

∂Hθ

∂z
rdrdz

+

∫
Ω

(
∂wi
∂r

+
wi
r

)(
∂Hθ

∂r
+
Hθ

r

)
rdrdz = 0.

(16)

The field solution is approximated as

Hθ (r, z) =
∑
j

wjHj , (17)

where Hj are the interpolated field-intensity values for node j.
Our implementation utilizes a single element and a high–order
polynomial basis to obtain an accurate field representation.

The integrals in (16) are evaluated using numerical quadra-
ture with quadrature points (rq, zq), quadrature weights ωq ,
and is advanced in time using the implicit-Euler method.
Before application of boundary conditions, this yields the
following equation:

F
Bk −Bk−1

∆t
+KHk = 0. (18)

The vector Hk =
{
Hk
j

}
contains the nodal field-intensity

values. The vector Bk =
{
Bkq
}

contains flux-density values
at the quadrature points which are generally different from
the node locations. The entries of the matrix F are the values



of the integrand of the first term in (16) evaluated at the
quadrature points and multiplied by the quadrature weights;

Fi,q = σwi,qrqωq. (19)

The entries of the matrix K are given by

Ki,j =
∑
q

∂wi,q
∂z

∂wj,q
∂z

rqωq

+

(
∂wi,q
∂r

+
wi,q
rq

)(
∂wj,q
∂r

+
wj,q
rq

)
rqωq.

(20)

The notation wi,q is used to indicate the value of the function
wi (or its partial derivative) evaluated at quadrature point q.

The discretized problem is advanced in time by solving the
nonlinear equation using Newton’s method. To do this, it is
necessary to calculate the differential permeability µq from
the slope of the active branch of the hysteresis loop at the
quadrature points. This is done by directly evaluating the first
partial derivative of the Everett function:

µq =
∂Bq
∂Hq

= µo

[
1 +

∂E
∂β

(
HN−1
q , Hk

q

)]
. (21)

where HNm−1
q are the quadrature point link values associated

with L described in Section II and HNm
q = Hk

q . Following
linearization, entries of the Jacobian J are given by the
following expression:

Ji,j = Ki,j +
∑
q

σµq
∆t

wiwjrqωq. (22)

Dirichlet boundary conditions are applied by assuming the
current in the inductor winding applies a field-intensity to the
boundary of the core. Let Hk

Γ be the values of Hk on the
boundary of Ω. When Hk

j ∈ HΓ, the value is prescribed by
the applied primary current Ik;

Hk
j =

Nt
2πrj

Ik, (23)

where Nt is the number of turns, and rj is the radius of node
j. After application of the boundary conditions, (18) becomes

Fd
Bk −Bk−1

∆t
+KdH

k = DIk. (24)

The matrices Fd and Kd are adapted from F and K, respec-
tively, by setting the rows associated with the core boundary
values to zero, except the corresponding diagonal entries of K
which become 1. The vector D translates the forcing current
Ik into the boundary field values using (23). The relationship
between the winding current and the field boundary values
provides a mechanism for coupling the field equations to
circuit models as described in the next section.

The loop widening phenomena is demonstrated on the M19
toroid for an excitation frequency of 50Hz in Fig. 3 and
500Hz in Fig. 3. Compared to the 5Hz loop shown in Fig.
1, the 50Hz loop is nearly unchanged. On the hand, the
500Hz loop encloses a significantly larger area, indicating
an increase of losses per cycle. Observe in Fig. 4 that for

a fixed flux-density amplitude, the apparent coercivity of the
material increases. Appendix A briefly outlines a method for
determining the effective material conductivity given a set of
apparent coercivity measurements at different frequencies.

IV. RESONANT CIRCUIT COUPLING

A series RLC resonant circuit with a nonlinear inductor can
be described by a set of ordinary differential equations;

I − C ∂Vc
∂t

= 0, (25)

∂λ

∂t
+RI + Vc = Vs (t) . (26)

The voltage induced by the flux in the core is modeled as a
nonlinear flux-linkage λ which is implicitly a function of H .
The induced voltage can be written as the integral of the time
derivative of B over Ω scaled by the number of turns Nt and
– in the case of laminated cores – the number of laminations
Nl:

∂λ

∂t
= NtNl

∫
Ω

∂B

∂t
drdz. (27)

This allows the circuit equations to be driven by the continuum
field model in Section III. After discretizing in time, we arrive
at the following equations;

Ik = C
V kc − V k−1

c

∆t
, (28)

S
Bk −Bk−1

∆t
+RIk + V kc = Vs

(
tk
)
. (29)

The vector S is a discrete version of the integral operator in
(27) with entries given by

Sq = NtNlωq. (30)

The solution is advanced in time using Newton’s method to
solve the coupled field-circuit equations represented by (24),
(28), and (29). Doing this requires linearizing the first term
in (29) with respect to the field-intensity. The corresponding
entries of the Jacobian are given by Jλ,j :

Jλ,j = NtNl
∑
q

uq
∆t

wjωq. (31)

V. EXPERIMENTAL RESULTS

We now compare the accuracy of the two different models
constructed using the proposed technique. The first inductor
is constructed of M19 electrical sheet steel laminations and
is deployed in a circuit operating at resonance near 200Hz.
The second is a ferrite toroid of T38 ferrite material by
TDK in a circuit operating at resonance near 10kHz. We
focus our attention on how the models capture shifts in
the resonant frequency and quality factor since these values
depend critically on nonlinear the inductance and losses.



TABLE I
M19 INDUCTOR RESONANT CIRCUIT PROPERTIES

I.D. O.D. Height σ Turns Rdc C
62.1mm 50.8mm 5.31mm 4.1MS/m 460 1.1Ω 9.88µF

Fig. 5. M19 toroid inductor

A. M19 Electrical Steel Core

The first circuit utilizes an inductor with made of M19
electrical steel. The core consists of a stack of 15 laminations
each approximately 0.35mm thick. The inductor as wound
is depicted in Fig. 5. The core was originally designed to
conform to the ASTM A773 / A773M-01 ring core standard
[10]. A 10µF capacitor was chosen to locate the resonant
frequency of the system near 200Hz based on a representative
inductance value. Table I lists the key measured inductor and
resonant circuit characteristics. The measured M19 Everett
function is depicted in Fig. 6.

The voltage source amplitude was swept from 1Vrms to
4Vrms. The source frequency was swept from 50Hz to 500Hz.
The simulated and measured values of the capacitor and induc-
tor RMS voltages are shown in Fig. 7 and Fig. 8, respectively.
The inductor voltage was measured across the primary winding
and reflects the sum of the real and reactive parts of the voltage
drop: The primary voltage drop is indicative of the apparent
inductance, winding resistance, and core losses.

The simulation results capture several important trends

Fig. 6. Measured Everett function for the M19 toroid

Fig. 7. Simulated (lines) and measured (points) RMS capacitor voltage in the
M19 resonant circuit

Fig. 8. Simulated (lines) and measured (points) RMS inductor primary voltage
in the M19 resonant circuit

Fig. 9. Current waveforms for the 2Vrms sinusoidal input at 200Hz

observed in the experimental results related to location of the
resonant peak and changes in the quality factor. The resonant
peak is observed to shift from 190Hz at 1Vrms input to 230Hz
at 4Vrms. The measured quality factor – determined as the
ratio of input voltage to capacitor voltage – shifts from 2.07
to 5.26 at these points, versus the predicted values of 2.08
and 4.97. A comparison of simulated and measured current at
2Vrms and 200Hz in Fig. 9 demonstrates successful prediction
of a non-sinusoidal waveform.



TABLE II
T38 INDUCTOR RESONANT CIRCUIT PROPERTIES

I.D. O.D. Height σ Turns Rdc C
13.7mm 22.1mm 7.90mm 120S/m 22 60mΩ 69.1nF

Fig. 10. T38 toroid inductor

B. T38 Ferrite Toroid

The second circuit is designed with a ferrite toroid core
using TDK’s T38 material. The target resonant frequency
of this circuit was chosen to be 10kHz. The core size and
material were chosen so that the skin-depth of the material at
10kHz – based on data sheet information – is approximately
equal to two times the core height at 10kHz. This ensures
that eddy currents are an appreciable part of the total circuit
losses. Otherwise, a comparison would only judge the quasi-
static model accuracy and have little to do with the dynamic
behavior. The core was wound with 26AWG magnet wire so
that the copper losses should be nearly frequency independent
over the range of measured frequencies. The relevant inductor
and capacitor properties are listed in Table II.

The Everett function identified using this core is shown in
Fig. 11. The measured capacitor and primary inductor RMS
voltages are shown in Fig. 12 and Fig. 13, respectively. The
source voltage amplitude is swept from 1Vrms to 3Vrms. The
source frequency is swept between 4kHz and 20kHz. Again,
good agreement between the simulated and measured trends

Fig. 11. Measured Everett function for the T38 ferrite core

Fig. 12. Simulated (lines) and measured (points) RMS capacitor voltage in
the T38 resonant circuit

Fig. 13. Simulated (lines) and measured (points) RMS primary inductor
voltage in the T38 resonant circuit

are observed. The capacitor voltage gain at a source amplitude
of 1Vrms and frequency of 8.5kHz is measured to be 3.82
versus a predicted value of 4.22. At a source amplitude of
3Vrms and frequency of 10kHz, the measured capacitor gain
increases to 4.31 versus a predicted value of 4.40.

The apparent discontinuity in frequency response for the
3Vrms source amplitude near 10kHz is discussed further in
Section V-B1. Overall, the discrepancies are somewhat larger
for the 1Vrms source input amplitude than the others. The
reasons for this are explored more in Section VI. Notably, it
is likely the modeled hysteresis characteristic is less accurate
at low flux levels due to the small core size.

1) Steady–State Periodic Orbits Discontinuity: The reso-
nant circuit can be viewed as a dynamic system described by
the nonlinear equation

∂x

∂t
= f (x ; vs, fs) , (32)

where x = {i, v} is the state vector consisting of the
inductor current and capacitor voltage, and vs and fs are
system parameters describing the source applied voltage and
frequency, respectively. Under reasonable assumptions on the
initial conditions of the system, the solutions of (32) tend
toward periodic orbits x = Φ (t ; vs, fs) with

Φ (t ; vs, fs) = Φ (t+ Ts ; vs, fs) , (33)



Fig. 14. Phase portrait of the T38 RLC resonant circuit operated at 3Vrms
source amplitude and 10.5kHz source frequency

Fig. 15. Phase portrait of the T38 resonant circuit operated at 3Vrms source
amplitude and 10.7kHz source frequency

and Ts = 1/fs. Examining, for example, the 3Vrms applied
voltage data in Fig. 12, a discontinuous change of the capacitor
voltage is observed as the source frequency is varied near
10.5kHz. This is observable as a discontinuous change in the
steady-state periodic orbit Φ as f is varied.

Fig. 14 and Fig. 15 show simulated phase portraits for
the T38 resonant circuit at 10.5kHz and 10.7kHz, respec-
tively. Both portraits begin at the origin and overshoot before
ultimately settling into their respective periodic orbits. A
comparison of the initial transient portion of the portraits are
shown Fig. 16, which are observed to be quite close. The
steady–state phase portraits are shown in Fig. 17.

The occurrence of the discontinuity can be understood by
examining opposing positive and negative feedback effects in
the resonant circuit. Start by consider the system at a very low
frequency. An effective inductance can be calculated around a
nominal current trajectory and, along with the capacitor value,
an apparent resonant frequency. Increasing the frequency
slightly moves the system toward this apparent resonant peak.
This will cause the inductor current to increase, pushing it
closer to saturation, lowering the effective inductance, and
further increasing the apparent resonant frequency.

As the frequency is varied in this way the system is,
in a sense, chasing the resonant peak. However, inductor
losses and therefore system damping also increase with fre-

Fig. 16. Comparison of the initial phase portrait transients for 10.5kHz and
10.7kHz source frequency

Fig. 17. Comparison of the steady–state orbits of the phase portrait for
10.5kHz and 10.7kHz source frequency

quency. Above the discontinuity frequency, the damping is
large enough so that the system can no longer escape to the
low inductance (high current) orbit and the apparent resonant
frequency exhibits a step decrease. This is evident from the
phase portrait transient in Fig. 16. At first, the 10.7kHz spiral
remains bounded by but near the 10.5kHz spiral. After the
initial transient, the 10.5kHz portrait continues to increase its
distance from the origin while damping at 10.7kHz prevents
the system from increasing its amplitude any further. Thus,
the portrait associated with the 10.7kHz source frequency
ultimately decays to a smaller amplitude orbit.

VI. FUTURE WORK

There are several known sources of error in the cores models
– particularly the T38 core – which may explain some of the
discrepancies between the simulations and experiments. First,
the T38 core is much smaller and has fewer number of turns
than the M19 core, which naturally introduces more uncer-
tainty into the magnetic characterization process, especially at
low field levels. This could be alleviated by using a larger
toroid to gather material property data for simulating smaller
cores. This introduces the question of material property vari-
ability which must nonetheless be examined if the technique
laid out here is to be used as a prognostic tool.

Second, the standard ferrite core dimensions as described by
the International Magnetics Association’s IMA-STD-140 are



not compatible with the dimensions required by the ASTM
A773 / A773M-01 ring core standard [11]: The ASTM re-
quires, approximately, ratio of mean core diameter to core
thickness of greater than 10 to 1. This is, presumably, to limit
the radial variation of the magnetic field-intensity in the core
to a range small enough so that any error can effectively be
averaged out. Standard ferrite toroid cores have a ratio closer
to 4 to 1, making them more susceptible to this systematic
error. ASTM standard conforming toroids could be fabricated
at some expense.

Finally, ferrite toroids have filleted corners which locally in-
fluence the field shape and losses. Similarly, the M19 inductor
was modeled under the assumption that each lamination expe-
riences identical field and current distributions. These issues
can be resolved by generalizing the finite-element portion of
the technique to allow individual elements per lamination and
geometrically mapped elements to handle filleted corners [12].

VII. CONCLUSION

This paper presented a technique for high-fidelity modeling
of toroid inductor magnetic and core loss properties along with
experimental results validating the method. Two different cores
were examined in the context of series RLC resonant circuits;
one made from M19 electrical steel laminations and one ferrite
core suitable for operation in the 10kHz frequency range.
Good agreement between simulation and experimental results
was observed: The models demonstrated an ability to predict
changes in the location of the circuit’s resonant peak and
associated quality factor, indicating an accurate representation
of nonlinear inductance and losses over a wide range of
input voltages and frequencies. The model also successfully
predicted a discontinuity in the frequency response of one
of the resonant circuits resulting from opposing positive and
negative feedback interactions caused by the interaction of
magnetic saturation and core losses.
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APPENDIX
ESTIMATION OF EFFECTIVE CORE CONDUCTIVITY FROM

FREQUENCY DEPENDENT COERCIVITY

The effective conductivity of the core material is a difficult
parameter to assess for model construction but is essential for
accurately modeling eddy current core losses. It was noted
in Section III that, for a fixed peak flux-density magnitude,
the apparent coercivity of the material is observed to increase
with frequency. The increase is directly related to the material
conductivity as eddy currents in the core are the cause of
this phenomenon. This knowledge provides a mechanism for

Fig. 18. Variation of T38 apparent coercivity with frequency

identifying the effective material conductivity from hysteresis
loop measurements using the model of Section III. First, the
low frequency hysteresis loops are identified. Next, a second
set of measurements are taken at a frequency for which the
apparent coercivity substantially increases. Then, starting with
a nominal conductivity value, the model conductivity is ad-
justed so that the simulated high-frequency coercivity matches
as near as possible the measured data. Fig. 18 shows the
coercivity trend of the T38 core for two different frequencies
over a range of flux densities.
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