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EXECUTIVE SUMMARY 

This report summarizes the current status of the simulation framework developed for the 
economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). There are four main 
cornerstones of the simulation framework: generation of stochastic time series, a probabilistic analysis 
and optimization set of algorithms implemented in RAVEN, models for representation of the physical 
behavior of N-R HES, and a new RAVEN module that maps physical performance into economic 
performance. 

The capability to generate stochastic time series is used to reproduce the stochastic behavior of 
variable renewable electricity sources, electricity demand and electricity prices. This is used to create, 
from limited databases of time histories (wind speed, electricity demand etc.), an unlimited number of 
representative time histories that are never exactly the same as, but are statistically similar to, the time 
histories in the databases. 

The unlimited source of time histories is used to perform statistical analysis and optimization of 
the economic performance of N-R HES. This type of analysis is driven by the RAVEN code, which has 
been modified to perform stochastic optimization and processing of large data sets. 

Several models for simulating the physical response of the N-R HES have been developed for 
different levels of accuracy (in increasing accuracy order): copper plate model (the system has no inertia), 
linear surrogate (simplified representation of physical systems), and detailed Modelica-based 
representation of each subsystem of the N-R HES. 

The physical behavior of the system is recorded by a new module of the RAVEN code, which, 
from physical quantities such as system component size, fuel consumption, and electricity production, 
generates economic performance metrics including Net Present Value (NPV), Internal Rate of Return 
(IRR), and Levelized Cost Of Electricity (LCOE). The whole system is built in a scalable fashion such 
that the size of the system components and subsystems can be accounted from both a physical point of 
view and economic point of view. 

The report presents several realistic test cases that were evaluated to assess the proper functioning 
of the framework, initiate the exploration of the N-R HES performance and to analyze the characteristics 
with respect to conventional systems. This first attempt to perform this level of complex analysis will 
require time to digest all the information generated both on the behavior of the N-R HES and on how to 
tune and best use the tools that have been developed. 

Computational challenges that reflect the complexity of the problem are highlighted. These 
identified challenges are already being addressed via ongoing work to improve RAVEN scalability and to 
port Modelica into a High-Performance Computing Cluster (i.e. Titan at ORNL). 

The conclusion of this work is positive with respect to the capability and the high degree of 
flexibility of the framework. The amount of information generated even running the simple test cases 
reported here highlights the complex behavior of the N-R HES. Further investigation will aid in system 
design and future deployment and operation. 
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Status Report on Modeling and Simulation 

Capabilities for Nuclear-Renewable Hybrid Energy 

Systems 

1. INTRODUCTION 

This report summarizes the current status of the modeling and simulation capabilities developed for 
the economic assessment of Nuclear-Renewable Hybrid Energy Systems (N-R HES). The increasing 
penetration of variable renewables is altering the profile of the net demand, with which the other 
generators on the grid have to cope. N-R HES analyses are being conducted to determine the potential 
feasibility of mitigating the resultant volatility in the net electricity demand by adding industrial processes 
that utilize either thermal or electrical energy as stabilizing loads. This coordination of energy generators 
and users is proposed to mitigate the increase in electricity cost and cost volatility through the production 
of a saleable commodity. Overall, the financial performance of a system that is comprised of peaking 
units (i.e. gas turbine), baseload supply (i.e. nuclear power plant), and an industrial process (e.g. hydrogen 
plant) should be optimized under the constraint of satisfying an electricity demand profile with a certain 
level of variable renewable (wind) penetration. The optimization should entail both the sizing of the 
components/subsystems that comprise the system and the optimal dispatch strategy (output at any given 
moment in time from the different subsystems). Some of the capabilities here described have been 
reported separately in [1, 2, 3]. The purpose of this report is to provide an update on the improvement and 
extension of those capabilities and to illustrate their integrated application in the economic assessment of 
N-R HES. 

First, minor improvements have been implemented in the Modelica physical representation of N-R 
HES components/subsystems. These improvements have primarily focused on enhancing the modularity 
of the systems, upgrading the libraries used, and improving the computational performance in terms of 
speed and reliability. The computational time is currently in the range of one to two hours for a week of 
real time simulation. A set of tests using random dispatch time histories have been employed to verify the 
minimization of spurious failure which could impair the optimization algorithm. As will be clarified later 
in the report, the speed up of each single Modelica calculation is key to extending the real simulation time 
to more than one week. For these reasons, an initial study was carried out to port the N-R HES Modelica 
model to the Titan supercomputer located at Oak Ridge National Laboratory (ORNL). The current status 
of this effort and the Modelica model enhancements are described in section 2 of the report. 

The growth in the amount of Modelica subsystem models and the newly added capability to scale the 
subsystems required extension of the available economic data; hence, the economic dataset has been 
extended accordingly. The status of the data available and the extension of that data are reported in 
section 3 of this report. 

The infrastructure of the Gitlab repository hosting the software developed for hybrid system modeling 
has also been improved. The regression system is used to ensure that independent software developments 
will not interfere with one another. Every time a modification is introduced in the software repository, a 
series of tests is run automatically to ensure that no existing capability is altered unwittingly. Up to this 
point coverage of the regression system has been limited to Modelica-based software. The recent 
enhancements now extend the regression system to also cover Python-based code. Python-based code is 
used to interface the Modelica models with the Risk Analysis Virtual ENvironement (RAVEN) [4] 
package while performing all the manipulation to convert the physical output of the system model in 
Modelica into financial performance.  

Several improvements have been implemented in the optimization scheme described in [1], leading to 
a multi-level approach where two complete independent algorithms can be used for optimization of the 
capacity of each component (or subsystem) and dispatch (level of utilization of each subsystem). These 
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improvements capture the different mathematical aspects of dispatch optimization versus the optimal 
capacity sizing for the system. A summary of those improvements is reported in section 5. 

A set of increasingly challenging tests have been performed to demonstrate the capability of the 
simulation framework and to characterize the behavior of N-R HES. The first tests are simple parametric 
sweeps (Cases 1 and 2) where the economic performance of the systems is monitored as a function of N-
R HES component sizes, and as a function of the hydrogen production price (industrial process used in 
the reference N-R HES configuration chosen). In this case the system model is replaced by a marginal 
cost dispatch model. A third test (Case 3) has been performed to optimize profit using a linear surrogate 
of the subsystems. The fourth test reinstates the sweep on the subsystem sizes but uses the Modelica 
representation of the system and the dispatch is optimized using RAVEN rather than being based on 
marginal cost. This test is followed by a case (Case 5) in which the sweep over the subsystem sizes is 
replaced by an optimization search for the optimal size. The final case (Case 6) is one in which both the 
dispatch and subsystem sizing is optimized by RAVEN. All the tests performed are reported in section 7. 

The conclusions section of the report highlights the high flexibility of the analysis framework that has 
been realized, possible shortcomings of the approach, and areas for further enhancement. 
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2. STATUS OF THE PHYSICAL REPRESENTATION OF N-R HES VIA 

MODELICA  

This section summarizes the current status of the Modelica physical representation of an N-R HES. In 
particular, it focuses on the modular structure of the current approach, libraries used and the input/output 
structure, which is used for communication with RAVEN. 

2.1 Modelica Hybrid System Library Infrastructure 

The physical modeling of the N-R HES in Modelica employs a templated infrastructure approach. 
Generally, a templated approach enables the users to be able to generate personal “sandboxes” for 
subsystem development with little knowledge of other subsystems. In addition, users can employ 
component models (e.g., pumps, pipes, etc.) from a variety of sources, not just those located in the 
Nuclear HES (NHES) library. For example, alternate sources of components could include the Modelica 
Standard Library or any of the many open-source libraries available on sites like GitHub. To be more 
specific, the primary goals of the templated approach are to: 

I. Develop templates for specific implementations of subsystems that handle all potential 
interrelated subsystem signals (e.g., control systems and fluid connections), thereby allowing the 
user to focus on modeling his or her respective subsystem 

II. Implement templates for categories of subsystems that allow users to easily interchange a 
subsystem at the overall architecture level according to the case study of interest while 
minimizing required user knowledge of other subsystems 

III. Provide the necessary handles and structure within the templates to implement and verify nominal 
and initial conditions at subsystem interfaces 

IV. Ensure that all templates are as generic as possible to accommodate a large variety of subsystems, 
with minimal or no modification to the underlying infrastructure. 

Nine potential subsystem categories have been identified for an HES in the current configuration. Figure 
1 presents a top-level view or architecture of the templated Modelica-based model. Table 1 provides a 
textual summary of each of the nine subsystem categories as presented in Figure 1. The templated models 
and supporting file structure upon which Figure 1 is based are shown in Figure 2. Additional discussion 
on the development of this approach can be found in [1]. Instructions on the use of the infrastructure can 
be found within the NHES Library documentation. 
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Figure 1. Top-level implementation of an HES using a templated approach: identifier numbers are defined 
in Table 1, and red and green dotted lines are connection lines for the signal busses described. 
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Table 1. Potential subsystems of an HES. 

Identifier Category Description Specific Example 

1 Primary heat system 
(PHS) 

Provides base load heat and power Nuclear reactor 

2 Energy manifold 
(EM) 

Distributes thermal energy between 
subsystems 

Steam distribution 

3 Balance of plant 
(BOP) 

Serves as primary electricity supply 
from energy not used in other 

subsystems 

Turbine and condenser 

4 Industrial process 
(IP) 

Generates high-value product(s) 
using heat from energy 

manifold/secondary energy supply 
and electricity from switch yard 

Steam electrolysis, gas 
to liquids, or reverse 
osmosis desalination 

5 Energy storage (ES) Serves as energy buffer to increase 
overall system robustness 

Batteries and firebrick 

6 Secondary energy 
source (SES) 

Delivers small amounts of topping 
heat required by industrial 

processes or rapid dynamics in grid 
demand that cannot be met by the 

remainder of the system 

Gas turbine makeup 

7 Switch yard (SY) Distributes electricity between 
subsystems, including the grid 

Electricity distribution 

8 Electrical grid (EG) Sets the behavior of the grid 
connected to the NHES 

Large grid behavior 
(not influenced by 

NHES) 

9 Control system 
center (CS) 

Provides proper system control, 
test scenarios, etc. 

Control/supervisory 
systems and event 

drivers 
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Figure 2. (a) Overall Modelica package for investigation of N-R HESs, (b) template structure for creating 
new subsystem categories and specific subsystem models within a category, and (c) example of a specific 
implementation of a primary heat system using the template approach. 

2.2 Subsystem Models 

The nominal subsystems that have been developed for this initial study are presented in Table 2. 
Subsystems may be added/modified as necessary using the templated approach previously discussed. The 
input and output variables identified for integration with RAVEN for this study are summarized in Table 
3 for each subsystem. The variables indicated were selected as they represent the high-level performance 
of the system that RAVEN seeks to optimize. Additional variables can readily be passed to/from RAVEN 
as they are identified if the full variable name is known as all signals are, by default, available to the 
modeler in the Modelica input and output files. 

 

a

. 
b

. 
c

. 
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Table 2. Identification of the nominal systems developed for this study. 

Subsystem 
Category Implemented Model Description 

PHS 
International Reactor 
Innovative and Secure 

(IRIS) [6] 
Light water small modular reactor 

EM Steam Manifold 

Simple pipes and valves for 
redirection of steam to BOP/IP and 
two volumes for additional thermal 

inertia 

BOP Simple Steam Rankine 

Steam Rankine cycle with 
thermodynamic equation based 

turbine, ideal condenser, and return 
pump 

IP High-Temperature Steam 
Electrolysis (HTSE) 

Industrial process unit that utilizes a 
combination of thermal energy and 

electricity to split water into 
hydrogen and oxygen in planar solid 

oxide electrolysis cells 

ES Logical Battery 
Battery with a simple logic based 

implementation of battery 
performance 

SES Natural-Gas Fired 
Turbine 

Natural-gas fired turbine with open-
ended Brayton cycle 

SY Simple Yard 
Ideal electrical distribution to 
subsystems (i.e., no electrical 

component models) 

EG Infinite Grid Infinitely large grid that sets the 
electricity frequency 

CS Input Setpoint Data 

Reads electricity demand signals 
from RAVEN and sends to 

subsystems. No additional control 
logic 
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Table 3. List of input and output variables for the nominal subsystems of Table 2 that are accessed by RAVEN. 

  Variable Subsystem Variable Name Description Range Limits Units 

In
pu

ts
 

Po
w

er
 D

em
an

d 
Se

tp
oi

nt
s 

BOP timeSeriesData.txt file - BOP Electrical power production setpoint x>0 W 

IP timeSeriesData.txt file - IP Electrical power consumption 
setpoint 

x>0 W 

ES timeSeriesData.txt file - ES Electrical power production (+) or 
consumption (-) setpoint 

- W 

SES timeSeriesData.txt file - SES Electrical power production setpoint x>0 W 

EG timeSeriesData.txt file - NetDemand Overall electrical setpoint of the 
system. Currently only for 

comparisons and not for altering 
simulation performance 

- W 

C
ap

ac
ity

 S
iz

in
g 

IP dataCapacity.IP_capacity Scales the maximum output of the IP 0.9*51e6 < x < 
2*51e6 

W 

ES dataCapacity.ES_capacity Scales the maximum output of the ES x > 0 W-hr 

SES dataCapacity.SES_capacity Scales the maximum output of the 
SES 

0.5*35e6 < x < 
2*35e6 

W 

EM EM.V_splitter Volume of component that sends 
streams to BOP and IP 

10 < x < ~100 m3 

EM.V_mixer Volume of component that mixes 
streams from BOP and IP 

10 < x < ~100 m3 

EM.length_To_BOP Pipe length to/from BOP 1 < x < 100 m 

EM.length_To_IP Pipe length to/from IP 1 < x < 100 m 
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O
ut

pu
ts

 

W
as

te
 P

ro
du

ct
io

n 
or

 F
ue

l 
C

on
su

m
pt

io
n 

PHS PHS.sensorBus.subBus_PHS.m_flow_fuelConsum
ption 

UO2 fuel consumption rate - kg/s 

IP IP.sensorBus.subBus_IP.HTSE.m_flow_H2_prod Hydrogen production rate - kg/s 

IP.sensorBus.subBus_IP.HTSE.m_flow_O2_prod Oxygen production rate - kg/s 

SES SES.sensorBus.subBus_SES.GTPP.m_flow_fuel Natural gas consumption rate - kg/s 

SES.sensorBus.subBus_SES.GTPP.m_flow_CO2 CO2 production rate - kg/s 

El
ec

tri
ci

ty
 P

ro
du

ct
io

n 
or

 
C

on
su

m
pt

io
n 

SY SY.sensorBus.subBus_SY.W_BOP Balance of Plant - W 

SY.sensorBus.subBus_SY.W_ES Energy Storage - W 

SY.sensorBus.subBus_SY.W_SES Secondary Energy Source - W 

SY.sensorBus.subBus_SY.W_IP Industrial Process - W 

SY.sensorBus.subBus_SY.W_EG Electrical Grid - W 
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2.3 Individual Components and Reference System 
The current version of the NHES library employs both third party components from the Modelica 

Standard Library [7], ThermoPower [8], and TRANSFORM [9] and components developed internal to the 
project for specific subsystems. For example, the NHES library contains a large variety of models for the 
development of a high-temperature steam electrolysis plant, a gas turbine, a basic Rankine cycle balance 
of plant, and a light water nuclear reactor. Components included in the library that support the 
development of these systems include 1-D pipes, pressurizers, condensers, turbine (steam and gas), heat 
exchangers, a simple logic based battery, a nuclear fuel subchannel, etc. Third party models include 
numerous additional models including source/sink components (e.g., fluid boundary conditions), 
additional heat exchanger models, logical components for control system development, multi-body 
components, additional supporting functions (e.g., LAPACK, interpolation, smoothing), etc. The reader is 
directed to specific libraries for additional information. 

The reference system used in all the tests performed, if not specified otherwise, is constituted by all 
the unique subsystems in Table 1 with a hydrogen production plant as the industrial process. This 
configuration has been chosen for testing the enhanced toolset due to its completeness and relevance to 
possible realistic applications. 

2.4 Ongoing Development  
Once the overall template infrastructure and nominal subsystems were developed and tested to 

adequately perform for the purposes of this initial study, development was frozen on all components and 
models. While this set of component models was frozen to ensure stability for the subsequent analysis, 
the enhancement of the system components has proceeded further in a different branch of the repository. 
For example, the distributed 1-D pipe component model was revisited to improve initialization and 
flexibility for modeling of different geometries, heat transfer models, and pressure loss models. These 
upgrades were accomplished by improving the code structure to simplify the development of new models 
and to enlarge the application range of the components. Additional components such as condenser, pump, 
mixing volumes, etc. were added to prepare for future needs studies that will require more realistic 
subsystem models (e.g., balance of plant). Components will continue to be added as needs are identified 
(e.g., transport delay pipes for long distances that may be encountered in a hybrid system, additional 
industrial processes, etc.). Also, as models are revisited, nomenclature is being checked to improve 
standard naming techniques for all components. 

2.5 Reliability Testing 
The stochastic optimization search requires a large number of runs changing both the capacity and the 

dispatch of the different resources. This being said, given that the optimization is an intrinsic sequential 
problem (the next set of values describing the physical systems is derived from the previous set), it is 
highly important that the software representing the physical system is highly reliable. 

2.5.1 Test Description 

A RAVEN-based parametric and robustness study of the Modelica model was performed to assess 
software reliability. Given the large number of simulations required, a High-Performance Computing 
(HPC) system is necessary. The ORNL Reactor and Nuclear Systems Division (RNSD) has HPC 
resources available that use the Linux Red Hat operating system.a  

                                                        
a 64-bit Linux Red Hat 2.6.32 (x86_64) 
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The analysis presented herein was performed on the ORNL cluster Romulus, which includes a head 
node and 40 compute nodes.b The calculations were accomplished using the parallel management 
infrastructure provided by RAVEN and using the license-free binary file dymosim generated by the 
Dymola user interface to execute the simulations. For successful execution, the shared libraries that come 
with the Dymola distribution were made available. 

The Modelica NHES model was tested for a five-hour period and a week-long period of simulated 
time with the synthetic time histories generated by RAVEN/Auto Regressive Moving Average (ARMA). 
Test steps include: 

I. ARMA model is trained with the available wind and demand datac at an hourly resolution.  
The ARMAs for wind and demand are then trained with: HYBRun_trainARMA_1week.xml 

II. RAVEN uses the trained ARMA to create a random realization of the system dispatch 

III. Modelica is run for the trained ARMA 

IV. Point II and III are repeated as many times as deemed necessary to test the reliability of the 
model. 

The N-R HES model tested was a complete configuration, comprised of a nuclear reactor, hydrogen 
production plant, steam manifold, gas turbine and battery. 

A dispatch model is created as part of a RAVEN ensemble model such that, given the time histories 
of demand and wind, an hourly dispatch sequence is sent to the N-R HES Dymola model. The runs are 
driven by a Monte Carlo sampler named “DYMOLA_MC” and the number of samples is controlled by 
the RAVEN input node <limit></limit>, e.g. 100 for 100 runs:  

 
 <Samplers> 

          <MonteCarlo name="DYMOLA_MC"> 

            <samplerInit> 

                <limit>100</limit> 

Given the availability of cores all the runs were executed in parallel by setting the batch size to 100, e.g.: 

<RunInfo> 

        <WorkingDir>.</WorkingDir> 

        <Sequence> read_ARMAdemand,read_ARMAwind,MCh,dumpCSV</Sequence> 

        <batchSize>100</batchSize> 

 

2.5.2 Reliability Testing Results  

Successful execution is defined in this section as the ability of the model to complete a simulation 
session successfully and to provide consistent solutions and simulation statistics (central processing unit 
time, number of time steps, number of Jacobian calculations, etc.) over a variety of forcing functions or 
parameters. 

                                                        
b The head node has 16 2800-MHz CPUs with a total of 32-GB memory. Each compute node has 32 

2400-MHz CPUs with a total of 132-GB memory. 
c Available demand data at http://www.ercot.com/gridinfo/load/load_hist/ 
  Available wind data at http://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html 
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N-R HES Modelica simulation integration with RAVEN/ARMA is able to perform optimization 
studies for a number of selected model parameters and simulation control options, demand profiles, and 
subsystem capacities. However, this capability is not used in the implementation discussed here since the 
scope was to test stability of the model under random excitation (dispatch time series). 

Two sets of simulations were performed to investigate the limits of successful simulation of the N-R 
HES model. The first simulation set focused on a broader range of parameter setting values to sample the 
simulation space and to understand simulation problems that may arise using a five-hour simulation 
period. The second set of simulations reduced the number of parameters varied, refined the parameter 
values, and extended the simulation period to a full week. Results from each study and the information 
gleaned are further discussed below. 

The results of simulations run are examined using high-level results such as success rate, failure rate, 
simulation time, and memory used, as summarized in Table 4.  

 

Table 4. Modelica model reliability test results (five hours real time). 

Model 
“dsin.txt” 
Runs 

CPU Time 

[hh:mm:ss] 

Run # CPU time/ 
run [s] 

Memory 

[kb] 

Success  
Rate [%] 

Failure 
Reason  

 
Cluster 
Parallel 
Runs 

00:38:59 

 

10  233.9 842028 100 ~/dymosim 
terminated since 
signal 15 raised (= 
SIGTERM; kill 
<process-ID>)* 

 

01:25:01 

 

20 255.1 779932  

 

100 N/A 

07:25:39 

 

100 267.4 7061304  

 

100 N/A 

Local Rund 16:34:28 

 

1000 59.7  100 N/A 

* ORNL cluster using TORQUE Resource Manager to manage batch job submission and distributed 
computing. The runs terminated due to queuing system errors are not considered as failed runs but noted 
as an issue to be resolved for future runs. 
 

 

 

 

                                                        
d Local runs performed on a Mac OS X Yosemite 10.10.5 with 4-GHz Intel Core i7 processor with 32-GB 
DDR3 RAM at 1600 MHz. 
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Table 5. Modelica model reliability test results (one week real time).  

Model 
“dsin.txt” 
Runs 

CPU Time 
[hh:mm:ss] 

Run 
# 

CPU 
time/ run 

[s] 

Memory 
(resources_used.mem) 
[kb] 
 

Success  
Rate 
[%] 

Failure 
Reason 

Cluster 
Parallel Runs 

03:17:29 
 

10 1184.9 744856 98 Model 
Error* 

06:02:14 
 

20 1086.7 871172 
 
 

95 Model 
Error 

33:26:26 
 

100 1203.9 2381456 
 

98 Model 
Error 

* In addition to the queuing system errors, a few tests began simulating and then failed during the 
simulation. The Modelica log files of the failed tests shared the same error, which indicated a model 
numerical issue. Specifically, the argument with a natural log function call within the industrial process 
electrolysis stack (solid oxide electrolysis cells, SOEC) caused the simulation to fail (i.e., natural log of a 
negative number is undefined) due to a very large transient event defined as model error. Limiting the 
argument to positive values corrected the error and the simulations that had failed are now working. (See 
Merge 68 and 69 in the HYBRID software repository history). 

 

2.6 Scale-up of the N-R HES Optimization Framework for HPC 
Platforms 

Activities have been initiated to port the N-R HES library to an HPC platform. Titan, which is hosted 
at ORNL, was selected as the target demonstration vehicle. With a theoretical peak performance of more 
than 20 petaflops, Titan, a Cray XK7 supercomputer located at the Oak Ridge Leadership Computing 
Facility (OLCF), gives computational scientists unprecedented resolution for studying a whole range of 
natural phenomena, from climate change to energy assurance, to nanotechnology and nuclear energy. 

The N-R HES project was awarded an allocation on the following computational resources: 

• Titan: 3,000,000 core hours 
• Rhea: 2,500 node hours 

Titan is a world class supercomputer while Rhea is a smaller cluster used for large data processing. The 
computational environment is described in appendix A. 

 

2.7 Deployment Status on Titan 
Currently, the necessary N-R HES optimization framework packages, i.e., the Modelica dynamic 

simulation libraries and RAVEN, have been installed on Titan. Dymola, which is the simulation 
environment that executes models written in the Modelica language, has been installed at the project 
level, so project participants with account access to Titan can generate new binaries and run their cases. 
However, Dymola cannot be run in full mode in the current configuration as the license server that hosts 
the licenses cannot be accessed from within the Titan subnet. This issue is being addressed; one of the 
licenses will be temporarily transferred over to Titan to enable generation of the binary that can be 
executed on compute nodes. Unfortunately, binaries generated on other Linux platforms are not 
compatible with the kernel configuration on Titan. 
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The ORNL team was able to test the execution of Dymola using the example models provided within 
the Modelica Standard Library. A binary was successfully generated and the simulation executed. 
However, because the Dymola license could not be acquired, it is not possible to execute the binaries 
from the console directly. Once the license issue is resolved, it is expected that it will be possible to 
distribute it to compute nodes and run cases in parallel. In upcoming work, ORNL researchers will also 
test the compilers provided on Titan with different optimization options to attain the shortest execution 
time. 

 
  



 

 
 

15 

3. ECONOMIC DATA FOR N-R HES 
This section of the report contains information relevant to the economic analysis of a hybrid system. 

The economic numbers for the nuclear plant and for the H2 electrolysis plant have already been collected 
and discussed in detail in [1]. A summary of this data is provided at the beginning of this section. In 
addition to the nuclear plant and the hydrogen electrolysis plant, already available in the previous report 
[1], data for the following components is provided here: 

• Gas turbine and associated plant 
• Natural gas markets and recommended historical data for the modeling of natural gas costs 
• Steam turbines and BOP 
• Manifold 
• Grid scale battery (80-120 MWh) 
• Switchyard/electrical connection. 

3.1 Nuclear Economics Data Summary 
Detailed information on the nuclear-related costs are provided in [39]. 

The current study assumes an overnight capital cost for a reference 1100 MWe Pressurized Water 
Reactor (PWR) to be 4100 $/kWe as reported in [11, 16]. This estimate corresponds to a well-executed 
construction project without regulatory interventions or design changes after the construction has begun. 
The weighted average scaling exponent for nuclear plants is 0.64. The commonly used formula [14, 15] to 
scale CAPital EXpenditure (CAPEX) is: 

 !"#$% = !"#$%'()
*+,+-./0123
*+,+-./0425

(6,78.:;
 (1) 

Light water reactor (LWR) average variable costs based on the U.S. experience in the late 1980s has 
been reported in [1]. The recommended fixed operations and maintenance (O&M) cost is 85 $/kWe/year. 
This is similar to the recent cost average for the Exelon fleet [12]. Total variable cost is evaluated as a 
fraction of total fixed cost. Total variable costs as a fraction of total fixed costs is between 4.6% and 5.9% 
[16], which results in 0.5 $/MWh as an approximate intermediate value. Additionally, fuel cost is 
estimated between 8.0 $/MWh and 8.8 $/MWh, averaging 8.4 $/MWh. 

3.2 Hydrogen Economics Data Summary 
Reference [1] reports that the total (i.e. worldwide) hydrogen market in 2016 was $118 billion, 

expected to grow about 5% year-over-year over the next few years. Although various technologies to 
produce hydrogen exist, most of the generation is from steam methane reforming of natural gas: reacting 
CH4 with H2O in the presence of a catalytic converter. Steam methane reforming accounted for more than 
one third of total generation, while other technologies are partial oxidation, gasification and electrolysis. 

The U.S. merchant hydrogen market rose from $3.36 billion in 2010 to $3.44 billion in 2011. This 
corresponds to about 3% of the total (worldwide) H2 market. By 2016, the merchant market was expected 
to have reached $3.87 billion (more updated information was not available in the literature). In terms of 
volume, the market totaled 1.22 million tons in 2010. In 2011, the U.S. merchant hydrogen market totaled 
1.24 billion kilos, and by 2016, the net amount was expected expected to reach 1.23 billion kilos (it was 
not possible to find more updated information). By taking a ratio of these two numbers, it is possible to 
calculate the price of H2/kg (i.e. for 2010: $3.36E9/1.22E9kg = 2.75 $/kg in 2010; for 2016 
$3.87E9/1.23E9kg = 3.1 $/kg in 2016). Other references mentioned in [1] place the sale price of hydrogen 
between $1.26/kg and $2.51/kg. 
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The economic values applied for a hydrogen production facility in the N-R HES analysis are based on 
high temperature steam electrolysis (HTSE). The cost of H2 production applied in the present study is 
assumed to be 2.56 $/kg (in 2012 dollars) at a production rate of 1.85 kgH2/sec in the optimized case.  

The total plant cost (including indirect costs) is assumed to be $153 million as detailed in [1], with all 
the needed systems to feed H2 into a pipeline, including the cost of the SOEC module that will need 
relatively frequent replacements. This value is for a plant capacity of 231 MWe. 

References [1, 17] report that the SOEC cells will likely have to be replaced several times during the 
life of the plant (assumed to be 40 years). Since the degradation of the SOEC cells depends on the 
capacity factor of the plants, the fixed O&M cost is a function of the plant capacity factor. Table 6 shows 
a summary of the fixed and variable O&M costs of the hydrogen plant as a function of plant capacity 
factor.  

 

Table 6. Summary of the Fixed and Variable O&M costs as a function of the unit capacity factor. 

Capacity	factor	
Full	time	
production	
(hours/year)	

H2	produced	
(kgH2/year)	

Fixed	O&M	($/kgH2)	 Variable	O&M	
($/kgH2)	

10%	 876.6	 5.84E+06	 0.61	 0.048	

20%	 1753.2	 1.17E+07	 0.30	 0.048	

30%	 2629.8	 1.75E+07	 0.20	 0.048	

40%	 3506.4	 2.34E+07	 0.15	 0.048	

50%	 4383	 2.92E+07	 0.12	 0.048	

60%	 5259.6	 3.50E+07	 0.10	 0.048	

70%	 6136.2	 4.09E+07	 0.09	 0.048	

80%	 7012.8	 4.67E+07	 0.08	 0.048	

90%	 7889.4	 5.25E+07	 0.07	 0.048	

100%	 8766	 5.84E+07	 0.06	 0.048	

 

3.3 Gas Turbine 
Reference [18] contains information on the cost of natural gas plants (both Combustion Turbines 

[CT] and Combined Cycles Gas Turbines [CCGT]) generated by PJMe to inform new entrants into their 
markets. This information is based on a large base of actual construction projects and should therefore be 
defensible. Figure 3 shows an example of a gas turbine. 

PJM reports in [18] installed costs of between 947 $/kW to 1061 $/kW (average of 1004 $/kW, 
approximated as 1000 $/kWe) for CT of 380-390 MWe (approximated as 400 MWe), depending on the 
area, using the GE-7FA as reference turbine. Installed costs for CCGT are reported to be 1168 $/kW to 
1326 $/kW for a 576-595 MWe system (approximated as 600 MWe), also using a GE-7FA turbine, where 
the most expensive area for installation is near New Jersey and Delaware. 

                                                        
e PJM is a regional transmission organization; see www.pjm.com for more information. 
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Figure 3. Siemens SGT5-800H rated at 375MW (similar to what used in the hybrid concept), located at 
the Siemens Berlin facility ready for shipment. 

 
Reference [18] includes a breakdown of the installation cost, which will be used to develop a better 

understanding of capital costs. For a 400 MWe CT in the EMAAC PJM zone (NJ and Delaware) as an 
example, the direct equipment purchase (called “Owner’s furnished Equipment”, terminology that can 
lead to confusion with “owner’s costs”), are $125.9M, dominated by the turbine at approximately $100M. 
The Engineering, Orocurement and Construction (EPC) contract includes equipment purchased indirectly 
through the architect engineer, as well as labor (direct construction labor is $50M-$70M). Other labor 
includes $20M of “indirect costs” in nuclear construction. The direct costs could therefore be 
approximated by the sum of “Owner’s furnished Equipment” and “EPC costs” without the “non-
construction labor” and the “EPC fees and contingency”, which can be interpreted as indirect cost. Of 
course, some of the “material” will also be indirect costs, such as rented construction equipment, 
temporary construction facilities, etc., but the amount of “materials” is a small number that can be 
neglected in the first approximation. Hence, the overall direct costs are estimated at 126+191-21-26-
29=$249M. This equates to 62% of the total costs, which is substantially higher than for a nuclear plant. 
This result likely reflects the greater simplicity of gas plant designs, and the lower cost burden associated 
with regulatory compliance. 

A summary table of the capital cost breakdown for CT is provided in Table 7. 
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Table 7. Summary table of capital costs for CT gas turbine, from [18]. 

 
 
Owner’s costs are a significant percentage for a CT plant, at $83M over a total of $400M, or about 

20%, as compared to a typical value of 8%-10% for a nuclear plant. These costs are dominated by gas and 
electrical interconnections, and project development. 

 
3.3.1 Scaling Factors  

Figure 4, which is taken from reference [19], illustrates the impact of size on the cost for simple cycle 
gas-fired combustion turbine plants. The interpolated specific cost of gas turbines is shown as a function 
of the gas-fired plant power level, yielding a cost exponent of 0.78 for “heavy” gas turbines and of 0.77 
for “aero-derivative” ones. 

The calculated specific costs for the turbine-only portion of the plant in [18] is then compared in 
Table 8 to the cost of the turbine as would be calculated for each power level using the scaling law of 
Figure 4, from [19], and then updating the cost from 2008 to 2018 dollars (as shown in [18]) using the 
Consumer Price Inflation (CPI) from 2008 to 2016, and afterwards an assumed inflation of 2%/year for 
the years 2017 and 2018. It is noted that the calculated values from the two sources are consistent within 
an accuracy of about 10% for the power level of CT plants reported in [18]. 
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Figure 4. Impact of Size on original equipment manufacturer cost for simple cycle units from [19]. 

Table 8. Gas turbine equipment costs, comparison of specific cost ($/kW) calculated from data in [18] to 
specific cost ($/kW) calculated from the scaling law shown in Figure 4 [19]. 

Turbine 
power (MW), 

from [18] 

Turbine OEM cost 
(2017 M$), from [18] 

Specific cost ($/kW), 
calculated from data 

in [18] 

Specific cost ($/kW), 
calculated from the scaling 
law of Figure 4 from [19] 

396 102.57 259.01 237.39 

393 102.15 259.93 237.79 

385 97.59 253.47 238.89 

383 102.47 267.53 239.16 

391 102.36 261.79 238.06 

 
The data in Figure 4 and in Table 8 are for the gas turbine portion of the plant (including directly 

associated mechanical equipment, such as exhaust ducts, silencers, fuel systems, filters, standard controls 
and starting systems and NOx emission control systems). However, reference [18] also contains 
information on total plant costs of different sizes. When interpolating the data using a power law, a 
scaling factor of 0.72 (with an R2 of 0.986) is obtained, confirming that likely scaling factors for CT 
plants are in the range of 0.72 to 0.78. The exponent for entire gas plants is expected to be lower than that 
of the gas turbine only, since it also includes land, connections, buildings etc. that will scale with a lower 
exponent (it could approach zero for the land, for example). For this reason, it is recommended to use an 
exponent of 0.72 to scale the entire plant costs. 

It is also noted that other references report substantially lower costs for installed gas plants. For 
example, [20] reports an overnight unit cost of $973 $/kWe for “conventional” CT plants of 85 MW 
capacity and $676 $/kWe for “advanced” CT plants of 210 MW capacity. The scaling factor between 
those two numbers, assuming comparability, would be approximately 0.6, substantially lower than what 
was found in [19]. However, it is also noted that the heat rate of the PJM [18] CT plant is approximately 
10,300 BTU/kWh, while the “conventional” CT plant in [20] has a heat rate of approximately 10,850 
BTU/kWh. The “advanced” CT plant in [20] has a heat rate of approximately 9,750 BTU/kWh, placing 
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the heat rate of the PJM plant of reference [18] in between the two cited in [20]. It is also noted that the 
unit cost of the 210 MW “advanced” CT plant is $676/kW in [21], substantially below the unit cost of the 
larger 400 MW plant reported by PJM based on their experience. It is therefore recommended to use the 
values of [18], from PJM, which may include a degree of conservativeness. A summary table of the 
referenced plants and their primary characteristics is shown in Table 9. 

 

Table 9. Summary table of the gas turbine characteristics from data in [18] and [20]. 
Power Overnight cost 

($/kWe) 
CT plant type Reference Heat Rate 

(BTU/kWh) 
396 MW 1012 Unspecified [18] 10300 

85 MW 973 Conventional [20] 10850 

210 MW 676 Advanced [20] 9750 

 
 

3.3.2 O&M Costs 

O&M costs for a 400 MW CT plant are reported in [18] at $5.2 M/y to $10.1 M/y fixed, and 4.25 
$/MWh to 4.29 $/MWh variable. A detailed discussion of the O&M costs of CT plants was performed in 
the context of hydrogen cost estimations in [17]. 

 
3.3.3 Summary of Gas Turbine Costs 

In conclusion, it is recommended that users adopt the unit specific cost of the reference 400 MW CT 
plants from [18] and exclude the electrical connection costs of $13 million discussed separately in this 
report (see section 3.8). This assumption results in a unit plant cost “as installed,” in 2018 dollars, of 
$967/kW, scaled with an exponent of 0.72 for CT gas plants of different sizes.  

Considering the large variability of fixed O&M costs across regions of the U.S. just based on 
geography, it is recommended that the fixed O&M costs not be scaled with the size of the plant but to 
instead perform sensitivities at 5 M$/y and 10 M$/y. Similarly, it is recommended that the variable O&M 
costs not be scaled for plants of different sizes, instead adopting a constant amount of 4.27 $/MWh, which 
is the average of the range reported in [18]. 

 

3.4 Gas Markets 
This section discusses reasonable ranges for natural gas costs, measured in $/MMBTU (US dollars 

per million BTUs). As shown in Table 10, the Henry Hub gas prices have ranged from approximately 2 
$/MMBTU to 4 $/MMBTU from November 2016 to March 2017. 
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Table 10. Screen capture of the Henry Hub natural gas cost prices for Monday-Friday of each week over a 
3-month period, as seen on 3/7/2017 at https://www.eia.gov/dnav/ng/hist/rngwhhdd.htm. 

 
 
The cost of natural gas can vary considerably at different delivery points. For example, Figure 5 

shows the gas prices at various delivery points within the PJM territory in the years 2015 and 2016 [21]. 
Large spikes are visible in the January-March 2015 period. Additional detailed historical nodal prices for 
gas were found at the following website: https://www.eia.gov/electricity/wholesale/#history. The map in 
Figure 7 shows the eight major trading hubs for which historical gas daily prices were found for 2014, 
2015, 2016 and 2017 up-to-date. The names of those eight hubs are shown in Table 11, while Figure 6 
shows a map of the U.S. pipelines. A higher pipeline density should lead to a lower price of gas since 
access to reliable delivery is supposedly greater. 

Additional data on nodal prices of gas can be found on the ICE (intercontinental exchange) web site, 
for the more than 120 hubs at which natural gas prices can currently be traded. However, it does not 
appear that this data is sufficiently organized to allow an efficient collection of the data.  

The daily weighted average gas prices for 2016 are plotted as a function of time in Figure 8, as an 
example, to show the daily fluctuation in prices. Simple averages were performed for each year and for 
each hub, yielding the yearly average gas prices shown in Table 12.  
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Figure 5. Daily delivered natural gas prices for January through September, 2015 and 2016, where price 
spikes are due to scarcity driven by cold weather events; this plot appears as Figure 3-50 in reference 
[18]. 

 
Figure 6. Map of U.S. gas pipelines [downloaded from 

https://www.eia.gov/energyexplained/index.cfm?page=natural_gas_pipelines]. 
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Figure 7. Nodal information on natural gas cost prices [downloaded from 

https://www.eia.gov/electricity/wholesale/]. 
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Table 11. Natural gas hubs and wholesale daily spot price names [from 
https://www.eia.gov/electricity/wholesale/]. 

  
Figure 8. Weighted average daily natural gas prices at the eight trading hubs shown in Figure 7, plotted 
for the year 2016. 
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Table 12. Yearly average gas costs in $/MMBTUs and in $/kWh for the 8 trading hubs of Figure 7. 

	
$/MMBTU	 $/kWh	 $/MMBTU	 $/kWh	 $/MMBTU	 $/kWh	 $/MMBTU	 $/kWh	

	
2014	 2014	 2015	 2015	 2016	 2016	 2017-YTD	 2017-YTD	

Algonquin	Citygates	 4.40	 0.0150	 4.81	 0.0164	 3.56	 0.0121	 4.37	 0.0149	

Chicago	Citygates	 4.23	 0.0144	 2.75	 0.0094	 2.49	 0.0085	 3.23	 0.0110	

Henry	 4.11	 0.0140	 2.61	 0.0089	 2.50	 0.0085	 3.25	 0.0111	

Malin	 4.10	 0.0140	 2.53	 0.0086	 2.36	 0.0081	 3.22	 0.0110	

PG&E	-	Citygate	 4.64	 0.0158	 2.99	 0.0102	 2.72	 0.0093	 3.57	 0.0122	

Socal-Citygate	 4.50	 0.0153	 2.8	 0.0095	 2.57	 0.0088	 3.53	 0.0120	

Socal-Ehrenberg	 4.34	 0.0148	 2.64	 0.0090	 2.44	 0.0083	 3.27	 0.0111	

TETCO-M3	 3.07	 0.0105	 2.54	 0.0087	 1.76	 0.0060	 3.32	 0.0113	

 
Summary of Gas Markets 

It is recommended that economic analyses of N-R HES that incorporate a gas turbine or compare 
costs to natural gas driven systems apply daily gas nodal prices for 2014 to 2016 from 
https://www.eia.gov/electricity/wholesale/#history. In addition, “Henry Hub” prices that are closest 
(geographically) to the values used for the daily electricity costs reported at a 5-minute resolution 
provided in reference [1] for Southern Louisiana, the location of the longest U.S. H2 pipeline as discussed 
in [1]. 

 

3.5 Steam Turbines and Balance of Plant 
The section reports the cost of the balance of plant, broken down by the cost of the steam turbine and 

other components. They are grouped together since in literature BOP is difficult to find separately and 
may need to be computed as the difference of the turbine cost and the total balance of plant (including 
turbine). 

3.5.1 Steam Turbine Generator Costs and Scaling Laws 

This section describes the cost basis and escalation factors for the nuclear steam turbine generator and 
BOP. Two quotes were found for nuclear steam turbine/generator pricing: cost for the 1100 MW PWR12-
BE in [23] and for the 1,000 MWe Molten Salt Breeder Reactor (MSBR) in [24]. The costs (escalated to 
January 2017 USD, using the methodology described in [11]), together with the power level and 
operating conditions of the two machines, are shown in Table 13. The MSBR, with a lower unit cost, 
relies on a supercritical Rankine cycle, which has a higher thermal cycle temperature and pressure than a 
standard Rankine cycle. As the steam pressure and temperature are higher, the size of the turbine is 
substantially smaller than that of an LWR cycle of the same power, although the casing will have thicker 
walls. The smaller size accounts for the smaller specific costs of the MSBR turbine. An example steam 
turbine is shown in Figure 9. 

 

Table 13. Turbine equipment cost (from [23] and [24], escalated to 2017 using the methodology described 
in [11]). 

 Power 
(MW) 

Equipment cost 
(2017 M$) 

Specific equipment 
cost ($/kW) 

Inlet turbine 
pressure (bar) 

Inlet turbine 
temperature 

(°C) 

Type 

MSBR	 1,035	 211.75	 259.17	 248	 538	 Supercritical	
PWR12-BE	 1,192	 362.62	 304.21	 67	 283	 Subcritical	
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Figure 9. Steam turbine Siemens SST-800 (https://www.energy.siemens.com/co/en/fossil-power-
generation/steam-turbines/sst-800.htm#content=Description). 

 
It was found that the cost of Rankine turbo-generators is a function of both the power level and of the 

operating conditions, and the scaling laws have different exponents for machines designed to operate at 
different pressures. For this reason, the large amount of cost data for steam turbines for coal-fired power 
plant and combined cycle systems cannot be used directly for nuclear turbo-generators. However, 
information on these systems is briefly summarized here to provide information on the scaling of nuclear 
turbines. Subcritical steam turbines employed in light water reactors operate at lower pressures than those 
used in typical fossil power plants, such as coal and CCGT plants (please see Table 14 for a comparison 
of the typical operating conditions of the two different systems). 

 

Table 14. PWR12-LWR and fossil plants Rankine cycle pressures and temperatures [28]. 

 LWR Fossil 

Pressure (bar) 50-75 150-300 

Temperature (°C) 265-290 540-600 

 
 A lower Rankine cycle operating pressure results in a lower enthalpy difference across the turbine. 

To obtain the same amount of power from the cycle, a higher steam mass flow rate is used, which results 
in the need for higher flow areas. Also, as the density increases with pressure, to obtain the same mass 
flow rates at lower pressures, high cross-sectional areas are needed. Moreover, the efficiency of each 
stage of the turbine increases with the length of the blades, which further justifies the adoption of large 
flow areas. Steam turbine generator equipment costs from references [18, 19,  27, 28] were combined and 
classified by ranges of operating pressure and temperature. For each range of operating conditions, 
equipment costs as a function of power were interpolated using a power function in order to estimate the 
scaling exponents. 
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For consistency, all costs were converted to January 2017 USD using the methodology described in 
[11]. Figure 10, Figure 11, and Figure 12 show the costs as a function of power and the interpolated 
scaling exponents, respectively for the following pressure ranges: 115 bar and 125 bar, 166-167 bar and 
for supercritical 242.3 bar. The scaling-law exponents found for those pressure ranges are, respectively, 
0.87, 0.70 and 0.48, although the supercritical data are based on only two data points.  

 
Figure 10. Steam turbine-generator equipment costs (115-125 bar); costs escalated to 2017 USD. 

 
Figure 11. Steam turbine-generator equipment costs (166-167 bar); costs escalated to 2017 USD. 
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Figure 12. Steam turbine-generator equipment costs (supercritical, 593 °C); costs escalated to 2017 USD. 

Since steam turbine pricing for nuclear power plants is limited, a regression analysis similar to those 
performed for fossil plant turbines is not viable. Instead, the scaling law for NPP steam turbines was 
estimated from the scaling laws derived for turbines of different pressures discussed in section 3.3. The 
data points shown in Figure 13 were interpolated using a linear function, as shown in Table 15. 

 

Table 15. Scaling law exponents as a function of the HP steam turbine inlet pressure. 

Pressure (bar) Exponent 
242.3 0.4848 

166.39 0.7002 
123.33 0.8684 
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Figure 13. Steam turbine-generator scaling law exponent as a function of inlet pressure. 

 

Table 16. PWR scaling law exponent. 

 Pressure (bar) Exponent 
PWR12 67.2 1.035 

 
It is clear that the power function exponent decreases with the pressure, showing that the economy of 

scale becomes more relevant at higher pressures. For a generic PWR, the calculated scaling law exponent 
is shown in Table 16. The value of the exponent shows a slight diseconomy of scale, suggesting that a 
single turbine is marginally more expensive than two turbines of half size working in parallel. However, 
the scaling law does not take into account the economy of scale of other turbine-related equipment, such 
as steam piping, auxiliaries and accessories. 

 
3.5.2 Other Balance of Plant Components 

The entire BOP, according to [23], has a total cost of $610 million (in 2017 dollars escalated 
according to the methodology described in [11]) including: 

• Turbine generator 
• Condensing system 
• Feed heating system 
• Other turbine-related plant equipment 
• Instrumentation and control of the turbine and associated equipment 
• Turbine plant miscellaneous items. 

These BOP costs are dominated by the turbo-generator at $363 million, which is approximately 60% of 
the total cost. Additionally, the building cost is approximately $63 million. Overall, therefore, the total 
direct cost of the turbine and associated equipment and building is approximately $673 million (in 2017 
dollars), or 26.3% of direct costs for the PWR12-BE. 
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3.5.3 Summary of Steam Turbine and BOP Costs 

It is recommended that the fractional cost reported in [23] for the PWR12-BE for the turbine 
generator and associated equipment and building, 26.3% of direct costs, be used in the current N-R HES 
system analyses. Additionally, it is recommended that indirect costs, owner costs and contingencies be 
assumed to be directly proportional to the direct costs. Under these assumptions, the BOP will contribute 
approximately 26.3% of the overnight cost of the entire nuclear plant (i.e., 26.3% of 4100 $/kWe, 
according to the derivation described in [1]), or approximately 1080 $/kWe, while the “rest” of the 
nuclear plant without the balance of plant is then assumed to be 3020 $/kWe for the reference 1192 MWe 
PWR12-BE. 

Regarding scaling, since it was found that nuclear turbines likely have no economies of scale, it is 
recommended that the cost of the entire BOP be scaled linearly with the power level. These 
approximations may be revised as more information becomes available on other parts of the BOP and 
their scaling laws, with further research in the future. 

Information on the O&M costs of the BOP portion of nuclear plants was not available in the literature 
as a separate cost. However, assuming direct proportionality between capital and O&M costs, O&M costs 
can be estimated as 26.3% of the O&M of the reactor (as described in [1]). 

 

3.6 Manifold 
A schematic of the manifold equipment is shown in Figure 14, including the dimensions of the 

components, where Φ is the inside diameter of the pipes, L is the length of the pipes, t is the thickness of 
pipes and tanks, V is the volume of the tanks, p is the operating pressure and < is the mass flow rate. An 
example of a manifold is illustrated in Figure 15. 
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Figure 14. Schematic of the manifold structure and main components. 

The total installed cost of a component is defined as the sum of the equipment cost (Ceq, or purchased 
cost) and installation cost (Cinst): 

 (2) 

Additionally, the cost of the building housing the manifold equipment needs to be considered. 



 

 
 

32 

 
Figure 15. Example of a manifold for steam distribution. 

 
3.6.1 Purchased Costs 

This subsection presents the cost of pipes of smaller and larger diameters, as well as the cost of tanks 
for mixers and splitters. Finally, a summary of all the purchased costs is provided. 

3.6.1.1 Pipes of smaller diameter 
From the schematic provided in Figure 14, the pipe parameters are shown in Table 17.   

Table 17. Pipe parameters. 
Component Design pressure (MPa) Diameter (m) Thickness Length (m) 

pipe from PHS 6.38 3.776 0.111 1 
pipe from BOP 6.49 0.400 0.011 1 

pipe from IP 6.81 0.350 0.010 1 
pipe to PHS 6.81 3.776 0.113 1 
pipe to BOP 5.94 2.500 0.068 1 

pipe to IP 6.37 0.350 0.010 1 
 

The purchased costs of pipe of smaller diameters, i.e.: 

• Pipe from IP  
• Pipe from BOP 
• Pipe to IP 

were estimated using Figure 12-4 on page 503 of reference [14]. The figure, reported here in Figure 16, 
shows purchased costs of welded pipe per unit length as a function of diameter for both stainless and 
carbon steel, welded and screwed pipes, and for “schedules” 10, 40 and 80. Schedule 40 and schedule 80 
pipes have the same outside diameters, but schedule 80 pipes have a larger wall thickness. Table 18 
shows the thicknesses for schedule 40 pipes of different diameters; it is observed that all the pipes of 
interest here fall within the thickness of schedule 40. Consequently, it was immediately possible to obtain 
the purchase cost of the pipes of interest from [14], shown in Table 19. 
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Figure 16. Purchased cost (in 2002 USD) of welded and screwed pipe per unit length, extracted from [14]. 

 

Table 18. Chart of schedule 40 Pipes (see http://www.pipeflowcalculations.com/tables/schedule-40.php). 

Nominal size 
(inches) 

Outside 
diameter 
(inches) 

Outside 
diameter 

(mm) 

Wall 
thickness 
(inches) 

Wall 
thickness 

(mm) 

Weight (lb/ft) Weight (kg/m) 

12 12.750 323.8 0.406 10.31 53.52 79.73 
14 14 355.6 0.375 11.13 54.57 94.55 
16 16 406.4 0.500 12.70 82.77 123.30 
18 18 457.0 0.562 14.27 104.67 155.80 
20 20 508.0 0.594 15.09 123.11 183.42 
24 24 610.0 0.688 17.48 171.29 255.41 
32 32 813.0 0.688 17.48 230.08 342.91 

 

Table 19. Purchased costs of small diameter pipes per unit length (meters). 

Component Cost (2002 $) ($/m) Escalated Cost (2017 $) ($/m) 
Pipe from BOP 150.00 205.68 

Pipe from IP 100.00 137.12 
Pipe to IP 150.00 205.68 

 

3.6.1.2 Pipes of larger diameter 
Pipes to/from PHS and the pipe to BOP are characterized by large dimeters, substantially larger than 

the maximum diameter for pipes (typically 1 meter or less) available in the cost literature for chemical 
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plants. For this reason, the costs of these pipes were approximated using the cost of tanks. Figure 12-54 
on page 558 of [14] (reported here as Figure 17) shows purchased cost (in 2002 USD) for stainless steel 
and carbon steel horizontal tanks of different diameters, as a function of length.  

 

 
Figure 17. Purchase cost for horizontal storage vessels from [14]. 

 
The curves were linearly extrapolated to the origin of the x-axis to reflect the length of one meter 

(which is shown in Figure 14 as the reference length for these pipes). The extrapolated purchased cost of 
one-meter long tanks, as a function of the diameter, is shown in Figure 18. As the reference shows costs 
for tank diameters of 2, 3 and 4 meters, the data was interpolated using linear functions. Two different 
linear functions were used for the ranges 2-3 meters and 3-4 meters. 
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Figure 18. Purchased cost for horizontal storage vessels as a function of diameter. 

Additionally, the cost of the tanks needs to be adjusted to account for different design pressures: this 
is accomplished by multiplying the purchased cost of a tank designed for a pressure p by a factor Mp, 
according to the following equation: 

 (3) 

Reference [14] gives the value of the factor Mp as a function of pressure (shown in Table 20, extracted 
from the table within Figure 17). As the pressure values of the equipment are not tabulated, pressure 
factors were interpolated using a linear function. The data points, along with the interpolating line, are 
shown in Figure 19.

Table 20. Pressure adjustment factors from [14], extracted from the table within Figure 17. 
P (kPa) Mp 
1,035 1.6 
5,000 3.2 

10,000 4.6 
20,000 8.7 
30,000 12.2
40,000 15.8 
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Figure 19. Pressure adjustment factors as a function of pressure, interpolated linearly to obtain the values 
for the exact pipe diameters of Figure 14. 

The calculated costs for each component, along with the calculated and interpolated relevant 
parameters, are shown in Table 21. Costs were converted from the value of 2002 USD to 2017 USD using 
the ratio between consumer price indexes (CPI) in the period from January 2002 to January 2017. 

Costs for longer lengths can easily be obtained from Figure 19, or from the values reported in Table 
21, and by noticing that the cost does not increase linearly with the length of the pipe, but rather with an 
exponent of approximately 0.85. 

Table 21. Interpolated pressure adjustment factors and costs. 
Component Diameter

(m) 
Cost (2002

USD) 
Design Pressure

(MPa) 
Pressure 

adjustment factor 
Mp 

Adjusted Cost
(2002 $) 

Escalated Cost
(2017 $) 

Pipe from PHS 3.776 5,164.00 6.38 3.56 18,372.23 25,192.00 

Pipe to PHS 3.776 5,164.00 6.81 3.71 19,181.72 26,301.98 

Pipe to BOP 2.5 3,500.00 5.94 3.40 11,889.42 16,302.77 

Purchased cost of the mixer and the splitter components were estimated using the data reported in 
Figure 17. Pressure adjustment factors (Mp), discussed in the previous section, are tabulated in Table 20
and plotted along with the interpolating line in Figure 19. The pressure factors at the working conditions 
of the mixer and splitters tanks (which operate at 6.38 and 6.81 MPa, respectively) were found to be 3.56 
and 3.71, respectively. 

The volume of the mixer and splitter were specified in Figure 14 as 10 cubic meters. Both the mixer 
and splitters were assumed to have cylindrical shapes, since spherical tank costs were found to be 
substantially greater (about a factor of 3) as compared to horizontal cylindrical tanks of the same volume 
and design pressure. 

In order to extract the cost from the curves of Figure 18, it was assumed that each tank would have a 
diameter of 2 m; consequently, the height of the tank would be approximately 3.2 m. Extrapolating from 
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the D=2m curve of Figure 19, it is seen that the cost of the tanks, in 2002 USD unadjusted for pressure, 
would be approximately $8000 each. Adjusting for the pressure adjustment factors and for the CPI 
between 2002 and 2008, it was found that the cost of the mixer and splitter are approximately $39000 and 
$40700 in 2017 dollars. The assumed purchased cost for the equipment and the splitter are shown in 
Table 22.  

 

Table 22. Mixer and splitter purchased costs. 
Component Vol 

(m3) 
D 

(m) 
H 

(m) 
Cost 

(2002 $) 
Press. adjust. factor 

Mp 
Adjusted Cost 

(2002 $) 
Escalated Cost 

(2017 $) 
Mixer 10 2 3.2 8000 3.56 28480 39052 

Splitter 10 2 3.2 8000 3.71 29680 40697 

 

3.6.1.4 Summary of Manifold Purchase Costs 
Table 23 shows a summary of the manifold equipment purchasing costs. The costs for pipes are 

provided in cost per unit length ($/m), while the costs of the mixer and splitter tanks are provided for a 
volume of 10 m3 and for a reference diameter of 2 meters. The cost for pipes of different lengths can be 
calculated from the unit cost and an exponent of 0.85. A similar exponent can be used to calculate the cost 
of the mixer and splitter tanks of larger volumes than 10 m3, by preserving the diameter of 2 meters. 
Should a different diameter be chosen, the costs will have to be re-estimated using a similar procedure to 
the one described in this report, starting from data in Table 23. 

 

Table 23.Purchase cost summary for manifold equipment. 

Component Escalated Cost 
(2017 $) 

Pipe from PHS  ($/m) 25,192.00 

Pipe from BOP ($/m) 205.68 

Pipe from IP ($/m) 137.12 

Pipe to PHS  ($/m) 26,301.98 

Pipe to BOP  ($/m) 16,302.77 

Pipe to IP  ($14/m) 205.68 

Mixer (10 m3, 2m D) 39,052.00 

Splitter (10 m3, 2m D) 40,697.00 

 
3.6.2 Installation and Total Installed Costs 

Reference [14] reports the installation costs for different types of equipment. Labor for pipe 
installation is estimated to be approximately 40 to 50% of the total installed cost of piping. Rearranging 
Eq. 2, we obtain: 

CCDE>
C@A

=
C>?>
C@A

− 1 (3) 

which gives: 
CCDE>
C@A

=
1

60% − 1 = 67% (4) 
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CCDE>
C@A

=
1

50% − 1 = 100% 

 

(5) 

where a ratio of 50-60% was used for the equipment cost relative to total cost. Consequently, the piping 
installation cost results in the range of 67% to 100% (with an average of 83.5%) of the purchased 
equipment cost. For metal tanks, the installation cost was estimated at 30% to 60% (with an average of 
45%) of the equipment cost. 

 
3.6.3 Building Cost 

The turbine building of the reference PWR12-BE [29] is utilized to estimate the cost per unit volume 
of a building that could be representative of a building that could host the manifold equipment.  Cost of 
the turbine building and heater bay was extracted from [23] and is summarized in Table 24. The building 
cost then can be estimated using the turbine building and heater bay specific cost of 265 $/m3, as: 

CRSCTUCDV = 265	 ∙ 	V	 
 

(6) 

where V is the building volume in cubic meters. 
 

Table 24. Volume, total cost and specific costs of the turbine building and heater bay, from references 
[23] and [29]. 

Turbine building and heater bay 
Volume (m3) 207,573 

Cost (escalated to 2017 USD) 54,989,900 
Specific cost ($/m3) 265 

 
 

3.6.4 Summary of Manifold Costs 

It is recommended that the unit cost data for purchased equipment shown in Table 23 be applied in 
initial N-R HES analyses.  The estimated pipe costs are provided in cost per unit length ($/m), while the 
costs of the mixer and splitter tanks are provided for a volume of 10 m3 and for a reference diameter of 2 
meters. The cost for pipes of different lengths can be calculated from the unit cost and an exponent of 
0.85. A similar exponent can be used to calculate the cost of the mixer and splitter tanks of larger volumes 
than 10 m3 by preserving the diameter of 2 meters. Should a different diameter be chosen, the costs must 
be re-estimated using a procedure similar to the one described in this report, starting from data in Table 
23. The installation cost can then be calculated as 83.5% of the purchased equipment costs for pipes and 
as 45% of the purchased equipment costs for the mixer and splitter tanks. Finally, the building cost can be 
calculated once its volume has been assessed, at a unit cost of 265 $/m3. O&M costs for the manifold can 
be approximated as 1% of CAPEX, analogous to the O&M costs of the battery (see section 3.7). 

 

3.7 Battery 
The unit costs for pumped-hydro or compressed air in underground caverns typically are measured in 

$/MW, i.e. by cost per maximum charge/discharge speed. Battery unit cost is instead typically measured 
by the total electrical storage capacity in $/kWh. Reference [16] contains a summary of a literature review 
on the unit cost of batteries. Historically, battery storage has been on the order of 400-500 $/kWh [16]. 
However, there are battery makers that forecast redox batteries for 150 $/kWh, and the electric 
automotive manufacturer Tesla has promised a battery at 350 $/kWh [16], with recent contracts for car 
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manufacturers suggesting prices as low as 300 $/kWh. Battery costs are forecasted to drop further towards 
200 $/kWh [31].  

Separately, reference [32] contains an analysis of the levelized cost of storage as performed by Lazard 
Co. The investment cost of lithium batteries is expected to be between 500 $/kWh and 1000 $/kWh, 
similar in cost to that of sodium and of lead batteries, and of flywheels. The cost of flow batteries, based 
on vanadium or on zinc-bromine, is expected to be higher at 700 $/kWh to 1100 $/kWh. The useful 
project life for lithium batteries is reported in [32] at 5-10 years, depending on the number and depth of 
typical daily cycles. 

 

 
Figure 20. San Diego Gas and Electric Escondido storage facility. 

Two recently-built large scale grid storage projects in California [33] provide some approximate 
guidance on the relationship between storage and power. The San Diego Gas and Electric’s Escondido 
storage facility (Figure 20) has a capacity of 120 MWh and maximum power of 30 MW, while Tesla’s 
Ontario, California storage facility has a capacity of 80 MWh and maximum power of 20 MW. In both 
cases, the minimum time to go from full charge to full discharge (and vice-versa) is 4 hours. The official 
costs for the two projects were not found, but it is known [33] that a 2 MW Tesla “PowerPack” (i.e. a 
battery pack) costs approximately $2.9 million. Consequently, the 20 MW Ontario battery system should 
have an approximate cost of $29 million, or 362 $/kWh. However, acquisition contracts larger than 2.5 
MW can be negotiated directly with the company, according to Tesla’s website, indicating that the 
procurement cost of this contract could have been lower than 362 $/kWh. The time between procurement 
and completion for the Ontario project was on the order of months, so the interest during construction is 
approximately zero and the overnight and total costs are approximately the same. 
 
Summary of Battery Costs 

In summary, it is recommended that a reference unit cost for the battery of 350 $/kWh with a useful 
life of 10 years be applied, with possible sensitivity studies at 300 $/kWh and 5 years of useful life.   
Annual O&M costs for are reported in [32] at 1% of CAPEX. The maximum power should be such that 
the battery can be fully charged or discharged in 4 hours. 
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3.8 Electrical Connection 
This section summarizes the cost of the electrical connection. Since the nuclear power plant is 

expected to have a power of about 300 MWe, and the gas turbine a power level less than 100 MWe, it is 
expected that the most informative electrical connection costs will be for a power of about 400 MWe. 
Scaling laws will be provided to adjust the costs of this component for higher and lower electrical 
connection capacity. Figure 21 shows an example of an electrical connection. 

 

 
Figure 21. Example electrical grid connection 

Reference [18] includes the cost of the electrical connection as a separate account in the breakdown 
of the cost of new CT and CCGT plants, shown in Table 25. It is noted in [18] that the electrical 
connection costs also include the cost of the typical network upgrades, where necessary. It is observed 
that the cost of the electrical connection for a 400 MWe plant is about $13 million, and the scaling law 
(derived from the average values of CT and CCGT plants) is more than linear, with an exponent of 1.26. 
This likely reflects the larger necessary network upgrades to accommodate larger power plants, or simply 
the fact that the necessary equipment for larger plants may not be entirely available “off the shelf”. 

While the cost of the network upgrades is not broken down separately, and therefore cannot be 
excluded from the analysis, it is also noted that the overall costs of the electrical connections are small as 
compared to the cost of other major plant equipment. Consequently, retaining the network upgrade costs 
will result in a negligible error in the overall calculations even when those upgrades may not be 
necessary. 

 

Table 25. Cost of electrical connections for CT and CCGT plants, from [18].  

Plant type Power level 
(MWe) 

Cost of electrical connection 
($M in 2017 USD) 

CT 400 13 

CCGT 600 22 

 
 



 

 
 

41 

 
Summary of Electrical Connection Costs 

In summary, it is recommended that an electrical connection cost of $13 million for a 400 MWe plant 
be used (this cost needs to be excluded from the overall plant cost of for the gas turbine, discussed in 
section 3.3 of this report). This value should be scaled with an exponent of 1.26 for different required 
power levels. O&M costs for the electrical connection can be approximated as 1% of CAPEX, analogous 
to the O&M costs of the battery (see section 3.7).  
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4. IMPROVEMENTS TO THE REGRESSION TESTING FRAMEWORK 
Regression testing is a development methodology that is used to verify the correct performance of 

software after modifications are made. As software is created, developers create additional small 
programs (tests) to exercise its various features. The tests and their expected results are stored as part of 
the repository. Before new software changes are accepted into the repository, all of the tests are run 
against the modified code. The outputs of these tests are then compared against expected results stored in 
the repository. If a result is different than expected for any test, or if any test does not run successfully, 
then the test is considered to have failed. When the tests do not pass, a developer must determine why the 
failure occurred before a proposed change may be accepted.  Regressions tests are one way to assure the 
quality of software produced. 

As described in the HYBRID project report for FY16 [34], the RAVEN code is used to optimize 
system economics.  A key RAVEN capability used in performing this analysis is the ability to incorporate 
multiple user-developed external models.  RAVEN is able to combine multiple such models in a single 
run to solve a larger combined problem [35].  For this project two types of external models are used: 

• Those written in the Modelica programming language, used in HYBRID to simulate the 
behavior of physical systems that make up the N-R HES under varying conditions.  

• Additional code written in the Python scripting language that describes economic aspects of 
the problem including electricity dispatch and costing.  

Automated regression testing of Modelica was successfully implemented in FY16 and is now an 
integrated part of the HYBRID physical model development process.  Added in FY17 is the ability to 
perform test runs of RAVEN from outside its normal file system location.  This allows external models 
stored in the HYBRID repository (such as the economic and dispatch modules) to be tested using 
RAVEN without having to be made a part of RAVEN itself.   

Significant effort has been invested in developing the economic and dispatch models.  The RAVEN 
code used to execute them is under active development. Having the ability to test these modules in an 
automated manner provides a mechanism to detect any regression problems inadvertently introduced by 
ongoing RAVEN development. Each time the HYBRID repository is to be updated with a new RAVEN 
version, these modules will be tested with it before the update is accepted. Any failures in those tests 
provide a warning about a regression issue before the update to RAVEN becomes a part of the HYBRID 
repository. 

4.1 Testing System Prerequisites 
The module test system consists of scripts written in the bash shell language and Python.  It may be 

used on any platform that is supported by RAVEN (Linux, Mac, and Windows).  The following 
conditions must be satisfied for the module test system to function properly: 

• The RAVEN submodule of the HYBRID repository used to run the module tests must be 
initialized and fully updated.  It is this installation of RAVEN that will be used to run the 
module tests. 

• The MOOSE [36] submodule of the RAVEN submodule must also be initialized and updated.  
RAVEN (and by extension Hybrid) makes use of the testing system contained in MOOSE. 

• The system running the tests must be configured with the software prerequisites necessary to 
build and run RAVEN [4].  These include a Python interpreter, Python libraries (h5py, 
matplotlib, numpy, scipy, and scikit-learn), and development tools (C++ compiler, Miniconda 
package manager for Python, and git source code control).   
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• The RAVEN submodule must be built with the appropriate compiler before it can be used to 
run the tests. 

4.2 Test Location and Definition 
The RAVEN submodule that is already part of the HYBRID repository contains a complete testing 

system used to provide regression testing for itself.  HYBRID module testing is achieved by extending the 
RAVEN system so that it can run tests stored in the parent repository (which it would not normally be 
able to do).  Files associated with RAVEN module testing reside in the raven_module_testing directory 
located immediately below the root of the HYBRID project repository.  The main script file that 
configures the RAVEN test system for Hybrid-specific functionality is placed in this directory (see Figure 
22) Inside the root folder “hybrid” it is defined a “raven_module_testing” folder which contains the 
scripting for the testing and the folder “tests”. The folder “tests” contains the input of the tests and the 
corresponding output (in the “gold” folders) which are used to verify that the behavior of the code is not 
changed at each regression test. For organizational purposes the tests are usually collected in subfolders 
based on their characteristics. 

 
 

 
Figure 22. Folder tree used by the regression system. 

Hybrid-specific module tests are defined in the same manner as they are for RAVEN.  A single test 
consists of a RAVEN input file along with associated data needed to perform that run.  That can include 
input data, external models, and Python files.  These may be placed in the tests directory, or they may also 
be placed in subdirectories of tests.  Every directory that contains tests to be run by the framework must 
contain a test specification file named “tests”.  The syntax of these files is defined by the MOOSE test 
framework [36], which controls how each test is run and sets the criteria used to determine whether it 
passed or failed.  An example of a test specification file is presented here: 

 

Reference	files	and	
test	subfolders

Folder	containing	
tests	(added)

Module	testing	
system	root	(added)

Hybrid	repository	
root	(existing) hybrid

raven_module_testing

tests

gold test	subtype

gold

another	test	
subtype

gold
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In the above example, two tests are defined, named “pcaResponseSurface” and “2steps_same_db”.  

They are both defined as tests that use the RAVEN-specific test module.  In most cases, this RAVEN test 
module (defined in the test file as “type = ‘RavenFramework’ ”) will also be used for Hybrid module 
testing. 

Comparison criteria are also defined in the “tests” file.  In most cases, one or more output files 
generated by running the specified input file with RAVEN are compared against a gold standard provided 
by the developer and stored in the repository.  Typically, comparisons are performed on numeric values 
contained in Comma-Separated Values (CSV) files to a defined tolerance.  It is also possible to compare 
output files written in eXtensible Markup Language (XML).  When these file comparisons are specified by 
the test developer, reference files must have the same name and be placed in the gold subdirectory below 
that containing the “tests” file. 

4.3 Running the Tests 
The test system is accessed by running an operating system shell script located in the top directory of 

the HYBRID project repository. This file run_raven_module_tests has the same parameters controlling its 
function as the RAVEN test script.  The format of the command with the most used parameters is 
provided below: 

 
run_raven_module_tests [-h | --help]  
                       [-j <number of processes> |  
                        --jobs <number of processes>] 
                       [--re <regular expression>]  

Where: 
-h or –help Causes the complete list of parameters the script will accept 

to be printed and then exit without running any tests.  Note 
that there are many other parameters provided by the 
RAVEN/Moose test framework, many of which do not 
apply to Hybrid module testing. 

-j or –jobs <number of processes> Runs multiple tests in parallel, allowing at most <number of 
processes> of them to be active concurrently.  Using this 
option when the computer running tests has several logical 
processors will reduce the total amount of time needed to 
run multiple tests. 

[Tests] 
 [./pcaResponseSurface] 
  type = 'RavenFramework' 
  input = 'test_pca_responseSurface.xml' 
  csv = 'rsPCA/BBRDesign_dump.csv rsPCA/CCRDesign_dump.csv' 
  max_time = 500 
  rel_err = 0.001 
 [../] 
 
 [./2steps_same_db] 
  type = 'RavenFramework' 
  input = 'test_2steps_same_db.xml' 
  csv = 'test_2steps/fullprint_HistorySet_3.csv' 
  UnorderedXml = 'test_2steps/fullprint_HistorySet.xml' 
 [../] 
 . . 
   (Other tests may be defined here) 
 . . 
[] 
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-re <regular expression> When specified, this parameter will only execute tests 
whose name matches the regular expression provided.  This 
is typically used to run single tests. 

4.4 Repository Test System (Civet) 
As described in the FY 16 report [34], the purpose of having a single top-level test script is to provide 

a way for an automated system to run all of the module tests together.  The HYBRID and RAVEN 
projects make use of a tool called Civet [38], developed at INL, that provides regression testing services.  
Each time a developer proposes modification of the contents of the HYBRID repository, Civet will cause 
the automated tests to be run on the modified version.  These tests (which are performed separately on 
both the Modelica models and the HYBRID add-on modules) must all pass before a proposed change may 
become part of the official repository.  In this way the Hybrid project is protected from the accidental 
introduction of flaws into the software that required significant investment of resources to develop. 
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5. OPTMIZATION IMPROVEMENTS 
As already mentioned one of the cornerstone of the framework developed is the capability to optimize 

the N-R HES economic performance. The parameter space to be optimized is the capacity (size) of each 
sub-system of the N-R HES. This could not be done without considering the optimal dispatch strategy of 
the system resources to meet the electricity demand. Consequently, optimal sizing of the system is 
connected to the dispatching problem and the dispatching should be optimized given the stochastic nature 
of net electricity demand (or electricity prices). The whole problem could be therefore classified as a 
stochastic optimization problem which parameter space is both the system sub-compoenent size and the 
dispatch. 

5.1 Pre-existing Features 
The first part of section 5 provides a summary of the already available capabilities of the RAVEN 

code to perform optimization in stochastic systems. This should also serve as a short recall of the 
development already performed and reported in [1, 39].  

5.1.1 SPSA 

The algorithm implemented in RAVEN used for optimization problems in this work is based on the 
Simultaneous Perturbation Stochastic Approximation (SPSA) technique.  This gradient descent method 
approximates a N-dimensional local gradient by comparing the change of value between only two points.  
Because a traditional gradient calculation requires N+1 evaluations, this can save a large amount of 
calculations at the cost of introducing some error into the gradient.  If enough successive gradient 
evaluations are performed, it is expected that the gradient descent algorithm will move towards the 
optimal point on average. Features of the RAVEN implementation of SPSA include the choice between 
minimization and maximization problems, fine control over step sizing parameters, and limits for each 
variable being optimized, limiting value searches to the hypercube formed by the input variable limits. 

 
5.1.2 Normalized Input 

It is common for inputs to a model to vary widely in magnitude.  For instance, the inputs to the 
models in this work range over eight orders of magnitude.  As a result, the input domain for the optimizer 
search can be very irregular; as a result, the correct step size to take in a gradient descent can depend 
strongly on what direction the step is going.  To mitigate this complication, all input data is normalized, 
mapping original domains to the 0 to 1 domain.  The result is a hypercube with length of 1 on any side, 
making it more practical to traverse the space in a consistent manner.  We do note, however, that the 
distances from point to point in the hypercube tend to increase as the number of dimensions increase.  
Regardless, a step size of 0.5 always means a step size equal to half the length of one dimension. 

 
5.1.3 Stochastic De-noising 

One way to combat the complication of stochastic noise in an optimization environment is to find 
expected values of points and gradients.  The SPSA algorithm in RAVEN allows the user to request 
multiple evaluations of each sample taken, which will then be used to calculate expected values and 
reduces the stochastic noise.  This helps prevent the optimizer becoming stuck on a point that was optimal 
once, but on average is less optimal than the points around it. 

 
5.1.4 Multi-trajectory 

A significant pitfall of gradient descent algorithms is local minima.  Because gradient descent follows 
gradients, it is easily trapped by plateaus or valleys that are ideal locally but may not be a global 
optimum.  To combat this phenomenon, RAVEN allows multiple initial starting points to be identified by 
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the user, each of which will follow an independent optimization walk, or “trajectory”.  The global 
optimum is assumed to be the most ideal of the endpoints of each trajectory.  Alternatively, if one 
trajectory begins following another trajectory, the first is eliminated and only the second continues.  The 
threshold for termination is a parameter available to the user. 

 

5.2 New Developments 
This section covers the additional developments introduced to improve the optimization convergence 

along with some academic examples that illustrate the effect of such improvements. 

5.2.1 Adaptive Stepping 

One of the challenges with the original SPSA implementation is a tendency to slow convergence 
across a domain.  The search step size in this algorithm can be adjusted somewhat by a few parameters, 
then is determined largely by the magnitude of the gradient as well as the number of steps taken.  Large 
gradient magnitudes result in large steps taken, and the number of search steps taken tempers the size of 
step.  As a result, if gradients are fairly steep near optimal points, it takes a great number of search 
iterations to reduce the step size enough to achieve convergence. 

To mitigate this issue, we implemented an adaptive step sizing determination algorithm in RAVEN’s 
SPSA algorithm.  This adaptive step feature uses the estimated gradient for direction information only, 
and determines the step size based on previous performance.  To determine the size of the next step, the 
algorithm considers the scalar product of the two previous step directions, ignoring the step sizes 
themselves.  If the scalar product is positive, the algorithm infers a larger step size is needed in order to 
search for a change in gradient direction, while if the scalar product is negative, the step size needs to be 
cut in order to converge on the optimal point.  If the scalar product is zero, the step size should remain 
unchanged. 

The mechanical change in step size is based on raising a gain factor to the scalar product of the 
previous gradient directions.  This assures that at most, the step is multiplied by the gain factor, and at 
smallest, the step is divided by the gain factor.  For example, given a gain factor of 2, if the SPSA 
algorithm determines the gradient moves in the same direction twice, then the next step will double in 
size, while if the gradient exactly reverses direction, the next step will be halved.  This allows for quickly 
moving across the input space as well as converging rapidly in valleys.  We found for many test-cases a 
value of 1.5 for the gain factor performed well by exploring the domain but still converging quickly, 
without experiencing false convergence from noise in the zeroth-order gradient approximations that are 
key to SPSA. 

However, we observed that using the same gain value for both growing and shrinking the step size is 
not always ideal.  While a reasonably large value for the gain factor assures rapid movement across the 
domain, the large value causes the step size to be cut too quickly in some cases and result in false 
convergence.  To this end, we divided the gain factors into a gain growth factor and gain shrink factor.  
When the scalar product of the gradients is positive, the step size is multiplied by the gain growth factor 
raised to the gradient scalar product.  When the product is negative, the step size is divided by the grain 
shrink factor raised to the product.  In general, we found success with a gain growth factor of 1.5 and gain 
shrink factor of 1.25, although these values are problem dependent. 

In Figure 23 and Figure 25 the input variable is on the x-axis and the target on the y-axis, and the 
optimizer is seeking a minimum point.  The initial point for the optimizer is the maximal value for x.  In 
Figure 23, the old method, many small steps are required to find the minimum point.  In Figure 25, the 
step size adaptively grows until the turning point is found, then the step size shrinks to find the minimum 
point. 
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Figure 23. Comparison of adaptive versus not adaptive stepping. 

 
 

 
Figure 24. Comparison of adaptive versus not adaptive stepping. 
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5.2.2 Restriction to Improvements 

Another reason SPSA can be slow to converge is that once it estimates a gradient and determines a 
direction to move in, there is never a check to see if the new proposed optimal point is actually more 
optimal than the point recently left by the search algorithm.  In order to speed up convergence, we 
implemented an “only improvements” adjustment that will reject proposed optimal points that on 
inspection are less favorable than the current optimal point.  In the event a proposed point is rejected, the 
step size is cut as per the adaptive stepping algorithm, and the gradient is re-evaluated before a step is 
taken.  One weakness of this restriction is if the optimization algorithm gets “lucky” with a particular 
evaluation of the stochastic space, it may never find a more optimal input point, even if other points are 
better on average.  Thus, it is necessary to carefully consider de-noising when using a stochastic model 
and the SPSA optimizer in RAVEN. 

In Figure 24 two inputs are on the x-axis and y-axis, and the color represents the target value, with 
blue as the minimum and red as the maximum.  The target value is calculated using Beale’s function.  On 
the left is the old method, where we see the path of the optimization algorithm move in an erratic fashion 
around the domain, closing in on the minimum without ever really settling on it.  On the right, we see the 
new restricted movements, which in the same number of iterations not only reaches a better minimum, but 
with far fewer movements. 

 

  

Figure 25. Effect of the “restriction to improvement” on convergence, where the old method is 
implemented in the left plot while the option is activated in the right plot. 

 
5.2.3 Intra-domain Constraints 

Under the original SPSA implementation, we attempted to implement a constraints system that allows 
the user to specify portions of the input space that are off limits to the optimization search.  Because of 
the step sizing algorithm, there were complications that could not reasonably be resolved until the 
adaptive stepping was implemented, at which point user input constraints were made a normal part of the 
optimization algorithm.  The user constraints are treated similarly to the boundary constraints; if the 
optimization algorithm takes it to an area that violates the constraints, a projection is taken angling away 
from the algorithm’s preferred direction of travel, seeking an acceptable point in the input space.  As with 
boundary constraints, whenever the optimization algorithm attempts to violate intra-domain constraints, 
the step size is reset to that suggested by the original SPSA algorithm before restarting the adaptive 
stepping. 
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Figure 25 shows the Beale function described above, with the addition of an arbitrary constrained 
section marked by the black circle.  We can see how the optimization path moves around the constrained 
circle to find the minimum. 

 

 
Figure 26. Effect of an intra-domain constraint on the optimization path. 

 
5.2.4 Multi-Level Optimization 

One of the major improvements to the stochastic optimization capability, or more generally to any 
optimization scheme in RAVEN, is the capability to separate the optimization of different variables. To 
clarify the idea, we can focus on the problem of optimizing both the dispatch and the capacity of the 
subsystems. The problem is intrinsically stochastic due to the nature of the wind speed and the electricity 
demand and, therefore, is very difficult to solve. There are a few considerations that indicate that a better 
strategy than a brute force approach could be identified. 

• The convergence speed of any optimization problem usually tends to decrease more than linearly 
with the number of variables. 

• The dispatch problem needs to converge in average (stochastic optimization converges to the 
average optimum), but it could be characterized by a high noise to signal ratio. A different time 
history of demand generates a completely different corresponding optimal dispatch. 

• The economic performance of the systems needs to be good on average (the size of the system 
should not be changed depending on a specific realization of the demand). 

• The economic performance of the system is rather stable when the demand and wind time 
histories change, provided that the dispatch scheme is optimal. 

Given the above considerations, it is normal to seek two different approaches for the optimization of 
the dispatch and subsystem capacity. This has been achieved by allowing RAVEN to split the 
optimization in two levels, where the outermost level (master) optimizes the subsystem components, 
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while the innermost level optimizes the system dispatch for a given time history of wind speed and 
electricity demand and for given subsystem sizes. 

The computational flow could be summarized as it follows: 

1. The subsystem capacities are fixed 

2. A perturbation of the capacity is generated 

3. Wind and electricity demand profile are generated 

4. The SPSA algorithm is used to determine the optimal dispatch. It is relevant to notice that: 

o at this level, there is no more stochastic behavior of the system, 

o consequently, no de-noising is needed and SPSA becomes a standard steepest descent 
algorithm with a zero-order approximation of the gradient 

5. Steps 3 and 4 are repeated, as many de-noising iterations are requested for the capacity optimization 

6. The new assessment of the economic performance of the system is used to move the subsystem sizes 
toward the optimal point. 

5.2.5 Acceleration of the Dispatch Optimization 

Any physical system possesses characteristic time scales, which are representative of the time a 
forcing function (input) takes to get reflected in the response (output). The longer this time is, the higher 
the “inertia” of the system or, equivalently, the memory of the system. For times much longer than the 
characteristic time of the system the initial conditions are completely forgotten and the response of the 
system is only related to the changes in the input. At those time scales the system is, therefore, 
memoryless. 

When evaluating the optimal dispatch (the one corresponding to the best economic performance) for a 
N-R HES, if the time scale is such that the system can be considered memoryless, then the optimal 
strategy is given by the minimization of the marginal cost at each time step. This is due to the fact that, to 
meet a given net demand, the best option is the one corresponding to the least cost to satisfy that request 
(i.e. least marginal cost) unless this would unfavorably impact the future performance of the system. This 
is clearly impossible under the assumption of no inertia of the system. 

To give an example, nuclear power plants are willing to pay someone to take electricity (i.e. accept 
negative electricity prices) for short periods of time, incurring very high marginal costs (variable costs 
plus price paid to sell). The reason is that nuclear plants have a very long characteristic time, and, if they 
respond to negative prices in the short term, they would not be able to sell electricity in the future when 
the electricity price is again positive. On the other hand, plants that provide power to meet peak demand 
(“peaker” plants) stop production when electricity prices are low. This response is due to their very short 
characteristic time that allows them to respond quickly in the event of future higher electricity prices. 

Not considering the reactor, which is nominally operated at steady state, all the components of the N-
R HES have a very short memory. Therefore, it is natural to seed the dispatch optimization with a guess 
generated using a marginal cost analytical formulation. Hence, the optimization scheme is changed as 
follows: 

1. The subsystem capacities are fixed 

2. A perturbation of the capacity is generated 

3. Wind and electricity demand profile are generated 

4. A marginal cost based dispatch is generated 



 

 
 

52 

5. The SPSA algorithm is used to determine the optimal dispatch, using the dispatch determined by the 
marginal cost based dispatch as the initial point. It is relevant to notice that: 

o at this level, there is no more stochastic behavior of the system, 

o consequently, no de-noising is needed and SPSA becomes a standard steepest descent 
algorithm with a zero order approximation of the gradient 

6. Steps 3 and 4 are repeated, as many de-noising iterations are requested for the capacity optimization 

7. The new assessment of the economic performance of the system is used to move the subsystem sizes 
toward the optimal point. 

5.2.6 Summary of New Developments for Optimization 

Several improvements have been implemented to the original optimization algorithms, which have 
decreased the number of necessary iterations to achieve the solution. Unfortunately, a large number of 
parameters are needed to control the optimal performance of all the algorithms. Consequently, several 
assessment tests will be required to decide the best configurations. Nonetheless, the degree of flexibility 
achieved is remarkable and provides confidence that the right tool has been developed to solve a very 
difficult problem. 
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6. MODEL AND COMPUTATIONAL FRAMEWORK 
This section describes the N-R HES configuration that was modeled in the example problem 

presented in this report, as well as the computational framework to analyze the system. The N-R HES is 
comprised of several components, namely: 

- Nuclear reactor (light water cooled) 

- Gas turbine 

- Battery storage 

- Steam Manifold 

- Industrial process (HTSE H2 plant). 

The different components of the N-R HES are described in more detail in section 2. The computational 
framework is set up to analyze the economics of the N-R HES, as previously described. The framework 
allows analysis and optimization of two aspects of the NHES system, per the detailed discussion in 
section 5: 

- Capacity planning (subsystem sizing) 

- Dispatch. 

The capacity-planning problem tries to determine the energy mix leading to the least cost of electricity, 
i.e. the different plant sizes (except the nuclear reactor, which is assumed to be always 300 MWe) 
necessary to satisfy a net demand profile. For all cases considered here, the demand profile the N-R HES 
system tries to satisfy is the net demand profile, i.e. the demand after subtracting all renewable 
contributions. As a consequence, the levelized cost of electricity (LCOE) computed here, is the LCOE of 
the N-R HES to cover the net demand only and not a global LCOE to cover the gross demand, which 
would have to include the renewable sources and the part of demand covered by them. The dispatch 
problem, on the other hand, tries to determine how the different plants need to be operated (for given 
capacities) to minimize the (LCOE). The dispatch determines for every time step how productive a plant 
is, e.g. at 50% capacity at time 0, at 85% capacity at time step 1, etc. 

A schema of the computational framework is shown in Figure 27. As one can see, the RAVEN ‘outer 
level’ has the possibility to sample the capacities of all components of the N-R HES. The “sampler” can 
be any sampler available in RAVEN, e.g. a grid (i.e. parametric sweep) or Monte Carlo sampler, or an 
optimizer. The outer level generates synthetic time histories (ARMA) for gross demand and wind speeds 
that are fed into the ARMA post processor (ARMA PosP). This post processor converts the wind speeds 
into electricity (scaled by the desired renewable penetration) and generates the net demand profile. 
Capacities and net demand are then passed to the ‘Initial dispatch’ module. This module computes a time 
dependent dispatch for all the components in the N-R HES. This dispatch is based on marginal cost. It is 
passed along with the sampled component capacities and the net demand profile to the ‘inner level’ of 
RAVEN. The inner level samples the dispatch for all components in the N-R HES. As mentioned above, 
this means that the utilization factor of each time step and each component of the N-R HES are variables 
to be sampled. For example, running the simulation for one day having a time step size of one hour leads 
to 24 variables for each component of the N-R HES. This sampler can be, as for the outer loop, any 
sampler available in RAVEN, e.g. a grid or Monte Carlo sampler, but it will most likely be an optimizer.  
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Figure 27. Computational framework for economics analysis of N-RHES: Capacity and dispatch 
optimization. 

This separation of inner and outer loop allows separation of the stochastic aspects of the model 
(ARMA) into the outer loop, i.e. only the outer loop needs to deal with the effect for the same set of 
component capacities and mean demand, but for a different demand and wind profile, the LCOE will 
change. The outer loop needs to average the LCOE for multiple evaluations of the same capacities with 
different system demand and wind histories, while the inner loop optimization is done for a fixed demand 
history. 

The dispatch passed inside from the outer loop (‘Initial dispatch’) is used as initial guess for the 
‘inner’ sampler. The sampled dispatch, the capacities sampled in the outer loop, and some constants are 
passed to the ‘Generate Vectors’ and ‘Modelica PreP’ modules that put all the data in the form that 
Modelica needs. The rearranged data is then passed to the ‘Modelica Code interface’ that runs the 
Modelica code and collects the outputs from the Modelica run. These outputs are the actual possible 
dispatch, fuel consumption and CO2 production as well as the commodity production from the industrial 
process. The Modelica model tries to follow the dispatch provided by RAVEN. The actual possible 
dispatch output by Modelica might be different due to physical constraints in the dynamics of the N-R 
HES components that make it impossible to reach the requested dispatch point. In that case, Modelica 
outputs the closest physically possible dispatch. Once all output is collected, it is passed to the ‘Cash 
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Flow PreP’ module of RAVEN that prepares all data needed for the economics analysis, i.e. the ‘Cash 
Flow’ module in RAVEN. This last module computes the cost of electricity and returns it to RAVEN. 
Depending on user defined criteria RAVEN runs another ‘inner iteration’ with another dispatch using the 
same component capacities as in the previous iteration or goes back to the outer loop and samples a new 
set of capacities. All the different modules in the framework are explained in more detail in the following 
sections. For the N-R HES considered here, Table 26 shows all the variables managed by the framework. 
Green indicates that the module provides the variable and red indicates that the module requires the 
variable. 

It is worth noting that this framework allows for different workflows. For example, if it is assumed 
that the ‘Initial dispatch’ is already the optimal dispatch (which might be true depending on the time step 
size considered following discussion in 5.2.4), and no ‘inner’ optimization is needed, the number of 
iterations can be set to 1 in the inner loop. In this manner, the cost of electricity is only evaluated for the 
dispatch coming from the ‘Initial dispatch’ module and no further inner iterations are performed. 
Similarly, if it is assumed that the sampled dispatch is the actual possible dispatch (which might be true 
depending on the time step size considered), Modelica does not need to be run. In that case, Modelica can 
be bypassed and the data assembled by the ‘Modelica PreP’ module (the dispatch and component 
capacities) can be passed directly to the ‘Cash Flow PreP’ module. The workflows used in the 
calculations presented in this report are described in Section 0. 
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Table 26. RAVEN variables managed by the framework. Green indicates that the module provides the 
variable and red indicates that the module requires the variable. 

 
 

Models

(RAVEN'names)
Sampler
Outer ARMA

ARMA
PosP

Dispatch
Init

extOpt
Outer
Level

extOpt
Inner
Level

Sampler
Inner

Generate
Vectors

Dymola
PreP NHES

CashFlow
PreP

Cash
Flow

Constants
BOP_eff Const pass' through
IP_EL Const pass' through
IP_TH Const pass' through
IP_KG Const pass' through
H2_price Const pass' through
Penalty_mult Const pass' through
Start_time Const pass' through
DYMOLA_tot_time Const pass' through
The_constant_one Const for'NPV
Pow2Capa_battery Const
Component-needs-(NPV)
NPV_mult'(LCOE)
Time
Time1
DYMOTime
Demand
Demand
scaling_demand pass' through
Demand_time
Demand_time_net
Demand_time_net_XXXX pass' through
Grid_DYMO_productionEL
DEMAND_TOT_productionEL
Imbalance_Price
Renewable
Speed
scaling_wind Const
Renewable_capacity
BOP
BOP_001'to'BOP_XXX first'guess first'guess
BOP_SAMP_productionEL
BOP_DYMO_productionEL
BOP_capacity Const pass' through
BOP_TOT_productionEL
SES
SES_001'to'SES_XXX first'guess first'guess
SES_SAMP_productionEL
SES_DYMO_productionEL
SES_capacity pass' through
SES_TOT_productionEL
ES
ES_001'to'ES_XXX first'guess first'guess constants
ES_SAMP_productionEL
ES_DYMO_productionEL
ES_capacity pass' through
ES_TOT_productionEL
IP
IP_001'to'IP_XXX first'guess first'guess
IP_SAMP_productionEL
IP_DYMO_productionEL
IP_capacity pass' through
IP_TOT_productionEL
IP_DYMO_productionBY
IP_TOT_productionBY
IP_TOT_revenueBY
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6.1 Outer RAVEN sampler 
First, the sampler in the outer RAVEN level samples the component capacities, i.e. the capacity of the 

gas turbine [We], the industrial process [We] and the battery [Wh]. Note that the capacities of the gas 
turbine and the industrial process are in Watts (electric) while the battery capacity is energy in Watt-
hours. The sampler can be any sampler available in RAVEN, e.g. a grid or Monte Carlo sampler, but also 
an optimizer. The reactor capacity is fixed at 300 MWe. The model computes the cost of electricity 
(LCOE) that satisfies a given net demand profile (generated by the ARMA module, as discussed in 
section 6.2). Therefore, given the fixed reactor size, the mean demand is also a parameter that is sampled 
and can be optimized. In addition, the sampler provides additional parameters for sensitivity studies that 
are not part of the optimization space, such as: 

- Wind penetration factor 

- Price of hydrogen 

- Other constants needed by the different sub modules in RAVEN, such as the thermal efficiency of 
the reactor, the nominal hydrogen production rate of the industrial process or the maximum 
battery charge and discharge capacities. 

 

6.2 Synthetic Time History Generation (ARMA) 
After RAVEN samples the component capacities, the first modules run are the two ARMA models 

for wind speed and demand followed by the ARMA postprocessor ARMA PostP, which generates the net 
demand profile (see [1]). This procedure is briefly explained in this section. 

The synthetic time histories generation algorithm (ARMA) [39, 40] available in RAVEN is used to 
generate synthetic demand and wind speed histories. This includes multiple steps. First, historical 
measurement data must be collected. The data source and the frequency of the data are reported in Table 
27. In the simulations reported in section 7, a total simulation time of one day, unless differently 
specified, is used with a time discretization of one hour. The 10-minute wind speed data noted in Table 27 
was therefore averaged to obtain an hourly resolution. 

Table 27. Data base information. 

Data Type Time Span Resolution Region Source 
Wind Speed 2004-2006 10 min (collapsed to 1 hour) Site 3247 NREL [41] 

Load 2011-2015 Hourly West ERCOT [42] 
 

Second, from all the historical measurements data available, a ‘typical’ history must be created and 
used to train the ARMA in RAVEN. As mentioned, the simulations reported in section 7 use a total 
simulation time of one day. The ‘TypicalHistory’ postprocessor in RAVEN has been used to create the 
prototypical day. There are different approaches that can be taken to create this prototypical day. One is 
that the prototypical day is constructed from typical hours during the year. In this approach, the 
prototypical day will consist of a combination of average hours where outliers have been averaged out. 
The approach that is taken in the simulations presented here is that a typical day is chosen out of the year. 
To do so, the multiple years of training data are first cut into one-day slices. Out of these slices, the one 
that is closest to the average of all of them is then taken to be the prototypical day. The corresponding 
RAVEN input is shown in Figure 28. 
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       <PostProcessor name = 'TypicalHistory' subType = 'InterfacedPostProcessor'> 
            <method>TypicalHistoryFromHistorySet</method> 
            <subseqLen>86400</subseqLen> <!-- 1 day--> 
            <outputLen>86400</outputLen>  <!-- 1 day --> 
            <pivotParameter>Time</pivotParameter> 
        </PostProcessor> 

Figure 28. RAVEN TypicalHistory input used to create typical histories from measurement data to be 
used to train the ARMA rom. 

In the next step, the ARMA is trained so that the later generated time series statistically conform to 
the actual measurement but possess different temporal profiles. In particular, a combined model with 
Fourier series and ARMA is utilized to de-trend the measurement and to characterize the autocorrelation 
of the residues. The synthetic data generation consists of generating independent white noise for each 
time step, utilizing the ARMA model to compute residues for each time step, and then adding the Fourier 
series representing seasonal trends. For both the wind speed and demand ARMA, the minimum Fourier 
frequency considered is 3 hours. Different ARMA expansion parameters have been chosen for the two 
ARMAs as shown in Figure 29. These parameters were determined in earlier studies [39, 40]. 

In order to construct the net demand (done in ‘ARMA PostP’), a transfer function from wind speed to 
electricity generated by wind is needed. The corresponding function is shown in Figure 30. The exact 
equation and parameters used were reported in [40]. The value of 3.6 MWe is chosen as the nominal value 
(corresponding to the Siemens SWT-3.6-120 onshore turbine) for computing the installed wind capacity. 
The user can input a desired wind penetration (in installed capacity) in the RAVEN input deck. This wind 
penetration is then used to scale the electricity generated from the wind. Finally, the electricity produced 
by the wind is subtracted from the demand to generate the net demand for that given wind penetration. 

        <ROM name='demand_ARMA' subType='ARMA'> 
            <Target>Demand,Time</Target> 
            <Features>scaling_demand</Features> 
            <pivotParameter>Time</pivotParameter> 
            <Pmax>6</Pmax> 
            <Pmin>6</Pmin> 
            <Qmax>1</Qmax> 
            <Qmin>1</Qmin> 
            <outTruncation>positive</outTruncation> 
            <Fourier>31536000,604800,86400,10800</Fourier> 
            <FourierOrder>12, 2, 6, 3</FourierOrder>  
        </ROM> 
 
        <ROM name='wind_ARMA' subType='ARMA'> 
            <Target>Speed,Time</Target> 
            <Features>scaling_wind</Features> 
            <pivotParameter>Time</pivotParameter> 
            <Pmax>1</Pmax> 
            <Pmin>1</Pmin> 
            <Qmax>2</Qmax> 
            <Qmin>2</Qmin> 
            <outTruncation>positive</outTruncation> 
            <Fourier>31536000,604800,86400,10800</Fourier> 
            <FourierOrder>12, 2, 6, 3</FourierOrder>    
        </ROM> 
    </Models> 

Figure 29. RAVEN ARMA rom input used to train the wind speed and demand ARMAs. 
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For the data considered in this study (see Table 27), a detailed statistical analysis of synthetic versus 
measured data, i.e. a quality assessment of the synthetic data as well as a detailed study on the impact of 
wind penetration on the statistical properties of the demand have already been reported in [40] and are not 
repeated here. 

 
Figure 30. Wind speed to electricity conversion. 

As can be seen in Figure 27, once the net demand is generated, it is passed to the ‘Initial Dispatch’ 
module together with the sampled capacities. The ‘Initial Dispatch’ module creates from this information 
a dispatch schedule for each component of the N-R HES. The dispatch assumes no memory or predictive 
capability of the future. Therefore, for every time step, the dispatch is generated according to the different 
marginal costs of the different N-R HES components only. Since the marginal cost of the battery cannot 
be assessed given the assumption of no memory (the marginal cost of the battery would be the average 
price at which the battery purchased electricity to charge), it is used as a last resort in the dispatch. 

The nuclear reactor is assumed to work at nominal capacity all the time. It can dispatch steam to the 
steam turbine to produce electricity or divert steam to the industrial process. Assuming that the industrial 
process has to get all the steam and electricity it needs from the reactor, i.e. it cannot buy electricity from 
the grid, there is a minimum of electricity that the reactor has to provide to the grid. This minimum 
electricity is the difference between the reactor capacity and the total (steam and electricity) energy 
needed by the industrial process when it runs at its maximum capacity (see Figure 31). 
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Figure 31. Minimum electricity the reactor has to provide to the grid as a function of the industrial 
process capacity. 

The flow diagram of the ‘Marginal cost & battery as last resort’ dispatch is shown in Figure 32. As 
one can see, two main cases exist: either the net demand is less than the minimum electricity the reactor 
has to provide to the grid (React. min) or not. 

The case in which the net demand is less than React. min is fairly simple: the reactor provides the 
minimum electricity it can while the industrial process runs at its capacity and the gas turbine does not 
produce anything. The battery tries to absorb the overproduction from the reactor as much as possible 
according to its maximum charge rate and current charge level. In this case, the amount of electricity 
provided to the grid might be larger than the net demand. In that case, the economic analysis of the 
system adds a penalty to be paid for the overproduction. 

The second case, in which the net demand is greater than React. min, is more complex. In this case, 
first the reactor dispatches the fraction it has to (React. min) since the marginal cost for that portion of 
then reactor capacity is zero. For the rest of the demand (Net demand - React. min), the component with 
the least marginal cost (but bigger than zero) is dispatched first. The marginal cost of the gas turbine is 
assessed as the variable O&M cost including the fuel cost. The marginal cost of the portion of the reactor 
capacity that could be used to produce hydrogen in the industrial process (IP capacity steam and IP 
capacity electricity in Figure 31) is assessed as the opportunity cost of not producing hydrogen. If 
whoever dispatches first cannot cover the rest of the demand completely, the other will attempt to cover 
it. If both the reactor and the gas turbine at full capacity (and therefore the industrial process shut down) 
cannot cover the demand completely, the battery will try to compensate for the underproduction. The 
battery discharges depending on its maximum discharge rate and current charge level. As for the 
overproduction, if the battery cannot cover the whole demand, the economic analysis of the system adds a 
penalty to be paid for the missed demand. 

It is worth mentioning that in all cases studied in this report, the battery is initially (at time zero) 
considered 50% full. This is considered to be the optimal state of the battery, since it can help absorb or 
provide electricity if needed. Furthermore, the maximum change and discharge rates are assumed to be 
25% of the battery capacity per hour, as suggested by the data presented in Section 3.7. 
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Figure 32. Dispatch according to marginal cost for the reactor and the gas turbine; the battery dispatches 
as last resort. 

The dispatch schedules for all the components, i.e. the reactor, the gas turbine, the industrial process 
and the battery, are passed from the outer loop RAVEN into the inner loop sampler. The inner loop 
sampler can be used in two ways: 

- Pass through: If it can be assumed that the ‘initial dispatch’ provided from the outer RAVEN 
level is already the optimal dispatch, the inner sampler can be set to ‘pass 
through’. This assumption is true if there is no inertia in the system for the 
considered time step size, i.e. the system can reach any arbitrary state at the end 
of any time step. This is true if the system dynamics of Modelica are bypassed 
and the assumption is made that the system can reach any state proposed by the 
‘initial dispatch’. In the ‘pass through’ case, the initial dispatch is just passed to 
the subsequent Modelica and Cash Flow modules; once the LCOE is computed, 
the inner level is left and the LCOE passed back to the outer level. 

- Optimizer: If the ‘initial dispatch’ is not the optimal one, e.g. the system might not be able 
reach the states described by the ‘initial dispatch’ due to dynamic restrictions 
(ramp rates), the inner sampler can further optimize the dispatch schedule for the 
components to lower the LCOE. In particular, the inner RAVEN optimizer can 
change the production level for each time step of the simulation of the gas turbine 
and industrial process. The Reactor levels depend on the industrial process level 
(reactor level = reactor capacity – industrial process level) and are computed in 
the ‘ModelicaPreP’ module. The battery charge and discharge levels for each 

⇒ 
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hour, i.e. the dispatch of the battery, are fixed to the values from the ‘initial 
dispatch’ and the optimizer cannot change them. Allowing the optimizer to vary 
the battery dispatch schedule will lead to the optimizer try to play the market by 
charging and discharging the battery to maximize profit. That is not the assumed 
purpose of the battery in this exercise; the battery is instead assumed to help the 
system satisfy the net demand. The inner optimizer will iterate attempts to 
minimize the LCOE by changing the dispatch until it reaches the maximum 
number of iterations or the convergence criteria are satisfied. In that case, the 
inner loop is left and the LCOE passed back to the outer loop. 

 

6.5 Modelica Preprocessors 
The modules ‘Generate Vectors’ and ‘Modelica PreP’ in Figure 27 collect all the needed data passed 

through from the upper level and inner level samplers and combine this into the format needed by the 
Modelica code interface. In particular, the component capacities and the net demand profile are collected. 
Furthermore, the ‘Modelica PreP’ also computes the reactor electricity production levels (dispatch) from 
the sampled industrial process dispatch. 

If one decides to bypass Modelica by assuming that the system has no inertia or to run some quick 
scoping calculations without the expensive overhead of the full dynamics of Modelica, the ‘Modelica 
PerP’ module can pass its output directly to the ‘Cash Flow PerP’ and ‘Cash Flow’ modules to compute 
the LCOE assuming the dispatch from the inner sampler can be met by the system. 

The Modelica Code Interface is not an external model, but is an integrated part of RAVEN. It collects 
all the needed data to run the Modelica simulation, runs it, and collects the required output values from 
the output files of Modelica. 

 

6.6 Modelica 
The Modelica model was described in section 2, and it is more specifically visualized in Figure 1 with 

reference to Table 1 and Table 2, noting that the IP selected for the current set of analyses is a hydrogen 
production plant. The reader will recall that the Modelica model includes detailed representations (sub-
models) for each component and subsystem in the N-R HES in order to properly characterize the dynamic 
interactions of the integrated subsystems. 

 

6.7 Cash Flow 
The ‘Cash Flow PreP’ and ‘Cash Flow’ modules compute the LCOE from the component capacities 

and dispatch schedules. For all cases studied in this report, the same economic numbers and associated 
cash flows were used. This section describes them briefly. In the ‘Cash Flow’ module a set of cash flows 
can be defined, some of which depend on the LCOE and some not. The LCOE is then computed so that 
the resulting Net Present Value (NPV) of all cash flows is zero. How the Cash Flow module computes the 
LCOE is described in detail in [1]. The following sections describe the cash flows used and their 
associated economic values. 

The tax and inflation rates are assumed to be 39.2% and 3%, respectively. For the computation of the 
NPV, a WACC of 5% (real) was assumed. The whole cash flow is computed in real terms (compared to 
nominal). 
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6.7.1 Nuclear Reactor 

The cash flows and associated economic numbers used for the nuclear reactor are described in detail 
in [1]. This section provides a brief summary for the reader’s convenience. 

- The nuclear reactor has an assumed lifetime of 60 years. 

- The capital expenditure (CAPEX) cash flow for the nuclear reactor is called BOP_CA (for 
balance of plant). An overnight capital cost is considered. The driver for this cash flow is the 
nuclear reactor capacity (electric). The reference for this cash flow is a 1100 MWe plant that has 
an overnight construction cost of $4.51 billion. The weighted average scaling exponent (X), i.e. 
the economy of scale factor for nuclear plants, is 0.64. 

- A cost for the connection to the grid has been considered. Although this grid connection is for the 
whole NHES system, i.e. all components together, it is considered as part of the nuclear reactor, 
since its lifetime is also 60 years. The driver for this cash flow is the nuclear reactor capacity 
(electric). As suggested in the economics section above (see Section 3), the reference for this cash 
flow is a 400 MWe connection that has a construction cost of $13 million. The weighted average 
scaling exponent (exp in Eq. 1), i.e. the economy of scale factor for nuclear plants, is 1.26. 

- O&M for the nuclear reactor is split into three cash flows, i.e. fixed O&M, variable O&M and 
fuel cost. Since the reactor is always operates at nominal capacity, the driver for all three cash 
flows is the nuclear reactor capacity (electric). The reference for the fixed O&M cash flow is a 
1100 MWe plant that has yearly fixed O&M cost of $93.5 million. The weighted average scaling 
exponent (exp), i.e. the economy of scale factor for nuclear plants is 0.64. Taxes are applied to 
this cash flow. The variable O&M for the reactor is 0.5 $/MWh and the fuel cost 8.4$/MWh. 

- A 15 year Modified Accelerated Cost Recovery System (MACRS) is applied to the nuclear 
reactor. (for details, see [1]) 

- A cash flow for a salvage value/decommissioning has been defined. This is for possible 
parametric analysis to study the influence of the salvage value on the profit. For the reference 
case, the salvage value has been set to zero. 

 

6.7.2 Industrial process (hydrogen production plant) 

The cash flows and associated economic numbers used for the industrial process are described in 
detail in [1]. This section provides a brief summary for the reader’s convenience. 

- The industrial process has an assumed lifetime of 40 years. 

- The CAPEX cash flow for the industrial process is called IP_CA. An overnight capital cost is 
considered. The driver for this cash flow is the hydrogen plant capacity (in energy input, i.e. 
electric and thermal). The reference for this cash flow is a 231 MW hydrogen plant that has an 
overnight construction cost of $153 million. The weighted average scaling exponent, i.e. the 
economy of scale factor for hydrogen plants, is assumed to be 1.0. 

- The revenue from hydrogen sales from the industrial plant for one year is calculated in the 
CashFlow preprocessor.  

- O&M for the industrial H2 plant is split into fixed O&M and variable O&M. The driver for the 
fixed O&M cash flow is the H2 plant capacity. The reference for this cash flow is a 231 MW plant 
that has yearly fixed O&M cost of $3.5 million.  The variable O&M cash flow driver is the 
amount of H2 produced in a year. This value is calculated in the CashFlow preprocessor.  The 
variable O&M for the H2 plant is 0.048 $/kg of H2. 
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- A 15-year MACRS is applied to the industrial plant. The MACRS applicable percentages for the 
15-year property class is the same as for the nuclear reactor. 

- A cash flow for a salvage value has been defined. This is for possible parametric analysis to study 
the influence of the salvage value on the profit. For the reference case, the salvage value has been 
set to zero. 

 

6.7.3 Non-component Cash Flows 

Two cash flows are defined that are not part of any component: revenue from electricity and 
over/under production penalty, as described in the following sections.  

6.7.3.1 Revenue from electricity 
The goal of the studies presented in this report is to find the minimum LCOE that satisfies an average 

net demand profile for a given mean demand and renewable penetration. If the net demand is not met by 
the components of the N-R HES, a penalty must be paid. This penalty can be seen as a price to be paid to 
somebody else to absorb the electricity or to compensate for the missed demand. In this manner, the net 
demand can always be considered met and the penalty becomes part of the cost to meet that demand. 
Therefore, the revenue from electricity does not depend on the individual production rates from the 
different components in the N-R HES, but only on the net demand. 

The driver for this cash flow is the total energy in one year requested by the net demand profile, i.e. 
the integral of the net demand over one year. Since this driver is generated in the preprocessor for the one 
year of simulation time and assumed to be the same for every year of the lifetime of the plant, the 
<alpha> vector for this cash flow is 1.0 for all years except the year zero. <reference> and <X> are 1.0. 

Multiplying this cash flow with the LCOE would generate the electricity revenue for the whole N-R 
HES. However, the LCOE that results in an NPV of zero for the whole system is what is desired. The 
mult_target attribute of the cash flow is therefore set to ‘true’. This is the only cash flow that multiplies 
the LCOE. 

6.7.3.2 Over/under production penalty 
If the system produces more or less electricity than required by the net demand, a penalty must be 

paid. An exponential penalty with a cap is considered, as shown in Figure 33 [43]. The function shows the 
price for an over- or under-produced MWh for a given missed demand in MW. The penalty to be paid is 
then computed by multiplying the penalty function with the missed electricity for every hour, i.e. 
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Figure 33. Penalty function for missed (net) demand. 

The penalty is generated in the preprocessor for the simulation time and extrapolated for one year. It 
is assumed to be the same for every year of the lifetime of the project; the <alpha> vector for this cash 
flow is 1.0 for all years except the year zero. <reference> and <X> are 1.0. 

The manifold component is a stem manifold between the reactor and the gas turbine that can divert 
steam to the industrial process. It has an assumed lifetime of 60 years. 

Capital expenditure (CAPEX) 

The CAPEX cash flow for the manifold is called MANI_CA. An overnight capital cost is considered. 
It is assumed that the manifold size does not scale with the industrial process, but only with the reactor. 
Since the reactor has a constant size of 300 MWe in this exercise, the corresponding manifold cost is 
estimated at $55 million (see Section 3.6). 

O&M 

O&M for the manifold is assumed to be 1% of the CAPEX, as suggested in Section 3.6. The manifold
therefore has a yearly O&M cost of $5.5 million. The O&M cash flow for the manifold is called 
MANI_OMperCap. 

Depreciation 

A 15-year MACRS is applied to the manifold. The MACRS applicable percentages for the 15-year 
property class are given in Table 28. The depreciation for year y is . This is constructed 
inside the CashFlow module as . For this reason, two cash 
flows have been defined. The first (MANI_DA1) computes the depreciation for year y. The second cash 
flow (MANI_DA2) uses the first one as a driver, has all <alpha> equal -1.0 (<reference> and <X> are 
1.0) and includes the tax. In this way, MANI_DA1 + MANI_DA2 leads to the desired depreciation 
equation as shown above. 
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Salvage value 

A cash flow for a salvage value has been defined. This is for possible parametric analysis to study the 
influence of the salvage value on the profit. For the reference case, the salvage value is set to zero. 

Table 28. MACRS applicable percentage for 15-year property class. 

Recovery Year Percentage Recovery Year Percentage 

1 5.00 9 5.91 

2 9.50 10 5.90 

3 8.55 11 5.91 

4 7.70 12 5.90 

5 6.93 13 5.91 

6 6.23 14 5.90 

7 5.90 15 5.91 

8 5.90 16 2.95 

 

The gas turbine has an assumed lifetime of 40 years. 

Capital expenditure (CAPEX) 

The CAPEX cash flow for the gas turbine is called SES_CA (SES for Secondary Energy System). An 
overnight capital cost is considered. The driver for this cash flow is the gas turbine capacity. The 
reference for this cash flow is a 400 MWe turbine that has an overnight construction cost of $386.8 
million. The weighted average scaling exponent, i.e. the economy of scale factor for gas turbine, is 0.72. 

O&M 

O&M for the gas turbine is split into fixed O&M, variable O&M and fuel cost: 

- Fixed O&M: The fixed O&M cash flow for the gas turbine is called SES_OmperCap. It is 
suggested not to scale this cash flow with the plant size. The fixed O&M is therefore a constant 
value of 7.5 million per year. 

- Variable O&M: The variable O&M cash flow for the nuclear reactor is called 
SES_OmperProduction. The driver for this cash flow is the total produced electricity from the gas 
turbine. Same as the fixed O&M, it is suggested not to scale the variable O&M with the reactor 
size. The suggested constant value of 4.27 $/MWh is used. 

- Fuel cost: The fuel cost cash flow for the gas turbine is called SES_OmperFuel. The driver for this 
cash flow is the total produced electricity from the gas turbine. The fuel cost for the gas turbine is 
33.636$/MWh. This number has been computed by taking the average gas price [3.1 $/MMBTU] 
of the ‘Henry’ hub (see Section 3.4) and then multiplying by the gas turbine heat rate [10850 
MMBTU/kWe]. 

Depreciation 

A 15-year MACRS is applied to the nuclear reactor. The MACRS applicable percentages for the 15-
year property class are the same than for the manifold given in Table 28. The depreciation for year y is 

. This is constructed inside the CashFlow module as 
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. For this reason, two cash flows have been defined. The first (SES_DA1) computes the 
depreciation for year y. The second cash flow (SES_DA2) uses the first one as a driver, has all <alpha> 
equal -1.0 (<reference> and <X> are 1.0) and includes the tax. In this case, SES_DA1 + SES_DA2 leads 
to the desired depreciation equation as shown above. 

Salvage value 

A cash flow for a salvage value has been defined. This is for possible parametric analysis to study the 
influence of the salvage value on the profit. For the reference case, the salvage value is set to zero. 

 

The battery has an assumed lifetime of 10 years. 

Capital expenditure (CAPEX) 

The CAPEX cash flow for the manifold is called ES_CA (ES for Energy Storage). An overnight 
capital cost is considered. The driver for this cash flow is the battery capacity. As suggested in Section 
3.7, a value of 350 $/kWh has been taken. The <reference> and <X> values are 1.0. 

O&M 

As for the manifold, O&M for the battery is assumed to be 1% of the CAPEX as suggested in Section 
3.7. The battery has therefore a O&M cost of $3.5 $/kWh. The driver for this cash flow is the battery 
capacity and the O&M cash flow for the manifold is called ES_OMperCap. 

Depreciation 

A 7-year MACRS is applied to the battery. The MACRS applicable percentages for the 7-year 
property class are given in Table 29. The depreciation for year y is . This is constructed 
inside the CashFlow module as . For this reason, two cash 
flows have been defined. The first (ES_DA1) computes the depreciation for year y. The second cash flow 
(ES_DA2) uses the first one as a driver, has all <alpha> equal -1.0 (<reference> and <X> are 1.0) and 
includes the tax. In this case, ES_DA1 + ES_DA2 leads to the desired depreciation equation as shown 
above. 

Salvage value 

A cash flow for a salvage value has been defined. This is for possible parametric analysis to study the 
influence of the salvage value on the profit. For the reference case, the salvage value is set to zero. 

Table 29. MACRS applicable percentage for 7 year property class. 
Recovery Year Percentage 

1 14.29 
2 24.49 
3 17.49 
4 12.49 
5 8.93 
6 8.92 
7 8.93 
8 4.46 
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7. SIMULATION CASES 
As mentioned at the beginning of Section 1, the goal of the simulation is to optimize the size and 

dispatch for a N-R HES. The size should be such that the LCOE is minimized under the constraint to 
satisfy a given net demand profile. As mentioned earlier, the demand profile the N-R HES system tries to 
satisfy is the net demand profile, i.e. the demand after subtracting all renewable contributions. As a 
consequence, the LCOE computed is the LCOE of the N-R HES to cover the net demand only and not a 
global LCOE to cover the gross demand including the renewable sources. The demand is treated 
stochastically, i.e. for a given size of the N-R HES, the LCOE is not a constant, because the net demand 
profile can change. By evaluating the same N-R HES size multiple times and averaging the obtained 
LCOEs during the optimization, one can find the optimum size for an average net demand profile. 

In addition, to find the optimum size of the N-R HES system, one has to assure that for each size of 
the system, the different components are utilized in an optimal way, i.e. the dispatch of the different 
components is optimal with respect to minimizing the LCOE. For a copper plate model, it can be proven 
that the most efficient, economical way to supply the electricity demand is based on the least marginal 
cost (as occurs in current deregulated markets). In the presence of system inertia, this is no longer true, 
since prediction of future demand has to be taken in account to justify, for example, selling at a loss (e.g., 
nuclear power plant coping with a negative price of electricity without reducing plant power, since the 
decision takes into account the profit that will be made a few hours later when the electricity price will 
spike again). By introducing Modelica, inertia is introduced in the system and the marginal cost dispatch 
is no longer optimal. Nevertheless, to accelerate the optimization for the dispatch, the marginal cost can 
be used as an initial guess. 

In order to understand the model and progress in a stepwise fashion to the final result of having the N-
R HES size optimized with a full dispatch optimization using Modelica underneath, several simulations 
have been performed with increasing complexity. Hourly time resolution was selected for all simulation 
cases. All cases are summarized in Table 30. 

 
Case 1: Exploration of the capacity space using a grid sampler (parametric sweep). No dispatch 

optimization, no Modelica, i.e. the LCOE is computed from the marginal dispatch that is 
‘passed through’ the inner loop. This allows one to develop an understanding of the 
model. The simulation time is one day. 

Case 2: Same as case 1, but with a simulation time of one year. This will allow conclusions on 
how accurate the LCOE is when extrapolating from one day simulation time to one year. 

Case 3: This case is based on a linearization of the original Modelica model of the system. In 
addition, instead of looking for the lowest cost of electricity to meet net demand, the 
simulation aims to compute the dispatch, which maximizes the NPV of the N-R HES. 
This represents a more classical approach (maximization of the profit), which is 
commonly adopted in the industry due to a focus on the plant owner’s point of view 
rather than societal perspectives. For the framework developed it is important to have the 
flexibility to identify a solution that achieves maximum profit. 

Case 4: Same as case 1, but the dispatch is optimized. Cases without and including Modelica in 
the dispatch optimization are shown. This will allow quantification of the cost of the 
inertia by comparison with case 1. 

Case 5: Only in the capacity (i.e. subsystem size) of the component is optimized to minimize 
LCOE. No dispatch optimization, no Modelica. This will demonstrate capacity 
optimization for an N-R HES configuration. The optimizer should find the same 
minimum identified in the parametric sweep (grid) found in case 1 and 4. 

Case 6: Final case. Running the analysis to optimize capacity and dispatch with Modelica based 
representation of the physical system. 
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Table 30. Simulation cases. 

Case 
Component capacity 

seeking algorithm Dispatch Modelica Simulation time 
1 Grid Marginal cost No 1 day 
2 Grid Marginal cost No 1 year 
3 Fixed Optimized Surrogate 1 year 
4 Grid Optimized Yes 1 day  
5 Optimized Marginal cost no 1 day  
6 Optimized Optimized Yes 1 day  
6 Optimized Optimized Yes 1 week  

 

7.1 Case 1 
This case is characterized by use of a marginal cost dispatch (no Modelica model), and performing a 

parametric sweep over the following variables: 

• Hydrogen price. Values are defined according to [1]: 0 $/kg, 1.75 $/kg, 3.5 $/kg 

• Wind penetrationf (nominal). Values: 0%, 50%, 100%, 200% 

• Industrial process capacity (Hydrogen production). Values: 0 MWe, 120 MWe, 240 MWe, 360 
MWe, 480 MWe, 600 MWe 

• Demand. Values: 100 MWe, 200 MWe, 300 MWe, 400 MWe, 500 MWe, 600 MWe 

• Battery (SE in figures). Values: 100 MWh, 200 MWh, 300 MWh, 400 MWh, 500 MWh, 600 
MWh 

• Gas turbine (SES in figures). Values: 100 MWe, 200 MWe, 300 MWe, 400 MWe, 500 MWe, 
600 MWe 

• Reactor power is kept constant at 300 MWe 

For each of the 15,552 points, 19 different random time series of wind and demand have been 
generated, for a total of 294,488 simulations, in attempt to represent an average behavior for each point of 
the grid. Results (Figure 34 to Figure 45) are reported in a 5-dimensional axis plot were the major axes 
are IP capacity and Demand, while the minor axes are gas turbine capacity and battery size. The color 
map is determined by the effective LCOE (i.e. the cost of meeting net demand). Low electricity cost (low 
LCOE) is highlighted by a deep blue color while deep red/brown indicate high LCOE. The objective is to 
identify the region of low electricity cost. 

There are global trends that can be identified in the results. First, there is an almost constant valley of 
low prices along the lower left to the upper right diagonal. This diagonal expresses an optimal 
relationship between IP capacity and demand. The effect of the presence of the IP is even felt at 0 value 
for the hydrogen price. This is due to the volatility absorption of the IP. Even if there is no revenue from 
selling hydrogen there is a gain in not paying the penalty for over or under production which, in certain 
ranges of the ratio IP capacity to demand, exceeds the capital cost of constructing the plant. This behavior 

                                                        
f Wind penetration is defined as a percent of the mean electricity demand. Hence “100% penetration” equates to an installed wind 

capacity equal to mean demand (which ranges from 100 to 600 MWe). Note, however, that the mean production from wind 
is about 27% of the installed capacity given the high variability of wind. 
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is, of course, something that should not be sought but is symptomatic of the importance of volatility 
absorption. It is worth noticing that the above-mentioned behavior is smoothed by the presence of the gas 
turbine as a secondary energy system (SES). 

In general, increasing the capacity of the gas turbine always has a positive effect, most likely due to 
the ranges of sampled capacity. It could be possible that we never achieve a range in which the gas 
turbine capacity is in excess. It is also worth considering that capital costs for the turbine are relatively 
low and therefore this type of idle capacity is not too impactful on the total cost of electricity. 

Global trends additionally indicate that the wind penetration has a strong effect in raising the LCOE 
due to the added volatility and consequently higher penalty costs (Figure 37, Figure 41, Figure 45) which 
is globally mitigated only by when we operate with high margins in the hydrogen production (Figure 
45).It is interesting to note that the battery effect, while generally small, tends to be dependent on the 
other parameters. In fact, one may notice that in Figure 41 (second line from the top) in the center of the 
plot (with low gas turbine size) the increasing battery size correlates with an increasing LCOE while 
toward the right of the figure this behavior is inversed. 

In conclusion, we have identified a very complex trend in the cost of meeting net demand (indicated 
as LCOE). The overall picture confirms that the hydrogen plant offers two values: for high hydrogen 
prices it is a strong source of cash; for low hydrogen prices mitigation of the volatility effect becomes 
more evident, but clearly it is always present. 

 

 
Figure 34. Effective LCOE color map for Case 1. H2 price 0 $/kg, wind penetration 0%. 
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Figure 35. Effective LCOE color map for Case 1. H2 price 0 $/kg, wind penetration 50%. 

 

 
Figure 36. Effective LCOE color map for Case 1. H2 price 0 $/kg, wind penetration 100%. 
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Figure 37. Effective LCOE color map for Case 1. H2 price 0 $/kg, wind penetration 200%. 

 

 
Figure 38. Effective LCOE color map for Case 1. H2 price 1.75 $/kg, wind penetration 0%. 
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Figure 39. Effective LCOE color map for Case 1. H2 price 1.75 $/kg, wind penetration 50%. 

 

 
Figure 40. Effective LCOE color map for Case 1. H2 price 1.75 $/Kg, wind penetration 100%. 
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Figure 41. Effective LCOE color map for Case 1. H2 price 1.75 $/kg, wind penetration 200%. 

 

 
Figure 42. Effective LCOE color map for Case 1. H2 price 3.5 $/kg, wind penetration 0%. 
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Figure 43. Effective LCOE color map for Case 1. H2 price 3.5 $/kg, wind penetration 50%. 

 

 
Figure 44. Effective LCOE color map for Case 1. H2 price 3.5 $/kg, wind penetration 100%. 
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Figure 45. Effective LCOE color map for Case 1. H2 price 3.5 $/kg, wind penetration 200%. 

 

7.2 Case 2 
This case is equivalent to Case 1 except for the duration of the time for which the system is monitored 

before extrapolating the cash flow to the lifetime of the project. The goal of this test is to assess the 
impact of a complete year history accounting for seasonal effects. In the same sense, it should be 
equivalent to a one day simulation using 365 de-noising repetitions, but, since the previous calculation 
was done with a surrogate trained on the average day (ARMA), differences should be contained. The 
simulation was run using 29 de-noising repetitions (multiple runs on the same point of the grid using 
different random time series of demand and wind speed, to converge toward a mean value). 

 For convenience, we also report the grid points sampled: 

• Hydrogen price. Values are defined according to [1]: 0 $/kg, 1.75 $/kg, 3.5 $/kg 

• Wind penetration (nominal). Values: 0%, 50%, 100%, 200% 

• Industrial process capacity (Hydrogen production). Values: 0 MWe, 120 MWe, 240 MWe, 360 MWe, 
480 MWe, 600 MWe 

• Demand. Values: 100 MWe, 200 MWe, 300 MWe, 400 MWe, 500 MWe, 600 MWe 

• Battery (SE in figures). Values: 100 MWh, 200 MWh, 300 MWh, 400 MWh, 500 MWh, 600 MWh 

• Gas turbine (SES in figures). Values: 100 MWe, 200 MWe, 300 MWe, 400 MWe, 500 MWe, 600 MWe 

• Reactor power is kept constant at 300 MWe 

The resulting plots are very similar to those presented in Case 1 for low wind penetration. The high 
wind penetration cases show much higher values of the cost of electricity than when one day is chosen as 
a representative time period. The reason for this behavior can be found in the much larger statistical 
sampling that the one year represents with respect the one day case. The representative day cannot be 
used to construct the representative cost of electricity when high volatility is present. Mathematically we 
could think of this as a non-negative, highly non-linear (exponential) penalty function that causes the cost 
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of outliers (days with very high or very low wind speed) that more significantly impacts the cost of 
electricity on outlier days than than on average days. For convenience, we report in the following results 
only the case with the highest price for hydrogen; the full series of results is reported in appendix B.  

Overall the trends are the same as shown in Case 1. This is naturally due to the magnifying effect of 
the penalty function, but given that it is a monotonically growing function of the unmet demand its effect 
does not change the shape of the LCOE. 

In conclusion, this simulation case highlights the importance of not relying on average values for net 
demand with large volatility. It is important to consider larger time intervals (e.g. one year) than one day 
to construct the characteristic response and evaluate the residual sigma after de-trending [40] to assess 
how much exposure the system might have to non-linear feedback. The larger the residual volatility after 
the de-trending of the signal (removal of the Fourier component), the more there will be a noisy 
component that might excite non-linear feedback of the system (in this case, this is embodied by the 
penalty function). These results illustrate the value of having the capability to perform this type of 
analysis as part of an integrated framework that allow analysis on large number of simulation from one 
day to one year. This in particular will allow study of various strategies to properly capture these effects 
and account for them even when shorter time intervals are considered due to the computational limitations 
associated with analysis of complex representations of the physical N-R HES. 

 

 
Figure 46: Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 0%. 
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Figure 47: Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 50%. 

 

 

 
Figure 48: Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 100%. 
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Figure 49: Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 200%. 

 

7.3 Case 3 
This section is dedicated to an economic analysis of an N-R HES configuration to be located in the 

Midwest region in the United States. This region has abundant resources (wind, natural gas, coal, water); 
effective infrastructures (estuaries, rail, oil and gas pipelines, and electric transmission); a population who 
needs products and energy services; and both an agricultural and industrial history [44]. In particular, this 
region has a large demand for hydrogen (H2), which serves as a precursor for ammonia/fertilizer 
production. Production of ammonia and fertilizer both require large amounts of electricity to separate 
nitrogen from air and large amounts of hydrogen to convert that nitrogen to ammonia. In addition, large 
iron deposits exist in Minnesota, Wisconsin, and Michigan and direct iron reduction, like ammonia 
production, has a large demand for hydrogen [44]. Thus, an HTSE system, which employs planar SOECs, 
was proposed as the industrial process to be integrated with a Light Water Reactor (LWR) for the 
Midwest region 

This region has an excellent wind resource; hence, land-based wind power is proposed as the renewable 
resource. However, renewable energy generation was not considered in the case studies performed in this 
section. This case study is focused on profit analysis, such that accounting for the wind contribution is not 
necessary. In fact, if the system is considered a price taker (i.e. the presence of the system does not cause 
a feedback in the electricity prices), the coupling between the wind and the hybrid system is not active 
and, consequently, the economic performance of the system is simply the sum of the two performances 
considered separately. Given the interest of the project in analyzing the performance of the coupled 
nuclear and industrial system it is outside of the scope to analyze just the economic performance of the 
wind electricity supplier. 

This case is also intended for analysis of the feasibility of replacing the full Modelica representation 
of each subsystem and the overall integrated system with linear surrogates. 

As already mentioned, instead of looking for the lowest cost of electricity to meet net demand in Case 
3, the simulation aims to compute the dispatch that maximizes the NPV of the N-R HES. This represents 
a more classical approach (maximization of the profit), which is commonly adopted in the industry due to 
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a focus on the plant owner’s point of view rather than societal perspectives. For the framework developed 
it is important to maintain flexibility in analysis approaches. 

7.3.1 Surrogate Model Development 

A high-fidelity model (i.e., Modelica model) may provide an accurate reflection of reality but requires 
significant computational power; thus, approximation model (i.e., surrogate model) are constructed to 
mimic the behavior of the high-fidelity models as closely as possible while being maintaining 
computational efficiency. 

First, the linear regressorg is proposed to characterize the relationship shown in Eq. (7) between the 
power consumption in the IP PHTSE (i.e., a decision variable in the profit optimization problem) and the 
hydrogen production wH2 at the steady state: 

2 0 1H HTSEw k k P= +  
 

(7) 

where k1 and k0 are the model-fitting parameters. Likewise, Eq. (8) is proposed to characterize the 
relationship between PIP and the electricity generation to the grid PEG: 

0 1EG HTSEP k k P= +  
 

(8) 

Several simulations were conducted to estimate the model estimates by linear regression. Regression 
results for Eq. (7) and Eq. (8) are plotted in Figure 50 and Figure 51, respectively. The estimated model-
fitting parameters and goodness of model fits (R2 values) are listed in Table 31. The quality of the 
surrogate model fits compared to the Modelica model outputs indicate excellent model fits. 

 
 

 
Figure 50. Hydrogen production versus power consumption in the HTSE plant – Eq. (7). 

 

                                                        
g The linear regressor is a least-squares fitting of the response of the system for a linear representation (linear regression). 
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Figure 51. Electricity generation to the grid versus power consumption in the HTSE plant – Eq. (8). 

 

Table 31. Model parameter estimates for Eq. 7 and Eq. 8. 

Symbol Description Value 
Eq. 7 Eq. 8 

k0 Model parameter -9.81885×10-3 (kg/s) 2.89020×108 (We) 
k1 Model parameter 8.02320×10-9 (kg/s·We) -9.99929×10-1 (–) 
R2 Goodness of fit 0.9997 (–) 1.000 (–) 

 
 

Next, the dynamic relationship of two process variables (i.e., an input variable PHTSE and an output 
variable wH2 shown in Eq. (7)) is approximated by a model based on Laplace transforms (also referred to 
as a transfer function model): 
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(9) 

where G(s) is a transfer function in the Laplace domain, s is a complex independent variable, and 
t1, t2 and t3 are time constants (i.e., model parameters to be estimated by regression). Note that the 
transfer function models are only directly applicable to processes that exhibit linear dynamic behavior, 
such as a process that as can be modeled by a linear ordinary differential equation. However, the 
relationship between the input and output variables described in Eq. (7) is linear and thus does not depend 
on the operating regime. For such a condition, Eq. (9) is sufficiently accurate. The response of this system 
in the time domain y(t) to a step change in input is 
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(10) 

where t is a time variable, K is a process gain and M is an input step change. 
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Figure 52 shows a plot of the output response (wH2) with the high-fidelity model (Modelica model) to 
a step change in input (PHTSE), and the corresponding surrogate model fitted by nonlinear regression. The 
transient was initiated at 100 s following a 10% step decrease in PHTSE from an initial load level of 51.1 
MWe. The estimated model-fitting parameters and R2 value are listed in Table 32. Results indicate that the 
surrogate model is exact in terms of the goodness of fit. In fact, the surrogate model is indistinguishable 
from the response with the Modelica model. Generally, this is not always true, but is instead a function of 
the system to be simulated and the amplitude and steepness of the transient. Applicability of surrogate 
models generally cannot be determined a priori but only a posterior by comparison with the high-fidelity 
model (Modelica). Nonetheless, this analysis confirms the opportunity to construct surrogate models 
which may be sufficiently accurate for economic analysis. 

 
Figure 52. Step response of the process described in Eq. 10. 

Table 32. Model parameter estimates for Eq. (10) 

Symbol Description Unit Value 

K Process gain kg/s·We 8.353×10-9 
M Step input We -5.11×106 
τ1 Time constant s 353.8 
τ2 Time constant s 6.806 
τ3 Time constant s 323.6 
R2 Goodness of fit – 0.9994 

Four different sub-case (case 3-1, case 3-2, case 3-3 case 3-4) studies were conducted to analyze the 
economic performance of the proposed N-R HES configuration to be located in the Midwest region. In all 
cases, the following assumptions were made for the economic analysis: 

• The size (capacity) of the subsystem(s) is fixed. 
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• The nuclear plant (LWR) operates at its full capacity (300 MWe) at all times. 

• The initial load level for the industrial plant (HTSE plant) corresponds to its nominal operation 
condition (i.e., 51.1 MWe). 

• The simulation time is one day. All subsequent days in the lifetime of the nuclear plant are 
assumed to have the same revenue from electricity sales. Similarly, all subsequent days in the 
lifetime of the industrial plant are assumed to have the same revenue from hydrogen sales. 

• The 10-minute time resolution is selected, leading to 144 decision variables for running a full-day 
simulation. 

• The nuclear plant has an assumed lifetime of 60 years. 

• The industrial plant and the corresponding EM unit have a lifetime of 40 years. 

• The NPV is calculated at the fixed hydrogen price of $3/kg. 

• In each case, the obtained NPVs from ten thousand simulation runs (each of which uses a 
different temporal profile for the electricity price) are averaged to find a statistically meaningful 
measure of the NPV. 

• The system is assumed to be a price taker; hence, it does not influence the market (neither 
electrical nor hydrogen). 

• The participation in the ancillary service market is not considered. 

• Neither an LWR nor an HTSE plant produces carbon dioxide. 

Case 3-1 is the LWR/HTSE integration case, which seeks to find the optimal dispatch schedule for 
the system depending on market conditions (i.e., electricity prices). Case 3-2 considers only an LWR, 
which is operated at full production mode and sells all of its electricity generated to the electric grid; no 
optimization is involved in calculating the NPV. Both cases assume the construction of a “new” nuclear 
plant. The analysis period for the economic evaluation for these cases is 120 years – i.e., the least 
common multiple of all subsystem lifetimes involved, guaranteeing that the NPV is computed for a time 
span that all subsystems reach their end of life in the same year.  

Case 3-3 is the LWR/HTSE integration case as in Case 1 but considers the integration of the IP with 
an “existing” nuclear plant; this case assumes that the capital cost for a nuclear reactor has been paid off. 
Case 3-4 is the same as Case 3 but considers an “existing” LWR. In these cases, the nuclear plant has 
been operating for 20 years and has a remaining lifetime of 40 years, which coincides with a lifetime of a 
new HTSE plant. Therefore, the analysis period for the economic evaluation for Cases 3 and 4 is 40 years. 

Table 33 summarizes all cases considered. 

Table 33. Variations of Case 3 simulation cases. 

Case 
No. 

Nuclear plant 
(LWR) 

Industrial plant 
(HTSE) 

Simulation 
output 
interval (s) 

Simulation 
time (s) 

New Lifetime 
(years) 

Integration Lifetime 
(years) 

3-1 Yes 60 Yes 40 600 86400 
3-2 Yes 60 No N/A 600 86400 
3-3 No 40 No 40 600 86400 
3-4 No 40 Yes N/A 600 86400 
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7.3.3 New Nuclear Plant – Case 3-1 (LWR/HTSE) vs. Case 3-2 (LWR) 

The resulting optimal electricity generation to the grid and electricity consumption in the IP for Case 
1 are shown in Figure 53(a) and Figure 53(b), respectively, corresponding to the maximization of NPV 
and assuming the fixed hydrogen price of $3/kg. Figure 53(c) shows the corresponding electricity price 
data (i.e., one ARMA realization out of ten thousand ARMA realizations). 

 

 
Figure 53. Case 3-1 results: (a) optimal electricity generation to the grid, (b) optimal electricity 
consumption in the IP, and (c) electricity price. The red dashed line indicates an electricity price threshold 
below which it was preferred to sell electricity to the grid rather than producing hydrogen. The yellow 
rectangles indicate the hours during which electricity generation was maximized, taking advantage of the 
expensive electricity prices. 

As can be seen in Figure 52, when the electricity prices are below about 9 cents/kWh (i.e., price range 
below the red dashed line shown in Figure 53(c)), the operations optimizer (supporting economic 
optimization for operations) diverted electricity to maximize the hydrogen production instead of selling it 
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to the electric grid. For the electricity prices above 9 cents/kWh, the economics favored electricity 
production over hydrogen production. In particular in hours 1, 4, 11.5, 13, and 20 (highlighted with 
yellow rectangles in Figure 53), the plant maximized its power generation and sold as much power as 
possible to the grid due to the high electricity prices (<11 cents/kWh). In other words, under the current 
formulation, the electrical contribution delivered to the electric grid by the nuclear plant increased only as 
a response to high electricity prices. 

Table 34 summarizes the mean NPV (with a 95% confidence interval) and STD for 120 years of 
operation under the NPV-optimization mode (Case 3-1) and those at constant electricity generation mode 
(Case 3-2), assuming new nuclear plants are built. 

Table 34. Economic values for Cases 3-1 and 3-2. 

Description Unit Values 
Case 3-1 (LWR/HTSE) Case 3-2 (LWR) Gain 

Mean NPV $ million [%] -1079 ± 1.45a -1220 ± 1.72a 141 [11.6] 
STD $ million [%] 73.0 [6.76] 87.9 [7.20] N/A 

a 95% confidence interval, using a normal distribution. 
 

The results indicate that neither case is economically viable as negative NPVs are expected (i.e., $-
1.079 billion and $-1.22 billion for Cases 3-1 and 3-2, respectively); it is not economical to build a new 
nuclear plant (rated at 300 MWe) in the Midwest region at the current market conditions, regardless of 
whether or not the IP is integrated with a nuclear plant. However, an expected NPV gain by integrating an 
LWR with the HTSE process is about $141 million (a 11.6% gain). Thus, these results suggest that the 
LWR/HTSE integration case has the flexibility to be controlled for economic optimization, while 
supporting hydrogen production. This attractive performance is further magnified when considering that 
oxygen could possibly be recovered from the HTSE plant by condensation and sold in the market if steam 
is used as a sweep gas. Furthermore, participation in the ancillary service market, which is not considered 
in this report, could increase the NPV of the system. For example, considering that the maximum and 
minimum power consumption of the proposed IP is 53.7 MWe and 21 MWe, respectively, for most of the 
time the LWR/HTSE integration case has a capacity of 32.7 MWe to participate in operating reserve 
services (such as regulating, ramping, and load following), bringing revenue from providing operating 
reserve service on top of the sale of electricity. 

7.3.4 Existing Nuclear Plant – Case 3-3 (LWR/HTSE) vs. Case 3-4 (LWR) 

The optimal dispatch schedule for Case 3-3 is essentially the same as in Case 3-1 (see Figure 53), 
therefore it is not presented here. This is expected since the optimal operational strategy only depends on 
variable costs (such as commodity price and operational costs), provided that the fixed cost (capital cost) 
is the same for both cases. 

Table 35 presents the resulting economics for 40 years of operation under the NPV-optimization 
mode (Case 3-3) and those at constant electricity generation mode (Case 3-4), assuming that the IP is to 
be integrated with an existing nuclear plant. 

The results for Case 3-4 show that the expected NPV is $340 million when considering only the 
nuclear plant, which sold all of its electricity generated to the MISO grid regardless of the electricity 
price. When considering the integration of the IP with an existing nuclear plant, an expected NPV was 
464 million (a $124 million [14.2%] gain); hence, such an option appears to be economically viable at the 
current market conditions. 
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Table 35. Economic values for Cases 3-3 and 3-4. 

Description Unit Values 
Case 3-3 (LWR/HTSE) Case 3-4 (LWR) Gain 

Mean NPV $ million [%] 464 ± 1.45a 340 ± 1.48a 124 [14.2] 
STD $ million [%] 66.0 [6.76] 75.6 [22.2] N/A 

a 95% confidence interval, using a normal distribution. 
 

7.4 Case 4 
The goal of Case 4 is to investigate optimization of the dispatch for fixed capacities. A parametric 

grid sweep has been performed for the capacity combinations of the components and the dispatch has 
been optimized of each of them. As mentioned, we assume that without inertia, i.e. without Modelica, the 
marginal dispatch is the optimum. Before introducing Modelica into the calculation, this assumption was 
checked by optimizing the dispatch of selected capacity points without Modelica. Table 36 shows three 
different dispatch optimization runs without Modelica. All runs shown are for a gas turbine capacity of 
100 MWe, a battery capacity of 60 MWh, an IP capacity of 300 MWe, a mean demand of 400 MWe and a 
wind penetration of 100%. As one can see from the first run, if the penalty is more expensive than the 
marginal cost of the gas turbine (SES) and balance of plant (BOP), the LCOE from the marginal cost 
cannot be optimized further and the optimizer finds the same price. In the second run, the maximum 
penalty cost for a MWh missed demand is reduced to $50, which is lower that the marginal cost of the 
BOP (which is assumed to be the opportunity cost of not producing hydrogen). As one can see, the 
optimizer can find a slightly better solution than the marginal cost dispatch (77.51$/MWh vs 
76.21%/MWh). In this case the optimizer decides not to produce some electricity, preferring to pay the 
penalty. For example, 1 MWh produced from the BOP cost $88.94 but the penalty cost is only $50. One 
can see in the last run, if the price of hydrogen is zero and therefore the marginal cost of the BOP is zero 
as well, the optimizer cannot find a better solution than the LCOE from the marginal cost dispatch. If the 
penalty cost is below the marginal cost of the gas turbine, the same behavior that was observed for the 
BOP is also seen, i.e. the optimizer chooses to pay the penalty instead of producing electricity with the 
gas turbine. In all simulation cases shown in this document, the penalty cost is always higher than the 
highest marginal cost of all components, i.e. the LCOE from the marginal cost dispatch is the optimum, 
assuming no inertia in the system. 

 

Table 36. Marginal cost dispatch vs optimized dispatch for different maximum penalty costs. 

    
Marginal 

Cost 
Marginal 

Cost 

Marginal 
cost 
dispatch   Optimizer   

Max 
penalty 

H2 
price SES BOB 

penalty 
paied LCOE 

penalty 
paid LCOE 

[$/MWh 
missed] [$/kg] [$/MWh] [$/MWh] [M$/year] [$/MWh] [$/year] [$/MWh] 

400 3.5 37.9 88.94 390.4 261.7 390.4 261.7 
50 3.5 37.9 88.94 49.9 77.51 64.6 76.21 
50 0 37.9 0 49.9 117.02 49.9 117.02 
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With respect to Case 1 the number of points in the parametric grid sweep was reduced given the much 
larger computational effort that results from the high fidelity Modelica representation of the N-R HES 
used to determine the optimal dispatch over one day and one week with one hour time resolution. 
Moreover, the span of the parameter range was reduced to be close to the nominal value for which the 
Modelica model of the N-R HES has been designed for. 

The parametric grid is reported below: 

• Hydrogen prices: 1.75 $/kg, 3.5 $/kg 

• Wind penetration (nominal). Values: 0%, 50%, 100% 

• Industrial process capacity (Hydrogen production). Values: 48.59 MWe, 51.15 MWe, 53.7 MWe 

• Mean demand. Values: 200 MW, 300 MW, 400 MW 

• Battery (SE in figures). Values: 15 MWh, 20 MWh, 25 MWh 

• Gas turbine (SES in figures). Value: 28 MWe, 35 MWe, 42 MWe 

• Reactor power is kept constant at 300 MWe. 

This simulation highlights one of the major problems identified thus far. Even if a very small number 
of Modelica simulations failed to successfully complete the one day (~1%), the overall simulation also 
fails due to the intrinsic sequential nature of the optimization algorithm used. This is a problem that is 
currently being investigated to determine a mitigation path. Failure appears to be associated with a high 
penetration of wind (no failure detected at 0% wind penetration). This result appears to indicate that the 
failures are associated with large oscillation within the dispatch time history. The mitigation strategies 
rely on the fact that the stochastic optimization is based on multiple random samplings at the same 
optimization point, so it is possible to discharge a limited number of simulations. Second, the failed runs 
could be resubmitted using a newly generated random electricity demand and wind history. Work is also 
ongoing to make the Modelica model more robust, which will come at the expense of being more 
computationally demanding. This issue will be addressed more in detail in the report conclusions. 

In the following selected representative plots of the LCOE are reported (Figure 54, Figure 55) for the 
one-day case and on a smaller grid (Figure 56, Figure 57) for the one-week dispatch optimization with the 
Modelica case. It is interesting to notice that, even if in the narrow ranges considered, the wind 
penetration changes, the minimum LCOE occurs at much higher levels of the demand. This is due to the 
fact that the system attempts to overcome the effect of the volatility introduced by the wind. The system 
attempts to maintain the reactor as baseload, i.e. tries to minimize the time when the net demand is lower 
than the reactor capacity. With increasing wind penetration, i.e. increasing volatility, this can be achieved 
by increasing the mean demand. This also explains, in those ranges, the beneficial effect of the presence 
of the gas turbine for which increased turbine size always decreases the cost of electricity. Table 37 
reports for selected cases (1 day) the number of Modelica model failure, which is clearly correlated with 
the wind presence.  

Table 38 illustrates, for a given combination of wind penetration and hydrogen price and for the point 
in the component size grid that leads to the lower LCOE, the differences between the LCOE obtained 
using the dispatch optimization with the Modelica representation of the N-R HES and the dispatch based 
on marginal cost (for the 1 day cases). The differences are quite small, which justifies the usage of the 
marginal cost based dispatch (referred as initial dispatch in section 6.3) as a means of accelerating the 
optimization. Moreover, as expected, the differences increase for increasing wind penetration. This is due 
to the fact that the wind introduces larger changes in the dispatch making the natural inertia of the system 
more relevant. This effect is properly captured by Modelica, where the results usually lead to higher 
LCOE, likely due to higher penalties paid for mismatching the demand (further investigation is needed to 
fully assess causality). 
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Table 37. Modelica number of failures per given wind penetration and hydrogen price. 

H2 price ($/Kg) Wind (%) Failed runs (%) 

1.75 0 0.00 

1.75 50 1.89 

1.75 100 1.71 

   
3.5 0 0.00 

3.5 50 1.93 

3.5 100 1.20 

 

 

Table 38. Differences between dispatch optimization using Modelica N-R HES model and marginal cost 
dispatch. 

H2 price 
($/kg) 

Wind 
(%) 

Demand 
(kWe) 

SES 
(kWe) 

ES 
(kWe) 

IP  
(kWe) 

LCOE 
($/kWh) 

LCOE, no 
Modelica 
($/kWh) 

Difference (%) 

1.75 0 300 42 20 48.59 137.13 134.05 -2.30 

1.75 50 300 42 15 53.70 149.2 149.98 0.52 

1.75 100 300 42 20 53.70 229.45 213.21 -7.62 

3.5 0 300 42 25 48.59 132.51 129.03 -2.70 

3.5 50 300 42 20 53.70 142.79 143.74 0.66 

3.5 100 300 42 20 53.70 221.44 205.08 -7.80 
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Figure 54. Effective LCOE color map for Case 4. H2 price 1.75 $/kg, wind penetration 0%, dispatch 
optimization with 1 day Modelica simulation. 

 

 

 
Figure 55. Effective LCOE color map for Case 4. H2 price 1.75 $/kg, wind penetration 100%, dispatch 
optimization with 1 day Modelica simulation. 
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Figure 56. Effective LCOE color map for Case 4. H2 price 1.75 $/kg, wind penetration 0%, dispatch 
optimization with 1 week Modelica simulation. 

 

 
Figure 57. Effective LCOE color map for Case 4. H2 price 1.75 $/kg, wind penetration 100%, dispatch 
optimization with 1 week Modelica simulation. 
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7.5 Case 5 
This case tests the capability of the optimizer to properly size the components of the N-R HES for six 

different combinations of wind penetration and hydrogen price: 

• Hydrogen prices: 1.75 $/kg, 3.5 $/kg 

• Wind penetration (nominal). Values: 0%, 50%, 100% 

The convergence history for one of these cases is reported in Figure 58 (all the convergence histories are 
reported in appendix C). It is important to notice that the optimizer converges fairly quickly with respect 
to the demand size and the LCOE while the other component capacities remain more “noisy”. This is due 
to the fact that the slowly converging capacities are less influential in the determination of the LCOE. As 
mentioned previously, the large number of iterations required for the overall search could be very 
expensive if the lower level of the optimization run the full Modelica model for the N-R HES. Moreover, 
for a tighter convergence the slowly converging component is even more computationally expensive. A 
solution to this problem has been implemented but not yet tested. The upper level of the optimization, 
which takes care of converging the capacities, would be based on a full first order evaluation of the 
gradient rather than a zero order as in the SPSA approach, which would be more effective. The full 
gradient approach is feasible given the low number of variables describing the capacities of the system. 

 
Figure 58. Convergence history for Case 5 (hydrogen price 3.5 $/Kg, wind penetration 0%). 

 

7.6 Case 6 
Case 6 combines the optimization of the component capacities and the optimization of the dispatch 

for 1-day simulations with Modelica. For each new combination of capacities, a full dispatch optimization 
including Modelica is run. This dispatch optimization is always initiated with the marginal cost dispatch. 
As we already know from earlier cases and can be seen in Table 39 (Inner iterations), this marginal cost 
dispatch leads to the minimum LCOE and only three iterations are required for the inner optimization.  
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The optimal capacities are known from Case 5. These capacities are used to initialize the capacity 
optimization. Table 39 shows the convergence history for one selected case: 1.75 $/kg of hydrogen and 
50% wind penetration. One can see that the initial capacity combination (iteration 0) leads to an LCOE of 
156.37$. The optimizer then computes the gradient and takes a step in that direction. The optimizer 
computes the LCOE for that point and finds it to be higher than for the original point (iteration 1). Since 
the gradient points in that direction, the only possibility is that the step taken was too big and the 
optimizer ‘overshoots’ the minimum. Therefore, the optimizer goes back to the initial point, re-evaluates 
the gradient and tries a smaller step in that direction. In the case shown, it repeats that behavior 5 times 
before it finds a better point, which is actually very close to the original point (iteration 7). The optimizer 
evaluates the gradient again and finds a better point with a very small step size (iteration 8). The step size 
is so small that the solution is considered converged (iteration 8). Since the problem is stochastic, this 
point may not be the optimum considering another wind and demand profile. To check this, the solution 
has to be persistent, i.e. a point with the same step size is evaluated and checked to see if the LCOE is 
lower. In this case it in not, and the solutions is considered converged. 

At this point, the very low number of iterations allows us to cope well with the expensive Modelica 
simulations. This is due to the very good agreement between the copper plate marginal dispatch model 
and the Modelica simulation which allows selection of very good initial guesses for both the initial 
dispatch and capacities. This advantage will be reduced as simulation moves to finer time resolution (e.g. 
5-min versus 1-hour). 

 

Table 39. Convergence history for the simultaneous optimization of capacity and dispatch with Modelica 
simulations for 1 day. 

 
 

 

 

  

current'optimum'point convergence
Battery IP Gas'turbine Inner

Iteration 'capacity' Demand capacity capacity'[MW] LCOE' Rel'conv. Step'size 'iterations comment
[MWh] [MW] [MW] [MW] [$/MWh]

0 18.75 261.409 51.02 34.54 156.37423 R R1.0000E+00 3 Initial'point

1 " " " " " R 3.3333ER02 3
Initial'step'size'
=>Reject'point'for'worse'value

2 " " " " " R 1.1111ER02 3
Reduce'step'size'
=>Reject'point'for'worse'value

3 " " " " " R 3.7037ER03 3
Reduce'step'size
=>Reject'point'for'worse'value

4 " " " " " R 1.2346ER03 3
Reduce'step'size
=>Reject'point'for'worse'value

5 " " " " " R 1.3717ER04 3
Reduce'step'size
=>Reject'point'for'worse'value

6 " " " " " R 4.5725ER05 3
Reduce'step'size
=>Reject'point'for'worse'value

7 18.749986 261.4074 51.01999612 34.53996 156.35589 0.000117332 1.5242ER05 3
Reduce'step'size
=>Found'better'point

8 18.749988 261.4075 51.01999962 34.53995 156.24609 0.000702223 2.0728ER06 3
Move'=>'Found'better'point'
=>'converged'on'step'size

9 18.749989 261.4075 51.02000022 34.53991 157.43107 R 3.0330ER06 3
Pesistence:'Move'by'same'step'size
=>'don't'find'better'=>'converged'twice
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8. CONCLUSIONS 
The software framework for the economic analysis of N-R HES has been tested in its completeness 

for the first time. The four main components of this simulation system are: 

• The capability to generate random time histories that statically equivalent to a given training 
set but always different from each other (ARMA). 

• A global driver (RAVEN) capable of performing statistical sampling, parametric and 
sensitivity studies, and stochastic optimization. These capabilities are deployed taking 
advantages of parallel computing. 

• A general economics framework allowing calculation of different economic indicators such 
as NPV, IRR, etc. starting from a generic set of cost drivers, which in our case are the sizes of 
the components (capital cost), and the flow of commodities (e.g. electricity and industrial 
product). 

• A multi-level fidelity representation of the physical response of a N-R HES: 

o Low level: the system is considered without any inertia and any component of the 
system could be dispatched at will. 

o Middle level: linear surrogates are used to simulate the response of the system 
components. 

o High level: Modelica based model of the integrated N-R HES. 

A sizable amount of work has been dedicated to collect and organize the economica data to perform a 
cash flow based analysis of the system. This has been done not only for the reference system, but cost 
scaling laws have been derived for all the components that could be resized by seeking the overall optimal 
financial performance of the system. 

A large series of tests has been performed to confirm the proper functioning of the complete 
infrastructure. Those tests not only assessed a good degree of maturity of the framework, but the large 
amount of data they generated is already providing useful information on the financial performance of N-
R HESs and their dynamic performance aspects. 

A few shortcomings of the framework have been identified through this process. Each Modelica run 
that corresponds to a week of real time requires about two hours to complete. Multiplied by the number of 
needed iterations (in the hundreds without acceleration) requires too long of a computational time. In 
addition, some failures of the Modelica runs (<1%) result in failure of the whole optimization search. 
These issues have been identified and are currently being mitigated (Modelica will be run in parallel on 
an HPC platform, initial dispatch based on marginal costs, failure resilient optimization, and further 
development of surrogate models). 

Overall the framework has been proven to be very flexible and capable of handling many different 
approaches and analysis needs. It is worth mentioning that all the grid based analyses have been 
dispatched in parallel by RAVEN, as has de-noising (multiple runs on the same points to remove 
statistical noises). 

At this point of the development, it is clear that the next step should be the deployment of those 
capabilities to evaluate a case that is highly relevant to the industry, while tuning algorithms and 
improving overall performance. 
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APPENDIX A: TITAN AND RHEA COMPUTATIONAL ENVIRONMENT 
SPECIFICATIONS 

Titan contains 18,688 physical compute nodes, each with a processor, physical memory, and a 
connection to the Cray custom high-speed interconnect. Each compute node contains a 16-core 2.2 GHz 
AMD Opteron™ 6274 (Interlagos) processor and 32 GB of RAM. Two nodes share a Gemini™ high-
speed interconnect router. The resulting partition contains 299,008 traditional processor cores, and 598 
TB of memory. In addition to the Opteron CPU, all of Titan's 18,688 physical compute nodes contain an 
NVIDIA Kepler™ accelerator (GPU) with 6 GB of DDR5 memory. Upon login, users are placed onto 
login nodes by default. Each Titan login node houses an 8-core AMD Opteron™ 6140-series CPU and 
256 GB of RAM. Nodes within the compute partition are connected in a three-dimensional torus. This 
provides a very scalable network with low latency and high bandwidth. 

The OLCF's center-wide Lustre® file system, named Spider, is available on Titan for computational 
work. Spider contains over 26,000 clients and 32 PB of disk space. A separate, NFS (Network File 
System)-based file system provides $HOME storage areas, and an HPSS-based file system provides Titan 
users with archival spaces. 

Titan employs the Cray Linux Environment as its operating system. This consists of a full-featured 
version of Linux on the login nodes, and a Compute Node Linux microkernel on compute nodes. The 
microkernel is designed to minimize partition overhead allowing scalable, low-latency global 
communications. 

Rhea is a 521-node commodity-type Linux cluster. The primary purpose of Rhea is to provide a 
conduit for large-scale scientific discovery via pre/post processing and analysis of simulation data 
generated on Titan. Users with accounts on Titan will automatically be given an account on Rhea. 

Rhea contains 521 Dell PowerEdge compute nodes. The compute nodes are separated into two 
partitions as shown in Table 1. Both compute partitions are accessible through the same batch queue from 
Rhea’s login nodes. 

Table 40. Specifications of Rhea compute node partitions. 

Partition Node Count Memory GPU CPU 
Rhea (default) 512 128GB – Dual Intel® Xeon® E5-

2650 @ 2.0 GHz 16 cores, 
(32) HT 

GPU 9 1TB 2 NVIDIA® K80 Dual Intel® Xeon® E5-
2695 @ 2.3 GHz 28 cores, 
(56) HT 

 

Each CPU in the Rhea partition features 8 physical cores, for a total of 16 physical cores per node. 
With Intel® Hyper-Threading Technology enabled the node has 32 logical cores capable of executing 32 
hardware threads for increased parallelism. On the GPU partition, there are 14 physical cores, for a total 
of 28 physical cores per node. With Hyper-Threading enabled, these nodes have 56 logical cores that can 
execute 56 hardware threads for increased parallelism. This GPU partition also has 1TB of memory and 2 
K80 GPUs per node. Rhea also features a 4X FDR Infiniband interconnect, with a maximum theoretical 
transfer rate of 56 Gb/s. 

Rhea features 4 login nodes which are identical to the compute nodes, but with 32 GB of RAM. The 
login nodes provide an environment for editing, compiling, and launching codes onto the compute nodes. 

The OLCF’s center-wide Lustre® file system, named Spider, is available on Rhea for computational 
work. With over 26,000 clients and 32 PB of disk space, it is one of the largest-scale Lustre file system in 
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the world. A separate, NFS-based file system provides $HOME storage areas, and an HPSS-based file 
system provides Rhea users with archival spaces. 

A.1 Compiling on Titan 
Compiling code on Titan (and other Cray machines) is different than compiling code for commodity 

or Beowulf-style HPC linux clusters. Among the most prominent differences are the following: 

1. Cray provides a sophisticated set of compiler wrappers to ensure that the compile environment is 
set up correctly. 

2. In general, linking/using shared object libraries on compute partitions is not supported. 
3. Cray systems include many different types of nodes, so some compiles are, in fact, cross-

compiles. 
The following compilers are available on Titan: 

1. PGI, the Portland Group Compiler Suite (default) 
2. GCC, the GNU Compiler Collection 
3. CCE, the Cray Compiling Environment 
4. Intel, Intel Composer XE 
Cray provides a number of compiler wrappers that substitute for the traditional compiler invocation 

commands. The wrappers call the appropriate compiler, add the appropriate header files, and link against 
the appropriate libraries based on the currently loaded programming environment module. To build codes 
for the compute nodes, the user invokes the Cray wrappers using the following tools: 

• cc To use the C compiler 
• CC To use the C++ compiler 
• ftn To use the FORTRAN 90 compiler 

 
The -craype-verbose option can be used to view the compile line built by the compiler wrapper: 
 
 
titan-ext$ cc -craype-verbose ./a.out 
pgcc -tp=bulldozer -Bstatic ... 
 
 
Titan is comprised of different types of nodes: 

1. Login nodes running traditional Linux 
2. Service nodes running traditional Linux 
3. Compute nodes running the Cray Node Linux (CNL) microkernel 

The type of work performed dictates the type of node for which the code is built. 

 

A.2 Compiling for Compute Nodes (Cross Compilation) 
Titan compute nodes are the nodes that carry out the vast majority of computation on the system. 

Compute nodes are running the CNL microkernel, which is markedly different than the OS running on the 
login and service nodes. Most code that runs on Titan will be built targeting the compute nodes. All 
parallel codes should run on the compute nodes. Compute nodes are accessible only by invoking aprun 
within a batch job. To build codes for the compute nodes, the Cray compiler wrappers are invoked using 
the following commands: 
 
titan-ext$ cc code.c 



 

 
 

99 

titan-ext$ CC code.cc 
titan-ext$ ftn code.f90 
 
 

A.3 Controlling the Programming Environment 
Upon login, the default versions of the PGI compiler and associated Message Passing Interface (MPI) 

libraries are added to each user's environment through a programming environment module. Users do not 
need to make any environment changes to use the default version of PGI and MPI. If a different compiler 
is required, it is important to use the correct environment for each compiler. To aid users in pairing the 
correct compiler and environment, programming environment modules are provided. The programming 
environment modules will load the correct pairing of compiler version, message passing libraries, and 
other items required to build and run. It is highly recommended that the programming environment 
modules be used when changing compiler vendors. The following programming environment modules are 
available on Titan: 

• PrgEnv-pgi 
• PrgEnv-gnu 
• PrgEnv-cray 
• PrgEnv-intel 

 
To change the default loaded PGI environment to the default GCC environment use: 
 
 
$ module unload PrgEnv-pgi  
$ module load PrgEnv-gnu 
 
 
Or alternatively: 
 
 
$ module swap PrgEnv-pgi PrgEnv-gnu 
 
 
To use a specific compiler version, the compiler's PrgEnv module must be loaded, and the use must 
switch to the correct compiler version. For example, the following will configure the environment to use 
the GCC compilers, then load a non-default GCC compiler version: 
 
 
$ module swap PrgEnv-pgi PrgEnv-gnu 
$ module swap gcc gcc/4.6.1 
 
 

A.4 Running Jobs on Titan 
Computational work is performed using HPC by jobs. Individual jobs produce data that lend relevant 

insight into grand challenges in science and engineering. As such, the timely, efficient execution of jobs is 
the primary concern in the operation of any HPC system. A job on Titan typically comprises a few 
different components: 

• a batch submission script, 
• a statically-linked binary executable, 
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• a set of input files for the executable, and 
• a set of output files created by the executable. 

 
The process for running a job is typically accomplished in the following order: 

1. prepare executables and input files, 
2. write a batch script, 
3. submit the batch script to the batch scheduler, and 
4. monitor the job before and during execution. 

 
On Cray machines, when the aprun command is issued within a job script (or on the command line 

within an interactive batch job), the binary passed to aprun is copied to and executed in parallel on a set 
of compute nodes. Compute nodes run a Linux microkernel for reduced overhead and improved 
performance. It must be noted that the only way to access the compute nodes on Cray machines is via the 
aprun command. 
 

A.5 Writing Batch Scripts 
Batch scripts, or job submission scripts, are the mechanism by which a user submits and configures a 

job for eventual execution. A batch script is simply a shell script which contains: 
• Commands that can be interpreted by batch scheduling software (e.g. PBS) 
• Commands that can be interpreted by a shell 

The batch script is submitted to the batch scheduler where it is parsed. Based on the parsed data, the batch 
scheduler places the script in the scheduler queue as a batch job. Once the batch job makes its way 
through the queue, the script will be executed on a service node within the set of allocated computational 
resources. Batch scripts are parsed into the following three sections: 
 

A.6 Interpreter Line 
The first line of a script can be used to specify the script’s interpreter. This line is optional. If not 

used, the submitter's default shell will be used. The line uses the "hash-bang-shell" syntax:  
 
 
#!/path/to/shell 
 
 

A.7 Scheduler Options 
The batch scheduler options are preceded by #PBS, making them appear as comments to a shell. PBS 

will look for #PBS options in a batch script from the script’s first line through the first non-comment line. 
A comment line begins with #. #PBS options entered after the first non-comment line will not be read by 
PBS. All batch scheduler options must appear at the beginning of the batch script. 
 

A.8 Executable Commands 
The shell commands follow the last #PBS option and represent the main content of the batch job. If 

any #PBS lines follow executable statements, they will be ignored as comments. The execution section of 
a script will be interpreted by a shell and can contain multiple lines of executable invocations, shell 
commands, and comments. When the job's queue wait time is finished, commands within this section will 
be executed on a service node (sometimes called a "head node") from the set of the job's allocated 
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resources. Under normal circumstances, the batch job will exit the queue after the last line of the script is 
executed. An example batch script is shown below: 
 
 
 1: #!/bin/bash 
 2: #    Begin PBS directives 
 3: #PBS -A pjt000 
 4: #PBS -N test 
 5: #PBS -j oe 
 6: #PBS -l walltime=1:00:00,nodes=1500 
 7: #PBS -l gres=atlas1%atlas2 
 8: #    End PBS directives and begin shell commands 
 9: cd $MEMBERWORK/pjt000 
10: date 
11: aprun -n 24000 ./a.out 
 
 
This introductory information was provided to familiarize potential users with the specifics of the Titan 
HPC platform. Further information can be found on the OLCF system user guide documentation.h 

 
  

                                                        
h https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide 
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APPENDIX B: COMPLETE SERIES OF PLOTS FROM TEST CASE 2 

 
The grid points sampled for Case 2 are summarized here: 

• Hydrogen price. Values are defined according to [1]: 0 $/kg, 1.75 $/Kg, 3.5 $/Kg 

• Wind penetration (nominal). Values: 0%, 50%, 100%, 200% 

• Industrial process capacity (Hydrogen production). Values: 0 MWe, 120 MWe, 240 MWe, 360 MWe, 
480 MWe, 600 MWe 

• Demand. Values: 100 MW, 200 MW, 300 MW, 400 MW, 500 MW, 600 MW 

• Battery (SE in figures). Values: 100 MWh, 200 MWh, 300 MWh, 400 MWh, 500 MWh, 600 MWh 

• Gas turbine (SES in figures). Values: 100 MWe, 200 MWe, 300 MWe, 400 MWe, 500 MWe, 600 
MWe 

• Reactor power is kept constant at 300 MWe 

 
 

 
Figure 59. Effective LCOE color map for Case 2. H2 price 0 $/kg, wind penetration 0%. 
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Figure 60. Effective LCOE color map for Case 2. H2 price 0 $/kg, wind penetration 50%. 

 

 
Figure 61. Effective LCOE color map for Case 2. H2 price 0 $/kg, wind penetration 100%. 
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Figure 62. Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 200%. 

 

 

 
Figure 63. Effective LCOE color map for Case 2. H2 price 1.75 $/kg, wind penetration 0%. 
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Figure 64. Effective LCOE color map for Case 2. H2 price 1.75 $/kg, wind penetration 50%. 

 

 

 
Figure 65. Effective LCOE color map for Case 2. H2 price 1.75 $/kg, wind penetration 100%. 
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Figure 66. Effective LCOE color map for Case 2. H2 price 1.75 $/kg, wind penetration 200%. 

 

 

 
Figure 67. Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 0%. 
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Figure 68. Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 50%. 

 

 

 
Figure 69. Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 100%. 
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Figure 70. Effective LCOE color map for Case 2. H2 price 3.5 $/kg, wind penetration 200%. 
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APPENDIX C: COMPLETE SERIES OF CONVERGENCE HISTORIES 
FOR CASE 5  
 
 

 
Figure 71. Convergence history for Case 5 (hydrogen price 1.75 $/Kg, wind penetration 0%). 

 

 
Figure 72. Convergence history for Case 5 (hydrogen price 1.75 $/Kg, wind penetration 50%) 
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Figure 73. Convergence history for Case 5 (hydrogen price 1.75 $/kg, wind penetration 100%). 

 

 
Figure 74. Convergence history for Case 5 (hydrogen price 3.5 $/kg, wind penetration 0%). 
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Figure 75. Convergence history for Case 2 (hydrogen price 3.5 $/Kg, wind penetration 50%). 

 

 
Figure 76. Convergence history for Case 2 (hydrogen price 3.5 $/Kg, wind penetration 100%). 

 
 


