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Executive Summary: 
 
The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to 
advance the state-of-the-science of solar power forecasting by designing, developing, building, 
deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has 
included cutting edge research, testing in several geographically- and climatologically-diverse 
high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination 
of the research results to raise the bar on solar power forecasting technology. The partners include 
three other national laboratories, six universities, and industry partners. This public-private-
academic team has worked in concert to perform use-inspired research to advance solar power 
forecasting through cutting-edge research to advance both the necessary forecasting technologies 
and the metrics for evaluating them. The project has culminated in a year-long, full-scale 
demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their 
operations. 
 
The project focused on providing elements of a value chain, beginning with the weather that causes 
a deviation from clear sky irradiance and progresses through monitoring and observations, 
modeling, forecasting, dissemination and communication of the forecasts, interpretation of the 
forecast, and through decision-making, which produces outcomes that have an economic value. 
The system has been evaluated using metrics developed specifically for this project, which has 
provided rich information on model and system performance. 
 
Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on 
the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on 
observations in the field. The shortest range system, built by Brookhaven National Laboratory 
(BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time 
scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This 
project has facilitated research in improving the hardware and software so that the new high 
definition cameras deployed at multiple nearby locations allow discernment of the clouds at 
varying levels and advection according to the winds observed at those levels. Improvements over 
“smart persistence” are about 29% for even these very short forecasts. StatCast is based on 
pyranometer data measured at the site as well as concurrent meteorological observations and 
forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and 
has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of 
short-range forecasting systems employ satellite imagery and use that information to discern 
clouds and their motion, allowing them to project the clouds, and the resulting blockage of 
irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric 
Research [CIRA] at Colorado State University) was already one of the more advanced cloud 
motion systems, which is the reason that team was brought to this project. During the project 
timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and 
implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-
40% improvement over Smart Persistence between sunrise and approximately 1600 UTC 
(Coordinated Universal Time)1. A second satellite-based system, MADCast (Multi-sensor 
Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and 
profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. 
                                                 
1 UTC is 5-8 hours ahead of US time zones during standard time. Thus, 1600 UTC represents 1100 EST-0800 PST. 
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During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most 
of that skill being derived during partly cloudy conditions. That allows advection of the clouds via 
the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ 
showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours 
made hourly. It provided improvements on the order of 50-60% over Smart Persistence for 
forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then 
blended to develop the new MAD-WRF model that incorporates the most important features of 
each of those models, both assimilating satellite cloud fields and using WRF-So far physics to 
develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours 
are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by 
themselves provide improvement over Smart Persistence, the largest benefit is derived when they 
are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. 
 
The development of WRF-Solar™ under this project has provided the first numerical weather 
prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The 
first augmentation improved the solar tracking algorithm to account for deviations associated with 
the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added 
the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation 
parameterization to the model output. Third, efficient parameterizations were implemented to 
either interpolate the irradiance in between calls to the expensive radiative transfer 
parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional 
heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to 
improve the representation of absorption and scattering of radiation by aerosols (aerosol direct 
effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the 
cloud evolution and radiative properties, an effect that has been traditionally only implemented in 
atmospheric computationally costly chemistry models. A sixth development accounts for the 
feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow 
cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances 
from satellites to determine the three dimensional cloud field, allowing for an improved 
initialization of the cloud field that increases the performance of short-range forecasts. We find 
that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version 
of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, 
WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. 
 
The SunCast™ system requires substantial software engineering to blend all of the new model 
components as well as existing publically available NWP model runs. To do this we use an expert 
system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the 
NWP models. These two systems are then blended, we use an empirical power conversion method 
to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to 
further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE  
(root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill 
in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed 
a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. 
 
An economic evaluation based on Production Cost Modeling in the Public Service Company of 
Colorado showed that the observed 50% improvement in forecast accuracy will save their 
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customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR 
has scaled this savings to a national level and shown that an annual expected savings for this 50% 
forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar 
deployment. This amounts to a $455M discounted savings over the 26 year period of analysis. 
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Background: 
 
The NCAR-led team was already immersed in solar forecasting research at the time of the award, 
along with other research teams throughout the world. Real-time solar power forecasting is 
reviewed in chapters in a few recent books, including Kleissl (2013) and Troccoli, Dubus, and 
Haupt (2014). The issue is well motivated in works like Dubus (2014) among others. Lorenz et al. 
(2014) reviews the extensive work of the team at the University of Oldenburg in Germany. The 
Australian initiative is ongoing as motivated in Davy and Troccoli (2012). Schroedter-Homscheidt 
et al. (2013) point out the need for excellent aerosol prediction for solar power prediction and 
discuss techniques leveraging European Centre for Medium-Range Weather Forecasts (ECMWF) 
chemistry forecasts. The difficulties in predicting cloud cover at specific locations are well known. 
Solar power prediction is accomplished by different techniques for differing time scales.  
 
Solar energy is particularly variable over space and time because of its myriad complexities caused 
by the dynamic evolution of clouds. Lew et al. (2012) provides evidence of the challenge of solar 
power integration with the results showing the variability of power output was higher with high 
penetrations of solar than with high penetrations of wind. The response speed (ramp rate and start 
time), response duration, frequency of use (continuously or only during rare events), direction of 
use (up or down), and type of control characterize a utility company’s operating reserves (Ela et 
al. 2013). These operating reserves are appropriately managed with accurate solar forecasts, as 
Curtright and Apt (2008) have shown that the cost of energy can be strategically minimized with 
knowledge of the short- and long-term PV variations. The quantification of temporal solar 
irradiance variability caused by the dynamic evolution of clouds has been extensively studied. 
Hinkelman (2013) found that not only are the irradiances themselves larger in the middle of the 
day but also the fractional change in irradiance from one time to another is larger. She also 
determined that cloud optical depth and cloud height are the best predictors of irradiance variability 
at one-minute time resolution. Gueymard and Wilcox (2011) analyzed the regional dependence of 
solar power and showed greater variability tends to occur in coastal areas, particularly along the 
California coast and in mountainous areas because of the micro-climate effects of topography. 
Kuszmaul et al. (2010) analyzed 1-sec PV output data and showed it is linearly proportional to the 
spatial average of irradiance. Rayl et al. (2013) performed an irradiance co-spectrum analysis and 
concluded that solar power site aggregation could greatly reduce power variability on short time 
scales depending on the distance between sites.   
 
The non-linear variations of solar irradiance result from the complex evolution of clouds in the 
atmosphere; thus, many studies have tested non-linear solar irradiance prediction methods (Mellit 
2008; Martin et al. 2010; Bouzerdoum et al. 2013; Fu and Cheng 2013; Marquez et al. 2013a; 
Inman et al. 2013; Fernandez et al. 2014; Chu et al. 2014). These studies, however, have not 
focused on the explicit prediction of both the temporal variability and the spatial variability of 
solar irradiance.  
 
There have been multiple recent studies focused on the prediction of solar radiation or solar power 
with statistical learning (also known as artificial intelligence or data mining). Mellit (2008) 
provides a summary of techniques for forecasting solar radiation and states that 37 studies have 
used neural networks in the modeling and prediction of solar radiation with the second most 
frequent method, fuzzy logic, used five times. More recently, Martin et al. (2010) showed a final 
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model based on Artificial Neural Networks (ANN) improves accuracy 4.84% to 25.58% over 
persistence for half-daily radiation forecasts. Fernandez et al. (2014) concluded that the ANN 
model has accurate performance for days characterized by direct irradiance (clear days) and for 
days characterized by diffuse irradiance (cloudy days). Chu et al. (2013) used an ANN with sky 
image processing to predict 1-minute average direct normal irradiance (DNI) for time horizons of 
5 and 10 minutes. Another short-term prediction study used a regression technique on all-sky 
images to predict solar radiation five minutes in advance with a mean absolute error of around 
22% (Fu and Cheng 2013). Autoregressive techniques have also shown solar power prediction 
capability, with Bouzerdoum et al. (2013) using a hybrid seasonal autoregressive moving average 
and support vector model to predict hourly power output. All of these studies advanced prediction 
of solar irradiance, but none claim to be optimal.  
 
Sky imaging is another approach to very-short-range solar forecasting. The team has been aware 
of high-quality work being done at the University of San Diego and elsewhere, and has interacted 
with Jan Kleissl of USCD and his collaborators on several occasions. His team’s work with total 
sky imagers (TSIs) is reported in Urquhart et al. (2015) and Bosch and Kleissl (2013). The BNL 
approach is unique and different from what Kleissl and his team are doing. Huang et al. (2013) 
describe the initial methodology for nowcasting solar irradiance with a single TSI. There are three 
main steps to their algorithm: 1) TSI image preprocessing, 2) cloud motion estimation, and 3) solar 
radiation estimation. They showed positive results for their 1-minute and 2-minute irradiance 
forecasts. Peng et al. (2015) extended the BNL algorithm of Huang et al. (2013) to use three TSIs 
to better estimate the 3D cloud field. By comparing overlapping cloud regions in multiple TSIs 
(located several hundred meters to about 1-2 kilometers apart), estimates of the height of each 
cloud feature are derived using geometry. Knowing the height of each cloud feature greatly aids 
in estimating cloud motion vectors, and allows for improved tracking of clouds at different levels 
(i.e., cumulus vs. cirrus clouds) over the single-TSI algorithm. Peng et al. (2015) also developed a 
support vector regression model with a radial basis function to forecast solar irradiance based on 
recent TSI frames and pyranometer data. This new irradiance prediction model was shown to have 
improved error metrics compared to other radiation prediction models tested out to 3-minute 
forecasts. Even with multiple TSIs, however, the irradiance prediction horizon is limited to 
approximately 10-15 minutes when low cumulus clouds are present, as they will typically transit 
across the image scene in that amount of time. In situations where high cirrus clouds are present, 
however, irradiance forecasts could potentially be extended to 30-60 minutes, as they take longer 
to transit across the image scene. BNL continues these advances as shown below. 
 
Satellite based cloud prediction is another important method that lies between the very-short-range 
and the medium-range time scales. An overview of the current state-of-the-art in solar forecasting 
is provided in the book edited by Kleissl (2013), including details of physically based satellite 
methods for short-term forecasting, provided in Chapter 3 by Miller et al. The problem is rooted 
in our ability to utilize multi-spectral satellite imagery (preferentially from the geostationary 
constellation) to characterize the geometric and microphysical properties of meteorological clouds. 
Knowledge of cloud locations, heights, and properties can be used to estimate the down-welling 
solar irradiance (direct and diffuse components) at the cloud shadow locations. Provided 
information on cloud motion, the shadows can be propagated forward in space/time to provide a 
time-series of solar irradiance at a given location.    
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For longer time scales beyond about 6 hours, it is necessary to employ numerical weather 
prediction (NWP). The initialization of clouds in NWP models is a difficult problem that has 
recently received increased scrutiny. Current data assimilation methods are challenged by the high 
spatio-temporal variability of clouds, strong non-linearities in the radiative transfer calculation and 
simulated microphysical properties, and non-Gaussian error distributions. Model balance via 
ensembles of forecasts is affected by sampling error and systematic model errors. For these 
reasons, NWP forecasts are usually inferior to simpler advection methods in the first few hours of 
the forecast (i.e. nowcasting).  
 
Under cloudless or partly cloudy conditions, aerosols have a strong impact on surface irradiance, 
particularly its direct and diffuse components. Under such circumstances, the solar forecasting 
performance of NWP models, such as the Weather Research and Forecasting (WRF) model or the 
one built by the European Centre for Medium Range Forecasting (ECMWF), has been found to be 
highly biased (Gerstmaier et al. 2012; Ruiz-Arias et al. 2012; Troccoli and Morcrette 2012). An 
appropriate way to handle aerosols is to apply aerosol transport models, such as put forth in the 
Monitoring Atmospheric Carbon and Climate (MACC) project (Schroedter-Homscheidt et al. 
(2013). The aerosol model developed at ECMWF (Morcrette et al. 2008) has a remarkable 3-
hourly resolution, a relatively good spatial resolution (~120-km grid spacing), and benefits from 
the assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) observations. 
Outputs of this model are now commercially used in the prediction of solar irradiance on a global 
scale, with noticeable improvements in the resulting global horizontal irradiance (GHI) and DNI 
accuracy (Cebecauer et al. 2011a,b). Data from the MACC project must be validated over the U.S. 
Day-ahead high-quality aerosol forecasts and could be used to predict GHI and DNI with WRF. 
The NASA (National Aeronautics and Space Administration) Goddard Earth Observing System, 
version 5 (GEOS-5), offers another real-time analysis and prediction of aerosols (Randles et al. 
2013). Substantial improvements in day-ahead solar forecasts under cloudless or partly cloudy 
days, particularly over areas of large aerosol variability, can be expected from these developments. 
 
In a recent comparison of various solar forecasting models for the U.S., Perez et al. (2011) showed 
that NOAA’s operational models (that use WRF as the underlying numerical model) lagged other 
international forecasting models in terms of accuracy of their solar irradiance predictions. So far, 
this has been interpreted partly due to shortcomings in cloud modeling and data assimilation. It is 
possible that the radiative transfer algorithms in the U.S. forecast models are not optimal for this 
application. This hypothesis was confirmed by Ruiz-Arias et al. (2012) in the case of the WRF 
model. That study highlighted biases in one frequently used radiative algorithm in WRF, and a 
need for adding aerosol data for its improvement.  
 
The conversion of irradiance to power depends on the particular type of hardware installed at the 
solar farm as well as local conditions. There are models, such as PVWatts (http://pvwatts.nrel.gov/) 
that can do this power conversion. In prior work with wind energy, we have found however, that 
site-specific empirical power conversion methods using machine learning methods can outperform 
models (typically power curves for wind energy) because they take into account local effects such 
as terrain blocking, impact of upstream turbines, density, etc. (Parks et al. 2011). For solar energy, 
such effects could include dust, shadowing, etc., that cannot be captured in any general model. 
Thus, as part of this project, we have developed such empirical methods to use across a broad 
range of solar technologies and geographic locations. 

http://pvwatts.nrel.gov/
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Any forecast requires state-of-the-science evaluation. Traditional metrics are commonly used for 
evaluation, such as in Marquez and Coimbra (2011). Diagnostic methods provide information that 
is user-relevant, such as metrics related to ramp variability. Such metrics may include application 
of spatial methods such as “object-based” approaches that identify and compare characteristics of 
spatial objects (Davis et al. 2009). In addition, they may identify specific events in time, such as 
changes in magnitude of insolation at a point location. They also may identify rates of change, 
such as ramp rates (e.g., Mathiesen et al. 2012), and they may consider temporal and spatial 
attributes of the forecasts (e.g., Brown et al. 2012) that are often very relevant for decision-making 
based on the forecasts. Metrics related to economic and other benefits are the most complex to 
derive, but may be the most meaningful for end users.  
 
In summary, although there have been some important recent accomplishments in predicting solar 
power, there is plenty of room for advancement. This Public-Private-Academic Partnership has 
been working to fill the gaps in the research and then use the research results to build a functioning, 
seamless SunCast™ forecasting system. 
 
 
Project Objectives: 
 
The goal of this project was to build a solar power forecasting system that advances the state-of-
the-science through cutting edge research and to test it in several high penetration solar utilities 
and ISOs with geographic and climatological diversity, using appropriate metrics, and to 
disseminate the research results widely to raise the bar on solar power forecasting technology. 
Achieving this goal has brought seminal advances in the state of cloud forecasting, and thus, solar 
irradiance and power forecasting, as well as integrating that power into the grid and assessing the 
resulting value. The project has advanced the ability to integrate solar energy into the power mix 
more efficiently, economically, and reliably. We have documented the economic savings of 
improved solar power forecasting. Thus, the results of this project stand to advance greater 
penetration of renewable energy. 
 
 
Project Results and Discussion: The SunCast Solar Forecasting System 
 
System Overview  
 
The team has demonstrated and evaluated a working SunCast™ solar power prediction system that 
includes the multiple components described herein, including WRF-Solar™, multiple models from 
national centers, TSICast, CIRACast, and MADCast, MADWRF, as well as statistical models. 
The individual components and the overall SunCast™ system have been validated using the 
metrics developed at the beginning of the project. The team has met or exceeded target values 
specified in most of the milestone tables in the statement of work to DOE. Data streams from 
various model systems have been made available to the forecasting partners, forecasts were 
regularly provided to the utility and ISO partners, and feedback from the partners were 
incorporated into the forecasting models.  
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The team employed a holistic philosophy in configuring the system, thinking of it in terms of a 
value chain (Figure 1).  A pictorial representation of how the component modules would have to 
fit into the system is shown in Figure 2, which illustrates our view of how these Nowcasting and 
NWP systems work together to produce a seamless forecast across scales. They are blended via 
complex systems engineering (Figure 3), dealing with Big Data issues (Haupt and Kosovic 2015, 
2016), including high data volume; variety of types of data, ranging from point observations 
through very large output of gridded NWP forecasts; must be dealt with in real-time arriving 
sporadically from multiple sources; highly complex; high variability; and of mixed veracity, which 
requires large amounts of quality control.  
 
Although these issues are challenging, the prospects for enhanced application are promising. As 
more solar energy is brought into the energy grid, the need for accurate forecasts grows. This 
demand for continually improving forecasts provides interesting research topics for our 
atmospheric scientists and software engineers. Here we blend a mix of physical models with 
artificial intelligence methods to blend the two in order to produce an improved forecasting system. 

 
 
 

 
Figure 1. Value chain of implementing a weather decision support system for solar power. At the bottom are the components of the 

NCAR team’s system that build toward providing an economic impact of this system. 
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The engineered SunCast™ system (Figure 3) has two main forecast tracks: a Nowcast track that 
forecasts at high temporal resolution out to 6 hours, and a DICast® track that forecasts at coarser 
temporal resolution out several days. Both of these modules apply a consensus forecasting 
approach. That is, they consider multiple inputs and perform a forecast integration that takes 
advantage of the strengths of each input. While the consensus forecasting approach has been 
applied to forecasting more common weather variables (e.g., air temperature), in the past it had 
not previously been applied to solar irradiance forecasting in any significant way. No other public 
systems use a consensus forecasting approach. In the private sector, some companies may use a 
consensus approach, while others rely on a single-source model; much of this is proprietary and 
not disseminated. Forecasts are provided every 15 min out to 72 h and can be provided as far out 
as 168 h. 
 

 
Figure 2. SunCast™ forecasting system predicts across scales. 
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Figure 3. The engineered SunCast™ system. 

 
 
Nowcast System 
 

TSICast 
 
BNL deployed 25 pyranometers in the Long Island Solar Farm (LISF) as shown in Figure 4 to 
measure the surface solar irradiance. These sensors measure the GHI in real-time. The 
measurements, which are recorded every 10 sec, are synchronized with the TSI observations. The 
variations in zenith angle and the diurnal and seasonal patterns are also recorded in the raw GHI 
measurements, and therefore bias our subsequent irradiance forecast models. To mitigate this bias, 
we normalized each radiation value to a clear-sky index Kt during model training and testing. 
Letting 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡  be the raw GHI measured at time t and 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡  be the corresponding clear-sky 
estimate, the clear-sky index Kt is calculated as follows: 

 
𝐾𝐾𝐾𝐾 =  𝐺𝐺𝐺𝐺𝐺𝐺 𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑂𝑂𝑐𝑐𝑂𝑂 𝑐𝑐𝑡𝑡 𝑡𝑡ℎ𝑐𝑐 𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐

𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐𝑡𝑡 𝑡𝑡ℎ𝑐𝑐 𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑆𝑆 𝑡𝑡ℎ𝑐𝑐 𝐴𝐴𝑡𝑡𝐴𝐴𝑇𝑇𝑂𝑂𝑇𝑇ℎ𝑐𝑐𝑐𝑐𝑐𝑐
                                                                       (1) 

 
where Kt  ranges from 0 to 1. However, its maximum value can be greater than one due to the 
cloud enhancement caused by diffuse sunlight. 
 
Among the techniques of tracking the motions of clouds, block matching and optical flow (OF) are 
applied widely to various types of imagery, including ground-based cameras and satellites. Block-
matching techniques take a collection of pixels (i.e., a block) as a tracking unit, have the ability to 
utilize information from multiple areas, and therefore are sufficiently robust to both image noise 
and brightness variations within images. If the underlying motions consist of only translational 
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velocity, and do not involve shearing and stretching, a block-matching approach can faithfully 
represent the true movements of clouds (Huang et al. 2011). Optical flow models originate in the 
field of computer vision, where motion tracking is usually resolved by estimating the pixel-wise 
distribution of prominent velocities of brightness/texture patterns on an image. In general, an OF 
method can obtain dense motion vectors at the granularity of a pixel, and was proven to be quite 
effective in detecting cloud motions in satellite images (Corpetti et al. 2008). 
 
BNL developed a new hybrid approach that integrates the block-matching (BM) method and the 
variational OF model, and uses the former method to guide/refine the latter one. This new model 
encompasses three main steps: (1) extracting a cloud mask, and generating cloud blocks via 
bottom-up merging and detecting block-wise motions; (2) identifying dominant motion patterns 
from detected motion vectors; and (3) estimating optical flow using our new formulation and 
refining based on multiple motion filters. This design recognizes that the vectors detected by the 
BM and the OF models are actually inter-dependent. For optimal results, they should be 
integrated into the same framework to ensure mutual enhancement. 
 
Furthermore, we increased the range of the state-of-the-art ground-based prediction system from the 
level of one minute to 10-15 minutes, depending on the speed at which the clouds are moving. This 
work includes three components: 1) a robust algorithm to detect the identical piece of cloud 
across different views of the TSI cameras, and recover its height information, and to track clouds 
across different time frames of the same camera and calculate its motion; 2) an intelligent cluster 
algorithm to identify different cloud layers and regimes that are based on information streams from 
multiple TSIs; and 3) a stitching algorithm to expand the field of view by concatenating multiple 
images from different cameras, and to handle the challenges of stitching images based on 
ambiguously defined features, such as cloud heights, borders, shapes, and textures. 
 

 
Figure 4. Overview of three-TSI tracking. 

 
With the development of various imaging systems and growing interests in image-based solar 
forecasts, there is an urgent need to provide reliable approaches to extract cloud information and 
to build irradiance models from sky images. BNL extracted cloud spatial-temporal information 
and investigated a series of image analysis modules for a complete forecast system, including 
image preprocessing, motion tracking, multi-camera integration, and multi-layer determination in 
various types of sky images. To improve the robustness of image-based prediction and extend the 
forecasting range, our work integrates heterogeneous image datasets and ensembles a series of 
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cloud tracking and prediction algorithms, each of which has its own strength and weakness in 
different cloud conditions and prediction periods. BNL’s most significant contributions include: 
 
1. BNL developed a cloud detection pipeline that utilizes a supervised classifier and abnormal 

image correction based on histogram equalization. This research significantly improved the 
accuracy of extracting cloud mask and attained improved performance in various cloud types, 
weather conditions, and lighting patterns. 

2. On the basis of previous work of tracking clouds in sky imagery, BNL designed a hybrid 
model of cloud motion tracking that combines block-matching and optical flow. The new 
model is able to determine local deformations of clouds, to extract cloud layers with dominant 
motion patterns, and to remove noise from the resulting motion field with customized motion 
filters. 

3. BNL designed a comprehensive framework of cloud image simulations and generated 
synthetic image sequences using motion models and Gaussian noise. The simulated image is 
used for the evaluation of motion tracking models under different simulations, e.g., with 
cloud deformation and corrupted images. 

4. BNL devised a short-term solar forecast system utilizing ground-based sky cameras. The 
system adopts multi-angle observations to undertake the task of cloud tracking based on 
spatial and temporal correlation and provides a pipeline to detect multi-layer motions via 
clustering. The robust feature extraction and irradiance models are then vetted for real 
production forecasts. Compared with single-camera models, the proposed system 
significantly enlarges the field of view, enables 3-D cloud tracking, and obtains more 
accurate forecasts.  

 
Compared with single-camera models, TSICast significantly enlarges the field of view, enables 3-D 
cloud tracking, and obtains more accurate forecasts. As is shown in Figure 5, TSICast improves on 
GHI persistence forecasts2 by an average of 25-30% in the 5-15 minute range, and by 30-40% in 
the 1-5 minute range, in testing performed for the network of 25 pyranometers at BNL. 
 

 
Figure 5. Improvements in the MAE ratio achieved by the non-linear SVRrbf model in comparison with the GHI persistent model on 
all available data. The Min/Max bounds represent the range of the percent improvement values for all 25 stations.  

                                                 
2 This is the only use of straight GHI persistence as a baseline for comparison in this document. This is appropriate 
for the very short timeframe represented in the TSICast forecast. All other short-range comparisons are to Smart 
Persistence, defined on p. 14. 
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Statistical Characterization and StatCast 
 
University of Washington studied statistical variability for different cloud properties as observed 
by satellite data. To be useful predictors of solar irradiance variability, the cloud properties not 
only need to be independent of each other but also correlated with the variations. In Figure 6 we 
plot the 95th percentile points for the populations of 1-minute averaged total hemispherical 
irradiances falling in a given cloud height, fraction, or optical depth bin. As seen earlier, cloud 
optical depth, which directly determines transmittance, has a clear, though not one-to-one, 
relationship with variability. Surprisingly, cloud fraction does not. We would expect broken clouds 
to lead to higher variability, but cloud fraction depends only on the total cloud amount, not 
brokenness. Another measure of brokenness should probably be sought. The surprising result of 
this analysis is that cloud top height exhibits a nearly linear relationship to the 95th percentile of 
an irradiance distribution function, indicating that it would be a good criterion from which to 
estimate irradiance variability. 
 
NCAR has developed, built, and tested several versions of Statcast. StatCast forecasts the clearness 
index, Kt, as defined in Eq. (1) above. The inclusion of regime dependence was inspired by initial 
experiments with data that divided a time series into clear, cloudy, and partly cloudy days. 
 
The four current versions of StatCast include: 

1. StatCast-Persistence (Kt-persistence) –The model assumes that Kt persists from the 
previous time step. This results in a model that recognizes the changes in solar angle, but 
assumes persistence of atmospheric constituents and clouds. This is sometimes called 
“smart persistence” and is used in much of the rest of the assessment as a baseline. 

2. StatCast-Cubist – This version of StatCast uses the Cubist model regression tree to train 
on historical data, then predicts in real-time. Compared to StatCast-Persistence, StatCast-
Cubist yielded improvements of generally 35-50% in terms of MAPE at all lead times on 
clear days, and 10-50% on cloudy days, with improvements getting larger with increasing 
lead time, as compared to Smart Persistence. 

3. Regime-Dependent StatCast (RD-ANN-KtCC) – RD-StatCast uses a k-means clustering 
method to separate instances into cloud regimes, then applies an artificial neural network 
(ANN) to each regime separately. StatCast-RD frequently improve upon StatCast-
Persistence by generally 15-25% for lead times of 1-3 hours. 

4. Regime-Dependent StatCast incorporating Satellite Data (RD-ANN-GKtCC) – Based on 
the third version, this most advanced version of StatCast also includes data from the GOES-
East satellite to determine cloud state. This version generally performs better than version 
3 if there are sufficient data. If not, this method tends to overfit the data. 

 
Results of the methods are compared in Figure 7 for all forecast lead times at the Sacramento 
Municipal Utility District (SMUD) sites. As expected, the forecast error increases as the forecast 
lead time increases. The only method that generally performs worse than clearness index 
persistence is the RD-ANN-GCT method that uses the GOES-East derived cloud types as the 
regime classification method. At the 15-min lead time, the RD-ANN-KtCC, RD-ANN-GKtCC, 
ANN-ALL, and clearness index persistence all show similar errors. However, at the 60-min and 
longer lead times, the RD-ANN-KtCC, RD-ANN-GKtCC, and ANN-ALL all show improvement 
over the clearness index persistence, as shown by the larger MAE of the clearness index forecasts.  
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Figure 6. 95th percentile points in 1-min average transmittance difference distributions as a function of location and cloud optical 
depth (top), fraction (middle), and height (bottom). Plots in the left (right) column include only times of day with solar zenith angles 
(angle between the sun and the vertical) less than 45° (60°). The colors refer to specific SURFRAD (SURface RADiation) network sites 
for which they were compared. Sites include Bondville, IL (BND), Desert Rock, NV (DRA), Fort Peck, MT (FPK), Goodwin Creek, MS 
(GCM), Penn State Univ, PA (PSU), Sioux Falls, SD (SXF), and Table Mountain, CO (TBL) 
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Figure 7. MAE as a function of lead time for all methods of the satellite determined cloudy instances for the SMUD sites. The 

method that performs best in the majority of the forecast lead-times is the RD-ANN-GKtCC method. 
 
 
The method that generally performs best is RD-ANN-GKtCC method, which exploits the GOES-
East data in both the k-means clustering and ANN. This work is reported in more detail in 
McCandless et al. (2015, 2016a,b). 
 

CIRACast 
 
Additionally, elements of the CIRACast algorithm were adapted to other components of the 
blended forecast algorithm. These components, which serve as deliverables for the project, include 
the adaptation of the shadow-casting and parallax correction components of the satellite algorithm, 
which, respectively, compute and correct for the location of cloud shadows derived from retrieved 
cloud-top properties and solar geometry, and the satellite geometry of observation. These two 
components were provided as source code to the WRF-Solar™ team and integrated successfully 
into that component’s forecast ability. Additionally, CIRACast was adapted to work within the 
larger DICast® forecasting system, making the algorithm more readily ingestible by various 
forecast sources. Graphing and imagery code to aid in the analysis of satellite-derived forecasts 
were also developed during the course of the project.  
 
To further improve accuracy, work was begun on a blended forecast wind guidance, utilizing 
cloud-motion vector (CMV) winds in concert with NWP guidance to identify stationary cloud 
features. As CMV wind products are designed to identify significant wind features, it was found 
late in the project that stationary cloud features were often filtered out from the CMV analysis, 
complicating the ability to identify and utilize CMV-derived wind fields using off-the-shelf CMV 
analyses. Continued work on identification and quantification of near-stationary wind vectors 
using satellite observations, to be used in concert with NWP guidance to improve cloud advection, 
will continue outside of the scope of this project.  
 
As seen in Figure 8, relative MAE values of GHI forecasts computed for the Desert Rock, NV 
SURFRAD site was 9.6% (beating the project target error rate of 10% for “simple” sites), and 
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21.8% for Table Mountain, CO (not shown - nearly achieving the project target error rate of 20% 
for “complex” sites). 

 
Figure 8. Scatter plot of forecasted GHI vs. observed GHI for the Desert Rock, NV, SURFRAD site. Forecasts are for the period 

between January and December 2014. Relative MAE for the period is 9.6%. 
 
 

MADCast 
 
The Multisensor Advection-Diffusion NowCast (MADCast) is a new model designed for the 
analysis and short-term forecasting of clouds (Auligné 2014a,b; Descombes et al. 2014). The 
following description is inspired by Descombes et al. (2014), where the interested reader is referred 
to for further technical details of MADCast. 
 
The cloud analysis is based on retrievals of multiple infrared (IR) sensors using the multivariate 
minimum residual (MMR) scheme (Auligné 2014a,b). MMR has been implemented in the 
Gridpoint Statistical Interpolation system (GSI; Kleist et al., 2009). GSI provides three-
dimensional cloud fields that are subsequently advected and diffused by a modified version of the 
Weather Research and Forecasting model (WRF; Skamarock et al. 2008). Finally, the predicted 
cloud field is used to diagnose the surface irradiances completing the short-term forecast. 
 
The fundamental piece of the cloud retrieval process is the MMR scheme (Auligné 2014a,b). The 
MMR scheme has been implemented in the GSI data assimilation system. GSI produces the cloud 
analysis consisting in a three-dimensional cloud fraction. This cloud fraction retrieval is performed 
following these steps:  

• Calculate infrared radiance using WRF and the Community Radiative Transfer Model 
(CRTM; Han et al. 2006) under the clear sky hypothesis. 

• Compute the departures between the satellite radiances and WRF for multiple channels 
sensitive to different altitudes in the atmosphere. 
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• Apply the MMR scheme to the departures to solve a variational problem (similar to a 1D-
Var approach) in order to retrieve a cloud fraction profile from the satellite fields of view. 

• Interpolate the cloud fraction profiles from the satellite fields-of-view to the model grid 
points. Specific procedures are used to optimally combine the information of sounders and 
imagers in order to exploit their different horizontal and vertical resolutions.  

The cloud retrieval has been implemented successfully for a number of IR instruments on board 
of polar-orbiting and geostationary platforms. These instruments include AIRS, IASI, CrIS, 
MODIS, GOES-Imager, GOES-Sounder, FY-2D VISSR, Himawari-7 MTSAT-2, METEOSAT-
10 SEVIRI. The AIRS, IASI and CrIS radiances are available from the National Centers for 
Environmental Prediction (NCEP). 
 
The last step in the MADCast forecast is to combine the clear sky irradiances and the three-
dimensional cloud fraction from WRF into surface irradiances valid for all sky conditions. This 
requires some assumptions about how the clouds attenuate the shortwave radiation. In principle, 
clouds at different heights may have different hydrometeors and can lead to different cloud 
extinction properties. This makes estimation of the cloud extinction properties to be a challenge. 
 
 

WRF-Solar-Now 

The WRF-Solar™-Now quasi-operational forecast started in September 2014. The model provides 
a 6-hour forecast over CONUS with a 9-km horizontal grid spacing. The model is run every hour 
using forecast data from the NOAA (National Oceanic and Atmospheric Administration) Rapid 
Refresh (RAP) model (Weygandt et al. 2011) to create the initial and boundary conditions. The 
model is initialized with the 3-hour forecast from RAP, which allows us to have the forecast 
available around 40 min before the initial time of the simulation (equivalent to 40-min negative 
latency). The output is recorded every 15 min and it is an input to the nowcasting integrator. 
 
WRF-Solar™-Now uses the solar augmentations that were available at the beginning of the quasi-
operational forecasts. These include an improved solar tracking algorithm, output direct and 
diffuse components, and time series every model time step at sites with surface irradiance available 
for evaluation of the model performance. The aerosols are represented using a monthly 
climatology and thus avoiding the increase in the computational cost associated with the advection 
of aerosols. An important WRF-Solar™ augmentation for nowcasting needs, the feedback of 
unresolved clouds, was not available at the beginning of the quasi-operational period and thus was 
not activated. 
 
Data from the quasi-operational forecast was used to investigate the added value of MADCast with 
respect to the WRF-Solar™-Now system. The RMSE as a function of the lead time calculated with 
the four months of quasi-operational runs from December 2014 to March 2015 for the GHI from 
MADCast and WRF-Solar™-Now are shown in Figure 9. Results summarize statistics over 
fourteen sites over the contiguous U.S. (7 SURFRAD sites and 7 Integrated Surface Irradiance 
Study [ISIS] sites). MADCast RMSE shows a steady increase as a function of the lead time. On 
the contrary, the RMSE of WRF-Solar™ shows larger values at the beginning of the forecast with 
near steady values after 1 h 30 min. At 1 h 30 min both models show similar RMSE. This indicates 
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that, on average, MADCast forecast is superior to WRF-Solar-Nowcast during the first hour and a 
half.  

 
Figure 9. MADCast (green) and WRF-Solar™ Nowcasting (red) RMSE of the GHI as a function of the lead time. 

 
 
The added value of MADCast in the short-term forecast Figure 9 indicates the potential of the 
model for nowcasting applications. 
 
 

MAD-WRF 
 
The two nowcasting systems, MADCast and WRF-Solar-Nowcasting, have been coupled to form 
MAD-WRF in order to exploit desirable and compatible characteristics of each system. MADCast 
assimilates infrared irradiances from different satellite platforms to infer the presence of clouds. 
The assimilated cloud fraction is subsequently advected and diffused, with simplified model 
physics, in order to provide the cloud forecasts. Once the forecast is completed, assumptions are 
made on how the clouds attenuate the clear sky radiation in order to obtain the irradiance forecasts. 
WRF-Solar™ does not assimilate clouds, but has better physical packages to represent 
microphysics and the interaction of clouds with radiation. The coupled system therefore takes 
advantage of the data assimilation from MADCast and the better physics of WRF-Solar™. 
 
There are three fundamental aspects that need to be considered to couple the models: 
• First, the definition of the cloud fraction from MADCast is different than the WRF-Solar™ 

definition, which is the conventional definition for any NWP model. In MADCast, the cloud 
fraction of each grid volume represents the contribution to the 2-D cloud fraction (vertically 
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integrated) that do not overlap with other grid volumes in the same vertical column. On the 
contrary, the cloud fraction in NWP models is defined as the fraction of a given grid volume 
that has clouds. In order to use the assimilated cloud fraction in the coupled system (MAD-
WRF), the MADCast cloud fraction needs to be converted to the NWP definition. 

• Second, MADCast provides no information about the cloud water and ice mixing ratios that 
need to be specified in order to compute the shortwave radiative transfer.  

• The third aspect is to consolidate the two sets of cloud fractions and cloud mixing ratios from 
MADCast and WRF-Solar-Nowcasting in order to provide one single set to the shortwave 
radiation package. This consolidation should take into account the better performance of 
MADCast during the beginning of the forecasts. Having consistent cloud fractions and mixing 
ratios and a strategy to consolidate the two sets are the fundamental components of the coupled 
MAD-WRF nowcasting system.  

The cloud fraction from MADCast is converted to the NWP definition, assuming that the clouds 
are homogeneous. The first step is to calculate the 2-D cloud fraction from MADCast. This is 
straightforward given the MADCast definition. One just needs to add the cloud fractions of a given 
vertical column and repeat the process for each column. Assuming that the clouds are 
homogeneous implies that the 2-D cloud fraction is the cloud fraction of each grid volume that has 
clouds. In order to suppress the tendency of MADCast to produce clouds that reach the ground, a 
threshold has been imposed to classify the grid volumes into clear and cloudy. Figure 10 shows a 
conceptual diagram to illustrate this process. 
 
The cloud and ice mixing ratios were specified with the assumption that the clouds are warm and 
homogeneous. Hence, we neglect the contribution of ice in the shortwave radiative transfer and 
impose the same cloud water mixing ratio for all the grid volumes identified as cloudy. 
 
The two sets of cloud fractions and cloud mixing ratios were merged based on our experience with 
the quasi-operational runs performed with MADCast and WRF-Solar-Nowcasting. The analysis 
of four months of forecasts, from December 2014 to March 2015, indicates that MADCast is, on 
the mean, superior to WRF-Solar-Nowcasting during the first 1.5 h of the simulation). After that 
point WRF-Solar-Nowcasting is usually superior to MADCast. Based on these empirical results, 
the cloud fraction and mixing ratios from MADCast are imposed during 0-1 h; the two sets are 
averaged from 1-1.5 h, and the set from WRF-Solar-Nowcasting is imposed after 1.5 h. 
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Figure 10. Conceptual diagram showing the cloud fraction from MADCast (black line) and its conversion to the NWP cloud fraction 

(gray rectangle). The threshold in the cloud fraction is also shown (gray dashed line). 
 
 

Case Study Comparison 
 
To better understand the performance of the various SunCast™ components in specific situations, 
a series of inter-comparison case studies was undertaken by NCAR. Four case days were chosen 
for the region near Sacramento, California. These four case days represent canonical cloud cover 
regimes of the region, and thus test forecast systems that predict GHI. Fifteen-minute average GHI 
predictions were compared against observations from seven pyranometers owned and operated by 
the SMUD. Results indicate that each forecast system has its own strengths and weaknesses in the 
various regimes, times of day, and forecast lead times. The specific components of SunCast™ that 
were used in the case studies were StatCast-Cubist, CIRACast, MADCast, and four configurations 
of WRF-Solar Nowcasting.  Results are shown in the accompanying NCAR Technical Note. 
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WRF-Solar™ 
 
The primary enhancements that set WRF-Solar™ apart from the standard WRF NWP model 
include improved representation of the aerosol-radiation feedback, incorporation of cloud-aerosol 
interactions, and improved representation of cloud-radiation feedbacks, in addition to improving 
the handling of the solar position/equation of time calculation and making all three irradiance 
components (GHI, DNI, DIF) available for output every model time step as desired. These 
improvements have led to greatly reduced errors in GHI predictions. Figure 11 highlights this well 
for all the SURFRAD sites, where, for clear skies, errors in GHI predictions from WRF-Solar™ 
improved upon standard WRF by a remarkable 40-60%. 
 

 
Figure 11. Improvements introduced by WRF-Solar™ (experiment GEOS5-AOD) in the estimations of the clear-sky surface irradiance 
components at the SURFRAD sites. The standard WRF simulations are used as a baseline for comparison. Stations are as defined in 

the caption to Figure 6. 
 
 
System Engineering 
 
The overarching concept for the SunCast™ system is to blend various forecasting models to 
provide a best consensus-based forecast over all timeframes. Using multiple models is an 
important part of this concept and is a “best practices” approach to modern meteorological 
prediction. Figure 3 displays the engineered system that blends Nowcast components as well as 
NWP via DICast®. The Nowcast blender takes uses statistics from historical operation of the 
components and trains weights in a nowcasting expert system integrator. The DICast® system 
used in SunCast™ combines forecasts from multiple numerical weather prediction (NWP) models 
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in an optimal way to produce tuned irradiance forecasts at specific locations and forecast 
projections. The system uses a history of observations and model runs to determine the 
performance of each model, then weighs each model based on its relative performance. The 
resultant integrated forecast produces lower error characteristics than if one used the best-
performing individual model over the time period. These two systems are then blended, 
interpolating hours 3-6 linearly, then we use an empirical power conversion method to convert the 
irradiance predictions to power, and finally apply an analog ensemble (AnEn) approach to further 
tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE by 17% 
over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a 
Brier Skill Score of 0.55 (see assessment below). In addition, we have also developed a Gridded 
Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. 
 
 
SunCast™ Assessment 
 
A full assessment of SunCast™ is presented in the accompanying NCAR Technical Note. Here 
we focus on the metrics specific to Budget Period 4. 
 
Several baselines are available for this evaluation, including persistence with knowledge of sky 
condition for NowCast components (Smart Persistence) and publically available numerical 
weather prediction (NWP) models for both the NowCast and DICast® components.  Table 9 
provides details describing the baselines. 
 
As shown in Table 1, the publically available NWP baselines that were evaluated included the 
North American Mesoscale model (NAM), the Global Forecast System (GFS), the Global 
Environment Multiscale Model (GEM), and the High Resolution Rapid Refresh (HRRR).  The 
HRRR is run at two locations:  NOAA’s National Centers for Environmental Predication 
(NCEP) and NOAA’s Earth System Research Laboratory’s Global Systems Division (GSD).  
The HRRR run at NCEP is the publically available operational model and is based on 
WRFv3.5.1 (similar to WRF-std baseline).  The HRRR run at GSD is the development version in 
preparation for transition to operations in the next few months and includes many of the 
advancements in the WRF-Solar™ package as well as other developments.   
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Table 1.  Characteristics of baselines for metrics evaluation. 
Baseline Abbrev-

iation 
Comparison 
with: 

Fcst 
available 

Comments 

Smart Persistence 
based on initial 
StatCast 

SmartP NowCast 0-6 hr with 15 
min 
increment 

Requires past irradiance obs; when not 
available, constant clearness index of 0.6 
used in lieu of obs. See NowCast section 
for complete description. 

Standard Version 
of WRF 

WRF-std NowCast and 
DICast 

0-48 hr WRF version 3.5.1 with WRF solar 
development removed 

Power Obs Obs Power 
Conversion 

0-72 hr Observations from partner locations 

Publically 
available NWP 

NAM NowCast and 
DICast 

0-72 hr North American Model - Available via 
NOAA/NCEP - 12 km -– hourly 

GFS DICast 0-72 hr Global Forecast System - Available via 
NOAA/NCEP - 0.25 deg (~30 km) – 3 
hourly 

GEM DICast 0-72 hr Global Environmental Multiscale Model 
- Available via Environment Canada – 
25km – 3 hourly 

HRRR NowCast 0-15hr High Resolution Rapid Refresh - 
Available via NOAA/NCEP –  
3 km -– hourly 

HRRRx NowCast 0-15hr High Resolution Rapid Refresh 
development model (NCEP refers to is 
as HRRRx) Available via NOAA/GSD – 
includes WRF-Solar improvements – 3 
km - hourly 

 
One purpose of exploring multiple nowcast components is that each one is potentially skillful for 
a different forecast horizon (lead time) and sky condition.  Understanding the strengths and 
weaknesses of each system can lead to development of an expertly blended system.  Figure 12 
provides a synopsis of skill based on Mean Absolute Error (MAE) for many of the Nowcast 
components (except TSICast) during BP3 and BP4, stratified by sky condition.  Sky condition was 
determined using the cloudiness index derived by StatCast Smart Persistence using the Clearness 
Index parameter.  Cloudiness index >=0.6 was considered clear skies; values <= 0.2 were 
considered cloudy and everything in between was identified as partly cloudy.  In Figure 12, the 
MAEs for clear sky conditions are generally smaller than those for cloudy and partly cloudy skies.  
The skill of smart persistence in all sky conditions is slightly smaller in BP4 versus BP3, very 
likely because the forecast conditions during an El Nino year can be more challenging to predict.  
Results depicted in Figure 12 are summarized in Table 2.  In general, all components have larger 
improvements over smart persistence for clear conditions than for cloudy conditions.  TSICast and 
MADCast showed positive improvements between BP3 and BP4 while StatCast and CIRACast 
showed less skill and WRF-Solar-Now showed no improvement between BP3 and BP4.  The 
comparison between budget periods was performed during the winter months; Figure 13 provides 
a more complete picture of seasonal performance for partly cloudy conditions for one of the 
partners, SMUD.  For these data, MAE tends to be smaller during summer months. 
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Figure 12. Median MAE for NowCast components stratified by sky condition.  Scores for BP3 are denoted by a solid line and 2015 
label in legend, and are aggregated over Jan, Feb and Mar 2015. Scores for BP4 are denoted by the dashed lines and 2016 labeled 

in the legend. 
 
Table 2. Median MAE improvement in percent of NowCast components versus smart persistence for Clear and Partly Cloudy/Cloudy 

sky (Cldy) conditions stratified by budget period.  Percent change between BP3 and BP4 is also identified. 

 BP3 BP4 % Change 
Component Clear Cldy All Clear Cldy All Clear Cldy All 
StatCast 46.2 61.9 55.1 38.5 37.4 37.1 -16.6 -39.4 -20.9 
TSICast* - - 29.0 - - 34.0 - -  17.0 
CIRACast 62.1 16.5 45.9 66.0 12.8 36.3    6.2 -21.9   -8.3 
MADCast 60.9 40.1 48.9 58.9 43.8 50.3   -3.2    9.3    2.8 
WRFSolarNow 73.7 40.7 55.9 71.4 42.4 55.6   -3.1  4.19   -0.5 

* TSICast was a higher frequency forecast that did not contribute directly to the NowCast blended system.  It was 
evaluated separately and hence only evaluated for all sky conditions. 
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Figure 13. Median MAE for SMUD stratified by month. 

 
 
TSICast provides one-minute forecasts out to 12-15 minutes depending on the weather conditions.  
The MAE values for TSICast provided in Table 3 indicate the largest errors are for the 14-minute 
forecasts, with an MAE of 64.1 W/m2.The forecasts were evaluated using the Verification library 
within the R statistics package.  The Bias, RMSE, and Skewness listed in Table 3 represent the 
first, second and third moments of the error distribution.  The inner-quartile range (IQR) represents 
the distance between the 25th and 75th percentile of the distribution. The MAE at 15 minutes from 
the NowCast system for Smart Persistence was 97.3 W/m2. Using this value as the baseline, the 
percent improvement of TSICast over Smart Persistence is 34%. 
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Table 3. Scores for TSICast error distribution including, Bias (or Mean Error), Mean Absolute Error, Root Mean Square Error, Inner 
Quartile Range, Maximum Value, Minimum Value, and Skewness. Units for all scores are W/m2. 

Lead Min. Bias MAE RMSE IQR Max Min Skewness 
0 -7.4 35.8 94.3 10.38 1042.8 -1636.4 -0.41 
2 -6.6 43.0 104.2 18.4 1064.6 -2170 -0.23 
4 -6.1 48.4 111.0 26.8 1073.5 -1639.68 -0.14 
6 -7.7 52.6 116.0 34.3 1105.5 -2192 -0.25 
8 -8.9 57.2 121.1 41.4 1113.5 -1662.97 -0.18 
10 -9.3 60.8 125.2 48.3 1147.7 -1636.4 -0.21 
12 -9.0 63.0 126.7 54 1132.8 -2170 -0.20 
14 -8.8 64.1 124.8 61.2 1134.9 -1639.68 -0.28 

 
 
WRF-Solar™ configurations for both the Nowcasting system, extending out to 6 hours and the 
day-ahead system, extending from 6-48 hours, were evaluated and compared with several state-
of-the-science models. The publicly available NWP baselines that were evaluated included the 
North American Mesoscale model (NAM), the Global Forecast System (GFS), the Global 
Environment Multiscale Model (GEM), and the High Resolution Rapid Refresh (HRRR). During 
BP3 and BP4, median percent improvement by WRF-Solar™ over HRRR during the first 15 hours 
of the forecasts for cloudy and partly cloudy conditions were 7.9 and 8.8% respectively, which 
represents an 11% improvement from BP3 to BP4.  For longer forecast leads, the comparison must 
be made using NAM as the baseline because HRRR does not extend this far out.  Scores were  
-2.7% and -0.3% improvement respectively for BP3 and BP4.  While these scores are fairly similar, 
the improvement between budget periods reflects an 89% improvement (i.e., a decrease in negative 
skill) during BP4, which was shown to be statistically significant. 
 
For the power conversion module, test values for five farms range from MAE values of 1.3 to 4.4 
normalized to capacity (also known as MAPE) were reported with a median value of 2.1%.  During 
BP3, median MAPE was 2.9% of capacity for three farms.  This represents a 27% improvement 
in power conversion from BP3 to BP4. These comparisons are discussed in more detail in the 
accompanying NCAR Technical Note (Haupt et al. 2016). 
 
The Analog Ensemble (AnEn) showed promising results for providing an ensemble mean forecast 
and uncertainty quantification for GHI forecasts.  During BP4, the technique was also applied to 
power forecasts for SMUD locations.  In Figure 14, the RMSE of the AnEn mean and SunCast™ 
versus power measurements are plotted versus the 0-72 h forecast lead for an example application. 
Overall AnEn provides Substantial improvement to the deterministic forecast as measured by 
RMSE, MAE and Bias. Improvements in power forecasts are similar to those reported for GHI 
forecasts with a median improvement of 17% in RMSE. Probabilistic forecasts were also 
computed for 10, 25, 50, 75 and 90% exceedance of power capacity. Results using other 
probability measures such as Brier Scores and Probability Interval Evaluation are presented in the 
SunCast Technical Note (Haupt et al. 2016).  The specific questions and examples of usage of the 
measures are defined in the Metrics Technical Note (Jensen et al., 2016) published as part of this 
project as well.  The Probability Interval Evaluation is a new metric developed for this project and 
establishes the frequency with which the observations fall within a user-specified probability 
interval (e.g. the likelihood that the power or GHI will fall within an 80% window).  The Brier 
score evaluates how accurate the probability forecast is through the computation of the mean-
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square error.  Lower Brier scores indicate better performance.  Figure 15 shows the performance 
in terms of Brier Score of AnEn (black) and SunCast™ (red) for the computed thresholds. It 
indicates a marked improvement (lower values for AnEn in black) in Brier Score for probabilities 
of an exceedance of 50% of capacity. The computed Brier Skill score across all lead times is 0.55.  
 

 
Figure 14. RMSE (solid), MAE (dashed), and bias (dotted) for AnEn Mean (black) and SunCast™ (red) systems. 

 

 
Figure 15. Brier Score of AnEn Mean (black) and SunCast™ (red) systems for probability of exceeding 10% (solid), 25% (dashed), 50% 

(dotted), 75% (dash-dot) and 90% (long dash) of capacity for a plant. 
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The previous analysis is only a fraction of what has been presented in the technical report (Haupt 
et al. 2016) and is provided to support the measured values and findings in the Milestone Table 
4.1 in the BP4 SOPO.  Table 4 replicates this table and summarizes the findings.  Several goals in 
Milestone 4.1 were not met, including 4.1.1 (StatCast improvement), 4.1.3a (CIRACast 
improvement), 4.1.3b (MADCast improvement), and 4.1.3c (WRF-Solar-Now improvement).  
Several factors could be the cause of lack of improvements, including that the project may have 
reached the limits of predictability (less likely), the weather scenario became more challenging 
between BP3 and BP4 (highly likely), and that it is difficult to improve when the project is required 
to stop work due to contracting issues during budget period reviews. The larger errors for Smart 
Persistence during February and March 2016 over those same months in 2015, shown in Figure 
13, suggest that the lack of improvement in BP4 of all four cloud-based components may be caused 
by less predictable weather, and hence cloud regimes due to the influence of El Nino. Additionally, 
while components like StatCast were enhanced with what was believed to be improvements to the 
algorithms during BP4 (the regime dependent versions of StatCast), there was little time to test in 
a deployment for an entire 15 months and assess if improvements indeed added value.  We hope 
to complete these comparisons as part of future projects. 
 
The milestones for task 4.2 included comparing the cutting edge WRF-Solar™ and blended 
SunCast™ system to currently available NWP.  The comparison requires computing improvement 
from BP3 to BP4 and requires a full year of forecasts for the comparison. A truly clean comparison 
is difficult to achieve because the evaluation of BP3 covered Jan-May 2015 and this project ends 
prior to May 2016.  To minimize the overlap, the 1 year period of comparison for BP4 consisted 
of April 2015 to March 2016.  Improvements in MAE and RMSE for hourly forecasts of WRF-
Solar™-Now, WRF-Solar™, and SunCast™ were computed using the NAM as the baseline, as it 
was the one with the lowest MAE and RMSE for all sky conditions over all initializations and 
geographic regions.  Results are reported in Table 5 and show that while there was no improvement 
in scores between BP3 and BP4, the blended SunCast™ forecast outperformed NAM by as much 
as 17.5% in MAE and 15% in RMSE.  Values from Table 5 are then used to support the measured 
values and finding in Milestone Table 4.4 in the BP4 SOPO.  Table 6 replicates this table and 
summarizes the finds. Table 7 presents the summary metrics. 
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Table 4.  Summary of Milestones, Metrics and Success Values for BP4 Task 4.1. 

 
 
 

Milest
one Metric Success Value 

Mea-
sured 
Value 

Assessment 
Tool 

Goal 
Met? 

Supportin
g Data (pg. 
#) 

4.1.1 

Improvement in a 
statistical model for 
short term solar power 
forecasting (StatCast) at 
SMUD sites. 

Reduce MAE achieved 
in BP3 by at least 10% 
for cloudy conditions 
 

 
-39% 

% improvement 
over smart 
persistence 
 
 

No Table 5.2.2 

4.1.2 

Assessment of 
advective cloud 
variability based on TSI 
and other optical 
imaging  (TSICast) 

Reduce MAE achieved 
in BP3 by at least 10% 
 

 
 
 
17% 

% improvement 
over smart 
persistence 

 
 
Yes 

Table 5.2.4 

4.1.3a 

Demonstrate satellite-
based prediction and 
assimilation of satellite 
data  (CIRACast) 

 Reduce MAE achieved 
in BP3 by at least 10% 
 

 
 
-8.3% 

% improvement 
over smart 
persistence 

 
 
No 

 
 
Table 5.2.2 

4.1.3.b 

Evaluate the short range 
rapid-update WRF solar 
forecasting system  
(MADCast) 

 Reduce MAE achieved 
in BP3 by at least 10% 

 
 
2.8% 

% improvement 
over smart 
persistence 

 
 
No 

 
 
Table 5.2.2 

4.1.3.c 

Evaluate the nowcast 
configuration of the 
WRF solar forecasting 
system (WRF-
Solar™Now) 

Reduce MAE achieved 
in BP3 by at least 10% 

 
 
-0.5% 

% improvement 
over smart 
persistence 

 
 
No 

 
Table 5.2.2 

4.1.4 

Demonstrate 
improvement in WRF-
Solar™ irradiance 
prediction  

 
Document improvement 
for cloudy conditions 
due to new shallow 
convection scheme. 

11% with 
HRRR 
base-line 
 
89% with 
NAM 
base-line 

WRF-standard 
(HRRR where 
forecasts 
available, then 
NAM) 

Yes 
 
 
 
 
 
 
Yes 

Previous 
Paragraph 
 
 
 
 
 
Previous 
Paragraph 

4.1.5 

Evaluate performance 
of final empirical power 
conversion using more 
complete data sets  for 
6 month period 

Reduce MAE achieved 
in BP3 by at least 10% 

 
 
 
27% 

Within x% 
MAE of 
observed power 

 
 
 
Yes 

Previous 
paragraphs 
and Table 
41 in 
Section 4 

4.1.6 

Assess AnEn results in 
real-time system 
operations  for power 
forecasts 

RMSE >= DICast Value 
 
Brier Skill Score to 
evaluate probabilistic 
predictions  of AnEn 
computed with power 
converted DICAST 
system as reference > 
0.10 

 
17% de-
crease 
 
 
 
 
0.55 

AnEn provides 
a new 
capability, i.e., 
uncertainty 
quantification 
(i.e., resolution 
and reliability 
of probabilistic 
predictions 

 
Yes 
 
 
 
 
 
Yes 

 
Figure 
5.2.3 
 
 
 
 
 
Figure 
5.2.4 
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Table 5. Median MAE and RMSE improvement (%) of WRFSolar, WRFSolarNow and SunCast™ blended system versus the best 

performing publically available model, NAM, for all sky conditions and stratified by budget period.  Percent change between BP3 
and BP4 is also identified. 

 BP3 BP4 % Change 
Component MAE RMSE MAE RMSE MAE RMSE 
WRF-Solar™-Now -14.7 -10.5 -31.3 -25.6 -112.6 -142.5 
WRF-Solar™ -2.4 -8.8 -4.0 -4.0 -64.2 54.8 
SunCast™ 17.5 15.0 12.3 11.4 -29.6 -24.0 

 
 

Table 6. Summary of Milestones, Metrics and Success Values for BP4 Task 4.2. 

 
 
  

Mile-
stone Metric Definition Success Value Measured 

Value Assessment Tool Goal 
Met? 

Supportin
g Data 
(pg. #) 

4.2.2 

Compare WRF-Solar™ 
results in target regions 
to publically available 
models for 1 year 
period 

Reduce MAE 
achieved in BP3 
by at least 20% 

 
 
-112.5% 
 
 
 

% improvement 
over NAM  
 
The target values 
will be tested at 
multiple locations 
with very diverse 
weather conditions 

 
 
 
 
No 

 
 
 
 
Table 
5.2.6 

4.2.2.b 

Compare WRF-
Solar™-Now results in 
target regions to 
publically available 
models  

Reduce by at 
least 10%, the 
MAE at multiple 
initialization 
times over BP3. 
 

-64.2% 
 

% 
improvement over 
best single state of 
the art NWP model 
that has the lowest 
MAE 

 
 
 
No 

Table 
5.2.6 

4.2.3.b 
Assess quality of 
blended forecasts for 1 
year period. 

Reduce RMSE 
achieved in BP3 
by at least 10% 

 
-24.0% 

% improvement 
over best single 
model 

 
 
No 

 
Table 
5.2.6 
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Table 7. Summary of Milestones, Metrics and Success Values for BP4 Task 4.3. 

 
 
Economic Valuation 
 
A full report of the economic valuation is provided in the NCAR Technical Note (Haupt et al. 
2016). The economic evaluation based on Production Cost Modeling in the Public Service 
Company of Colorado (PSCo) showed that the observed 50% improvement in forecast accuracy 
(beginning at 20% error and declining to 10% error, as was observed for the Xcel Energy forecasts) 
will save their customers $819,200 with the projected MW deployment for 2024.  
 
While the PSCo analysis is unique in that each utility is unique, we use the results from this 
analysis to suggest aggregate national values for solar power forecast error reduction. The Energy 
Information Administration (EIA) projects increased solar energy generation growing at 6.8% 
annually from 2013 to 2020 (Energy Information Administration, 2015; Table A.16). By 2040 

Mile-
stone Metric Definition Success Value Measured 

Value Assessment Tool Goal 
Met? 

Supporting 
Data (pg. #) 

4.3.0 

Improvement as 
specified in the 
target values for all 
the metrics 
determined in BP1-
Activity A 

As specified in 
Task 1.1 – BP1 

Yes Section 5.2 of Tech 
Report 

Yes 
 

Target 
values set by 
DOE 
significantly 
greater than 
those set in 
Task 1.1 
BP1 

4.3.1 Complete and 
summarize results 25 metrics 

At least 25 
metrics used 
between this 
report and 
the Tech 
Report 

Provide assessment of 
at least 90% of the 
metrics 

Yes 
 

Section 5.2 
of Tech 
Report 
Section 5.2 
of Tech 
Report 

4.3.2 

Evaluate decision 
makers’ use of base 
and new forecast 
information in 
realistic decision-
making situations 

4 users 

Confirmed 
with Xcel, 
MDA, 
GWC, 
SMUD are 
using. Some 
others have 
worked on it 
less. 

Determine that at least 
4 users are making use 
of forecasts, document 
the exact nature of the 
use of the forecasts, 
and provide a clear list, 
description, and 
quantitative case study 
analysis of the 
decisions that are 
being taken /modified 
by each user as a result 
of using these 
forecasts. 

Yes Chapter 6 of 
Tech Report. 

4.3.3 

Determine economic 
assessments value of 
the solar power 
forecasting system 
to the  utilities and 
ISOs 

$$ saved by 
applying 
forecasts 

 
$470Million 
by 2040 
with 50% 
reduction in 
MAE 

Production cost 
modeling 

Yes Table 5.3 
and Section 
5.3 of Tech 
Report 
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solar energy (measured as net summer generation) is projected to be 110.1 billion kilowatt hours 
(up from 18.5B KWh in 2013). This would then represent 13.56% of all generation in 2040 
compared to 3.8% in 2013 (as per EIA 2015). Figure 16 plots the EIA projections for solar power 
generation indicating a steady increase over the next 25 years. 
 

 
Figure 16. Projected Solar Generation (Source EIA 2015, Table A.16). 

 
Using EIA projections of solar power generation and per MWh savings for forecast error reduction 
from the baseline analysis we generate order of magnitude estimates of the national value of 
improved (50% error reduction) solar power forecasts. Using the Billion KWh projections from 
EIA and an a baseline percent absolute error of 20% (the mean error used in the current time 
analysis, we calculate total annual forecast error in terms of MWh. Assuming a 50% reduction in 
MAE through the solar power forecast improvement program this gives an estimate of the 
reduction on total forecast error (in MWh). Multiplying this by the per MWh savings estimated 
from the regression model ($3.94 avoided generation cost per MWh reduction in forecast error) 
we generate annual national benefit estimates as indicated in Table 8. 
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Table 8. Aggregation to National Benefit Estimates 
Solar 

Photovoltaic 
2012 2013 2020 2025 2030 2035 2040 

Billion KWh 11.2 18.5 51.3 58.7 70.9 87.5 110.1 

MWh 11,200,000 18,500,000 51,300,000 58,700,000 70,900,000 87,500,000 110,100,000 

20% 
Absolute 

Error (MWh) 

2,240,000 3,700,000 10,260,000 11,740,000 14,180,000 17,500,000 22,020,000 

10% 
Absolute 

Error (MWh) 

1,120,000 1,850,000 5,130,000 5,870,000 7,090,000 8,750,000 11,010,000 

$/GW Error 
Reduction 

$3.94 $3.94 $3.94 $3.94 $3.94 $3.94 $3.94 

Benefit  $4,408,197 $7,281,397 $20,191,116 $23,103,674 $27,905,460 $34,439,038 $43,334,149 

 
 
Recognizing, as noted, that this is order of magnitude, there are several caveats to this national 
aggregate benefit estimate. First we note that the EIA generation projections are for summer 
generation which is likely peak generation for solar power and thus we may be overstating annual 
total power generation. As noted in Martinez-Anido et al. (2016) and in our analysis, benefits are 
not linearly related to penetration levels whereas the current analysis does not account for this. The 
benefits also depends on baseline levels of error and future levels as well as adoption of forecasting 
improvements and we have not assessed these on national levels (i.e., assuming PSCo is nationally 
representative).  
 
Also as indicated in Martinez-Anido et al., with a 13.5% level of solar penetration and 50% 
forecast improvement generated roughly $13M in benefits. Given those results, the current 
aggregation to national benefits may even be an underestimate. 
 
Finally we note that the benefits from a research program to improve solar forecasting are ongoing. 
While there are likely also ongoing costs for observation, modeling, and forecast systems we do 
not have an estimate of those in order to develop benefit-cost estimates. As indicated in Table 9, 
extrapolating between the years indicated in the EIA projections, using a 3% rate of discount3, and 
a 26-year analysis timeline starting in 2015, we develop an estimate of the present value of benefits 
from the forecast improvements of $455M in production cost savings.  
  

                                                 
3 The discount rate of 3% reflects a relatively conservative approach to discounting given federally suggested 
nominal rates of 3.2% on 20 year and 3.5% on 30 year projects as per Office of Management and Budget (OMB) 
Circular A-94 Appendix C. Revised November 2015. (https://www.whitehouse.gov/omb/circulars_a094/a94_appx-
c). Real rates of 1.2% and 1.4 % on 20 and 30 year projects may be more applicable for this analysis which 
implicitly assumes real values. Using a 3% rate of discount will thus provide a lower current value estimate and thus 
not overstate program benefits.  
 

https://www.whitehouse.gov/omb/circulars_a094/a94_appx-c
https://www.whitehouse.gov/omb/circulars_a094/a94_appx-c
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Table 9.  Present Value of National Benefits 
Year Current Value  Benefit Discount Rate 3% Present Value  Benefit 

2015 10,969,888 1.000 10,969,888 

2016 12,814,133 0.971 12,440,906 

2017 14,658,379 0.943 13,816,928 

2018 16,502,625 0.915 15,102,239 

2019 18,346,870 0.888 16,300,956 

2020 20,191,116 0.863 17,417,034 

2021 20,773,627 0.837 17,397,586 

2022 21,356,139 0.813 17,364,495 

2023 21,938,651 0.789 17,318,574 

2024 22,521,163 0.766 17,260,596 

2025 23,103,674 0.744 17,191,303 

2026 24,064,031 0.722 17,384,368 

2027 25,024,389 0.701 17,551,603 

2028 25,984,746 0.681 17,694,347 

2029 26,945,103 0.661 17,813,887 

2030 27,905,460 0.642 17,911,453 

2031 29,212,176 0.623 18,204,062 

2032 30,518,891 0.605 18,464,431 

2033 31,825,607 0.587 18,694,190 

2034 33,132,322 0.570 18,894,900 

2035 34,439,038 0.554 19,068,060 

2036 36,218,060 0.538 19,468,992 

2037 37,997,082 0.522 19,830,392 

2038 39,776,104 0.507 20,154,224 

2039 41,555,127 0.492 20,442,369 

2040 43,334,149 0.478 20,696,631 

 Present Value Total Benefits  454,854,415 

 
 
Significant Accomplishments and Conclusions: 
 
The team has demonstrated and evaluated a working SunCast™ solar power prediction system that 
includes the multiple components described herein, including WRF-Solar™, multiple models from 
national centers, TSICast, CIRACast, and MADCast, MADWRF, as well as statistical models. 
The individual components and the overall SunCast™ system have been validated using the 
metrics developed at the beginning of the project. The team has met or exceeded target values 
specified in most of the milestone tables in the statement of work to DOE. Data streams from 
various model systems have been made available to the forecasting partners, forecasts were 
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regularly provided to the utility and ISO partners, and feedback from the partners were 
incorporated into the forecasting models.  
 
The SunCast™ system (Figure 3) has two main forecast tracks: a Nowcast track that forecasts at 
high temporal resolution out to 6 hours, and a DICast® track that forecasts at coarser temporal 
resolution out several days. Both these modules apply a consensus forecasting approach. That is, 
they consider multiple inputs and perform a forecast integration that takes advantage of the 
strengths of each input. While the consensus forecasting approach has been applied to forecasting 
more common weather variables (e.g., air temperature), in the past it had not previously been 
applied to solar irradiance forecasting in any significant way. No other public systems use a 
consensus forecasting approach. In the private sector, some companies may use a consensus 
approach, while others rely on a single-source model; much of this is proprietary and not 
disseminated. Forecasts are provided every 15 min to 6 h, then hourly out to 72 h and can be 
provided as far out as 168 h. 
 
The team continued to conduct transformative research in statistical forecasting, 
advective/dynamic short-range forecasting, nowcasting with real-time data assimilation, satellite 
techniques and data assimilation for solar forecasting, numerical weather prediction with the WRF-
Solar™ model (including cloud physics parameterization, convective parameterization, clear-sky 
aerosol estimation, and radiative transfer modeling), radiation-to-power conversion, and 
uncertainty quantification. 
 
 
Publications and Results of Project: 
 
Students Funded 
 
Tyler McCandless, 2013-2015: Dissertation: Artificial Intelligence Techniques for Short-Range 

Solar Irradiance Prediction, Dissertation in Meteorology, The Pennsylvania State University. 
David John Gagne, 2014-2016: Dissertation: Improved Forecasting of Economically Impactful 

Weather with Integrated Data-Driven and Physics-Based Methods, University of Oklahoma, 
expected Aug. 2016. 

Zhenzhou Peng 2011-2016 Dissertation: Multi-source Image Integration Towards Solar Forecast 
Hao Huang 2009-2014 (Co-Advise with Professor Hong Qin), Dissertation: A Scalable Physics-

based Data Modeling Framework to Unsupervised High-Dimensional Data Mining, First 
Employment: Research Scientist at General Electric Global Research  

Jin Xu 2012-2015. 
 
Book Chapters 
 
Haupt, S.E., P.A. Jiménez, J.A. Lee, and B. Kosovic, 2016: Principles of Meteorology and 

Numerical Weather Prediction, in Renewable Energy Forecasting: From Models to 
Applications, G. Kariniotakis, Ed., Elsevier, London, UK. Submitted and in review. 

Miller, S.D., A.K. Heidinger, and M. Sengupta, 2013: Physically-Based Satellite Methods. 
Chapter 3, Solar Energy Forecasting and Resource Assessment, J. Kleissl, Ed. ISBN 
9780123971777 
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Haupt, S.E., B. Kosovic, T. Jensen, J. Lee, P. Jimenez, J. Lazo, J. Cowie, T. McCandless, J. 
Pearson, G. Weiner, S. Alessandrini, L. Delle Monache, D. Yu, Z. Peng, D. Huang, J. Heiser, 
S. Yoo, P. Kalb, S. Miller, M. Rogers, and L. Hinkleman, 2016: The SunCast Solar Power 
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Solar Power Forecasting.  NCAR Technical Report TN-526+STR. 

Jensen, T.L, T.L. Fowler, B.G. Brown, J. Lazo, S.E. Haupt. 2016: Metrics for evaluation of solar 
energy forecasts.  NCAR Technical Report TN-527+STR. 

 
Journal Papers 
 
Alessandrini, S., L Delle Monache, S Sperati, and G Cervone, 2015: Solar forecasting with an 

analog ensemble.  Applied Energy 157, 95–110. 
Auligné, T., 2014a: Multivariate Minimum Residual Method for Cloud Retrieval. Part I: 

Theoretical Aspects and Simulated Observations Experiments. Mon. Wea. Rev., 142, 4383 – 
4398. 

Auligné, T., 2014b: Multivariate Minimum Residual Method for Cloud Retrieval. Part II: Real 
Observations Experiments. Mon. Wea. Rev., 142, 4399 - 4415. 

Davo’, F., Alessandrini, S.,  Sperati, S., and Delle Monache, L., 2016. A Principal component 
analysis for regional wind and solar power forecasting. Conditionally accepted. 

Descombes, G., T. Auligné, H.-C. Lin, D. Xu, C. Schwartz and F. Vandenberghe, 2014: Multi-
sensor Advection Diffusion nowCast (MADCast) for cloud analysis and short-term 
prediction. NCAR Tech. Rep. TN-509STR. 21 pp. 

Haupt, S.E. and B. Kosovic, 2016: Variable Generation Power Forecasting as a Big Data Problem, 
submitted to IEEE Transactions on Sustainable Energy. 

Jiménez, P. A., J. P. Hacker, J. Dudhia, S. E. Haupt, J. A. Ruiz-Arias, C. A. G. and G. Thompson, 
T. Eidhammer, and A. Deng, 2016a: WRF-Solar™: An augmented NWP model for solar 
power prediction. Model description and clear sky assessment. Bull. of the Amer. Met. Soc., 
(In press.). 

Jiménez, P. A., S. Alessandrini, S. E. Haupt, A. Deng, B. Kosovic, J. A. Lee, and L. Delle 
Monache, 2016b: The role of unresolved clouds on short-range global horizontal irradiance 
predictability. Mon. Wea. Rev., accepted. 

Lee, J. A., S. E. Haupt, P. A. Jiménez, T. C. McCandless, M. A. Rogers, and S. D. Miller, 2016: 
Solar energy nowcasting case studies near Sacramento. Wea. Forecast., submitted. 

McCandless, T.C., G.S. Young, S.E. Haupt, and L.M Hinkelman, 2016b:  Regime-Dependent 
Short-Range Solar Irradiance Forecasting, submitted to Journal of Applied Meteorology and 
Climatology, accepted. 

McCandless, T.C., S.E. Haupt, and G.S. Young, 2016a:  A Regime-Dependent Artificial Neural 
Network Technique for Short-Range Solar Irradiance Forecasting, Applied Energy, 89, 351-
359. 

McCandless, T.C., S.E. Haupt, and G.S. Young, 2015: A Model Tree Approach to Forecasting 
Solar Irradiance Variability, Solar Energy, 120, 514-524.  
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Miller, S.D., M.A. Rogers, J.M. Haynes, and M. Sengupta, 2016: A Satellite-Initialized Model-
Advected Scheme for Short-Term Solar Energy Forecasting. In preparation for Solar 
Forecasting 2016.  

Peng, Z., D. Yu, D. Huang, J. Heiser, S. Yoo, P. Kalb, 2015: 3D cloud detection and tracking 
system for solar forecast using multiple sky imagers”, Solar Energy, 118, pp. 496-512. 

Peng, Z., D. Yu, D. Huang, J. Heiser, S. Yoo, P. Kalb, 2016: A Hybrid Approach to Estimate the 
Complex Motions of Clouds in Sky Images, Solar Energy, under review. 

Ruiz-Arias, J. A., J. Dudhia, and C. A. Gueymard, 2014: A simple parameterization of the 
shortwave aerosol optical properties for surface direct and diffuse irradiances assessment in 
a numerical weather model. Geoesci. Model Dev., 7, 1159–1174. 

Sperati, S Alessandrini, P Pinson, G Kariniotakis, 2015: The “Weather Intelligence for Renewable 
Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power 
Generation. Energies, 8(9), 9594-9619. 

Sperati, S., Alessandrini, S., and Delle Monache, L., 2016: An application of the ECMWF 
Ensemble Prediction System for short-term solar power forecasting Solar Energy. 
Conditionally accepted. 

Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation 
development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658. 

Xie, Y., M. Sengupta, and J. Dudhia, 2016: A Fast All-sky Radiation Model for Solar Applications 
(FARMS): Algorithm and performance evaluation. Solar Energy (Under review). 

Xu, D., Auligné T., Huang X.-Y., 2015: A Validation of the Multivariate and Minimum Residual 
Method for Cloud Retrieval Using Radiance from Multiple Satellites. Advances in 
Atmospheric Sciences, 32, 349-362. doi: 10.1007/s00376-014-3258-5 

 
Conference and Workshop Presentations  
 
Alessandrini, S., 2015: Solar Forecasting with an Analog Ensemble, Solar Power International, 

Anaheim, CA. 
Alessandrini, S., L Delle Monache, S Haupt, 2015: An Application of an Analog Ensemble for 

Short-Term Solar Power Forecasting, AMS annual meeting, Phoenix (AZ). 
Alessandrini, S., 2014: The WIRE solar & wind forecasting benchmark exercise, Renewable 

Energies Forecasting - State of the art & challenges for the future "WIRE" final workshop, 
Paris, France. (invited presentation) 

Auligné, T., 2014a: Multivariate Minimum Residual Method for Cloud Retrieval. Part I: 
Theoretical Aspects and Simulated Observations Experiments. Mon. Wea. Rev., 142, 4383 – 
4398. 

Auligné, T., 2014b: Multivariate Minimum Residual Method for Cloud Retrieval. Part II: Real 
Observations Experiments. Mon. Wea. Rev., 142, 4399 - 4415. 

Delle Monache, L., S. Alessandrini, G. Cervone, C. Junk, D. Rife, J. Ma, S. Sperati, S.E. Haupt, 
T. Brummet, P. Prestopnik, G. Wiener, J. Nielsen, S. Hawkins, 2015: The Analog Ensemble 
for Renewable Energy Applications: An Overview. International Conference on Energy and 
Meteorology, Boulder, CO, June 25. 

Deng, A., B. Gaudet, J. Dudhia, and K. Alapaty, 2014: Implementation and evaluation of a new 
shallow convection scheme in WRF. 26th Conf. on Wea. Anal. and Forecast./22nd Conf. on 
Numer. Wea. Pred. at the 94th Amer. Meteor. Soc. Annual Meeting, Atlanta, GA, 2-6 Feb 
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2014. Preprint available at 
https://ams.confex.com/ams/94Annual/webprogram/Paper236925.html.  

Descombes, G., T. Auligné, H.-C. Lin, D. Xu, C. Schwartz and F. Vandenberghe, 2014: Multi-
sensor Advection Diffusion nowCast (MADCast) for cloud analysis and short-term 
prediction. NCAR Tech. Rep. TN-509STR. 21 pp. 

Gagne, D.J., S.E. Haupt, S. Linden, and G. Wiener, 2016: An Evaluation of Statistical Learning 
Methods for Gridded Solar Irradiance Forecasting, Joint Session between 14th Conference on 
Artificial and Computational Intelligence and its Applications to the Environmental Sciences 
and Seventh Conference on Weather, Climate, Water, and the New Energy Economy, AMS 
Annual Meeting, New Orleans, LA, Jan. 12. 

Gagne, D.J., Haupt, S.E., Linden, S., Williams, J.K., McGovern, A., Wiener, G., Lee, J.A., and 
T.C. McCandless, 2015: Scaling Machine Learning Models to Produce High Resolution 
Gridded Solar Power Forecasts. 13th Conference on Artificial Intelligence: The Last Mile: 
Methods and Technologies for Delivering Custom Weather, Water, and Climate Information 
to Everyone in the World, Phoenix, AZ, Amer. Meteor. Soc. T.J.1.1 

Gagne, D.J., S.E. Haupt, S. Linden, G. Wiener, 2015:  A Community Gridded Atmospheric 
Forecast System for Calibrated Solar Irradiance.  International Conference on Energy and 
Meteorology, Boulder, CO, June 24. 

Gagne, D.J., S.E. Haupt, S. Linden, J.K. Williams, A. McGovern, G. Wiener, J.A. Lee, and T.C. 
McCandless, 2015:  Scaling Machine Learning Models to Produce High Resolution Gridded 
Solar Power Forecasts, 13th Conference on Artificial Intelligence, AMS Annual Meeting, 
Phoenix, AZ, Jan. 7. 

Haupt, S.E., 2016: Comparison of Solar Power Forecasting Techniques, Joint Session between 
14th Conference on Artificial and Computational Intelligence and its Applications to the 
Environmental Sciences and Seventh Conference on Weather, Climate, Water, and the New 
Energy Economy, AMS Annual Meeting, New Orleans, LA, Jan. 12. 

Haupt, S.E., 2016: Integrating and Operationalizing Renewable Energy Forecasts: It Takes a 
Community, Seventh Conference on Weather, Climate, Water, and the New Energy 
Economy, AMS Annual Meeting, New Orleans, LA, Jan. 11. 

Haupt, S.E. and B. Kosovic, 2015: Big Data and Machine Learning for Applied Weather Forecasts: 
Forecasting Solar Power for Utility Operations, IEEE Symposium Series on Computational 
Intelligence, Capetown, South Africa, December 9.  Fully reviewed paper. 

Haupt, S.E., 2015:  The SunCast™ Solar Power Forecasting Decision Support System, American 
Solar Energy Society Conference, State College, PA, July 28. 

Haupt, S.E., S. Drobot, T. Jensen, 2015:  The SunCast™ Solar Power Forecasting System. 
International Conference on Energy and Meteorology, Boulder, CO, June 23. 

Haupt, S.E., 2015:  Renewable Energy Needs, Rapid Update Analysis/Nowcasting Workshop, 
NOAA ESRL, Boulder, CO, June, 4. 

Haupt, S.E., 2015:  NCAR’s Solar Power Forecasting Research, California Utility Forecasting 
Meeting, Folsom, CA, April 29 (invited). 

Haupt, S.E., 2015:  Counting on Solar Production: Advances in Forecasting, Utility Solar 
Conference of the Solar Electric Power Association, San Diego, CA, April 28 (invited). 

Haupt, S.E., 2015: Solar Power Forecasting: SunCast™ and GRAFS, Utility Variable Generation 
Integration Group Forecasting Workshop, Lakewood, CO, Feb. 19, 2015. 

https://ams.confex.com/ams/94Annual/webprogram/Paper236925.html
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Haupt, S.E., 2015: The SunCast™ Solar Power Forecasting System, Joint Session between Sixth 
Conference on Weather, Climate, and the New Energy Economy and 13th Conference on 
Artificial Intelligence, AMS Annual Meeting, Phoenix, AZ, Jan. 7. 

Haupt, S.E., B. Kosovic, and S. Drobot, 2014:  Advances in Solar Power Forecasting, Fall Meeting 
of the American Geophysical Union, San Francisco, CA, Dec. 15. 

Haupt, S.E. and S. Drobot, 2014: New Irradiance Models for Solar Energy, Solar 2014 sponsored 
by the American Solar Energy Society, San Francisco, CA, July 7. (full paper). 

Haupt, S.E. and S. Drobot, 2014: A Public-Private-Academic Partnership to Advance Solar Power 
Forecasting, SunShot Summit, Anaheim, CA, May 20. Invited Poster Presentation and 
Review. 

Haupt, S.E., 2014:  Renewable Energy, UCAR Research and Partnership Meeting, Boulder, CO, 
April 22. 

Haupt, S.E., 2014:  NCAR-led SunShot Solar Forecasting Project, Utility Variable Generation 
Forecasting Workshop, Tuscon, AZ, Feb. 26. Invited Panel Presentation. 

Haupt, S.E., 2014: Advances in Predicting Solar Power for Utilities, Fifth Conference on Weather, 
Climate, and the New Energy Economy, AMS Annual Meeting, Atlanta, GA, Feb. 6.  

Haupt, S.E., 2014:  Using Artificial Intelligence to Inform Physical/Dynamical Models, 12th 
Conference on Artificial and Computational Intelligence and its Applications to the 
Environmental Sciences, Invited Panel Presentation, Feb. 3. Invited Panel Presentation. 

Haupt, S.E., 2013: A Public-Private-Academic Partnership to Advance Solar Power Forecasting, 
International Conference on Energy and Meteorology, Toulouse, France, June 25. 

Haupt, S.E., 2013:  A Public-Private-Academic Partnership to Advance Solar Power Forecasting, 
American Solar Energy Society Meeting, Baltimore, MD, April 18. 

Haupt, S.E., 2013:  A Public-Private-Academic Partnership to Advance Solar Power Forecasting, 
Utility Variable Generation Integration Group Workshop on Variable Generation Forecasting 
Application, Salt Lake City, UT, Feb. 27. (Invited panel presentation) 

Haupt, S.E., 2013:  A Public-Private-Academic Partnership to Advance Solar Power Forecasting, 
AMS Solar Metrics Workshop, AMS Annual Meeting, Austin, TX., Jan. 9. 

Hinkelman, L. M., N. Schaeffer, and T. P. Ackerman, 2015: The character and variability of solar 
irradiance across the Pacific Northwest American Geophysical Union Fall Meeting, San 
Francisco, CA. 

Hinkelman, L. M., 2014: Statistics of solar resource variability on short time scales, A Public-
Private-Academic Partnership to Advance Solar Power Forecasting Project Workshop, 
Boulder, CO. 

Huang, H. J. Xu, Z. Peng, S. Yoo, D.Yu, D. Huang, H. Qin, 2013: Cloud motion estimation for 
short term solar irradiation prediction, in Smart Grid Communications (SmartGridComm), 
2013 IEEE International Conference on, 696-701. 

Huang, H. J. Xu, Z. Peng, S. Yoo, D.Yu, D. Huang, H. Qin, 2012: Correlation and Local Feature 
Based Cloud Motion Estimation, KDD Mutimedia Data Mining (MDM) workshop - 
MDMKDD. 

Huang, H. J. Xu, Z. Peng, S. Yoo, D.Yu, D. Huang, H. Qin, 2011: Cloud Motion Detection for 
Short Term Solar Power Prediction. ICML 2011 Workshop on Machine Learning for Global 
Challenges. 

Jensen, T.L., B.G. Brown, S.E. Haupt, B. Kosovic, and J.K. Lazo, 2016: User-Centric Metrics for 
Evaluating Solar Forecasts, 23rd Conference on Probability and Statistics in the Atmospheric 
Sciences, AMS Annual Meeting, New Orleans, LA, Jan. 13. 
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Jensen, T.L., S.E. Haupt, S. Drobot, B. Brown, T. Fowler, J. Lazo, 2015: A Comparison of Metrics 
for Evaluating Solar Forecasts. International Conference on Energy and Meteorology, 
Boulder, CO, June 23. 

Jensen, T.L., A.R.S. Anderson, B.G. Brown, S.E. Haupt, and T. Fowler, 2015: Solar Metrics – The 
Relationship Between Forecast System Component Behavior and the Overall Score, Sixth 
Conference on Weather, Climate, and the New Energy Economy, AMS Annual Meeting, 
Phoenix, AZ, Jan. 6. 

Jimenez, P.A, and S.E. Haupt, 2016: WRF-Solar™ enhancements of the aerosol-cloud-radiation 
system in support of solar power forecasting. Atmospheric Radiation Science Workshop, 
Boulder, CO, March 9. 

Jimenez, P., S. Alessandrini, S.E. Haupt, and A. Deng, 2016: Accounting for the Effects of 
Unresolved Clouds in the Shortwave Irradiance Forecast of the WRF-Solar™ Model to 
Improve Solar Power Forecasts, Seventh Conference on Weather, Climate, Water, and the 
New Energy Economy, AMS Annual Meeting, New Orleans, LA, Jan. 11. 

Jimenez, P.A., S.E. Haupt, J.P. Hacker and J. Dudhia: WRF-Solar™: Upgrading the WRF 
representation of aerosol-cloud-radiation feedbacks in support of solar energy forecasting. 
Poster. AGU Fall Meeting, San Francisco, CA, December 14. 

Jimenez, P.A., S.E. Haupt, J.P. Hacker, J. Dudhia, 2015:  WRF-Solar™: An Augmented NWP 
Model for Solar Power Prediction. International Conference on Energy and Meteorology, 
Boulder, CO, June 24. 

Jimenez, P.A., S.E. Haupt, J.P. Hacker, J. Dudhia, 2015:  WRF-Solar™: Improvements to WRF 
for real-time solar energy forecasting applications and its evaluation. WRF Users’ Workshop, 
Boulder, CO, June 16. 

Jimenez, P.A., S.E. Haupt, J. Hacker, and J. Dudhia, 2015: WRF-Solar™ to Advance Solar Power 
Forecasting, Sixth Conference on Weather, Climate, and the New Energy Economy, AMS 
Annual Meeting, Phoenix, AZ, Jan. 6. 

Lee, J. A., S. E. Haupt, P. A. Jiménez, T. C. McCandless, M. A. Rogers, S. D. Miller, and X. 
Zhong, 2016: Nowcasting case studies with SunCast™. 7th Conf. on Weather, Climate, 
Water, and the New Energy Economy at the 96th AMS Annual Meeting, New Orleans, LA, 11 
Jan 2016. Abstract available at: 
https://ams.confex.com/ams/96Annual/webprogram/Paper288480.html. 

Lee, J. A., S. E. Haupt, P. A. Jiménez, T. C. McCandless, M. A. Rogers, and S. D. Miller, 2015: 
Solar energy nowcasting case studies near Sacramento. AMS 27th Conf. on Weather Analysis 
and Forecasting/23rd Conf. on Numerical Weather Prediction, Chicago, IL, 3 Jul 2015. 
Abstract available at: 
https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273565.html. 

Lee, J. A., S. E. Haupt, P. A. Jiménez, T. C. McCandless, M. A. Rogers, and S. D. Miller, 2015: 
Comparison of solar energy nowcasting techniques. 6th Conf. on Weather, Climate, and the 
New Energy Economy at the 95th AMS Annual Meeting, Phoenix, AZ, 6 Jan 2015. Abstract 
available at: https://ams.confex.com/ams/95Annual/webprogram/Paper264080.html. 

Linden, S., D.J. Gagne, and S.E. Haupt, 2015:  Initial Implementation of the Solar Gridded 
Atmospheric Forecast System (GRAFS-Solar), NCAR retreat, Dec. 8. 

McCandless, T.C., S.E. Haupt, and G.S. Young, 2016: A Regime-Dependent Neural Network 
Approach to Short-Range Solar Irradiance Prediction Using Surface Observations and 
Satellite Data, Joint Session between 14th Conference on Artificial and Computational 
Intelligence and its Applications to the Environmental Sciences and Seventh Conference on 

https://ams.confex.com/ams/96Annual/webprogram/Paper288480.html
https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273565.html
https://ams.confex.com/ams/95Annual/webprogram/Paper264080.html
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Weather, Climate, Water, and the New Energy Economy, AMS Annual Meeting, New 
Orleans, LA, Jan. 12. 

McCandless, T.C., Haupt, S.E., Young, G.S., 2015: A Bayesian Approach to Statistical Short-
Term Solar Irradiance Forecasting. International Conference on Energy and Meteorology, 
Boulder, CO, June 23. 

McCandless, T.C., S.E. Haupt, G.S. Young, and A.J. Annunzio, 2015: A Regime-Dependent 
Bayesian Approach to Short-Term Solar Irradiance Forecasts, Joint Session between Sixth 
Conference on Weather, Climate, and the New Energy Economy and 13th Conference on 
Artificial Intelligence, AMS Annual Meeting, Phoenix, AZ, Jan. 7. 

McCandless, T.C., S. E. Haupt and G. S. Young, 2014: Short Term Solar Radiation Forecasts 
Using Weather Regime Dependent Artificial Intelligence Techniques, Joint Session between 
the 12th Conference on Artificial and Computational Intelligence and its Applications to the 
Environmental Sciences and the Fifth Conference on Weather, Climate, and the New Energy 
Economy, AMS Annual Meeting, Atlanta, GA, Feb. 5.  

McCandless, T. C., 2014: SunCast™ Solar Irradiance Prediction and Statistical Short-term Solar 
Irradiance Prediction. Seminar at Aerospace Corporation, Pasadena, CA,October 
25.Pearson, J.M., Haupt, S.E., Jensen, T.L., Burghardt, C., McCandless, T.C., Brummet, T., 
and S. Dettling, 2015: Predicting Distributed Solar Power Production for Utilities. Sixth 
Conference on Weather, Climate, and the New Energy Economy: Short-Range Forecasting 
Modeling for Solar Electric Generation, Phoenix, AZ, Amer. Meteor. Soc. 4.2. 

Miller, S.D., M.A. Rogers, A.K. Heidinger, I. Laszlo, and M. Sengupta, 2012: Cloud Advection 
Schemes for Short-Term Satellite-Based Insolation Forecasts. p 1963-1967, World 
Renewable Energy Forum 2012, C. Fellows, Ed., American Solar Energy Society, Denver, 
CO.  

Peng, Z. S. Yoo, D. Yu, D.Huang 2013: Solar irradiance forecast system based on geostationary 
satellite, in Smart Grid Communications (SmartGridComm), 2013 IEEE International 
Conference on, 708-713. 

Peng, Z . ,  S. Yoo, D. Yu, D.Huang, P. Kalb, J. Heiser, 3D cloud detection and tracking for solar 
forecast using multiple sky imagers, in Proceedings of the 29th Annual ACM Symposium 
on Applied Computing, ACM, 512-517. 

Rogers, M.A., S.D. Miller, J.M. Haynes, A. Heidinger, S.E. Haupt, and M. Sengupta, 2015: 
Improvements in Satellite-Derived Short Term Insolation Forecasting: Statistical 
Comparisons, Challenges for Advection-Based Forecasts, and New Techniques. Presentation 
6.4, Sixth Conference on Weather, Climate, and the New Energy Economy, AMS 2015 
Annual Meeting, Phoenix, AZ.  

Rogers, M.A., S.D. Miller, J.M. Haynes, A. Heidinger, S. Benjamin, M. Sengupta, S.E. Haupt, and 
T. Auligne, 2013: Results from a Satellite-Derived Short-Term Insolation Forecast 
Technique: Comparison Against Surface Observations, NWP Predictions, and Challenges. 
Presentation A14E-2, 2013 AGU Fall Meeting, San Francisco, CA.  

Schaeffer, N., L. M. Hinkelman, and T. P. Ackerman, 2016: Relating solar irradiance variations 
and weather across the Pacific Northwest, AMS 7th Conference on Weather, Climate, and 
the New Energy Economy, January 2016, New Orleans, LA. 

Sengupta, M. and L. M. Hinkelman, 2014: Temporal variability of surface solar irradiance as a 
function of satellite-retrieved cloud properties, American Geophysical Union Fall Meeting,  
San Francisco, CA. 
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Vaucher, G., S.E. Haupt, D. Sauter, 2015: A Review of Atmospheric Forecasting Tools being 
Developed for Renewable Energy, 83rd Military Operations Research Society Symposium 
[MORSS] in Alexandria, VA, Jun 22-25. 

Xu, J., S. Yoo, D. Yu, H. Huang, D. Huang, J.Heiser, and P. Kalb, 2015: A Stochastic Framework 
for Solar Irradiance Forecasting Using Condition Random Field, the Pacific-Asia Conference 
on Knowledge Discovery and Data Mining (PAKDD). 

Xu, J., S. Yoo, D. Yu, H. Huang, D. Huang, J.Heiser, and P. Kalb, Solar Irradiance Forecasting 
using Multi-layer Cloud Tracking and Numerical Weather Prediction, the 29th Symposium 
On Applied Computing (SAC’15), Salamanca, Spain. 

 
Short Courses and Workshop Presentations 
 
Haupt, S.E., 2016: Short-range Weather Forecasting (hours to days) for Energy Applications. 

WMO-WEMC-GFCS Summer Course on Climate and Energy, Norwich, UK, July 5. 
Haupt, S.E., 2016:  Applications of Computational Intelligence to Enable Renewable Energy, 

Ph.D. Course, Trento, Italy, May 9-13. 
Haupt, S.E., 2015: Short-range Weather Forecasting (hours to days) for Energy Applications. 

International Conference on Energy and Meteorology Pre-Conference Seminar, Boulder, CO, 
June 22. 

Haupt, S.E., 2015: Introduction to Probabilistic Forecasting, Utility Variable Generation 
Integration Group Tutorial on Stochastic Forecasting Methods and Applications, Lakewood, 
CO, Feb. 18, 2015. 

Haupt, S.E., 2014:  NCAR’s Research including Renewable Energy, Kuwait Institute for Scientific 
Research presents Workshop on Solar Resource Assessment, Kuwait City, Nov. 17, 2014. 

Haupt, S.E., 2013:  Meteorological Forecasting I: Some Basic Considerations for Atmospheric 
Modeling, COST Weather Intelligence for Renewable Energy Summer School, Montegut, 
France, July 1, 2013. 

Haupt, S.E., 2013: Meteorological Forecasting II: Predicting Atmospheric Realizations: Dealing 
with Uncertainty in Applied Meteorology, COST Weather Intelligence for Renewable 
Energy Summer School, Montegut, France, July 1, 2013. 

Haupt, S.E., 2013: What is your mental model of using meteorological uncertainty information for 
energy?  Workshop on Uncertainty in Meteorology for the Energy Sector, Preconference 
Seminar, International Conference on Energy and Meteorology, Toulouse, France, June 24. 

Haupt, S.E., 2013: How can we better facilitate using meteorological uncertainty information for 
energy?  Workshop on Uncertainty in Meteorology for the Energy Sector, Preconference 
Seminar, International Conference on Energy and Meteorology, Toulouse, France, June 24. 

 
 
Path Forward: 
 
This project has been built on leveraging a network of experts in all aspects of solar power 
forecasting to develop, build, deploy, assess, and test the SunCast™ System in a wide variety of 
locations and climatologies. Thus, we have brought together university and laboratory researchers, 
software engineers skilled in Big Data issues, utility and ISO personnel, and forecast providers to 
assess and help us to iteratively improve the system. As described in the introduction (Chapter 1 
of NCAR Tech Note), the kick-off workshop and second year workshop were effective in 
cementing the collaborations and allow time for deep exchange of ideas. This project has fostered 
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a host of networks (see Section 6.3 of NCAR Tech Note - Haupt et al. 2016) and many inquiries 
from around the world about the SunCast™ system. We expect to have opportunities to deploy the 
full system or components of it in various places.  
 
WRF-Solar™ has been a substantial advance in the state-of-the-science of NWP for renewable 
energy forecasting. NCAR has had numerous requests for the beta-versions of the code and we 
have communicated with teams from around the world who are anxious to deploy and test WRF-
Solar™ for solar power forecasting (see section 6.3 of the NCAR Tech Note). Many of the 
advances have already become part of the most recent WRF releases. 
 
An addendum to this report is a full wiki on the released code that has been developed as part of 
this project. These codes will allow wide access to major portions of the software developed with 
DOE funds. NCAR plans to make these codes more widely available under a project to make 
digital resources available to the community. 
 
Finally, the results of this project are becoming archived in the peer-review literature as detailed 
above. Our testing of many types of models and applying the metrics developed as part of this 
project have resulted in a series of recommendations for best-practice solar power forecasting. 
Some specific recommendations include: 
 

• It is best to blend various component models or systems together. The forecast from 
blended models/systems is invariably significantly better than those produced by a single 
model or approach. 

• Use a base NWP model tuned for the purpose. We found very significant improvements in 
forecasting by employing WRF-Solar™. 

• Including multiple NWP models improve the blended forecast for time scales from 3 h 
through the day-ahead forecast and beyond. 

• It is possible to improve upon persistence, even at the very short-range by using methods 
trained on targeted in situ observations. StatCast trained to employ pyranometer data was 
better than persistence, even at short time scales (15 min to 3 h) and TSICast, which uses 
multiple sky imagers improved upon persistence in the time range less than 15 min. 

• Satellite based cloud advection is useful, but tricky. For regions near the mountains or 
along coasts, it is necessary to include some model physics to account for stationary clouds 
as well as cloud formation and dissipation. It is important to include the improvements 
related to correcting for shadowing and parallax as accomplished by CIRA.  

• NWP can be combined with satellite data via assimilation to produce a fast-running, short-
range (0-6 h) forecast that is helpful for nowcasting (see MAD-WRF, Section 2.4). This 
produced the best forecast on the 1-6 h time scale. 

• The analog ensemble approach is helpful for both improving on the deterministic blended 
forecast as well as for producing a probabilistic prediction that is well calibrated. 

• An empirical power conversion method is amenable to training site-specific information, 
even when missing metadata. Artificial intelligence techniques are capable of predicting 
directly from an observation to a target value as long as historic training data is available. 

• An enhanced series of metrics is helpful for evaluating and tuning individual models as 
well as the entire system. 
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Finally, we asked our utility and ISO partners where they see solar power forecasting going in the 
future and some comments include: 

• “…the industry need is still there and it will only get larger as more distributed energy is 
connected to the grid.” 

• [Forecasts will be from] “centralized RTO/ISO/BA generated forecasts that will have 
multiple uses and at varying granularities.” 

 
This project has served to advance the state-of-the-science of solar power forecasting as originally 
planned. The team that worked on the project included some of the best-known researchers in the 
field. The team worked extremely synergistically and produced demonstrably better models than 
existed previously, blended the models to produce improved consensus forecasts, and used 
forefront postprocessing methods to further correct the models as well as convert the irradiance 
forecasts to power and provide probabilistic forecast information to the utility and ISO partners. 
Although challenges were encountered, the team worked to rise above those and complete the 
project admirably. The SunCast™ system and its component models have been thoroughly 
assessed using a full range of metrics, some of which were specifically derived for this project. An 
economic evaluation estimated saving in one particular service region, which were then scaled up 
to estimate a substantial potential for savings across the US as more solar power is deployed in the 
future.  
 
Thus, as the capacity of solar power grows, solar power forecasting with systems like SunCast™ 
will provide enabling technologies that will make the economics more feasible, empowering more 
solar power deployment. Such enhanced deployment has the potential to improve air quality, 
mitigate climate change, improve energy security, and provide enhanced employment 
opportunities throughout the renewable energy sector. 
 
The team members have all grown in our research capabilities in solar energy and the collaborative 
research is expected to continue.  A direct point of continuity is continued collaboration among 
the partners. For instance, the SunCast™ system is fully deployed operationally for Xcel Energy’s 
Public Service of Colorado for their commercial solar plants, delivered by Global Weather 
Corporation. Xcel, PSCo, and GWC are all partners in this project. MDA Federal reports that they 
are also assuming portions of the systems from this project as part of their forecasting system. As 
reported above, WRF-Solar™ has been widely tested and many of its component modules are 
already part of the public WRF release and being used too widely to document. In addition, NCAR 
plans to continue to advance the SunCast™ system in regions throughout the world with wide 
partnerships. A specific partnership that is in the process of starting is between NCAR, BNL, and 
the Electric Power Research Institute (EPRI). That project, led by EPRI, will deploy sky imagers 
over New York City and provide forecasts using SunCast™ systems to utilities in New York. We 
expect additional collaborations to continue. 
 
In summary, this project not only advanced the state-of-the-science through cutting edge research, 
but on a grander scale, it enabled a host of partnerships that are in the process improving the 
economics of solar energy and advancing its deployment. 
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