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Compressible jet-in-crossflow interactions are poorly simulated using Reynolds-Averaged
Navier Stokes (RANS) equations. This is due to model-form errors (physical approxima-
tions) in RANS as well as the use of parameter values simply picked from literature (hence-
forth, the nominal values of the parameters). Previous work on the Bayesian calibration
of RANS models has yielded joint probability densities of C = (Cµ, Cε2, Cε1), the most influ-
ential parameters of the RANS equations. The calibrated values were far more predictive
than the nominal parameter values and the advantage held across a range of freestream
Mach numbers and jet strengths. In this work we perform Bayesian calibration across a
range of Mach numbers and jet strengths and compare the joint densities, with a view of
determining whether compressible jet-in-crossflow could be simulated with a single joint
probability density for C. We also compare the calibrated results to a recently developed
analytical model of a jet-in-crossflow interaction. We find that probability densities for Cε2

agree and also indicate that the range typically used in aerodynamic simulations should be
extended. The densities for Cε1 agree, approximately, with the nominal value. The densities
for Cµ do not show any clear trend, indicating that they are not strongly constrained by the
calibration observables, and in turn, do not affect them much. In the final paper, we will
compare the predictive skill of the calibrated parameters against the analytical model as
well as the density for C obtained in previous work. This will answer the question whether
compressible jet-in-crossflow simulations can achieve acceptable accuracy using a different
set of parameters (e.g., the one obtained from the analytical model) or whether a unique
joint probability density for C could be applicable over a range of Mach number and jet
strengths.

Nomenclature

(ue,ve) Experimental counterpart of (um,vm)
(um,vm) Modeled streamwise velocity deficit and normalized vertical velocities at probes
(Cµ, Cε2, Cε1) Parameters in the k − ε RANS model requiring calibration
Ca Analytical estimates of (Cµ, Cε2, Cε1)
Cnom Nominal value of (Cµ, Cε2, Cε1)
R Physically realistic part of the parameter space
CVP Counter-rotating vortex pair
JIC Jet-in-crossflow

I. Introduction

Jet-in-crossflow interactions occur in a myriad of natural and engineering settings.1 In aerodynamics, spin
jets are often used to maneuver launch vehicles, setting up a compressible jet-in-crossflow interaction.
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Experimental investigations2 have shown that the exhaust from the spin rockets (the “jet”) rolls into a
complex configuration of counter-rotating vortex pairs (CVPs) that significantly modify the pressure dis-
tribution over the stabilizing fins of the flight vehicle. Detailed experimental investigations of compressible
JIC interactions, for a range of Mach numbers and jet strengths, have been performed experimentally,3,4, 5

referred to here as the “Beresh” experiments. They have been compared to simulations performed using
Reynolds-Averaged Navier Stokes (RANS) models.6 These comparisons show that RANS simulations have
poor predictive skill - the simulated jet rolls into a CVP that is far too strong and penetrates into the
freestream far more than what is observed in experimental data. These predictive errors arise from two
sources. The first concerns model-form errors i.e., due to approximations of turbulence physics in RANS
equations. The second source of errors is the use of parameters in RANS equations simply picked from
literature, which are often derived by calibrating to canonical incompressible flows. It is unclear which is
the larger source of predictive uncertainty.

One way of improving the predictive skill of RANS in JIC simulations is to obtain calibrated parameters.
Due to the model-form errors and limited experimental data, it is not always possible to estimate these
parameters with much certainty. Consequently, Bayesian calibration techniques are used, as they model the
parameters to be estimated as random variables and infer their probability density functions (PDFs) from
observational data. The PDFs capture the uncertainty in the estimation. Bayesian estimation of k−ε RANS
models has been performed for flow over flat plates under favorable and adverse pressure gradients7 and for
turbulent flow in urban canyons.8 Alternatively, one may assume that the poor predictive skill of RANS
equations may be ameliorated by augmenting some of the model equations with a spatially variable source
term which is learned by calibrating (i.e., full-field inversions for the source term) to high-fidelity data e.g.,
Direct Numerical Simulation solutions of flows similar to the flow of interest. The dependence of the source
term on local flow properties is then learned using the calibrated RANS solutions as the training data. This
approach has been used for 2D flows over bumps in channels and airfoils.9,10,11,12

A completely different way of improving the predictive skill of RANS JIC simulations is to develop
expressions/estimates of critical parameters via an analytical approach. In a companion paper,13 we derive a
self-similar solution of the jet (after a JIC interaction) that is applicable in the farfield and obtain estimates
of 3 k − ε parameters C = (Cµ, Cε2, Cε1) analytically, without using Beresh measurements and without
performing any type of fitting. Thus these measurements are free of any conflating of model-form and
parametric inadequacies. The parameter estimates Ca = {0.1, 2.0, 1.34} are somewhat different from the
nominal values of the parameters Cnom = {0.09, 1.92, 1.44} typically used in k − ε RANS simulations, but
produced predictions of the flowfield that were significantly better than those obtained using Cnom. This
determination was performed using the Beresh experimental data.

In a previous paper14 we addressed the Bayesian calibration of compressible JIC interactions using data
from one of the Beresh experiments. The experiment consists of introducing a Mach number M = 3.73
jet of 9.53 mm diameter into a M = 0.8 freestream in a wind tunnel test section. The jet-to-freestream
momentum ratio J is 10.2. The jet bends into the flow and rolls into a CVP as it flows downstream.
PIV (velocity) measurements are available on the mid-plane, the longitudinal plane of symmetry and a
transverse/cross plane that slices through the CVP. Experimentally measured vorticity on the crossplane
was used, via Bayesian calibration, to obtain a 3D joint PDF (JPDF) for C = (Cµ, Cε2, Cε1), the parameters
to which the flow was found to be most sensitive. An optimal parameter set Copt = {0.1025, 2.099, 1.416}
was also obtained, which is quite different from Cnom. Samples of C drawn from the calibrated JPDF
provided predictions of the flowfield that were far more accurate than those obtained using Cnom; this was
verified by comparing with (Beresh) experimental velocity measurements on the midplane and crossplane.
The improvement in predictive skill was retained, when examined against experimental data, at other M
and J values, though the agreement was not as good as the M = 0.8, J = 10.2 case.

Clearly, then, Ca, Copt and the calibrated JPDF from the (M = 0.8, J = 10.2) calibration study are
all more predictive than Cnom. However the predictive skill of Copt and the calibrated JPDF from the
(M = 0.8, J = 10.2) calibration study is seen to drop as we apply them to (M,J) combinations other than
(0.8, 10.2). It is unknown whether this drop in predictive skill is significant compared to that of a C obtained
via calibration to experimental data. In this study we perform calibration for C for five (M,J) combinations
and compare its predictive skill versus Ca and Copt obtained from the (M = 0.8, J = 10.2) calibration study.
The ultimate aim of this study is to find a replacement for Cnom in k − ε simulations of compressible JIC
interactions that is robust across a M − J range.
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II. Problem formulation

II.A. Experimental and computational setup

The experimental and computational setup used in this calibration study have been described fully else-
where14 and we provide a summary below. The data used here is obtained from a set of wind tunnel
experiments conducted by Beresh et al.3,4 . A schematic of the test section is shown in Fig. 1. The ex-
periments involve injecting a M = 3.73 jet, of diameter 9.53 mm, into a freestream from the bottom of the
test section. The freestream Mach number is denoted M and the ratio of jet-to-freestream momenta is J .
Experiments are conducted for M = 0.6, 0.7 and 0.8 while J = 10.2. For M = 0.8, experiments are con-
ducted at J = 16.7 and 5.6, in addition to 10.2. The jet bends into the freestream and rolls into a CVP. PIV
measurements are made on two planes, as shown in Fig. 1. The plane of symmetry is called the midplane,
whereas the transverse plane slicing through the CVP is called the crossplane. Velocity measurements are
available on the midplane for all the five experimental datasets being considered in this study. Velocity
measurements (and therefore streamwise vorticity) are available only for the three M = 0.8 test cases (i.e.,
for J = 5.6, 10.2, 16.7) and was used as the calibration observable in our previous work.14 Since we will
perform calibration for all five (M,J) combinations, we will use measurements of streamwise velocity u and
vertical velocity v on the midplane as our calibration observable. Measurements on the midplane are made
at 5 stations, with the first station being 200 mm downstream of the jet and the rest at intervals of 50 mm.
At each location, measurements are made at 63 vertically distributed points called “probes”. The crossplane
is 321.8 mm downstream of the jet.

Figure 1. Schematic of the test section showing the orifice where the jet is introduced and the mid- and crossplane
where experimental measurements are made.

The calibration is performed using the compressible form of the k − ε RANS equation15 and is fully
described in Ref. 14. The most important parameters that affect the flowfield are (Cµ, Cε2, Cε1), which we
will refer to as C. Our flow solver, SIGMA CFD (Sandia Implicit Generalized Mult-Block Analysis Code
for Fluid Dynamics), uses a Roe-TVD flux scheme with a minmod limiter for spatial discretization. Time
integration is carried out using a first order point-implicit scheme. The calculations are initialized using a
first-order spatial scheme, time-marched for 5000 timesteps, and relaxed to convergence using the second
order scheme for 25000 timesteps. Time marching to steady state was carried out using local time stepping
with a gradual CFL ramp to accelerate convergence. A multi-block mesh with approximately 10 million grid
cells is used; mesh convergence studies are in Ref. 6. Details of initial and boundary conditions and mesh
refinement near the walls are in Ref. 14.

II.B. The inverse problem

Let ye be a vector (of length Np) of experimental observations, measured at a set of Np locations (“probes”).
Let ym(C) be model predictions of the same, produced by a parameter setting C. They are related by
ye = ym(C) + ε where ε is a combination of measurement and model-form error. We make a modeling
assumption that the errors at the probes are uncorrelated, independently and identically distributed as a
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zero-mean Gaussian i.e. ε = {εi}, εi ∼ N (0, σ2). σ2 thus provides a crude measure of the model - data misfit
after calibration. If the measurement errors are low, σ2 provides an estimate of the model-form error.

Let P (C, σ2|ye) be the joint probability density function of the parameters and the model - data misfit,
conditional on the observed data ye. Let Π1(C) and Π2(σ2) be our prior belief regarding the distribution of
C and σ2. The likelihood of observing ye, given a parameter setting C, L(ye|C), is given by

L(ye|C, σ2) ∝ 1

σNp
exp

(
−||ye − ym(C)||22

2σ2

)
.

By Bayes’ theorem, the calibrated distribution (or posterior distribution) of (C, σ2) can be given as

P (C, σ2|ye) ∝ L(ye|C, σ2) Π1(C) Π2(σ2) ∝ 1

σNp
exp

(
−||ye − ym(C)||22

2σ2

)
Π1(C) Π2(σ2) (1)

The actual model outputs i.e., components of ym, are the streamwise velocity deficit udef and normalized
velocity vnorm defined as

udef = 1− u

Umax(x)
vnorm =

v

U∞
,

where Umax is the maximum streamwise velocity at an x-location and U∞ is the freestream velocity. Let um
be the predicted streamwise velocity deficit udef and vm be the normalized vertical velocity vnorm for all the
probes . Let ue and ve be their experimental counterparts over all the probes . The specific form of Eq. 1
used in this study is:

P (C, σ2|ue,ve) ∝
1

σNp
exp

(
−||(ue − um(C))/Ku||22

2σ2

)
exp

(
−||(ve − vm(C))/Kv||22

2σ2

)
Π1(C) Π2(σ2),

(2)
where Ku = max(ue) and Kv = max(ve). Normalization of the model-data mismatch using Ku,Kv en-
sures that the contributions from udef and vnorm are equally weighted in the expression for the posterior
distribution.

As in Ref. 14, the inverse problem is solved via sampling. We use a Markov chain Monte Carlo (MCMC)
method called Delayed Rejection Adaptive Metropolis (DRAM; Ref. 16), as implemented in the R17 package
FME18 to draw samples of {C, σ2}. We reconstruct P (C, σ2|ye) empirically by kernel density estimation.19

The prior density for σ2 is defined in terms of its reciprocal i.e., Π2(σ−2) and is modeled using a Gamma
prior i.e., σ−2 ∼ Γ(k, θ), where k = 1, θ = 1. The inverse Gamma prior for σ2 is a conjugate prior which
simplifies sampling of σ−2 via a Gibbs sampler. Also, the prior is virtually non-informative for σ2 > 5.
Raftery-Lewis method20 implemented in the R package mcgibbsit.21 The MCMC method requires O(104)
samples to construct P (C, σ2|ye), each of which requires a 3D RANS model evaluation to provide ym(C).
Since this is impractical, we will develop a surrogate model, a polynomial that maps the dependence of our
calibration variables (um,vm) on C. The surrogate model will serve as a computationally inexpensive proxy
for SIGMA CFD. We consider the following bounds on C taken from Ref. 15:

0.06 ≤ Cµ ≤ 0.12, 1.7 ≤ Cε2 ≤ 2.1, and 1.2 ≤ Cε1 ≤ 1.7. (3)

II.C. Priors and surrogates

An informative prior: While it is tempting to combine the bounds in Eq. 3 into a uniform distribution in
the cuboid C in (Cµ, Cε2, Cε1) space, we shall refrain from doing. Arbitrary combinations of (Cµ, Cε2, Cε1)
from C may not be physical, and consequently, we will use the discrepancy ye−ym(C) to choose a physically
realistic region R ⊂ C to serve as Π1(C). Details on how Π1(C) is constructed are in Ref. 14 and we provide
a summary here.

Constructing the surrogates requires us to generate a training dataset that captures the variation of um
and vm over C. We draw 2744 (= 143) samples of C from C using a quasi Monte Carlo space-filling (Halton
sequence) method and conduct 3D RANS simulations with them using SIGMA CFD. Many of the samples
are non-physical and the simulations do not converge to a steady state. Others (2628 samples) do, but yield
flowfields that are quite unlike transonic, high Reynolds number flows. In order to isolate values of C that
yield realistic flowfields we compute the RMS (root mean square) error between (ue,ve) and (um,vm)for all
the successful simulations and preserve the top 25%, resulting in 0.25×2628 = 657 samples. A random subset
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of these C samples are plotted in Fig. 2 (left) and occupy a certain section of C i.e., they are not uniformly
scattered in C. This is the physically realistic part of C, called R, and forms the basis of constructing the
prior density Π1(C). As in Ref. 14, we define

Π1(C) =

{
1 if C ∈ R
0 otherwise

(4)

The 2628 successful runs (of which 657 mark out R) are used to train a binary support vector machine
classifier. The procedure and software to do so are in Ref. 14. A misclassification rate less than 10% is a
requirement for building a successful classifier. The classifier is used as the implementation of the prior Π1(C)
as described in Eq. 4 and is used within the MCMC procedure to infer the posterior density P (C, σ2|ue,ve).
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Figure 2. Left: A set of C points in C that produce physically realistic flowfields i.e., they approximately mark out R.
Right: A plot of the probes on the midplane where experimental data are available. The filled circles are the probes
for which we could build accurate surrogate models. They track the spatial evolution of the CVP, and do not cover the
boundary layer at the test section walls..

Surrogate models: A surrogate model is defined as a polynomial curve-fit between a model prediction
at a probe i.e., udef and vnorm, that captures their dependence on C. We use the samples of C that
define R, and the flowfields they yield, to learn the polynomial model. The procedure is described in detail
Ref. 14. We start with a cubic polynomial in (Cµ, Cε2, Cε1) space to map C to udef (or vnorm). The fitting
is performed via least-squares regression and simplified via incrementally dropping terms and computing the
Akaike Information Criterion. Many cubic terms are removed and, for a few probes, the surrogate reduces
to a quadratic one. However, simply being able to construct a surrogate does not imply that it is accurate.
As in Ref. 14, we compute the predictive error of the surrogate via repeated random sub-sampling validation
(a form of cross validation) and retain only those probes whose surrogate models have less than 15% error
(for both udef and vnorm). In Fig. 2 (right) we plot the probes on the midplane that were retained for the
(M = 0.8, J = 10.2) case. As the figure shows, of the 63 × 5 = 315 probes for which we have experimental
measurements, we could make surrogate models (of acceptable accuracy) for only 107. These “model-able”
probes follow the trajectory of the CVP. Note that we do not keep any probes in the boundary layer - the
calibration is simply aimed at simulating the jet and its roll-up accurately.

Obtaining correct JPDFs: Having implemented the prior Π1(C) via a classifier and constructed
polynomial surrogates for um and vm, we solve the inverse problem (Eq. 2) for the posterior density
P (C, σ2|ue,ve). We plot the marginalized posterior and prior PDFs in Fig. 3. For comparison, we also
plot the marginalized PDFs obtained using measurements of vorticity on the crossplane14 for the same inter-
action. We see that the two posterior PDFs are close but not identical. Further, the priors that we use here
(plotted using ◦) are different from those used in our previous study,14 plotted with 4. This is especially
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Figure 3. Marginalized posterior PDFs of Cµ, Cε2 and Cε1 as inferred using (ue,ve) (marked “UV”) and using streamwise
vorticity (marked “Omega”). The corresponding priors are plotted using symbols. The vertical line is the nominal
value.

true for Cε1. The comparison ensures that (1) (ue,ve) are as informative about (Cµ, Cε2, Cε1) as vorticity
on the crossplane and (2) the classifier and surrogates were constructed with a degree of accuracy that is
comparable to our previous work.14 Therefore, the calibration methodology using (ue,ve), as described
above, can be applied to other JIC interactions i.e., those with different (M,J) combinations.

III. Results

In Fig. 4 we plot the marginalized PDFs (i.e., P (C, σ2|ue,ve)) obtained for JIC interactions corresponding
to (M,J) = (0.6, 10.2), (0.7, 10.2), (0.8, 10.2), (0.8, 16.7) and (0.8, 5.6). The nominal values Cnom are plotted
using dashed vertical lines and the analytical estimate Ca using a solid vertical line. It is clear that Cε2 is
much higher that the nominal value and one could argue that the upper bound for Cε2 should be increased
to allow a better calibration. The nominal estimate for Cε1 agrees with the peak for many of the calibration
cases except for the (0.6, 10.2) case. The PDFs for Cµ do not show any consistent trend, though one we do see
3 peaks in the region Cµ > 0.11. The analytical estimate for Cε2 and Cµ are closer to the calibrated values
than the nominal one; whereas the opposite holds true for Cε1. The three parameters exert different degrees of
influence on the flowfield and it is unclear whether the predictive skill of Ca may be similar to the calibrated
JPDF. We have already shown that Ca is more predictive than Cnom.13 Post-calibration, the residual
model-data mismatch (quantified by σ) is also plotted in Fig. 4; it is clear that the (M = 0.6, J = 10.2) has
the worst fit whereas the (M = 0.8, J = 10.2) and (M = 0.7, J = 10.2) have the best fits (lower σ).
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Figure 4. Marginalized posterior PDFs inferred for JIC interactions corresponding to five different (M,J) combinations.
The dashed vertical line is Cnom whereas the solid line is the analytical estimate Ca.

IV. Conclusions

In the final paper, we will investigate the following questions:

1. We will investigate if the predictive skill of (Cµ, Cε2, Cε1), as inferred from (ue,ve), is comparable to
that inferred in our previous paper.14 We will do so by performing a posterior predictive test and
plotting the velocities/vorticities on the midplane/crossplane, along with the experimental data.

2. We will quantify the degree of variation achieved in the flowfield due to the uncertainty in (Cµ, Cε2, Cε1).
This will also quantify the importance of σ in bracketing the experimental data when conducting
simulations using parameters sampled from the posterior JPDF.

3. We will compare the predictive skills of the JPDF, Ca and Cnom versus experimental data. This is
to mostly to check whether Ca can be used as a convenient approximation to the calibrated JPDF in
future RANS simulation.
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