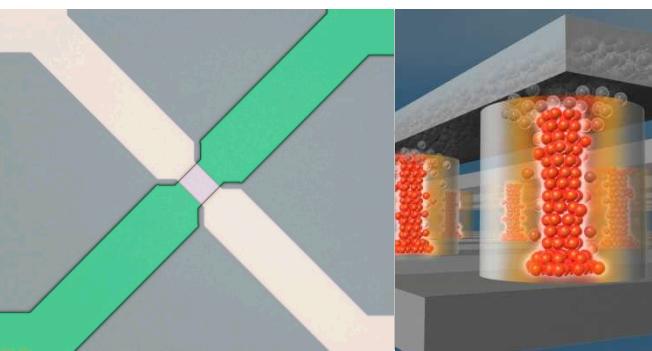
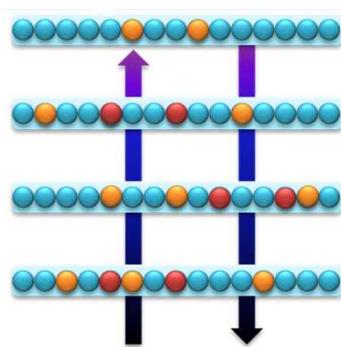


Exceptional service in the national interest



Neurologically Inspired Architectures and Algorithms for Stream Processing

John Naegle
Sandia National Laboratories

Chesapeake Large Scale Analytics Conference, October 25-27, 2016

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. XXXXXXXXXX

Acknowledgments

Algorithms: Brad Aimone, Ojas Parekh, Nadine Miner, Sandra Faust, Steve Verzi, Fred Rothganger, Frances Chance, Tu-Thach Quach, Chris Lamb, Sam Mulder, William Severa, Kris Carlson, Michael Smith, Cynthia Phillips

Architecture: John Naegle, Alex Hsia, Craig Vineyard, John Donaldson, Aaron Hill

Hardware: Matt Marinella, Tom Beechem, Ron Goeke, Alec Talin, Paul Kotula, Farid El Gabaly, Elliot Fuller, Jim Stevens, Sapan Agarwal, David Hughart, Andy Armstrong, David Henry, Gaadi Haase, Steve Wolfley, Derek Wilke, Michael Van Heukelom, Michael Thomas, Anthony McDonald, Carl Smith

Modeling: Steve Plimpton, Richard Schiek, Brian Tierney, Robert Bondi, Fred Rothganger

Application areas: Tim Draelos, Justin Doak, Jonathan Cox, Joe Ingram, Jason Wheeler

Partnerships:

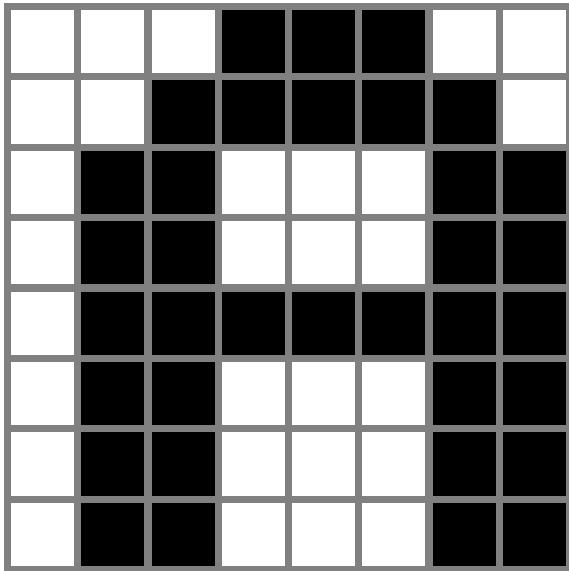
David Follett, Duncan Townsend – Lewis Rhodes Labs

Isaac Richter - U. Rochester; Felix Wang – UIUC; Marek Osinski – UNM;

UNIVERSITY of ROCHESTER

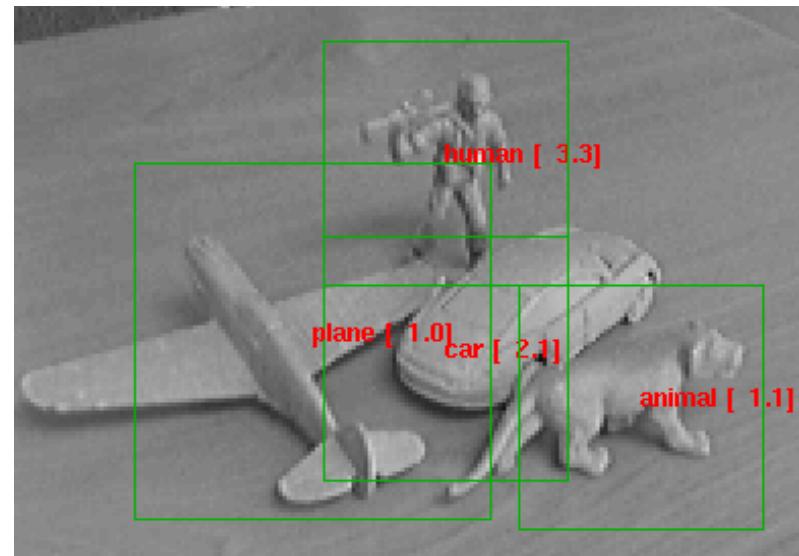
Neural-inspired (data-driven) computing is necessary for real-world problems

Conventional numerical computing



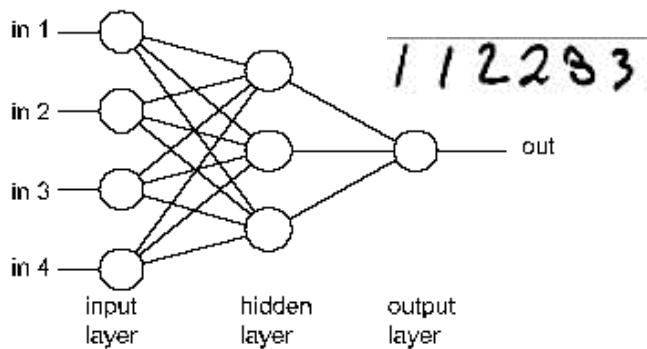
C. Lampert, VRML 2013

Data-driven computing

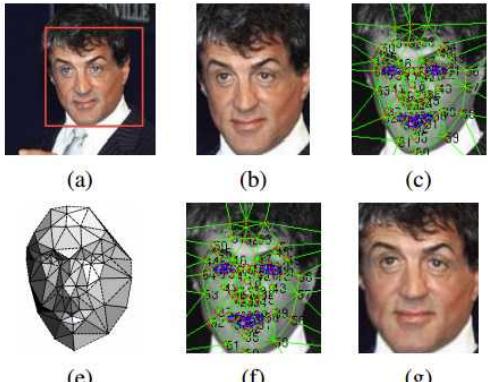


yann.lecun.com

Neural-inspired algorithms have matured & are achieving success on recognition problems



<http://www.cheshireeng.com/Neuralyst/nnbg.htm>

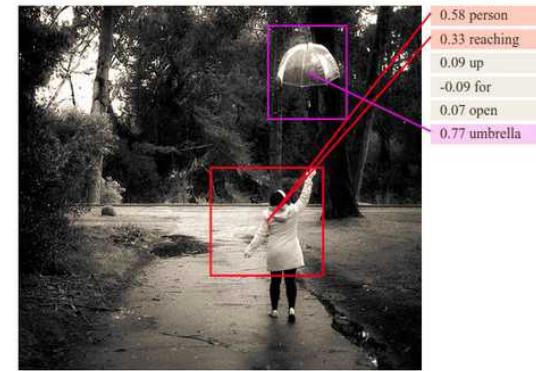


FaceNet (Google) - Schroff et al. CVPR 2015

Original image

DeepImage (Baidu) - Wu et al. 2015

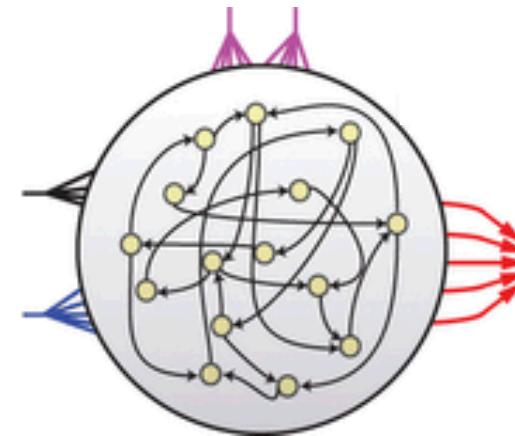
Low-resolution model			High-resolution model		
Rank	Score	Class	Rank	Score	Class
1	0.2287	ant	1	0.103	lacewing
2	0.0997	damselfly	2	0.074	dragonfly
3	0.057	nematode	3	0.074	damselfly
4	0.0546	chainlink fence	4	0.068	walking stick
5	0.0522	long-horned	5	0.039	long-horned
6	0.0307	walking stick	6	0.027	leafhopper
7	0.0287	dragonfly	7	0.025	nail
8	0.0267	tiger beetle	8	0.023	grasshopper
9	0.0225	doormat	9	0.019	ant
10	0.0198	flute	10	0.015	mantis
11	0.0198	grey whale	11	0.015	fly
12	0.0178	mantis	12	0.013	hammer
13	0.0171	lacewing	13	0.012	American
14	0.0161	radiator	14	0.012	gar
15	0.0161	scabbard	15	0.011	chainlink
16	0.0157	slide rule	16	0.011	padlock
17	0.0148	fly	17	0.011	treefrog
18	0.0129	leafhopper	18	0.011	cicada
19	0.0101	cucumber	19	0.01	screwdriver
20	0.0094	velvet	20	0.01	harvestman



Modern machine learning only captures limited characteristics of neural computing

Temporal feature extraction via LSMs
(Mante, Sussillo, Shenoy, Newsome,
Nature 2013).

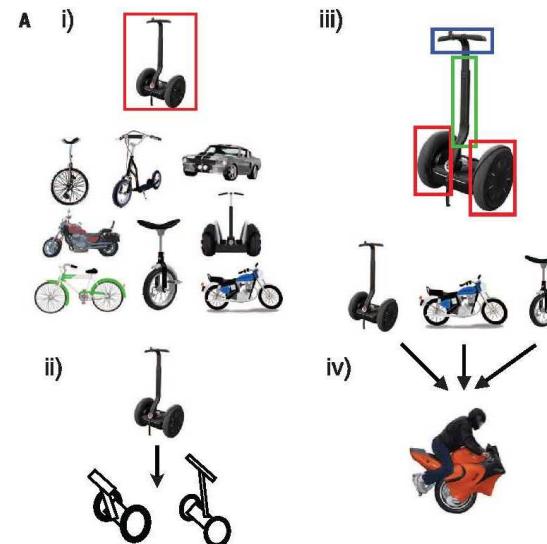
*M. Smith talk: neural-inspired
architecture for LSMs*



Mante et al., Nature 2013, 503, 78

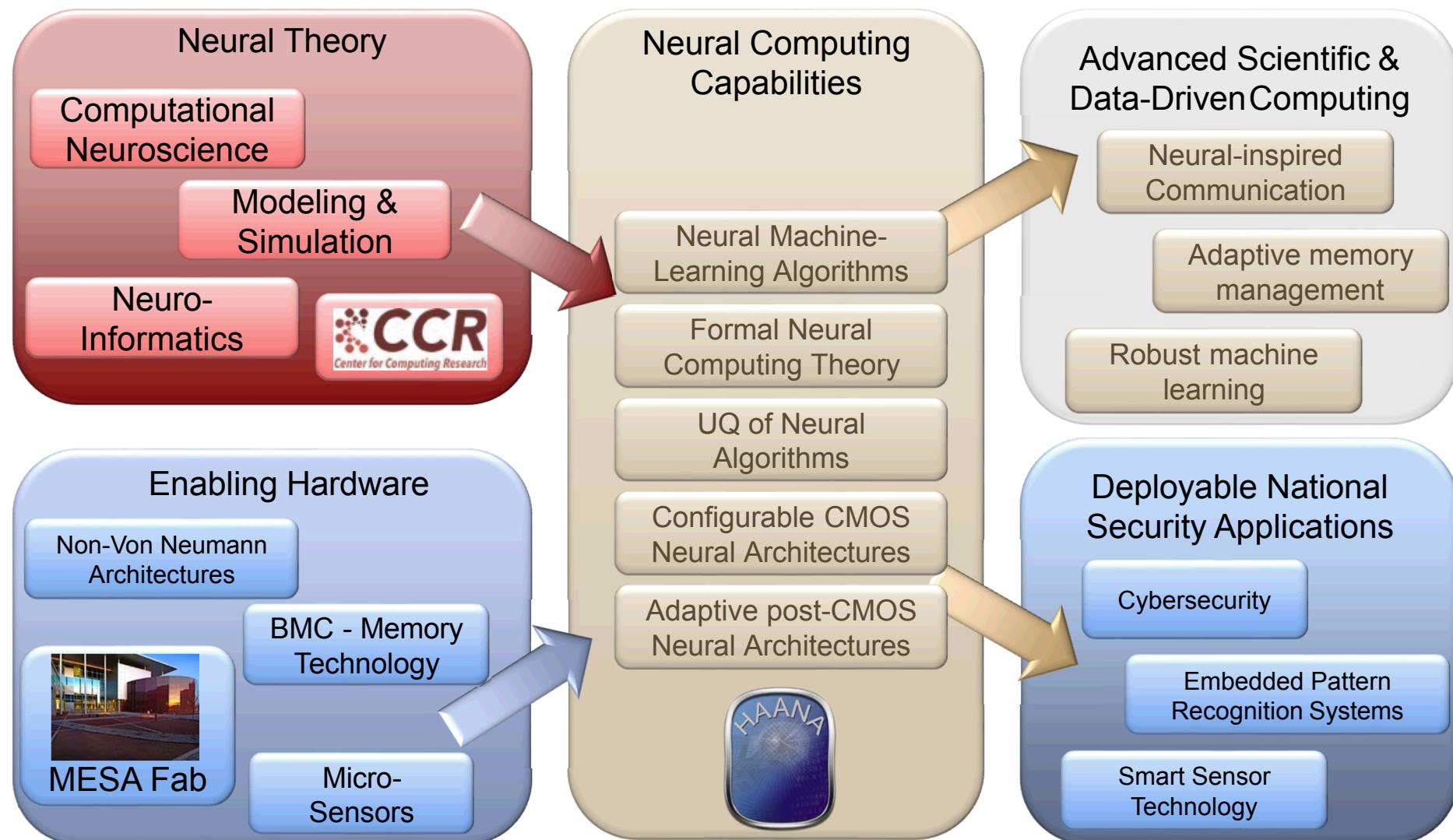
One-shot learning & generation of new concepts (Lake, Salakhutdinov, Tenenbaum, Science 2015).

Strengthen the connection between ML & neuroscience = neural machine learning

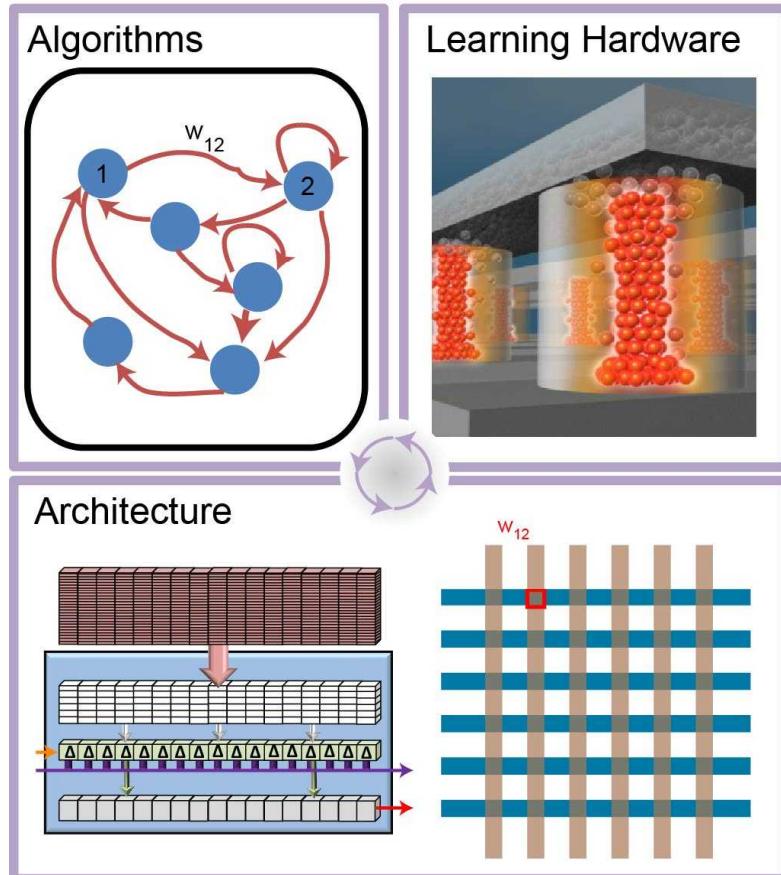
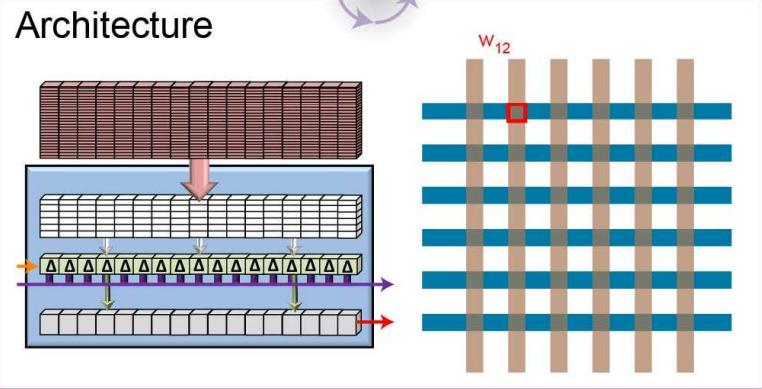
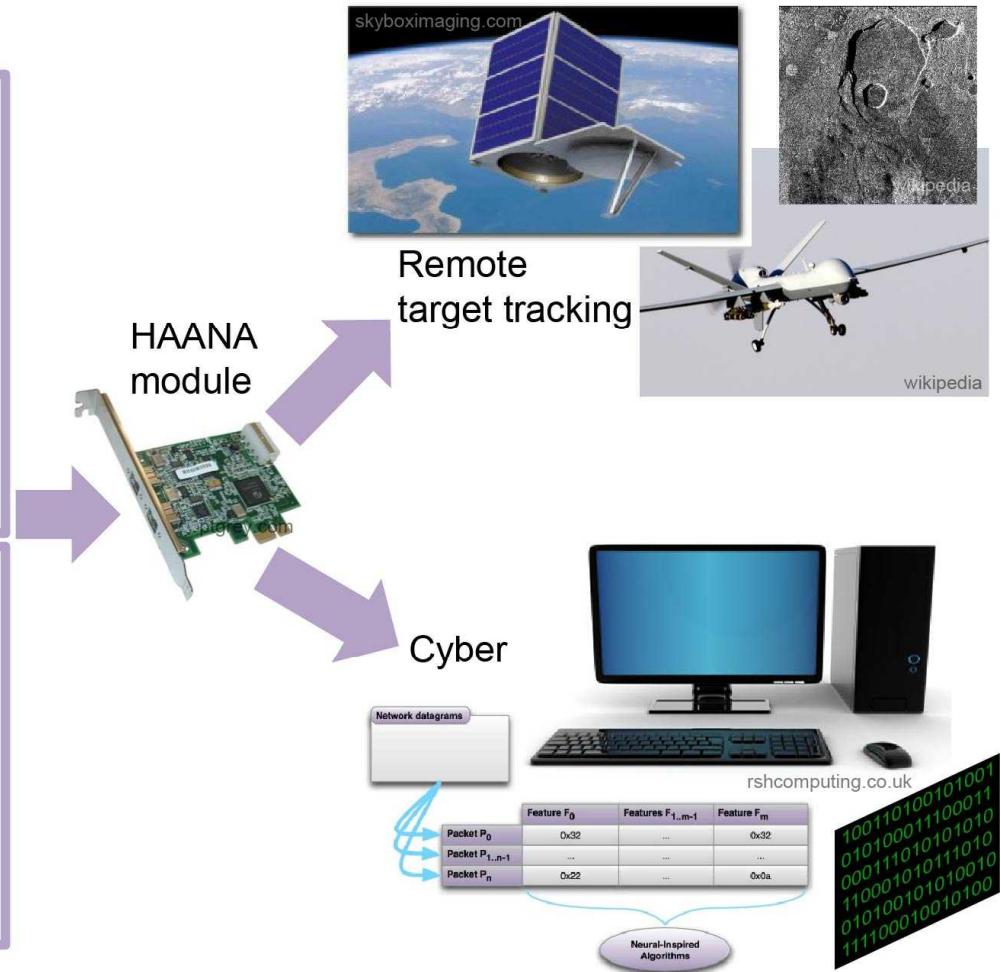


Lake et al., Science 2015, 350, 1332

Neural computing at Sandia Labs leverages a large research foundation



Hardware Acceleration of Adaptive Neural Algorithms (HAANA)



End of Moore's Law- Motivation for Neuromorphic Architectures

- Post Moore's Law effects
 - Processing limited by power not complexity
 - We can build it but we can't cool it
- Operational cost > capital costs
 - Power, People & Space
- However, economics still driving change
 - Virtualization: Improved server utilization
 - Cloud: Reduced user complexity & cost
- Cloud/Virtualization approaching maturity

Changing Nature of Computing

- Cultural changes altering use model
 - Ubiquitous connectivity
 - Social media
 - Data explosion
 - Internet of things
- Time value of data increasing rapidly
 - Streaming Analytics fundamental to
 - Financial industry: Banking, Wallstreet, fraud detection
 - Social media: Google, Facebook
 - Intelligence community: NSA, CIA, FBI
 - etc.

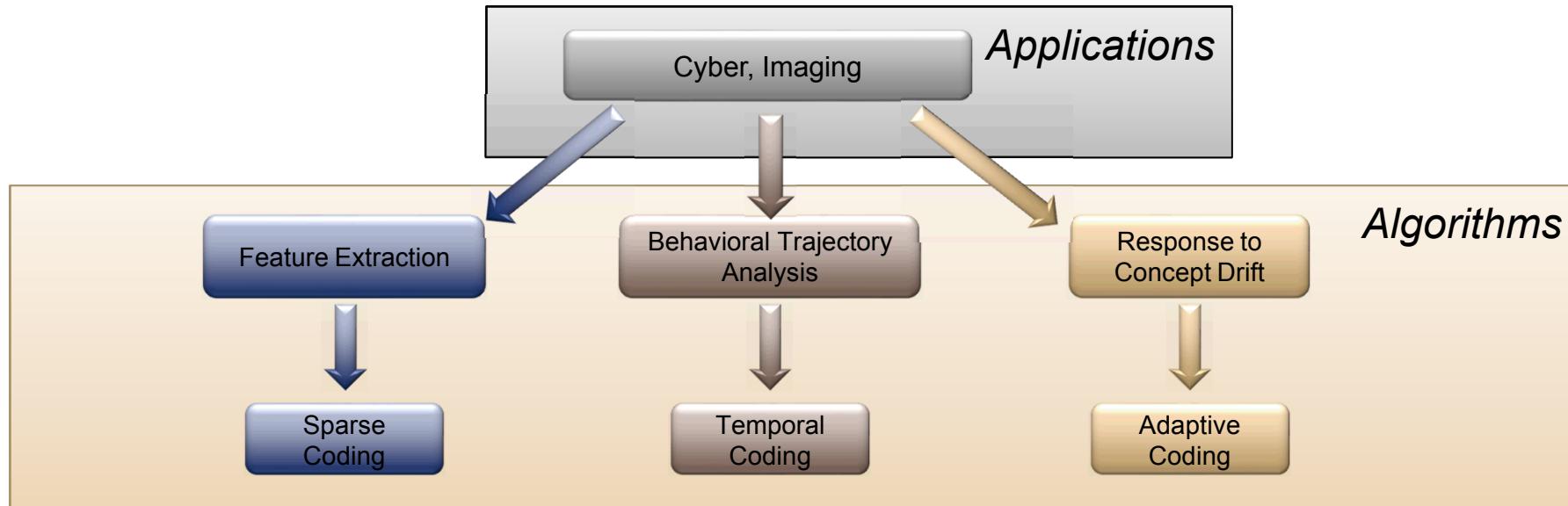
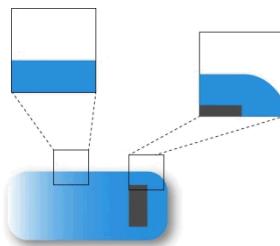
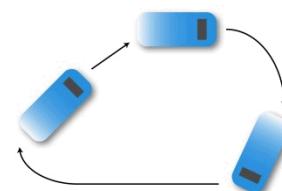
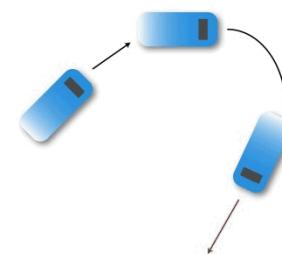
von Neumann Architecture

- Strengths
 - Ubiquitous & bullet proof
 - Memory model offers maximum flexibility
- Weaknesses
 - Performance is power limited
 - Primary culprit: Memory model
 - Typically sub-optimal for high repetition tasks
 - Floating point, ex. Nvidia
 - Network Protocols

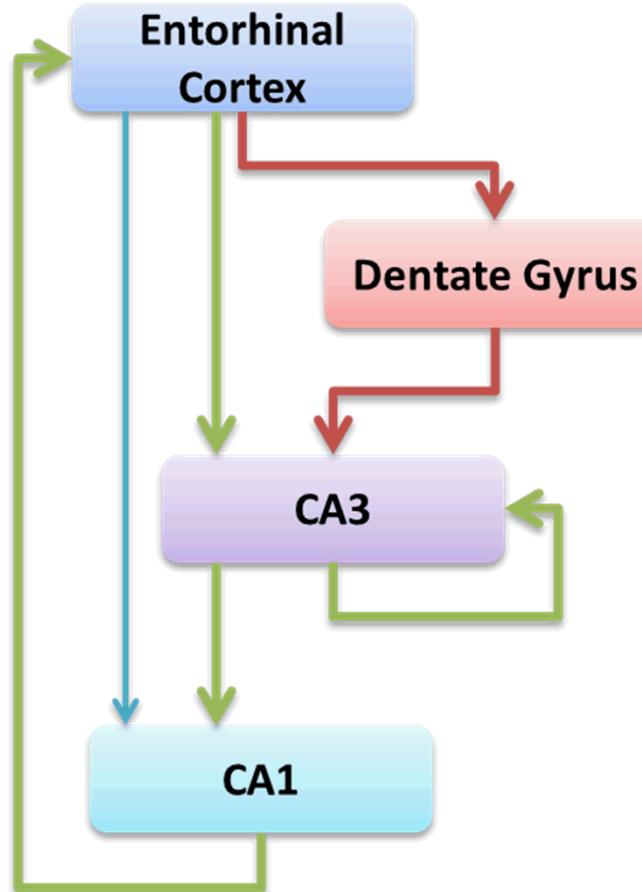
Neuromorphic Computing

- Strength, ideal for streaming analytics
 - Extraordinary at matching patterns
 - FPGA >1,000x ops/watt vs IA server demonstrated
 - ASIC >1,000,000x ops/watt projected
 - Not power or routing limited
- Weaknesses
 - Not Turing complete in traditional sense
 - Not general purpose
- Architecturally processor or memory?
 - Neuromorphic computers blur the distinction

HAANA relies on applications to drive S&T for algorithms, architecture, and hardware

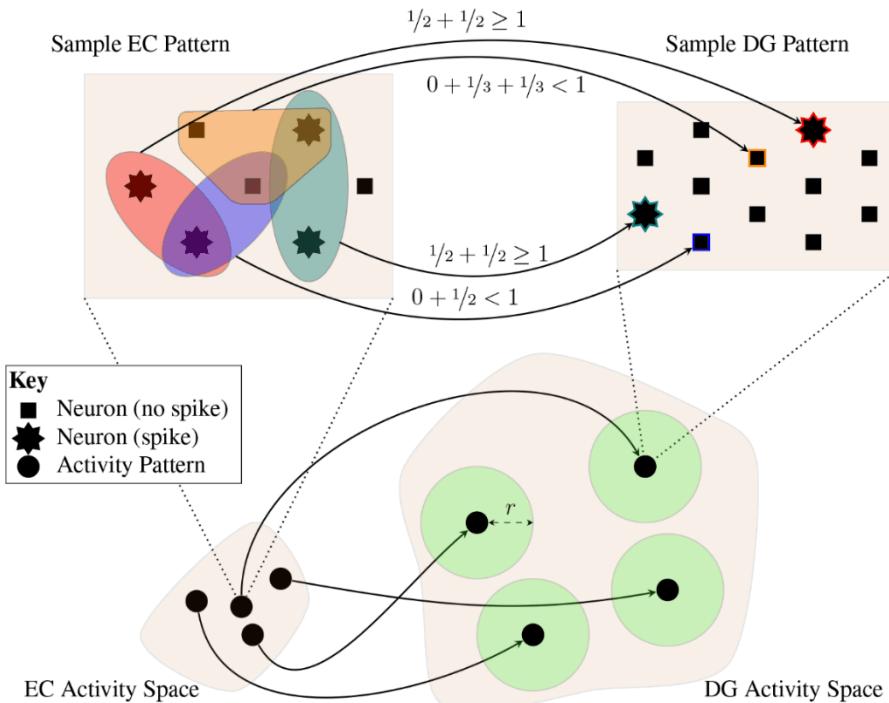


Neural-inspired algorithms: dentate gyrus pre-processing formats data for learning

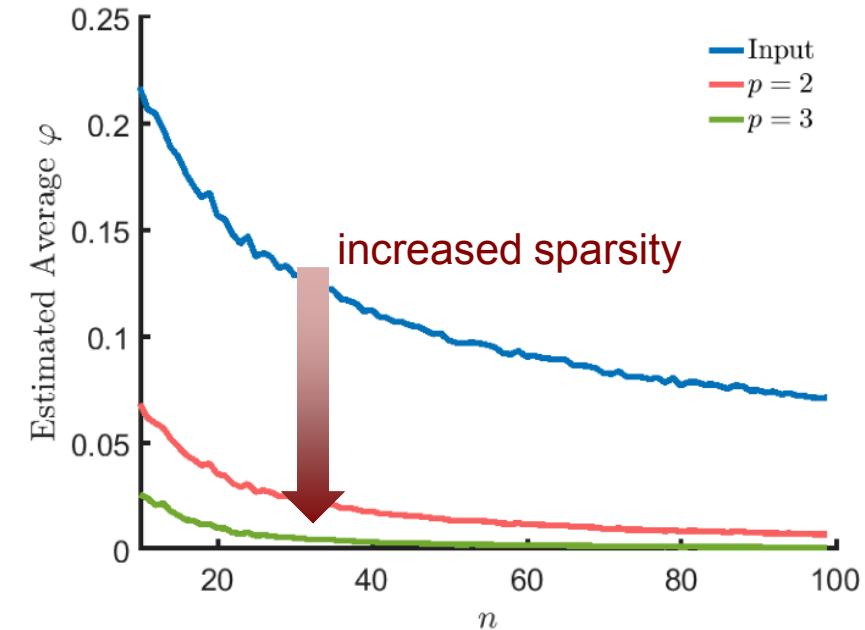


- Direct EC→CA3 is dense but weak (recall)
- Path via DG is sparse and strong (training)
- DG performs:
 1. Sparsity increases
 2. Pattern separation

Modeling the “sparsity transformation” in neurobiological systems



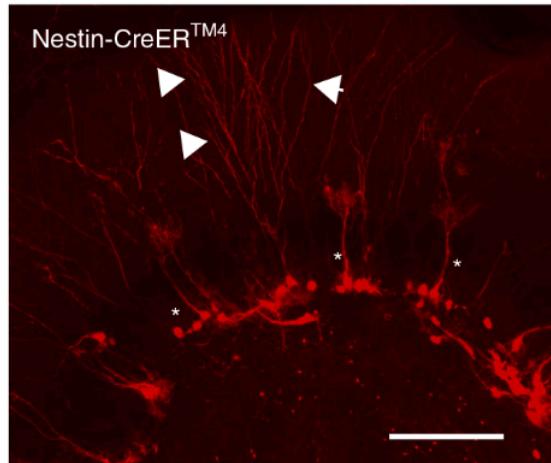
DG increases sparsity of EC input – improved separation of features



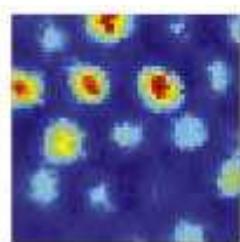
Sparse coding decreases the normalized correlation for any pair of vectors, and thus increases the estimated ‘sparsity’.

Neurogenesis increases coding flexibility

- Adult neurogenesis improves information capacity
- Grid cells (EC to DG) encode spatial dimensions



Dieni et al, *Nature Comm* 2016



Giocomo et al, *Neuron* 2011



- Dentate code is compatible with the introduction of new neurons and the refinement of old neurons
- Mixed heterogeneous code allows for adaptation to novel inputs, increased capacity

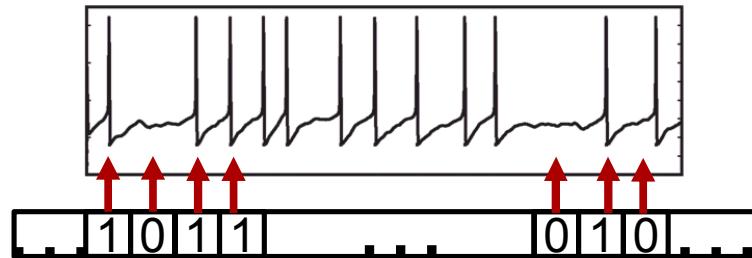
Severa et al, accepted *Neural Computation* 2016

Quantifying information content in neural signals

- Information and probability are connected:

$$H(X) = \sum_{x \in X} p(x) \log\left(\frac{1}{p(x)}\right) \quad p(x) = ?$$

- Transform spike trains into compressed representations of information:

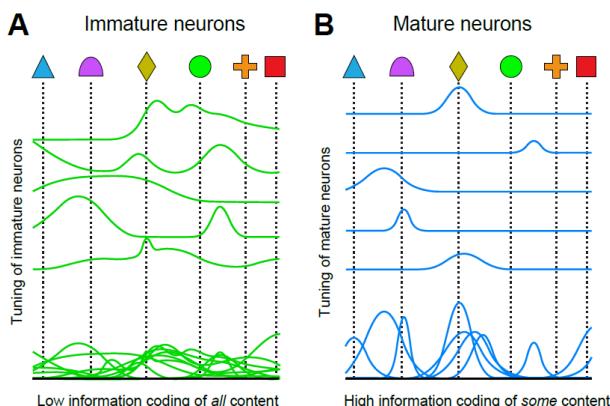


- Complexity and entropy are related and can be estimated:

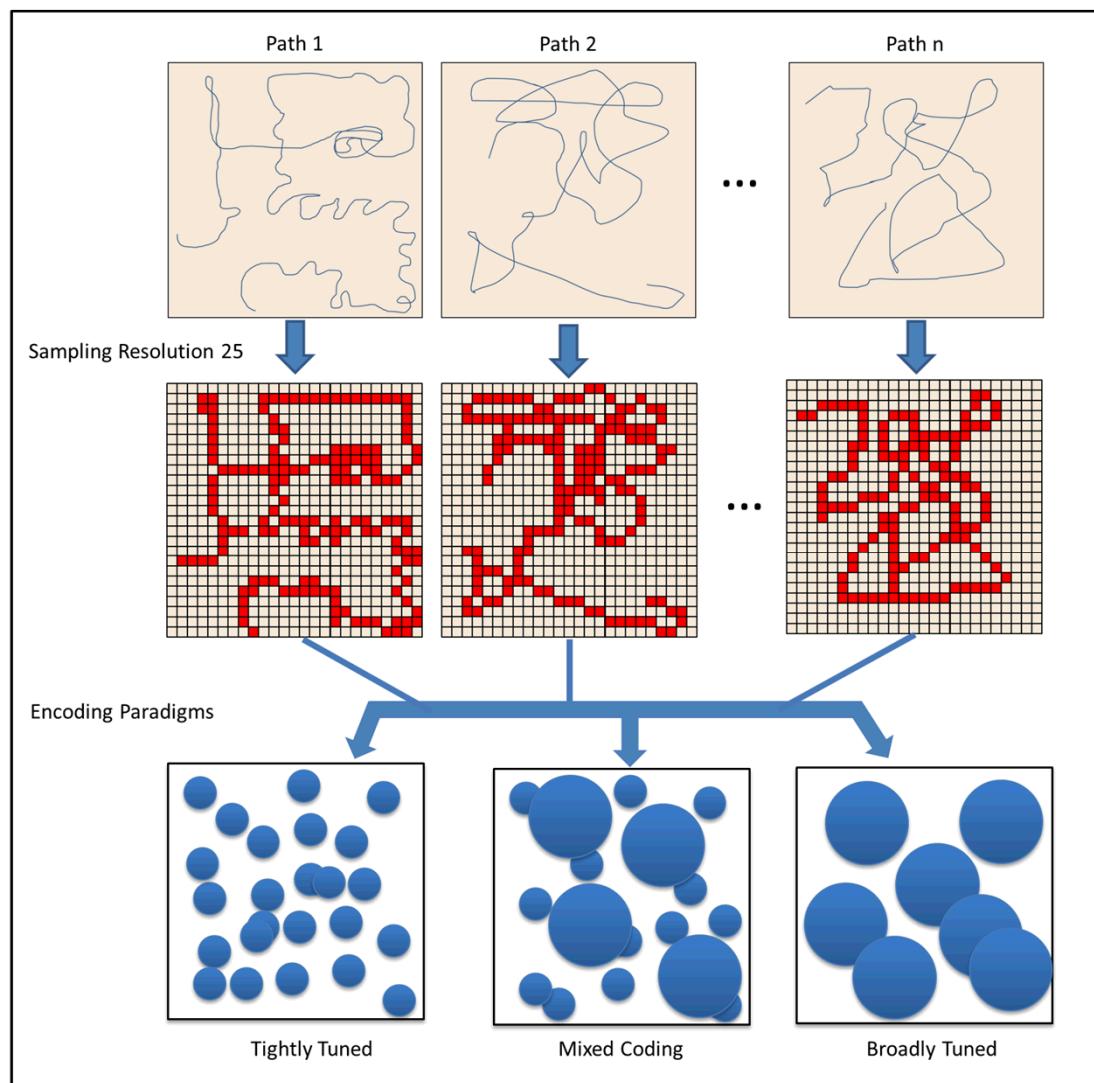
$$c_\alpha(x^n) = \frac{c_\alpha(x^n)}{n} * \log_\alpha n \quad \lim_{n \rightarrow \infty} \sup c_\alpha(x^n) \leq H_\alpha(S)$$

Exploring the impact of neural information content in a real-world application

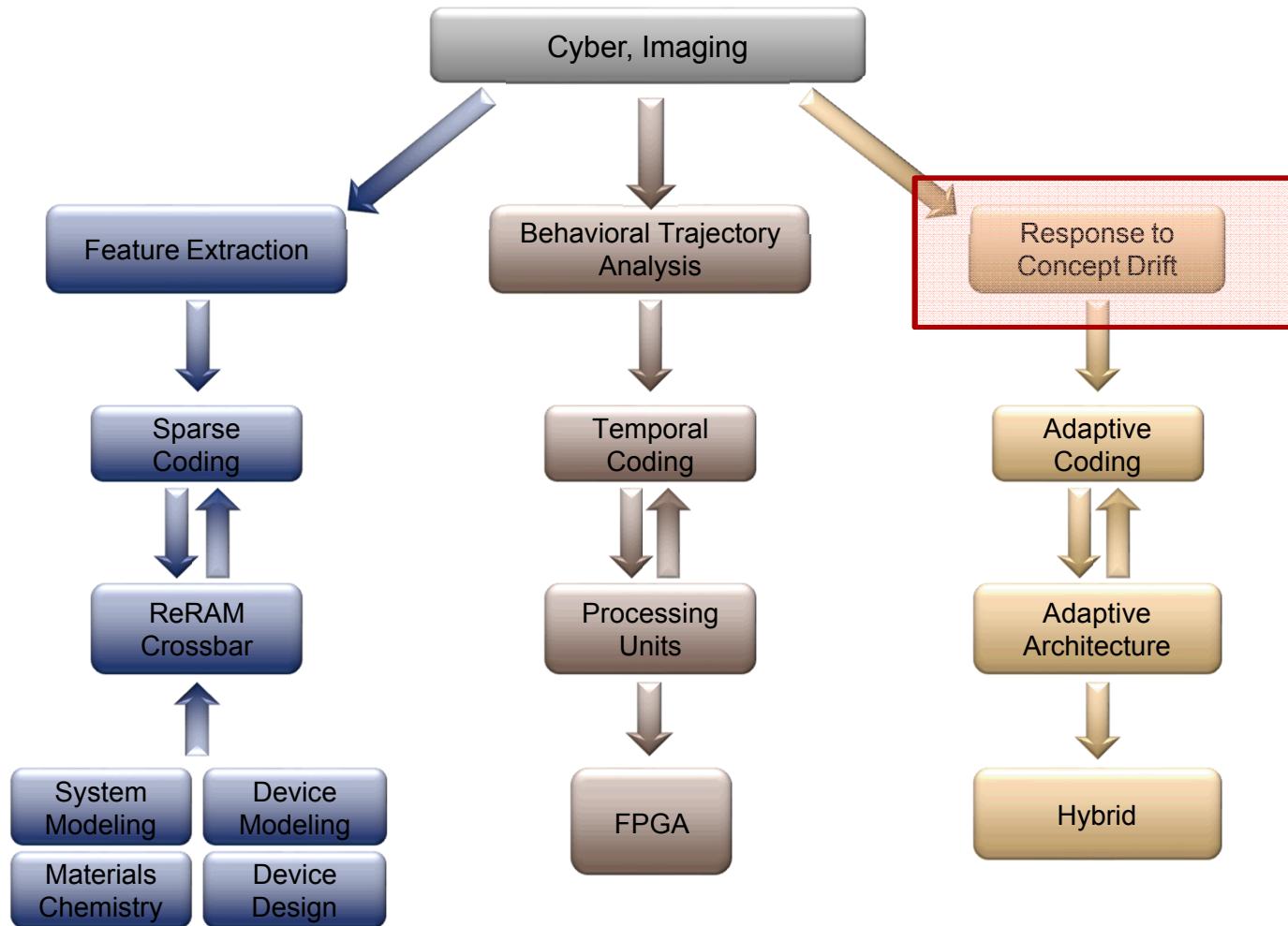
- Estimate the neural information content in place cell encoding of spatial locations
- Map information content to the neural space (resolution, efficiency)
- Examine the impact of neurogenesis on encoding and information content



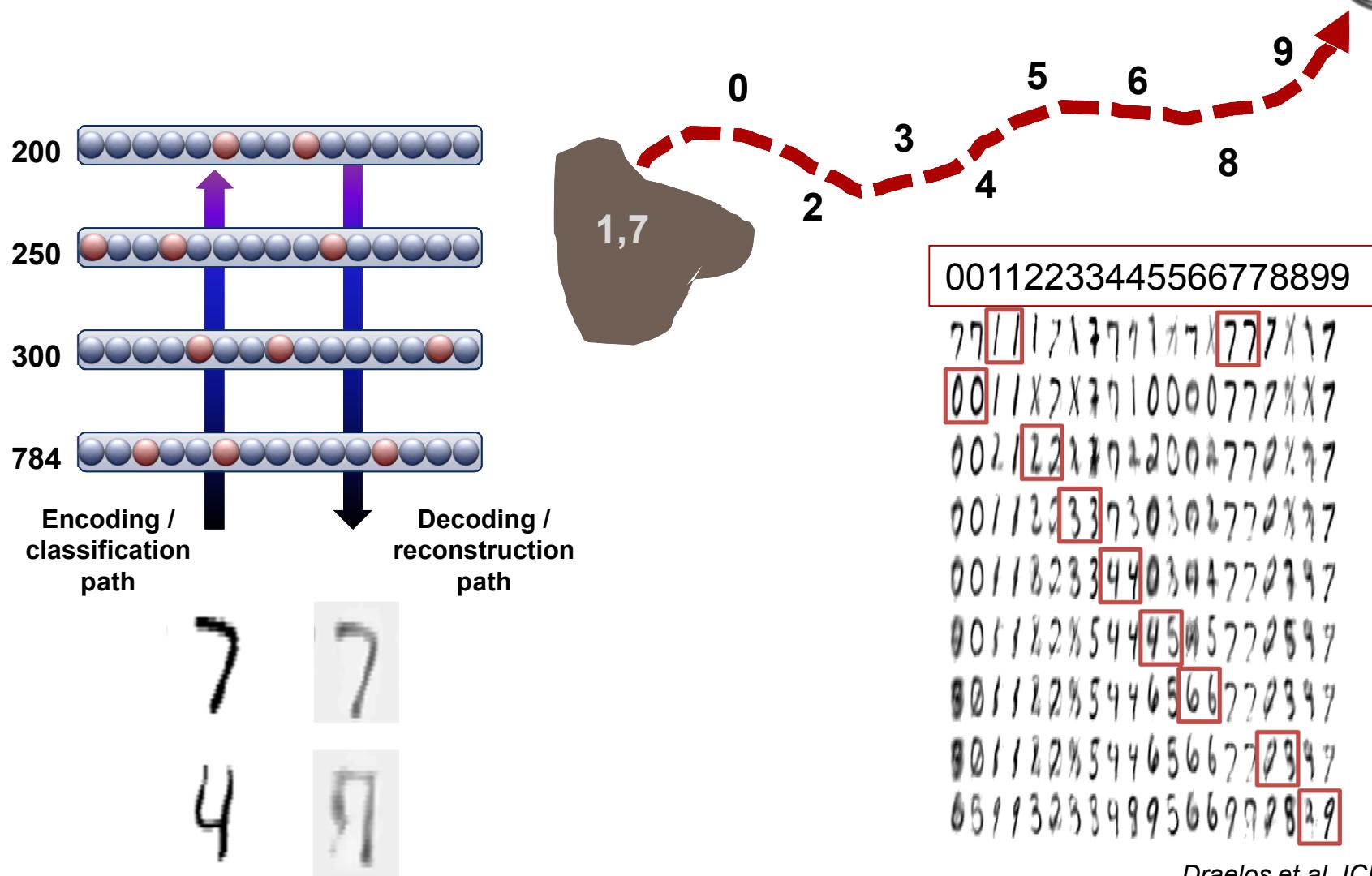
Aimone, Deng and Gage, Neuron 2011



Algorithmic approaches to handle concept drift in data

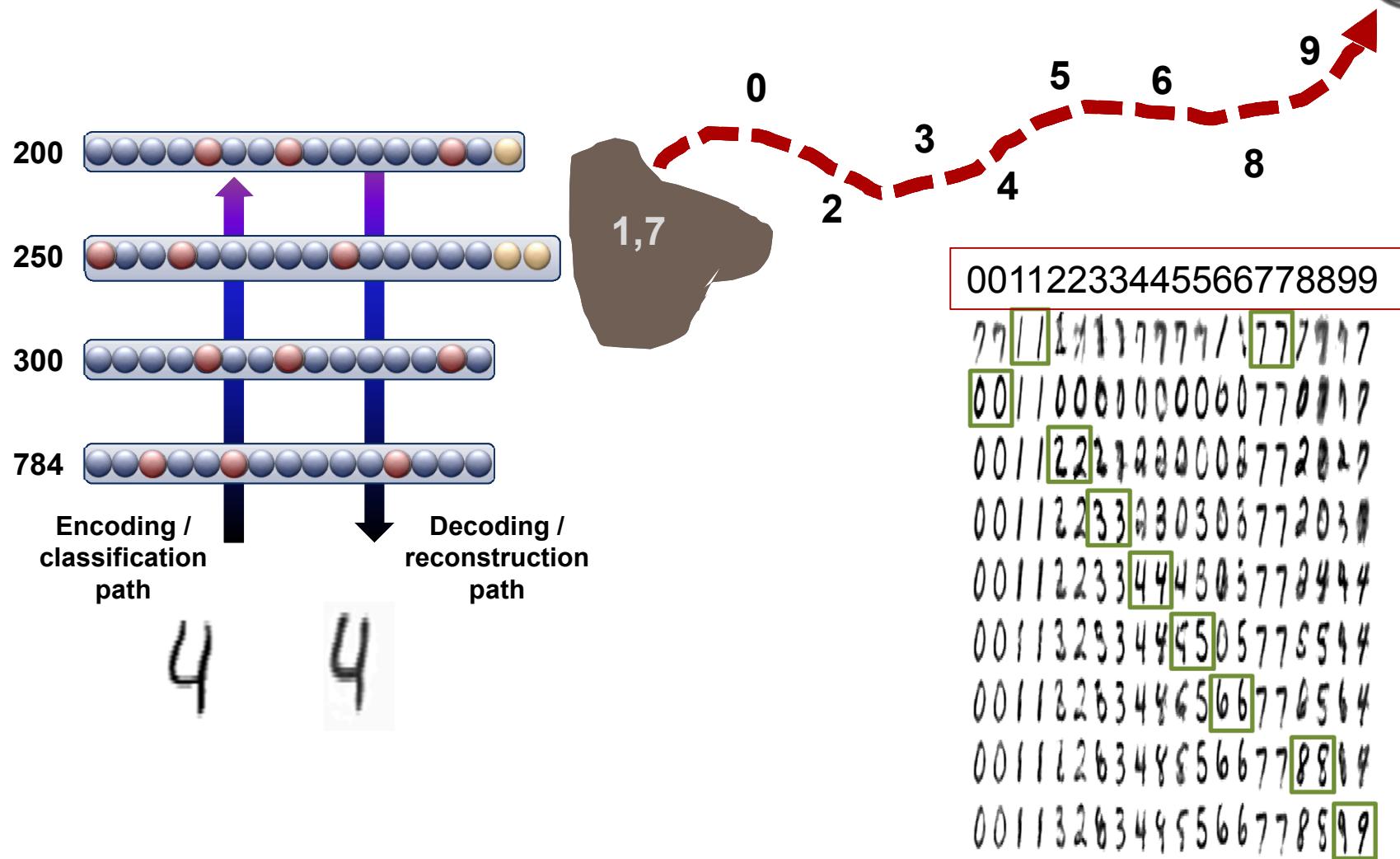


Data-driven computing methods are limited... by data; auto-encoder for data reconstruction



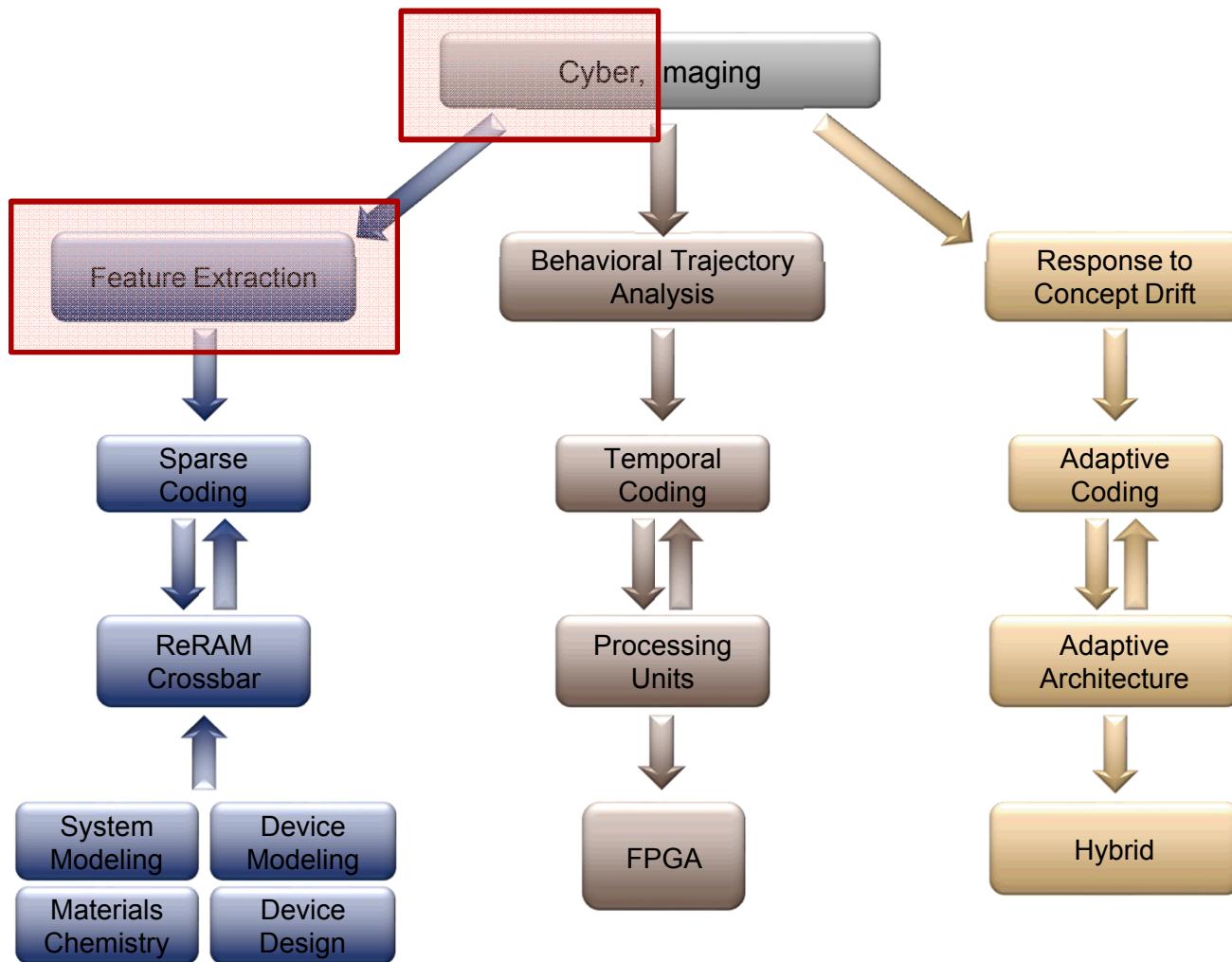
Draelos et al, ICLR 2016

“Neurogenic deep learning” enables adaptation to changing data

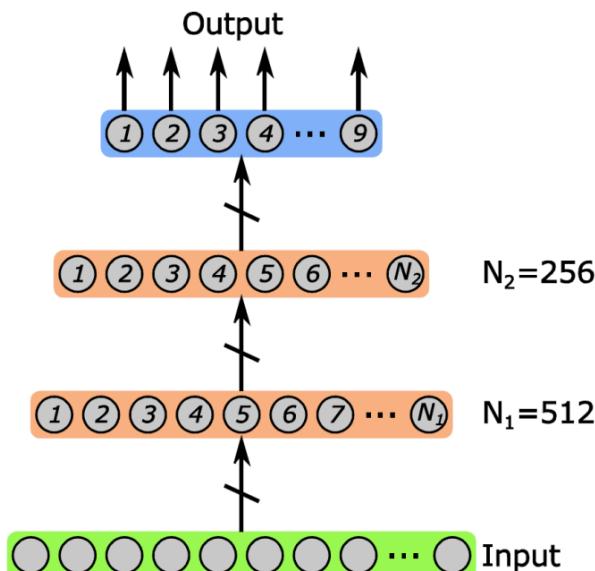
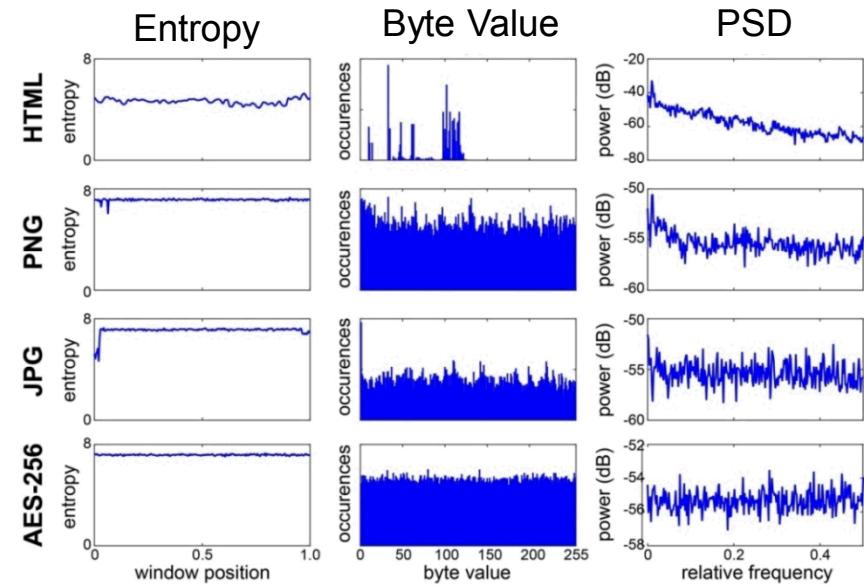


Draelos et al, ICLR 2016

Extracting features from cyber data



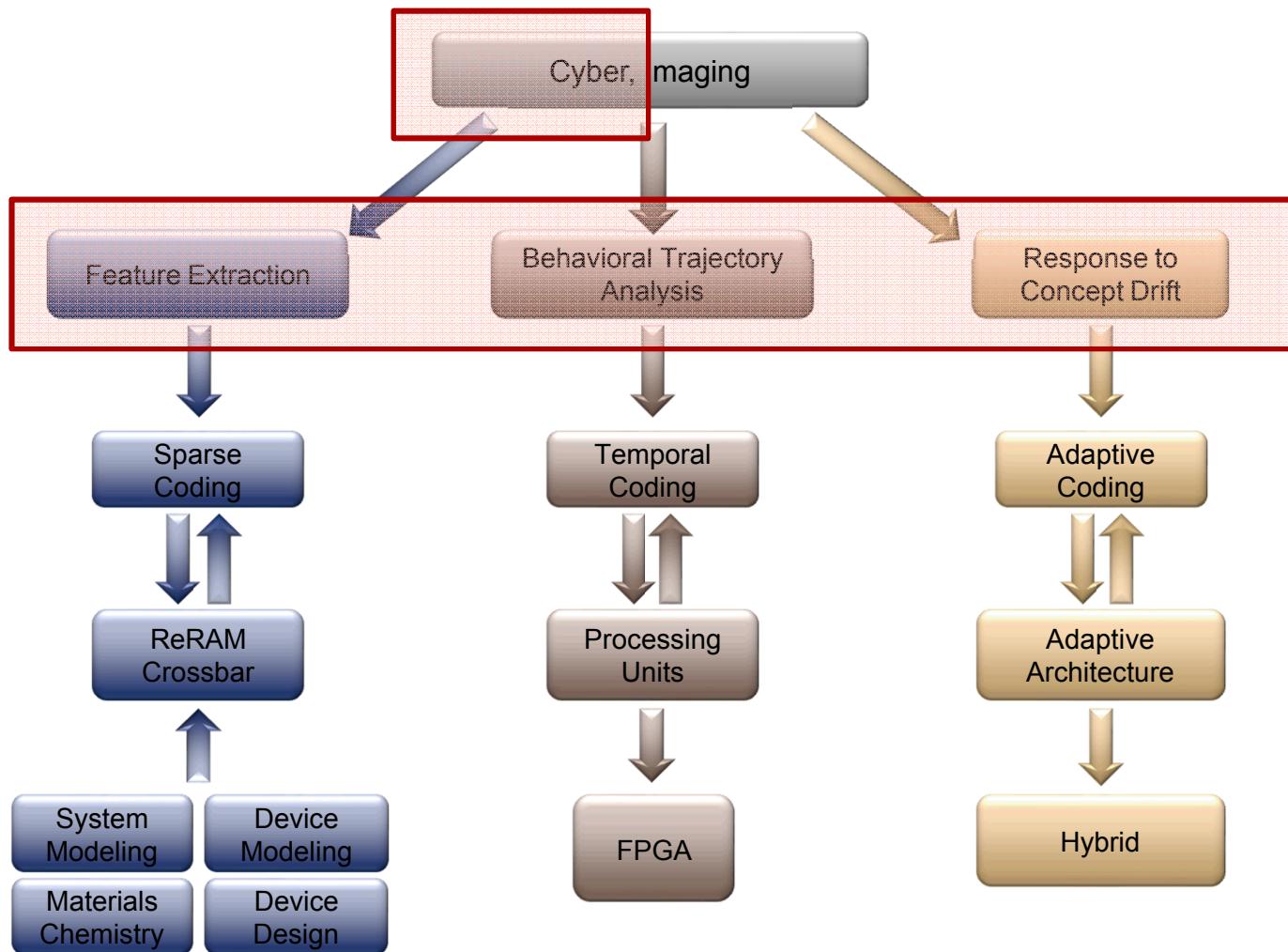
Cyber data identification with a deep neural network classifier



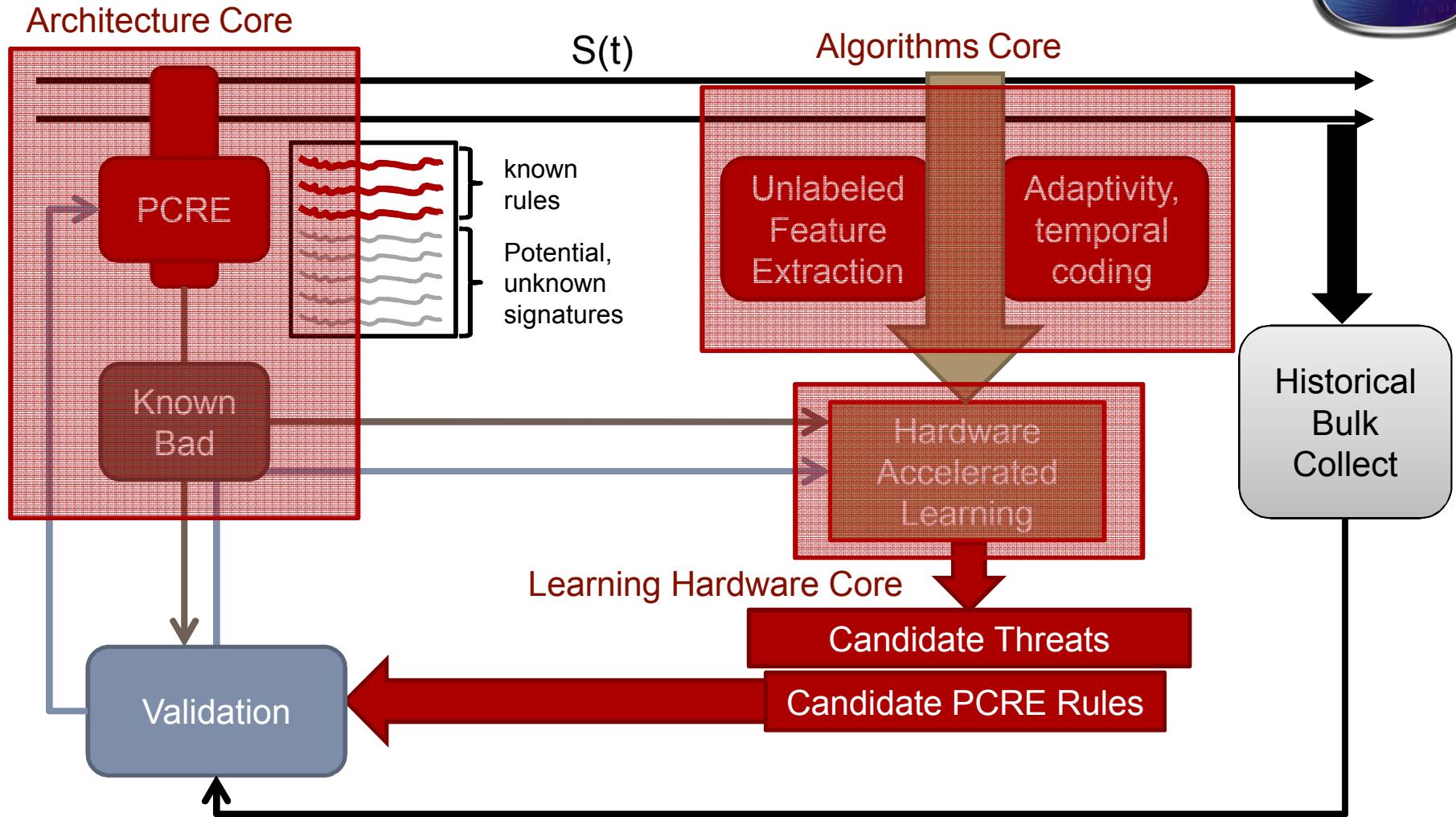
		Predicted Class								
		HTML	PNG	JPEG	GIF	PDF	DOC	ELF	GZIP	AES
Actual Class	HTML	100								
	PNG		91		1					
	JPEG			99						
	GIF				100					
	PDF					1				
	DOC						95			
	ELF							99		
	GZIP								100	
	AES									95

Cox, Aimone, James; Complex Adaptive Systems, Nov. 2015; Procedia Comp Sci 61, 349

Dynamic learning applications in cyber data

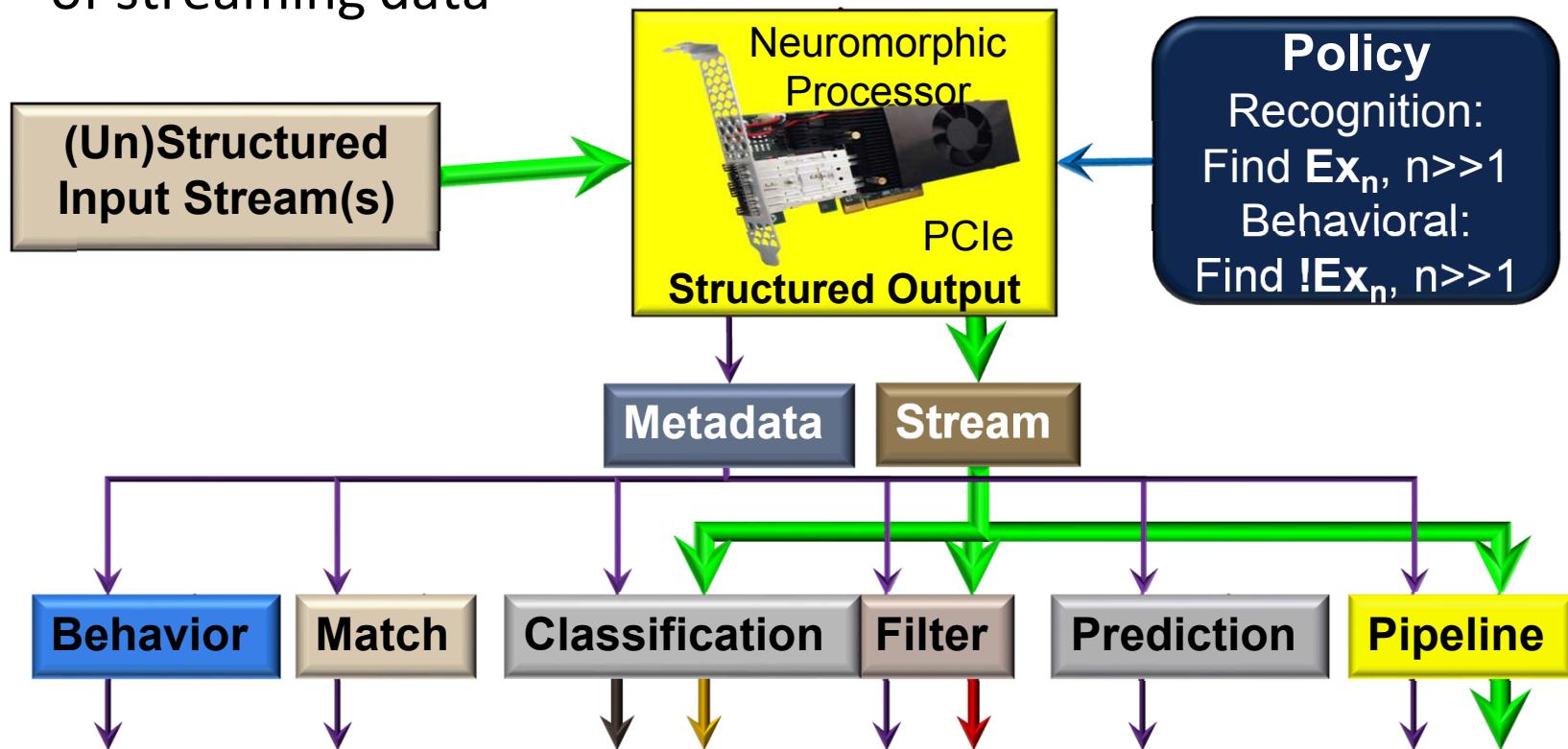


Tracking the Known: Bracketing Previously Identified Threats



Accelerate PCRE processing with Temporal Processing Unit (TPU)

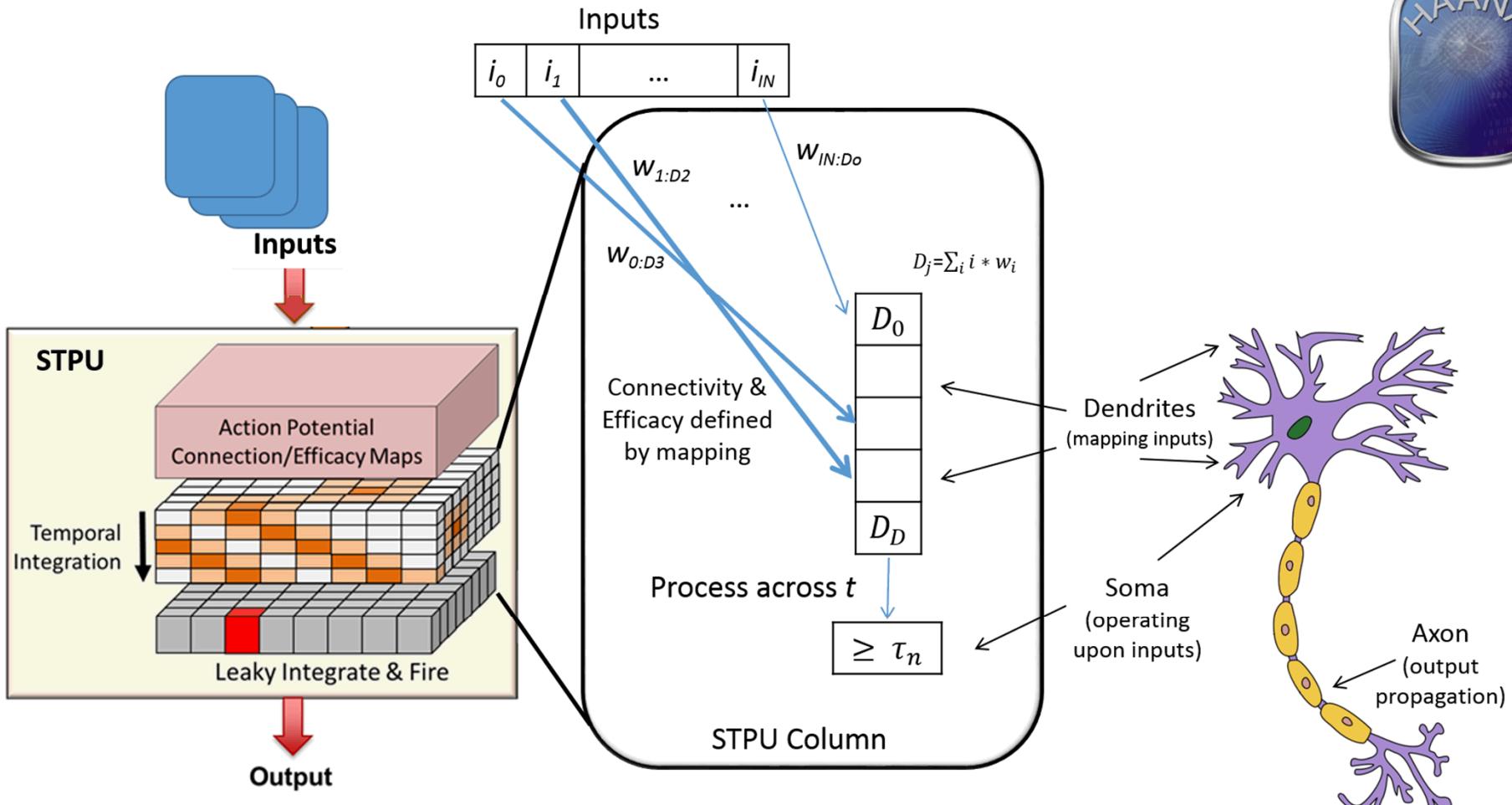
- Collaboration with Lewis Rhodes Labs (LRL)
- Patented neural inspired architecture for temporal processing of streaming data



TPU Integration for PCRE Processing

- API for usability
 - Hide complexity so no neural knowledge required by practitioners
 - Waterslide is an opensource highly optimized stream processing code
 - Hear all about this from Karl Anderson tomorrow
 - **Seamlessly integrated TPU API in a matter of weeks**
- Significant PCRE performance improvement
 - **My initial testing showed 15X improvement over Google re2 library**
- Significant demonstrated power reduction
 - David Follett will tell the rest of the story tomorrow
- Seamlessly integrated in the Tracking the Known testbed
- TPU product “Neuromorphic Cyber Microscope” is an R&D100 finalist in 3 categories

Spiking Temporal Processing Unit (STPU)



$$v_m^n = v_m^{n-1} - \frac{v_m^{n-1}}{\tau_m} + \sum_i \sum_j w_{mi} \cdot s(t - t_{ij} - d_i)$$

Liquid State Machine

- Developed by Wolfgang Maass
- Reservoir computing
 - Echo State Machines
 - Liquid State Machines
- Different items at different locations at different times
- Differences between the patterns are amplified by the liquid
- Mimics brain functionality
- Supervised learning

<http://www.etsy.com/shop/DebiBishop>

Maass, W., Markram, H., *On the Computational Power of Recurrent Circuits of Spiking Neurons*, Journal of Computer and System Sciences 69(4): 593-616, 2004.

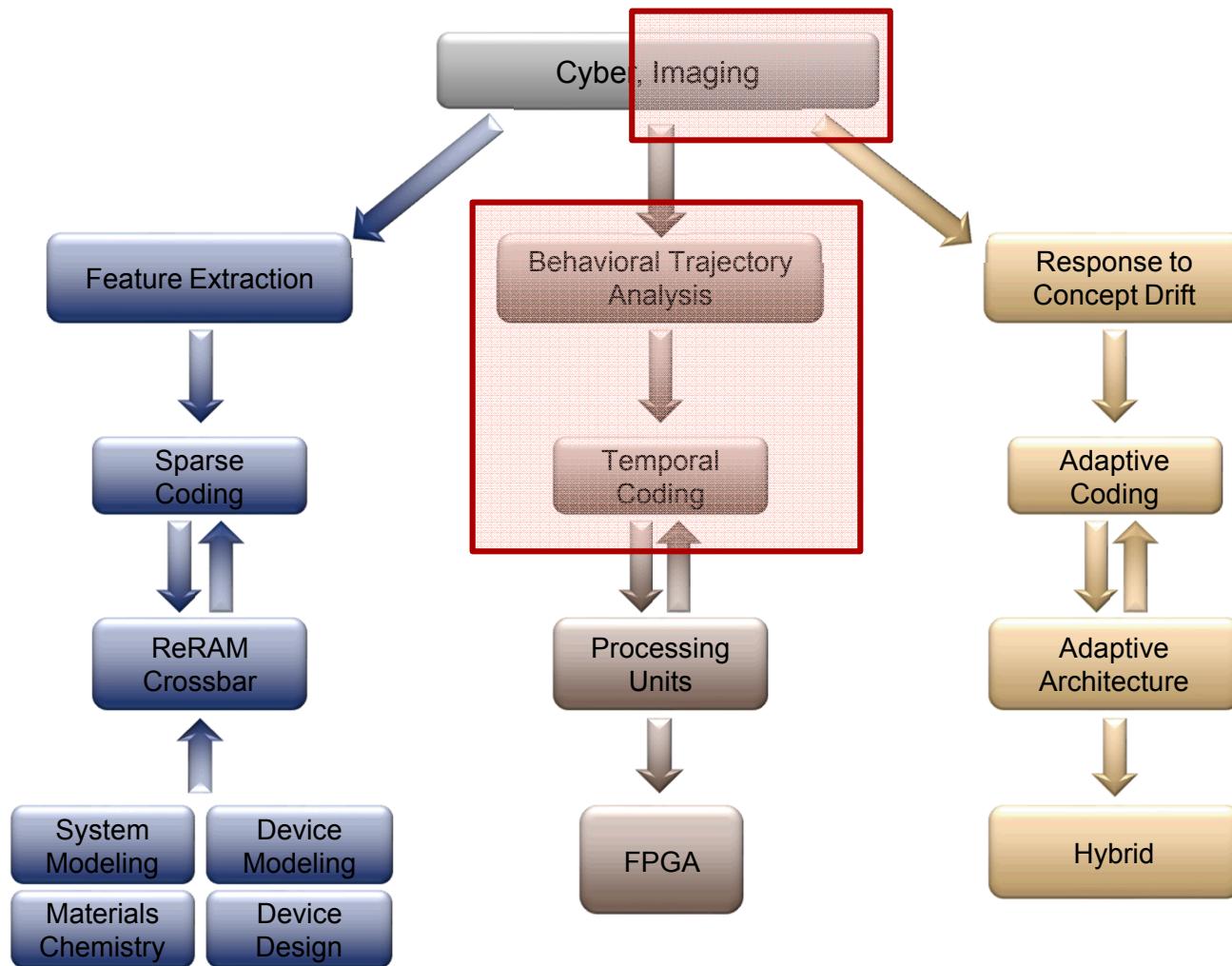
Demonstrated LSM Applications

- Speech and audio recognition
- Image Pattern Recognition
- Music Classification
- Robot Path Planning
- Fingerprint Scanners
- Facial emotion recognition

Mapping LSMs onto the STPU

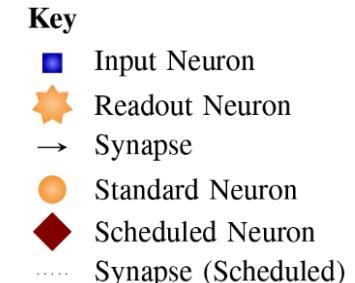
- Goals:
 - Implement the rich dynamics of a LSM efficiently
 - Recurrence
 - Exponential synaptic response functions
 - Drives improvements to STPU architecture
- **Currently implemented LSM on version 1 of STPU**
- Demonstrated speech recognition with minimal parameter tuning using ridge regression
- Comparison with Zhang et al. 2015:
 - Use state variables to keep track of synaptic responses. Time constants are binary (division becomes bit shifting)
 - STPU uses weights to put values into the temporal stack

Extracting features from cyber data

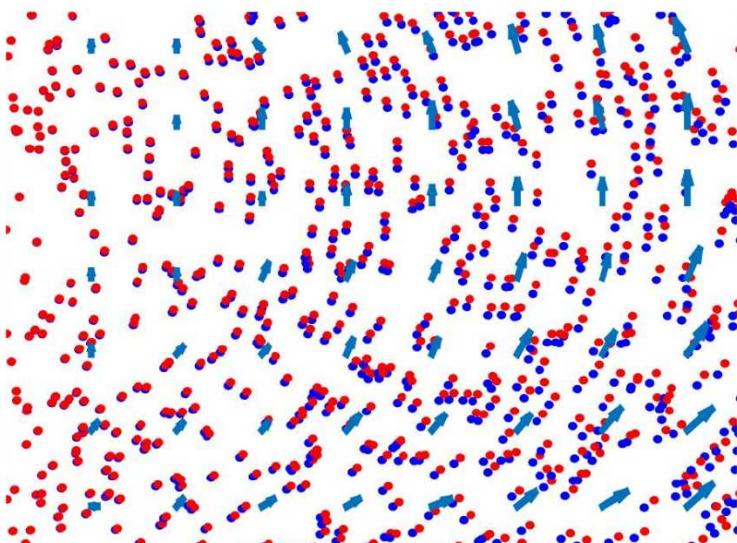
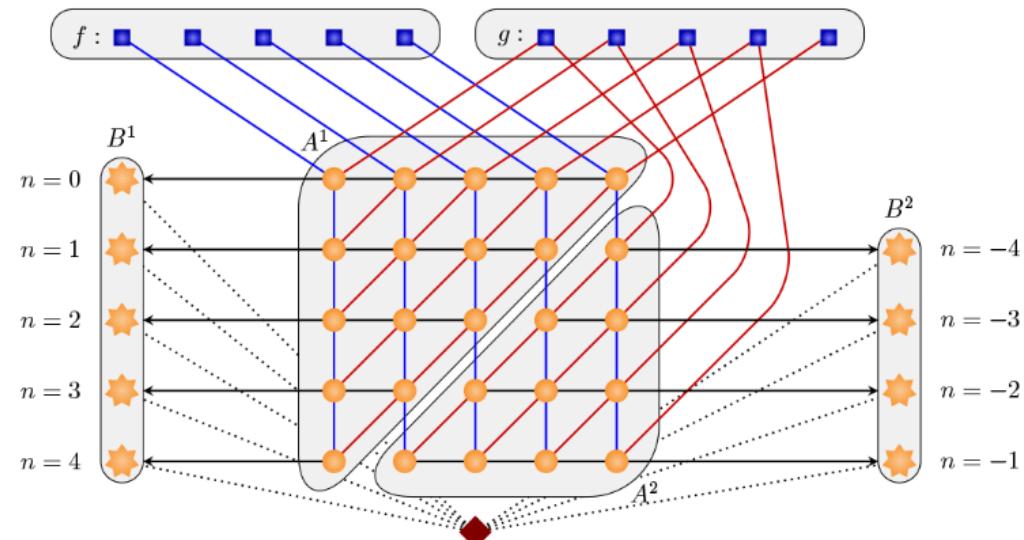


Spiking network algorithm for computing cross-correlations in particle image velocity (PIV)

- Data can be stored in the dynamics of a network
- Dynamics allow for trade-off: Time \leftrightarrow Neurons
- Neural algorithms can match or best traditional ‘big O’
- Efficient implementation on the STPU

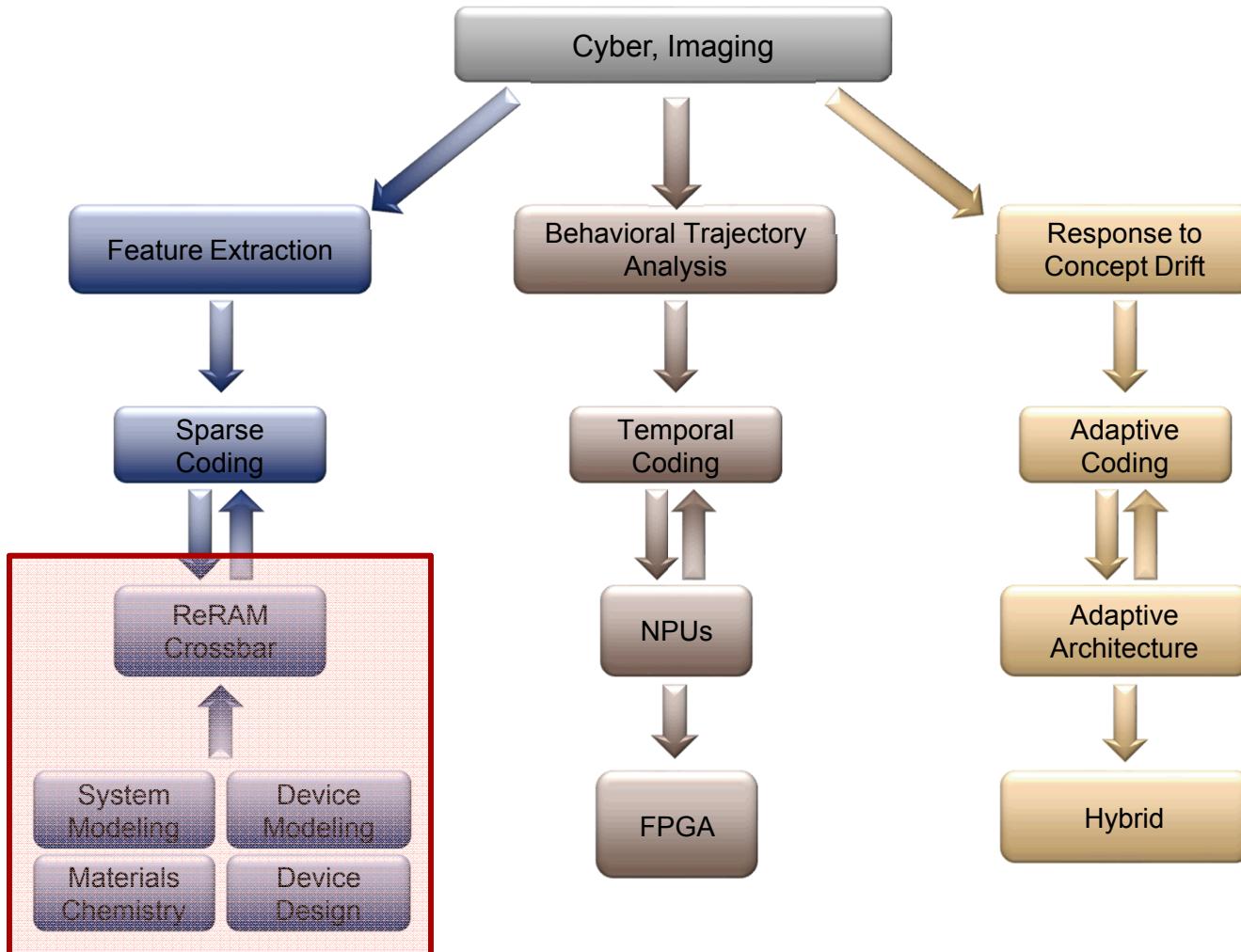


Example 2D flow-field (t_0 an t_1)

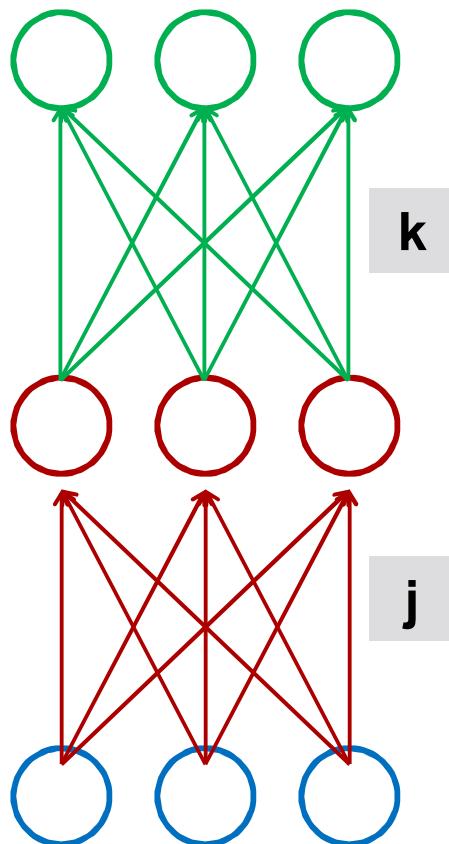


Severa et al, accepted ICRC 2016

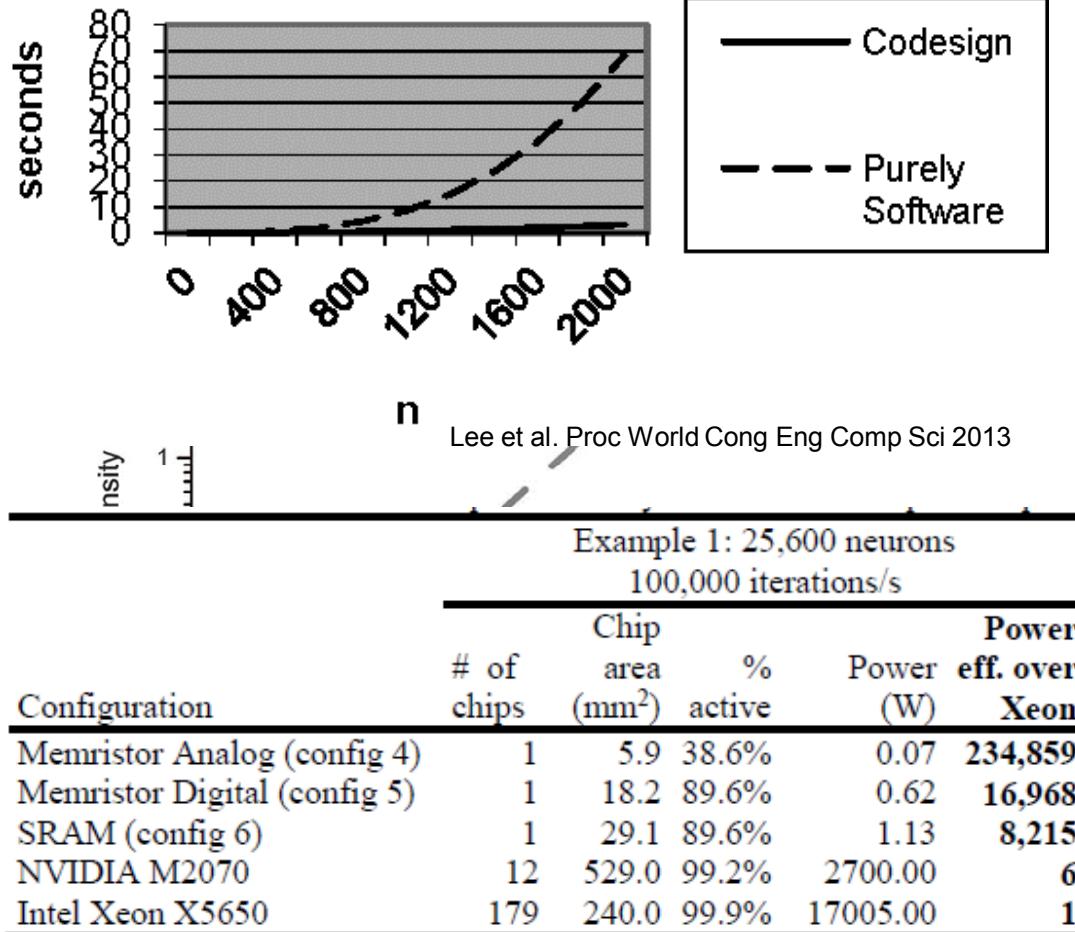
Learning crossbar performance assessment



Use hardware acceleration (existing or novel technology) to speed-up data processing in neural-inspired algorithms

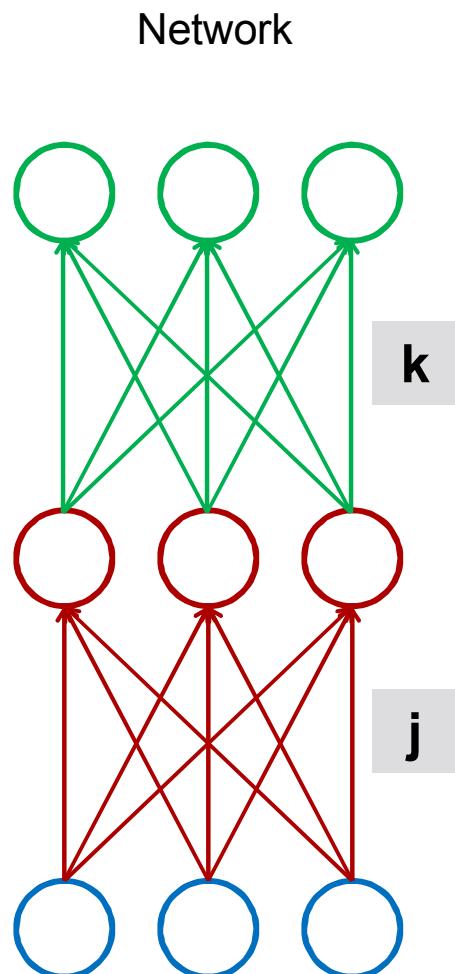
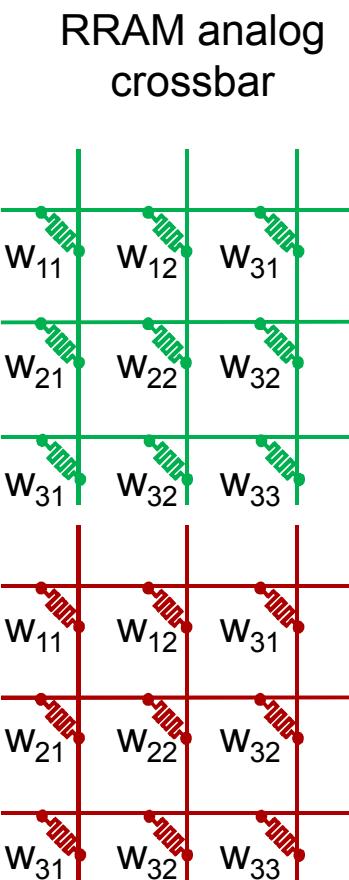


Agarwal et al, IJCNN 2016



Merolla, P. A. et al. *Science* 345, 668-673 (2014)
T. Taha, et al., Proc. IEEE Int'l. Joint Conf. on Neural Networks, 2013.

Translating non-spiking neural network algorithms into hardware



$$V^T W = I$$

$$\begin{bmatrix} V_1 & V_2 & V_3 \end{bmatrix} \begin{bmatrix} W_{1,1} & W_{1,2} & W_{1,3} \\ W_{2,1} & W_{2,2} & W_{2,3} \\ W_{3,1} & W_{3,2} & W_{3,3} \end{bmatrix} = \begin{bmatrix} I_1 = \sum V_{i,1} W_{i,1} & I_2 = \sum V_{i,2} W_{i,2} & I_3 = \sum V_{i,3} W_{i,3} \end{bmatrix}$$

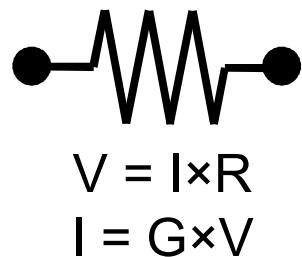
V

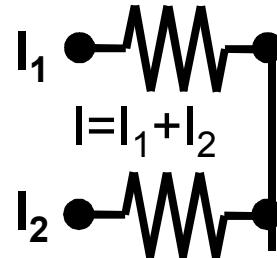
W

I

Agarwal et al, IJCNN 2016

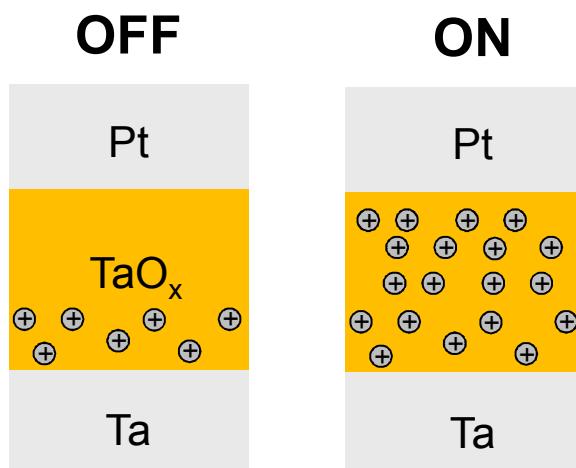
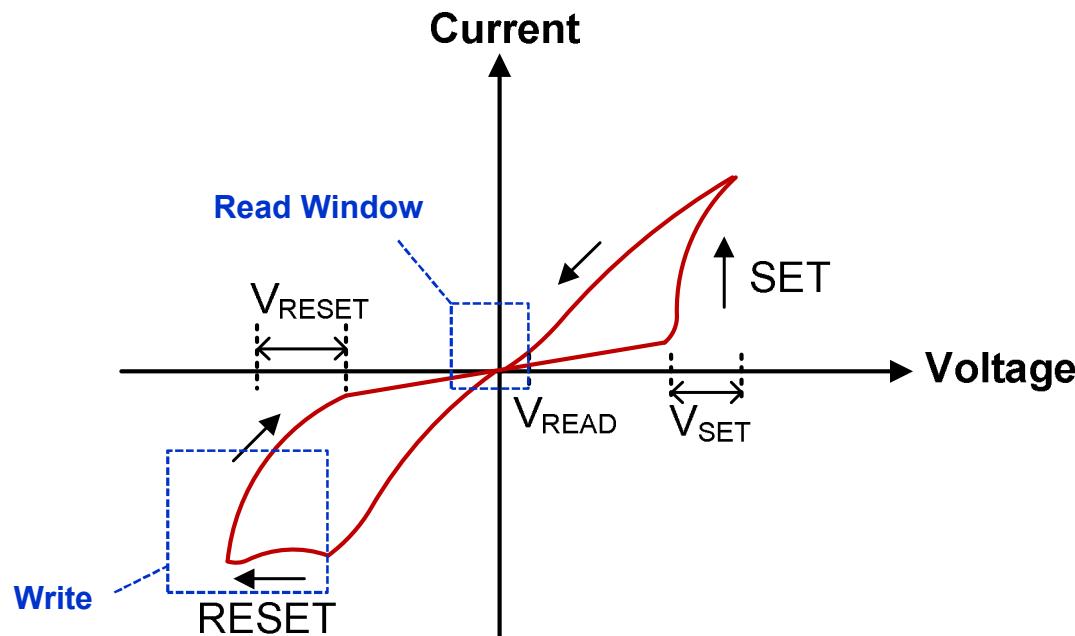
Use resistive memory elements for low-power local computation


$$V = I \times R$$
$$I = G \times V$$



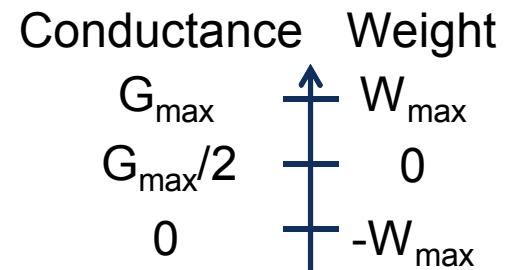
A resistive memory or ReRAM is a programmable resistor

- apply small V to read G
- apply large V to change G

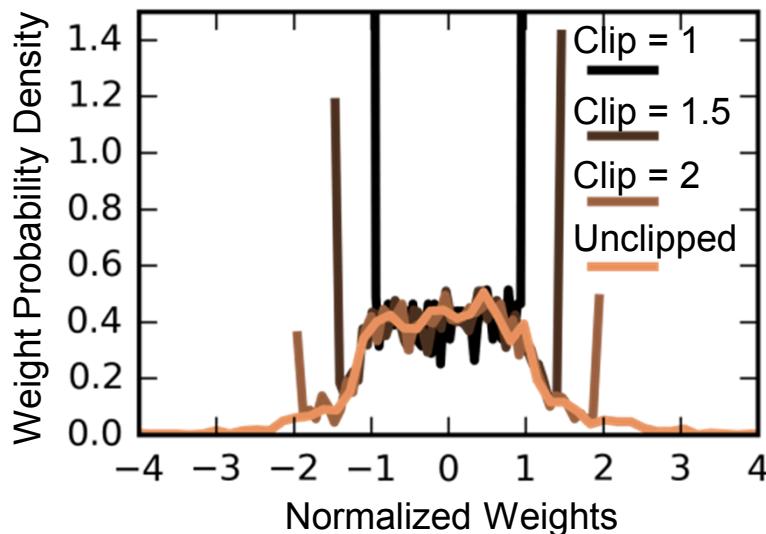


Mapping resistive memory devices to neural algorithm weights

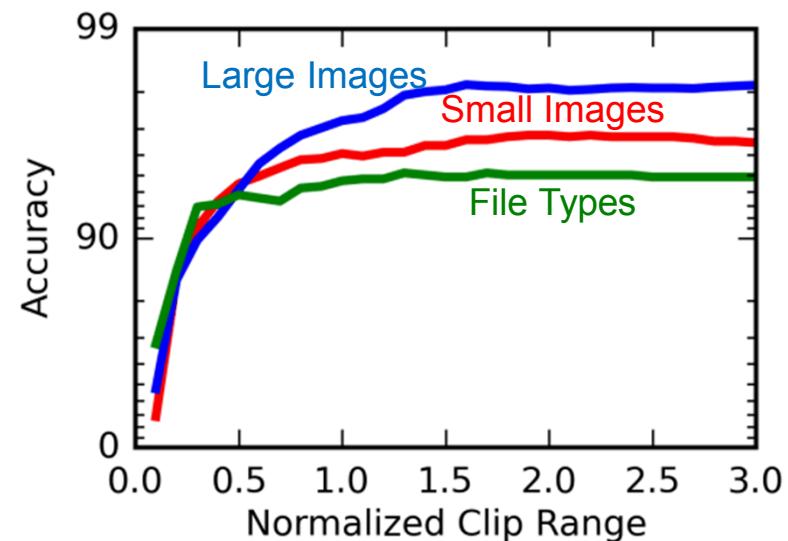
Data set	# Training Examples	# Test Examples	Network Size
UCI Small images	3,823	1,797	$64 \times 36 \times 10$
File types	4,501	900	$256 \times 512 \times 9$
MNIST large images	60,000	10,000	$784 \times 300 \times 10$



Small Images, First Layer

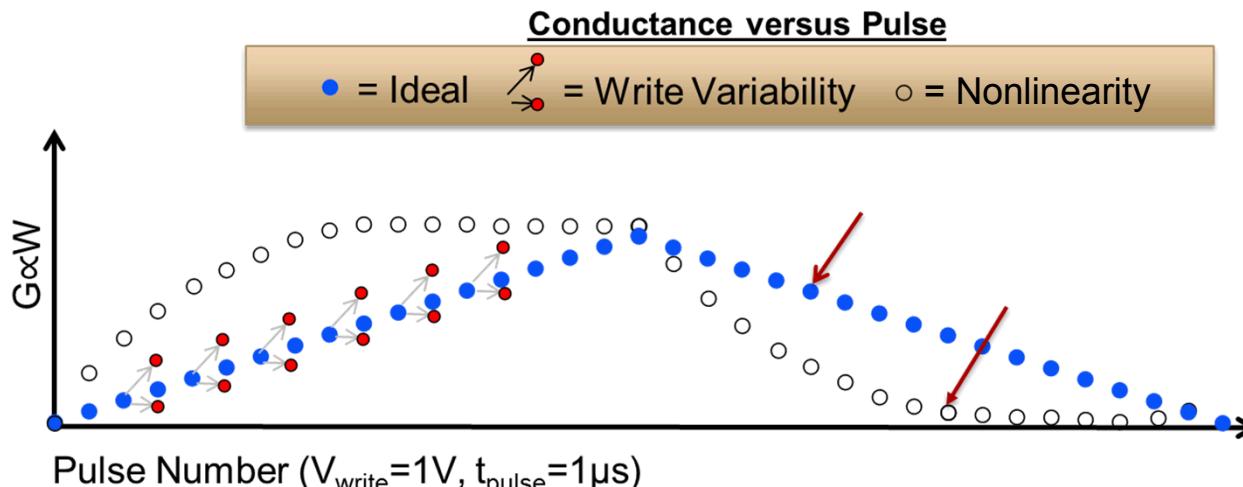


Weight Range Clipping



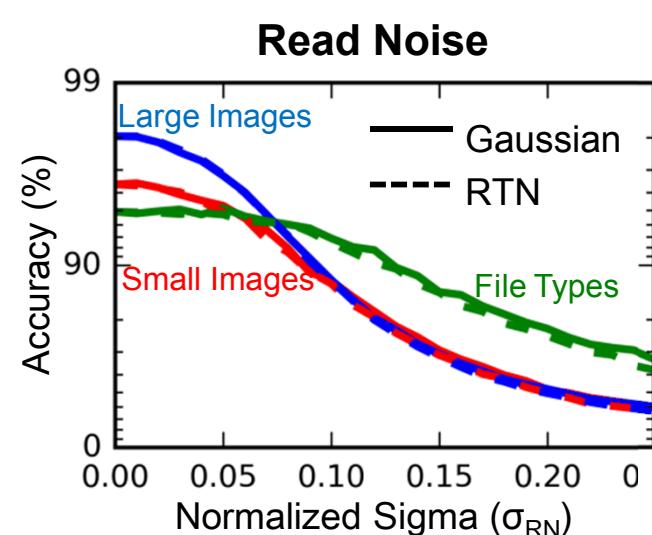
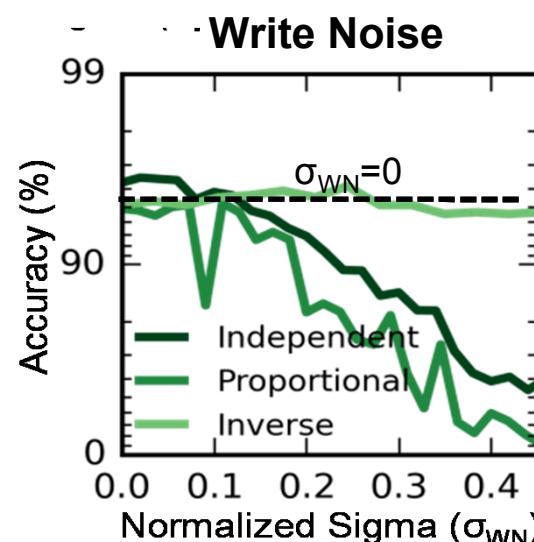
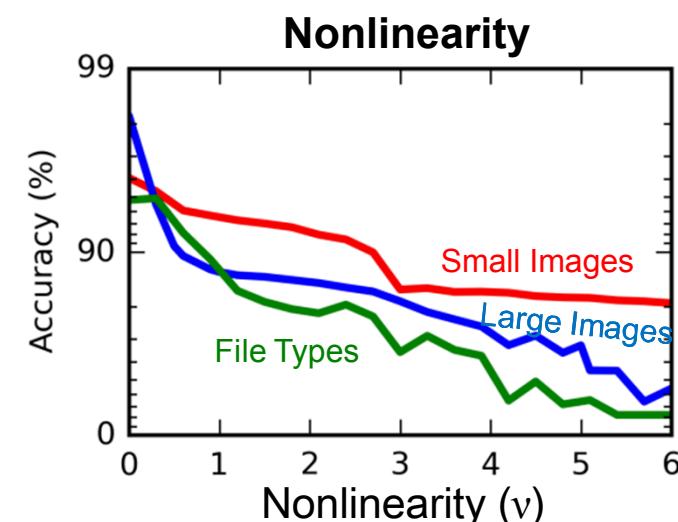
Agarwal et al, IJCNN 2016

Resistive memory device characteristics are non-ideal



High training accuracy requires:

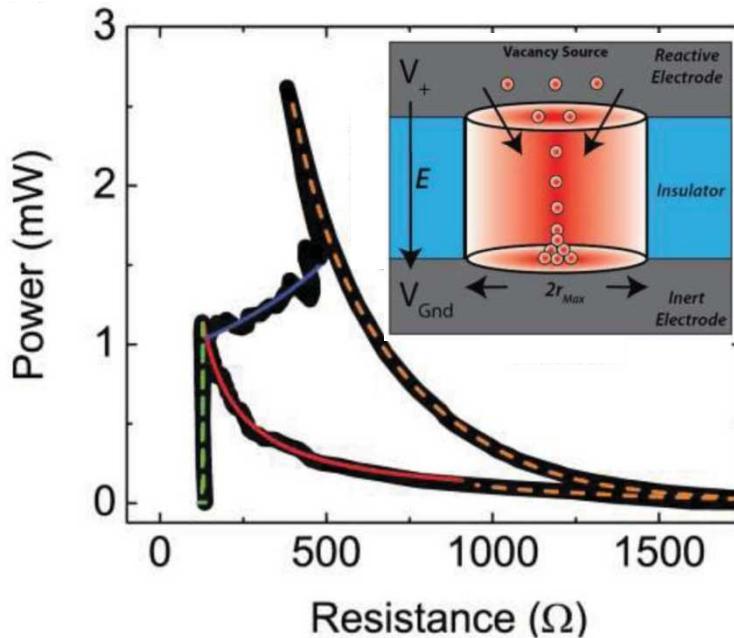
- Low Write Variability
- Low Write Nonlinearity
- Low Asymmetry
- Low Read Noise



Agarwal et al, IJCNN 2016

Designing, modeling, and fabricating devices with improved neural algorithm characteristics

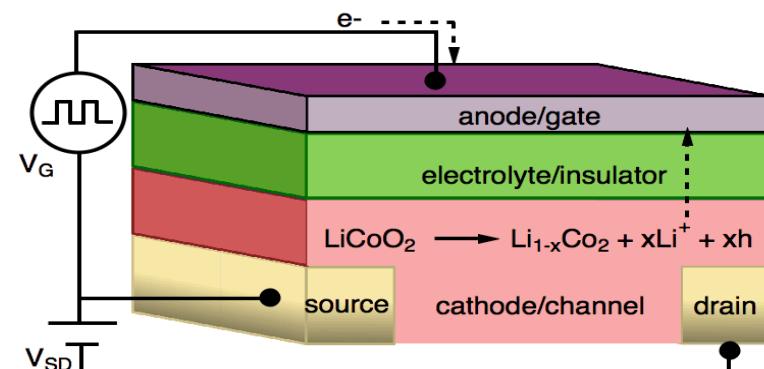
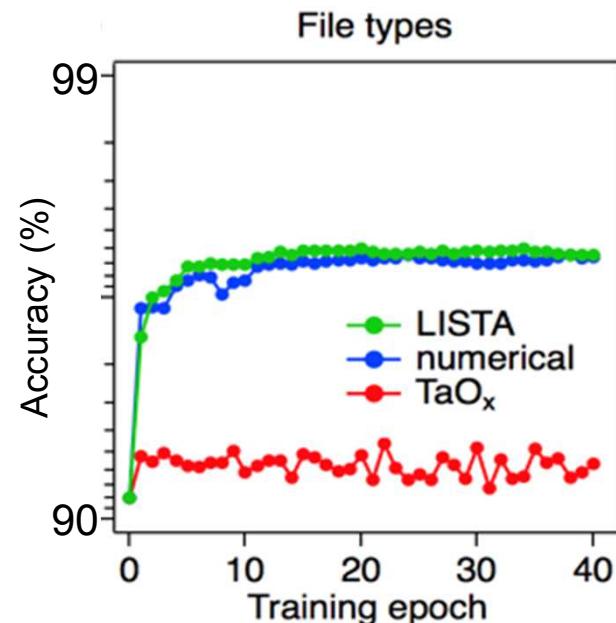
ON switching, ON state, OFF switching, OFF state



Filament surface temperature (T_s):

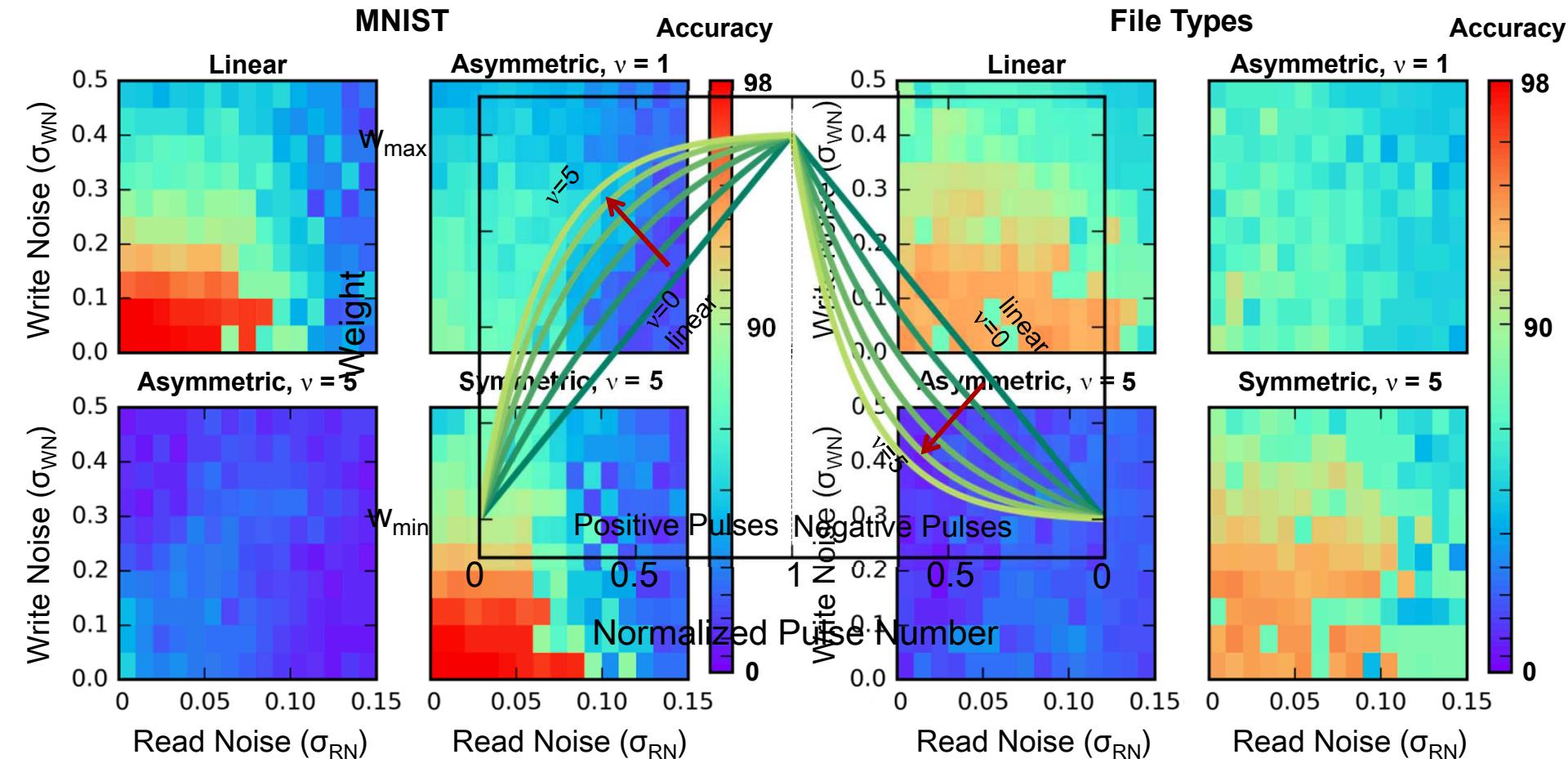
$$T_s = T_{RT} + \sigma V^2 \frac{d_E}{2k_E d_o} \left[1 - \frac{k_E}{k_F} \frac{r_F^2}{4d_E d_o} \right]$$

Mickel, Lohn, James, and Marinella, *Adv Mater*, 26, 4486, 2014
 Landon et al., *APL* 2015, 107, 023108



Fuller et al., *Adv Mater* 2016, in press

Combined impact of device non-idealities on algorithm performance



Thanks for your time!
Questions?