
Available online at www.sciencedirect.com

Procedia Engineering 124 (2016) 96–108
www.elsevier.com/locate/procedia

25th International Meshing Roundtable (IMR25)

Recursive Spoke Darts: Local Hyperplane Sampling for Delaunay
and Voronoi Meshing in Arbitrary Dimensions

Mohamed S. Ebeidaa, Ahmad A. Rushdia,b

aSandia National Laboratories, Albuquerque NM 87185, U.S.A.
bInstitute for Computational Engineering and Sciences, University of Texas, Austin TX 78712, U.S.A

Abstract

We introduce Recursive Spoke Darts (RSD): a recursive hyperplane sampling algorithm that exploits the full duality between
Voronoi and Delaunay entities of various dimensions. Our algorithm abandons the dependence on the empty sphere principle in
the generation of Delaunay simplices providing the foundation needed for scalable consistent meshing. The algorithm relies on
two simple operations: line-hyperplane trimming and spherical range search. Consequently, this approach improves scalability as
multiple processors can operate on different seeds at the same time. Moreover, generating consistent meshes across processors
eliminates the communication needed between them, improving scalability even more. We introduce a simple tweak to the algo-
rithm which makes it possible not to visit all vertices of a Voronoi cell, generating almost-exact Delaunay graphs while avoiding
the natural curse of dimensionality in high dimensions.
c© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 25th International Meshing Roundtable (IMR25).

Keywords: Delaunay Triangulation, Voronoi Meshes, High-Dimensional Spaces.

1. Introduction

Delaunay and Voronoi meshing techniques are very popular in several computational geometry [1,2] and mesh-
ing [3–5] problems for their rich geometric structures and appealing element properties. For a set of point seeds X in
the d-dimensional Euclidean spaceD, the Delaunay mesh is defined by the triangulation Del(X) where no point in X
falls inside the circum-hypersphere of any simplex in Del(X) (e.g., in 2d, every triangle in a Delaunay triangulation is
associated with an empty circumcircle passing through its vertices). The dual of Del(X) is the Voronoi mesh Vor(X)
which splitsD into cells where each cell contains all the points closer to its seed than any other seed in X. Fundamen-
tally, a Domain Decomposition (DD) method breaks down a domain into a finite number of elements, with certain
desired properties, e.g., positive Jacobians, convex elements, and planar facets. A DD also defines how a point in the

∗ Corresponding author. Tel.: +1-505-844-0456
E-mail address: msebeid@sandia.gov

1877-7058 c© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of organizing committee of the 25th International Meshing Roundtable (IMR25).

SAND2016-10992C



2 / Procedia Engineering 124 (2016) 96–108

domain is assigned to an element (or more), and how each element in the DD identifies its neighbor element(s) in its
close proximity.

For example, the Voronoi Domain Decomposition (VDD) decomposes a domain into convex elements (cells)
bounded by planar convex facets. VDD cells are associated with generating sample points. Each cell is formed
around a given seed, containing all points closer to that seed than any other seed in the domain. Despite their abun-
dance of desired features, VDDs are not yet fully exploited in many applications. This can be mainly attributed to
their unsolved computational challenges; generating true (unclipped) Voronoi cells that naturally conform to pre-
scribed boundaries is an open computational geometry problem. In low-dimensions, state-of-the-art techniques rely
on clipping, which lacks robustness and generates cells that are non-convex and not star-shaped. See Figure 1 for a 2d
illustration of how clipping is employed into the evaluation of points neighborhood and consequently define Vor(X).
Note the curse of dimensionality associated with this class of hyperplane-hyperplane trimming operations.

In high-dimensions, explicit generation of Voronoi cells, regardless of boundaries, is intractable. The number
of corners of each Voronoi cell grows exponentially with dimension, imposing a lingering curse of dimensionality.
Therefore, several Delaunay and Voronoi meshing approaches were tailored to specific problems with fixed dimen-
sionality (e.g., 4d medical images [6] and scientific visualization [2,7]) or for a particular set of points (e.g., [8]).

1.1. Related Work

Several methods rely on the duality between Del(X) and Vor(X) for their generation. Note that Del(X) is defined
through the Delaunay simplices covering the convex hull of the points in X. While a cell in Vor(X) contains all the
points closer to its seed than any other seed inX, a Delaunay simplex in Del(X) connects d +1 seeds, and is associated
with an empty circumsphere (Delaunay sphere) that has no seeds inside it. The center of a Delaunay sphere is a
corner of a Voronoi cell (Voronoi vertex). This feature is termed: the empty sphere principle, and is the basic rule
to generate Del(X); see Figure 2 for a 2d example of how empty spheres develop as points are added to the domain
and the resulting Del(X). An important remark at this point is that Vor(X) is uniquely defined for a given X, while
Del(X) is not due to potential ambiguous connectivity scenarios (e.g., when more than d + 1 seeds fall on the surface
of the same Delaunay sphere). An ambiguous Delaunay simplex corresponds to a degenerate Voronoi entity of some
dimension. There exist several algorithms to generate Vor(X):

• Direct algorithms: compute the convex hull of X, e.g., plane cutting [9], Fortune’s [10], and Quickhull [11].
• Indirect algorithms: start by generating Del(X) and obtain Vor(X) as its dual, e.g., Bowyer—Watson [12–14].

In a nutshell, any exact algorithm must visit all Voronoi vertices, or equivalently visit the corresponding Delaunay
spheres in order to construct a VDD or its dual Delaunay simplices. Note that the number of Voronoi vertices grows
with dimensions introducing a natural curse of dimensionality. Therefore, both Voronoi and Delaunay DDs are
completely abandoned in high-dimensional problems. Several computational challenges face each of the Voronoi
and Delaunay decomposition approaches. On the direct methods front, plane cutting techniques go the extra mile of
constructing the entire facets (not just vertices) of each Voronoi cell via successive hyperplane-hyperplane trimming
operations. This approach enables the independent construction of different Voronoi cells; an appealing feature for
scalable parallel implementations. However, as the number of dimensions grows, these operations become more
complex and would require intractable extra storage capacity to track all bounding entities of the hyperplane being
trimmed. This add-on algorithmic curse of dimensionality limits the implementation of plane cutting approaches to
low dimensions (e.g., d = 2, 3) [15,16]. The Quickhull algorithm avoids the successive trimming operations by lifting
the seeds onto d + 1 paraboloid, deepening the curse of dimensionality and therefore increasing the computational and
storage requirements exponentially. The implementation of Quickhull, Qhull, is the standard tool to build Voronoi
and Delaunay meshes in arbitrary dimensions.

Indirect methods, on the other hand, rely on the empty sphere principle [17–20] and have been well-studied in the
last few decades. However, most of the research efforts here were directed towards low dimensional problems (e.g.,
d = 2, 3). Tools using the empty sphere principle are usually dimension-specific. Furthermore, from an implementa-
tion perspective, state of the art tetrahedral Delaunay meshing software tools are inherently sequential, i.e., they insert
points one after the other, which leads to poor parallel scalability. Moreover, changing the order of point insertions
typically generates inconsistent meshes.



/ Procedia Engineering 124 (2016) 96–108 3

a

(a) Identifying the Voronoi
neighbors of seed a.

a

b

(b) Seed b is declared as a can-
didate neighbor of a.

a

b

c

(c) Seed c trims the candidate
facet associated w/ b.

a

b

c

d

(d) Seed d further trims the can-
didate facet.

a

b

d

e

(e) Trimming using all seeds, b
is a neighbor of a.

a

b

c

(f) Seed c is declared a new can-
didate neighbor of a.

a

b

c

f

(g) Trimming with f, c can not
be a neighbor of a.

a

b

i
d

g

f

e

h

(h) After considering all seeds,
Vor(a) is formed.

Figure 1: Constructing a 2-d Vor(X) via successive plane cutting operations. To find the exact cell edges around seed a, we need to identify its
neighbor cells, which in turn requires successive hyperplane-hyperplane trimming operations, adding an algorithmic curse of dimensionality.

(a) Largest empty circumcircle
passing through 3 points inD.

(b) As a point is added, three
empty circumcircles are created.

(c) Adding more points changes
the circumcircles’ arrangement.

(d) All points are added, and cir-
cumcircles define Del(X).

Figure 2: Constructing a 2-d Del(X) via the empty sphere principle: the circumcircles of all valid Delaunay triangles have empty interiors.

(a) A random line samples a
point from a Voronoi facet.

(b) A redundant point sampled
from the same facet.

(c) Local MC line sampling to
find Delaunay neighbors.

(d) Neighbors sharing relatively
small facets missed.

Figure 3: Constructing a 2-d Del(X) via local hyperplane sampling: identifying the significant neighbors of a given Voronoi cell can be done
without imposing the curse of dimensionality associated with the hyperplane-hyperplane trimming operations.



4 / Procedia Engineering 124 (2016) 96–108

1.2. Local Hyperplane Sampling

The idea of sampling a parameter space using a random well-spaced pointset is very appealing for high-dimensional
applications, e.g., Uncertainty Quantification (UQ) and optimization. However, the state-of-the-art algorithms to
generate it rely on background grids to track the uncovered regions for future sampling. This introduces a curse of
dimensionality, bounding their implementations to about 6-d in practice. A non-traditional sampling approach uses
hyperplane samples (e.g., lines, planes, etc) rather than simple 0-d points. For example, a Maximal-Poisson disk
sampling (MPS) technique [21] aims to generate well-spaced samples that can achieve maximality in covering D.
Using hyperplane samples was found to have superior performance in finding the voids between MPS disks, and
hence reach a maximal disk packing in high dimensions without suffering from the curse of dimensionality [22].
Coupling this hyperplane sampling approach with the duality between Voronoi facets and Delaunay edges enabled
the first implicit Voronoi domain decomposition, where a Voronoi cell is not explicitly constructed via its vertices.
Instead, a domain point is classified into a cell using a closest neighbor search over all seeds. This operation is
not costly is it is independent of dimensionality. In the Spoke Darts algorithm [23], hyperplane sampling was used
to solve complex global optimization problems in high dimensions. This approach relies on the duality between a
Voronoi facet Fv and the dual Delaunay edge Ed. The local hyperplane sampling approach does not visit any Voronoi
vertex. Instead, it randomly samples points from a Voronoi facet to witness the dual Delaunay edge. The curse of
dimensionality associated with visiting all Voronoi vertices is therefore broken. However, some Delaunay edges might
be missed if their dual Voronoi facets are relatively small, hence the resulting Delaunay graph is only approximate.
See Figure 3 for a 2d illustration of how the significant Delaunay neighbors with relatively-large shared facets are
found via successive Monte Carlo (MC) sampling operations.

2. Algorithm Overview

The local hyperplane sampling technique using by Spoke Darts in 1.2 only exploits the duality between Voronoi
facets and Delaunay edges. This indeed breaks the curse of dimensionality and avoids the usage of the empty sphere
principle, yet the generated Delaunay graph is only approximate. For an exact solution in arbitrary number of dimen-
sions, we introduce a recursive local hyperplane sampling approach: Recursive Spoke Darts (RSD), which exploits
the full duality between the entities of the Voronoi and Delaunay meshes. RSD uses the relations between Voronoi’s
facets Fv and edges Ev) and Delaunay’s edges Ed and facets Fd to find both Vor(X) and Del(X) in arbitrary dimensions
and generate their exact meshes in a robust fashion.

In brief, our algorithm starts at an arbitrary random Voronoi seed, samples random spokes (rays) from a series of
d, d − 1, . . . , 1-dimensional spaces (aligned with various Voronoi entities) in order to identify valid Voronoi vertex
at which we sample d deterministic lines along the Voronoi edges connected to it to identify its neighbor vertices.
For illustration and without loss of generality, we present the steps of the RSD algorithm in a 3-dimensional space.
Similar steps are employed in other dimensions.

1. Initial Random Seed Selection: Pick an arbitrary Voronoi seed x0 to start from.
2. 3-d Random Spoke Sampling: Sample a random spoke in the 3-d space starting from x0. This ray identifies a

point x1 on a Voronoi facet Fv which in turn identifies the dual Delaunay edge Ed of Fv.
3. 2-d Random Spoke Sampling: Starting from point x1, sample another random spoke from the 2-d space of Fv,

identifying point x2 along a Voronoi edge Ev that bounds Fv. Point x2 identifies the Delaunay facet Fd; which is
the dual of the Voronoi edge Ev.

4. 1-d Random Spoke Sampling: Sample another random spoke starting at point x2 along the 1-d edge Ev to identify
a Voronoi vertex x3. Vertex x3, in turn, identifies its dual Delaunay simplex connecting x0 and 3 neighbor seeds.

5. Deterministic Line Sampling: Once a vertex is identified, 3 lines are sampled along the Voronoi edges connected
to it in order to retrieve its neighbor vertices in the same cell, and their corresponding dual Delaunay simplices.

6. Propagation: Continue this propagation until each Voronoi vertex identifies its neighbor vertices on the same
cell, completing the exact construction of that cell and its dual Delaunay simplices.

See Figure 4 and Figure 5 for illustrative examples in 2-d and 3-d spaces, respectively.



/ Procedia Engineering 124 (2016) 96–108 5

(a) A random ray samples a
point from a 2-d space.

(b) A point is identified as edge
and neighbor witness.

(c) A random ray samples a
point from a 1-d edge.

(d) A delaunay simplex around
the retrieved vertex.

(e) Two line samples from ver-
tex along connected edges.

(f) Neighbor vertices and dual
simplices identified.

(g) More line samples to iden-
tify other verteces.

(h) All vertices and their dual
simplices identified.

Figure 4: Constructing exact 2-d Del(X) and Vor(X) using our Recursive Spoke Darts (RSD) approach.

x0

(a) Initial seed selection.

x0

x1

(b) Random 3-d spoke identifies x1.

x0

x1

x2

(c) Random 2-d spoke identifies x2.

x0

x1

x2

x3

(d) Random 1-d spoke identifies x3.

x0

x1

x2

x3

(e) 3 lines identify neighbor vertices.

x0

x1

x2

x3

(f) Further line propagation.

Figure 5: Constructing exact 3-d Del(X) and Vor(X) using our Recursive Spoke Darts (RSD) approach.



6 / Procedia Engineering 124 (2016) 96–108

3. Algorithm Significance

The RSD algorithm has following significant properties, which makes it appealing especially for scalable parallel
meshing applications:

1. Abandoning the dependence on the empty sphere principle. The empty sphere principle has serious limitations.
In specific, it imposes a sequential seed insertion, and results in different meshes in case of Delaunay ambiguities
if the order of insertion changes. RSD abandons the usage of the empty sphere principle in the generation of
Delaunay simplices providing the foundation needed for scalable consistent meshing.

2. Scalable Parallel Meshing. The RSD approach guarantees scalability as multiple processors can operate on
different seeds at the same time. Moreover, generating consistent meshes across processors via unified operations
eliminates the communication needed between them even at interfaces, improving scalability even more.

3. Robust Dimension-Independent Implementation. From an implementation point of view, the RSD algorithm
relies on two simple operations: a) line-hyperplane trimming, and b) spherical range search. The first operation
recursively exploits the full Voronoi-Delaunay duality, eliminates the need for intractable hyperplane-hyperplane
trimming associated with direct methods, and enables dimension-independent implementations. The second
operation spots the equidistant seeds from a retrieved vertex to robustly construct the dual Delaunay simplices in
a canonical form.

4. Consistent Delaunay Meshing. Conflicts between ambiguous Delaunay entities are handled using integer opera-
tors on seed indices. This guarantees mesh consistency regardless of the number of processors/partitions utilized,
as long as the order of seeds’ indices is locally preserved in each partition. Similar operators eliminate slivers on
the fly, ensuring a high-quality mesh.

5. Simplification for Tractability in High-Dimensions. To avoid the natural curse of dimensionality associated with
Delaunay and Voronoi meshing in high dimensions, RSD makes it possible not to visit all vertices. This can be
simply achieved by limiting the propagation from a Voronoi vertex to others, still improving the accuracy of the
approximate Delaunay graph over that resulting from the non-recursive version.

4. Implementation Details

In this section, we list further details about the implementation of our algorithm. In specific, we present our initial
data structure (a k-d tree) for neighborhood searches, illustrate how we use it to trim random spokes, and how we
resolve ambiguities in a consistent way so that all processors would make the same resolution decision with no need
for communication between them.

4.1. Initial Data Structure

We use balanced k-d trees [24] for our initial domain decomposition as they do not suffer from the curse of
dimensionality and can also be implemented in parallel [25,26]. On average, balanced k-d trees use O(log N) to
find the nearest neighbor within a tree of N nodes. Our k-d trees are balanced in the sense that at any level in the tree:
a pivot hyperplane in some sub-domain is chosen to pass through the point at or closest to the median of the points in
that sub-domain. See Figure 6 for a 2-d example of their construction. We rely on this class of binary trees to find the
closest point to the end of the random spoke and hence make the right spoke-trimming decision as we explain next.
We use qsort [27] to speed up the sorting process along the tree construction.

4.2. Trimming Spokes

At any Voronoi seed xi in dimension d, whenever a random spoke #»s (xi) is sampled, it needs to be trimmed at
the boundaries of that Voronoi cell. For this purpose, we use the k-d tree to collect the closest neighbors {x j} of
that Voronoi seed and use them to trim the spoke. At least d + 1 neighbors are needed. Our algorithm collects
neighbors using a neighborhood sphere centered at xi, and the radius of that sphere is parametrized by α; the global
targeted aspect ratio of Voronoi cells, and rmin; the distance between xi and its closest neighbor x∗. The radius of the



/ Procedia Engineering 124 (2016) 96–108 7

(a) Binary tree splitting.

0

1

3

7 8

4

9 10

15

2

5

11 12

6

13 14

16

(b) k-d tree connections.

Figure 6: Building a balanced k-d tree as an initial domain partitioning data structure for our algorithm. Example shows a 2-d tree of 16 nodes.

neighborhood sphere around xi is then given by ri = α∗ rmin. The spoke is then trimmed using the Voronoi hyperplane
between xi and the closest point in the sphere to the end of the spoke xc.

The process goes on until no point in the sphere can trim the spoke anymore; at which the dimensionality of the next
spoke is reduced by 1. To reduce the dimensionality at each spoke step, we employ the Grahm-Schmidt approach [28]:
given a set of orthogonal basis vectors {u0,u1, . . . ,ud−1} in the space Rd, we can construct another orthogonal basis
set {v0, v1, . . . , vd−1} by successive projection:

v0 = u0,

vk = uk −

k−1∑
j=1

projv j
uk

Using this approach, we construct the basis vectors D∗ of the upcoming spoke, orthogonal to the basis of prior
spokes D∗∗. This continues until the dimensionality of future spoke is 0; indicating a Voronoi vertex, at which the
propagation step kick in along associated Voronoi edges until all Voronoi vertices around xi are visited. Obviously,
the point distribution also impacts the construction of Delaunay simplices. Figure 7 shows the impact of increasing α
during the successive phases of our algorithm for a set of well-spaced points. Similarly, Figure 8 shows the impact of
increasing α on the construction of the Delaunay graph when the initial 2-d pointset is Monte-Carlo sampled.

In general, our algorithm progressively increases α as illustrated in Figure 7 and Figure 8. Initially, α starts at
the value of 2 (sufficient for a uniform well-spaced pointset). The value of α gets doubled in each phase, searching
for Voronoi vertices of cells with matching (or less) aspect ratios. Experimentally, we chose a termination value of
αmax = 210. This limiting value of α can be increased to handle suspected cases on Voronoi cells with higher aspect
ratios, with no significant increase in meshing time. Even with Monte Carlo pointsets, the value of αmax was sufficient
in all our experiments.



8 / Procedia Engineering 124 (2016) 96–108

(a) Pointset X (b) α=2 (c) α=4 (d) α=8

(e) α=16 (f) α=32 (g) α=64 (h) α=128

Figure 7: RSD construction of 2-d Delaunay meshes on well-spaced pointset X as the target aspect ratio parameter α is increased.

(a) Pointset X (b) α=2 (c) α=4 (d) α=8

(e) α=16 (f) α=32 (g) α=64 (h) α=128

Figure 8: RSD construction of 2-d Delaunay meshes on Monte Carlo pointset X as the target aspect ratio parameter α is increased.



/ Procedia Engineering 124 (2016) 96–108 9

(a) Initial Delaunay simplex
constructed.

(b) An ambiguity sphere is de-
tected with other points on it.

(c) The center of mass of all
points is added.

(d) Connect point with lowest
index to all others.

Figure 9: Consistent resolution of Delaunay ambiguities. If an ambiguity is detected, the center of mass of the ambiguous points is temporarily
added, resolving the ambiguity and deducing the connections between these points. Removing the point and keeping the connections, further
connections are added by connecting the point with the lowest index to all others.

St
ru

ct
ur

ed
M

on
te

-C
ar

lo

RSD: Del Mesh RSD: Approximate Del Graph Spoke-Darts: Approximate Del Graph

Figure 10: Using 121 structured and Monte-Carlo points in 2-d, we distinguish the construction of the Delaunay mesh Del(X) using RSD, an
almost-exact approximation of the Delaunay graph using the approximate version of RSD, and an approximation of the Delaunay graph using
Spoke-Darts [23] with several missing Delaunay edges.

4.3. Resolving Ambiguities and Conflicts

Our algorithm can consistently resolve Delaunay ambiguities without any communication load between processors.
If an ambiguity is detected, we add a point in the center of the ambiguous points, temporarily resolving the ambiguity
and deducing the connections between these points. Removing the center of mass point and keeping the connections,
we add further connections by connecting the point with the lowest index to all others. Since this rule is known ahead



10 / Procedia Engineering 124 (2016) 96–108

of time, different processors would resolve an ambiguity in the same exact way, reaching the same exact mesh. See
Figure 9 for an illustrative example.

4.4. Approximate RSD Implementation in High Dimensions

In high dimensions, the number of Voronoi vertices and Delaunay simplices grow exponentially; a major bottleneck
for discretizing high dimensional spaces. However, the number of Delaunay edges relies only on the number of input
points (and not dimension), hence can be enumerated efficiently. Similarly, although the number of Voronoi vertices
becomes intractable in high dimension, the number of Voronoi cells has a one-to-one mapping to the number of input
points (Voronoi seeds). Coupling these observations makes it possible to decompose high dimensional spaces in a
tractable way. In this case, our RSD algorithm can still proceed to some precision and stop the propagation step
before all vertices are collected. Once a Voronoi vertex is retrieved, the equi-distant Voronoi seeds to that vertex
are connected in the approximate Delaunay graph. Visiting a Voronoi vertex that adds no new Delaunay edges to
the approximate graph is considered a miss. We stop the approximate RSD procedure around some seed when some
number of successive misses occur (e.g., 100 in our experiments). This approximate version of RSD samples a subset
of the Voronoi vertices, rather than visit all of them. Our experiments show that the approximate RSD algorithm
generated an almost exact Delaunay graph despite not visiting all vertices.

See Figure 10 for comparisons between Spoke Darts, RSD, and RSD approximate version. Using 121 structured
and Monte-Carlo points in 2-d, we distinguish the construction of the Delaunay mesh Del(X) using RSD, an almost-
exact approximation of the Delaunay graph using the approximate version of RSD, and an approximation of the
Delaunay graph using Spoke-Darts [23] with several missing Delaunay edges. Note that a Delaunay meshing tech-
nique has to resolve Delaunay ambiguities when more than d+1 points fall on the same Delaunay sphere. Some of the
Delaunay edges have to be discarded to avoid self-intersecting elements. RSD does that successfully and consistently
as explained in section 4.3 and illustrated in Figure 9. The Delaunay graph, however, does not need these conflict
resolutions, as shown in the structured case of the approximate version of RSD of Figure 10.

5. Experimental Results

In this section, we compare the performance of RSD to standard Delaunay and Voronoi meshing techniques in
different dimensions in terms of the meshing runtime. In specific, we compare RSD to the state-of-the-art Delauanay
meshing techniques: Triangle [18,29], TetGen [30], and Qhull [31]. Triangle generates exact Delaunay triangulations
and Voronoi diagrams in 2-d. TetGen is the state of the art method to generate tetrahedral meshes on polyhedral
domains in 3-d. Qhull computes the convex hull using the Quickhull algorithm, and hence finds the Delaunay trian-
gulation and Voronoi diagram in arbitrary dimensions.

Figure 11 shows comparison results illustrating how RSD would perform with a variable number of processors,
compared to Triangle, Qhull, and TetGen in 2-d, 3-d, and 4-d. Plots show the runtime of each method against the
output number of Delaunay simplices. For a well-spaced set of points with numerous Delaunay ambiguities, RSD
was slightly slower than Triangle in 2-d, however, it successfully outperformed TetGen and Qhull in 2-, 3-, and
4-d. Resolving ambiguities turned out to be a challenge for Qhull in various dimensions. In 2-d, Qhull did not
produce valid meshes with number of simplices larger than 10M. To demonstrate the consistent meshing capability
of RSD, we also ran our serial implementation on a number of processors p with no communication between them.
Each processor loaded and constructed the k-d tree for the entire input pointset and generated the output Delaunay
simplices associated with a subset of the input vertices; as illustrated in Figure 12. We show the performance of
p = 10 and p = 50 in Figure 11. Applying domain subdivision to assign points to these processors would further
improve the parallel performance. For the case of Monte-Carlo set of points in the right column of Figure 11, the
aspect ratio of the elements deteriorate significantly. Although this impacted the runtime performance of RSD, it was
still capable of generating exact Delaunay meshes in linear time. A thorough analysis of this capability including
domain subdivisions is to be addressed in a follow-up paper.

To validate and check our final meshes, we rely on the “Empty Sphere Principle” to check our meshes and validate
the final results. For example, we would construct the circumsphere of every output Delaunay simplex and check that
its center matches the corresponding dual Voronoi vertex retrieved by our algorithm.



/ Procedia Engineering 124 (2016) 96–108 11

2-
d

Number of Simplices
106 107 108

R
un

tim
e

10-1

100

101

102

103

RSD - 1
RSD - 10
RSD - 50
Triangle
Qhull

Number of Simplices
106 107 108

R
un

tim
e

100

101

102

103

RSD - 1
Triangle
Qhull

3-
d

Number of Simplices
106 107 108

R
un

tim
e

100

101

102

103

RSD - 1
RSD - 10
RSD - 50
TetGen
Qhull

Number of Simplices
105 106 107

R
un

tim
e

10-1

100

101

102

RSD - 1
TetGen
Qhull

4-
d

Number of Simplices
105 106 107

R
un

tim
e

10-1

100

101

102

103

104

RSD - 1
RSD - 10
RSD - 50
Qhull

Number of Simplices
105 106 107

R
un

tim
e

100

101

102

103

RSD - 1
Qhull

(a) Structured (b) Monte-Carlo

Figure 11: Runtime comparisons between Triangle, Qhull, TetGen, and RSD with a variable number of processors (where RSD-p indicates the
utilization of p processors). Rows present different dimensionality: 2-d, 3-d, and 4-d, while columns present different point distribution: well-
spaced structured and Monte-Carlo.

(a) Pointset X (b) α=2 (c) α=4 (d) α=8

Figure 12: RSD parallel construction of 2-d Delaunay meshes on 10 processors, with 100 MC points as α is increased.



12 / Procedia Engineering 124 (2016) 96–108

6. Conclusions

We introduced a novel recursive hyperplane sampling algorithm to construct exact Delaunay meshes in low-
dimensions and approximate Delaunay graphs in high-dimensions. Our approach exploits the full duality between
Voronoi and Delaunay entities of various dimensions, and abandons the dependence on the empty sphere principle in
the generation of Delaunay simplices providing the foundation needed for scalable consistent meshing, resulting in a
communication-free implementation. We demonstrated the capabilities of our algorithm when compared to state-of-
the-art Delaunay meshing tools (Triangle, TetGen, and Qhull). We showed that the construction of an almost-exact
Delaunay graph is tractable using the approximate version of our algorithm. Our future step include a complete anal-
ysis of the accuracy of that approximate version in high dimensions. We will also investigate various techniques to
improve the RSD performance when handling random pointsets.

References

[1] C. D. Toth, J. O’Rourke, J. E. Goodman, Handbook of discrete and computational geometry, CRC press, 2004.
[2] J.-R. Sack, J. Urrutia, Handbook of computational geometry, Elsevier, 1999.
[3] S.-W. Cheng, T. K. Dey, J. Shewchuk, Delaunay mesh generation, CRC Press, 2012.
[4] P. Frey, P.-L. George, Mesh generation, John Wiley & Sons, 2013.
[5] H. Edelsbrunner, Geometry and topology for mesh generation, Cambridge University Press, 2001.
[6] P. Foteinos, N. Chrisochoides, 4d space–time delaunay meshing for medical images, Engineering with Computers 31 (2015) 499–511.
[7] C. Wang, J. Tao, Graphs in scientific visualization: A survey, in: Computer Graphics Forum, Wiley Online Library, 2016.
[8] E. Karabelas, M. Neumüller, Generating admissible space-time meshes for moving domains in d + 1-dimensions, arXiv preprint

arXiv:1505.03973 (2015).
[9] C. H. Rycroft, G. S. Grest, J. W. Landry, M. Z. Bazant, Analysis of granular flow in a pebble-bed nuclear reactor, Physical review E 74 (2006)

021306.
[10] S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica 2 (1987) 153–174.
[11] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software (TOMS)

22 (1996) 469–483.
[12] A. Bowyer, Computing Dirichlet tessellations, The Computer Journal 24 (1981) 162–166.
[13] D. F. Watson, Computing the n-dimensional delaunay tessellation with application to Voronoi polytopes, The Computer Journal 24 (1981)

167–172.
[14] H. Si, Tetgen, a delaunay-based quality tetrahedral mesh generator, ACM Transactions on Mathematical Software (TOMS) 41 (2015) 11.
[15] C. Rycroft, Voro++: A three-dimensional Voronoi cell library in C++, Lawrence Berkeley National Laboratory (2009).
[16] M. S. Ebeida, S. A. Mitchell, Uniform random Voronoi meshes, in: Proceedings of the 20th International Meshing Roundtable, Springer,

2012, pp. 273–290.
[17] L. P. Chew, Guaranteed-quality Delaunay meshing in 3d (short version), in: Proceedings of the thirteenth annual symposium on Computational

geometry, ACM, 1997, pp. 391–393.
[18] J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation, Computational geometry 22 (2002) 21–74.
[19] T. K. Dey, J. A. Levine, Delaunay meshing of piecewise smooth complexes without expensive predicates, Algorithms 2 (2009) 1327–1349.
[20] J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Applied computational geometry towards

geometric engineering (1996) 203–222.
[21] M. S. Ebeida, S. A. Mitchell, A. Patney, A. A. Davidson, J. D. Owens, A simple algorithm for maximal Poisson-disk sampling in high

dimensions, Computer Graphics Forum 31 (2012) 785–794.
[22] M. S. Ebeida, A. Patney, S. A. Mitchell, K. R. Dalbey, A. A. Davidson, J. D. Owens, k-d darts: Sampling by k-dimensional flat searches, ACM

Transactions on Graphics (2014). In press. Also at arXiv:1302.3917 [cs.GR]; URL http://arxiv.org/abs/1302.3917.
[23] M. S. Ebeida, S. A. Mitchell, M. A. Awad, C. Park, L. P. Swiler, D. Manocha, L.-Y. Wei, Spoke darts for efficient high dimensional blue noise

sampling, arXiv preprint arXiv:1408.1118 (2014).
[24] J. L. Bentley, Multidimensional binary search trees used for associative searching, Communications of the ACM 18 (1975) 509–517.
[25] L. Hu, S. Nooshabadi, M. Ahmadi, Massively parallel kd-tree construction and nearest neighbor search algorithms, in: Circuits and Systems

(ISCAS), 2015 IEEE International Symposium on, IEEE, 2015, pp. 2752–2755.
[26] N. Rajani, K. McArdle, I. S. Dhillon, Parallel k nearest neighbor graph construction using tree-based data structures, in: 1st High Performance

Graph Mining workshop, Sydney, 10 August 2015, 2015.
[27] C. Allison, Sorting with qsort, C Users J. 11 (1993) 107–ff.
[28] L. N. Trefethen, D. Bau III, Numerical linear algebra, volume 50, Siam, 1997.
[29] J. R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, in: M. C. Lin, D. Manocha (Eds.), Applied

Computational Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Science, Springer-Verlag, 1996, pp.
203–222. From the First ACM Workshop on Applied Computational Geometry.

[30] H. Si, Tetgen, a delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw. 41 (2015) 11:1–11:36.
[31] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Softw. 22 (1996) 469–483.


