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Neural-inspired (data-driven) computing 
is necessary for real-world problems

C. Lampert, VRML 2013

Data-driven computingConventional numerical computing

yann.lecun.com
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Neural-inspired algorithms have matured & are 
achieving success on recognition problems

DeepFace (Facebook) - Taigman et al. CVPR 2014

Karpathy etc. CVPR 2014

DeepImage (Baidu) - Wu et al. 2015

FaceNet (Google) - Schroff et al. CVPR 2015

http://www.cheshireeng.com/Neuralyst/
nnbg.htm
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One-shot learning & generation of
new concepts (Lake, Salakhutdinov,
Tenenbaum, Science 2015).

Modern machine learning only captures limited 
characteristics of neural computing

Mante et al., Nature 2013, 503, 78 

Lake et al., Science 2015, 350, 1332

Temporal feature extraction via LSMs
(Mante, Sussilo, Shenoy, Newsome,
Nature 2013).

Strengthen the connection between ML & 
neuroscience = neural machine learning

M. Smith talk: neural-inspired 
architecture for LSMs
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Neural computing at Sandia Labs
leverages a large research foundation
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Enabling Hardware Deployable National 
Security Applications

Advanced Scientific & 
Data-DrivenComputing

Neural Machine-
Learning Algorithms

Formal Neural 
Computing Theory

Configurable CMOS 
Neural Architectures

Adaptive post-CMOS 
Neural Architectures

UQ of Neural 
Algorithms

Neural Computing 
Capabilities

Modeling & 
Simulation

Neuro-
Informatics

BMC - Memory 
Technology

Micro-
Sensors

Non-Von Neumann 
Architectures

MESA Fab
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Robust machine 
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Hardware Acceleration of Adaptive Neural 
Algorithms (HAANA)
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End of Moore’s Law-
Motivation for Neuromorphic Architectures

 Post Moore’s Law effects
 Processing limited by power not complexity

 We can build it but we can’t cool it

 Operational cost > capital costs
 Power, People & Space

 However, economics still driving change
 Virtualization: Improved server utilization

 Cloud: Reduced user complexity & cost

 Cloud/Virtualization approaching maturity
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Changing Nature of Computing

 Cultural changes altering use model

 Ubiquitous connectivity

 Social media

 Data explosion

 Internet of things

 Time value of data increasing rapidly

 Streaming Analytics fundamental to
 Financial industry: Banking, Wallstreet, fraud detection

 Social media: Google, Facebook

 Intelligence community: NSA, CIA, FBI

 etc.
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von Neumann Architecture

 Strengths

 Ubiquitous & bullet proof

 Memory model offers maximum flexibility

 Weaknesses

 Performance is power limited

 Primary culprit: Memory model

 Typically sub-optimal for high repetition tasks
 Floating point, ex. Nvidia

 Network Protocols
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Neuromorphic Computing

 Strength, ideal for streaming analytics
 Extraordinary at matching patterns

 FPGA >1,000x ops/watt vs IA server demonstrated

 ASIC >1,000,000x ops/watt projected

 Not power or routing limited

 Weaknesses
 Not Turing complete in traditional sense

 Not general purpose

 Architecturally processor or memory?
 Neuromorphic computers blur the distinction

11
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HAANA relies on applications to drive S&T 
for algorithms, architecture, and hardware

Algorithms

Cyber, Imaging

Behavioral Trajectory 
Analysis

Response to 
Concept Drift

Feature Extraction

Applications

Temporal 
Coding

Sparse 
Coding

Adaptive 
Coding
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• Direct EC→CA3 is dense but weak (recall)

• Path via DG is sparse and strong (training)

• DG performs: 

1. Sparsity increases

2. Pattern separation

Threat detectionThreat detection

Content-
addressable 

Memory

Content-
addressable 

Memory

Neural-inspired algorithms: dentate gyrus pre-
processing formats data for learning
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Modeling the “sparsity transformation” in 
neurobiological systems

Severa et al, accepted Neural Computation 2016

DG increases sparsity of EC input –
improved separation of features 

Sparse coding decreases the normalized
correlation for any pair of vectors, and thus
increases the estimated ‘sparsity’.

increased sparsity
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Neurogenesis increases coding flexibility

Severa et al, accepted Neural Computation 2016

• Dentate code is compatible with the introduction of 
new neurons and the refinement of old neurons

• Mixed heterogeneous code allows for adaptation to 
novel inputs, increased capacity

Dieni et al, Nature Comm 2016

Giocomo et al, Neuron 2011

• Adult neurogenesis improves 
information capacity
• Grid cells (EC to DG) encode 
spatial dimensions



 Information and probability are connected:
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Quantifying information content in neural signals
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Exploring the impact of neural information content 
in a real-world application

- Estimate the neural information 
content in place cell encoding of 
spatial locations

- Map information content to the 
neural space (resolution, efficiency)

- Examine the impact of 
neurogenesis on encoding and 
information content

Aimone, Deng and Gage, Neuron 2011
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Cyber, Imaging

Behavioral Trajectory 
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Response to 
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Coding

Processing 
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Design
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Algorithmic approaches 
to handle concept drift in data



Data-driven computing methods are limited…
by data; auto-encoder for data reconstruction 
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Draelos et al, ICLR 2016
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“Neurogenic deep learning” enables adaptation 
to changing data
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Draelos et al, ICLR 2016
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Extracting features from cyber data



Cox, Aimone, James; Complex Adaptive Systems, Nov. 2015; Procedia Comp Sci 61, 349

Cyber data identification 
with a deep neural network classifier
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Dynamic learning applications in cyber data



Tracking the Known: Bracketing Previously 
Identified Threats

Adaptivity, 
temporal 
coding

PCRE

Known 
Bad

Unlabeled
Feature 

Extraction

Hardware 
Accelerated 

Learning

S(t)

Candidate Threats

Candidate PCRE RulesValidation

Historical 
Bulk 

Collect

Potential, 
unknown 
signatures

known 
rules

Architecture Core
Algorithms Core

Learning Hardware Core

8



Accelerate PCRE processing with 
Temporal Processing Unit (TPU)

 Collaboration with Lewis Rhodes Labs (LRL)

 Patented neural inspired architecture for temporal processing 
of streaming data 
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Policy
Recognition:

Find Exn, n>>1
Behavioral:

Find !Exn, n>>1

(Un)Structured 
Input Stream(s)

StreamMetadata

Neuromorphic
Processor

PCIe

Structured Output

Filter PredictionMatchBehavior PipelineClassification



TPU Integration for PCRE Processing

 API for usability
 Hide complexity so no neural knowledge required by practitioners

 Waterslide is an opensource highly optimized stream processing code

 Hear all about this from Karl Anderson tomorrow

 Seamlessly integrated TPU API in a mater of weaks

 Significant PCRE performance improvement
 My initial testing showed 15X improvement over Google re2 library

 Significant demonstrated power reduction
 David Follett will tell the rest of the story tomorrow

 Seamlessly integrated in the Tracking the Known testbed

 TPU product “Neuromorphic Cyber Microscope” is an R&D100 
finalist in 3 categories
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Spiking Temporal Processing Unit (STPU)
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Liquid State Machine

 Developed by Wolfgang 
Maass

 Reservoir computing
 Echo State Machines
 Liquid State Machines

 Different items at different 
locations at different times

 Differences between the 
patterns are amplified by the 
liquid

 Mimics brain functionality
 Supervised learning

28
Maass, W., Markram, H., On the Computational Power of Recurrent Circuits of Spiking Neurons, Journal of Computer 
and System Sciences 69(4): 593-616, 2004.



Demonstrated LSM Applications

 Speech and audio recognition

 Image Pattern Recognition

 Music Classification

 Robot Path Planning 

 Fingerprint Scanners

 Facial emotion recognition

29



Mapping LSMs onto the STPU

 Goals:
 Implement the rich dynamics of a LSM efficiently

 Recurrence

 Exponential synaptic response functions

 Drives improvements to STPU architecture

 Currently implemented LSM on version 1 of STPU

 Demonstrated speech recognition with minimal parameter 
tuning using ridge regression

 Comparison with Zhang et al. 2015:
 Use state variables to keep track of synaptic responses. Time 

constants are binary (division becomes bit shifting)

 STPU uses weights to put values into the temporal stack

30
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Spiking network algorithm for computing cross-
correlations in particle image velocity (PIV)

• Data can be stored in the dynamics of a network
• Dynamics allow for trade-off: Time ↔ Neurons
• Neural algorithms can match or best traditional ‘big O’
• Efficient implementation on the STPU

Severa et al, accepted ICRC 2016

Example 2D flow-field (t0 an t1)
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Merolla, P. A. et al. Science 345, 668-673 (2014)

Use hardware acceleration (existing or novel technology)
to speed-up data processing in neural-inspired algorithms

Lee et al. Proc World Cong Eng Comp Sci 2013
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T. Taha, et al., Proc. IEEE Intl. Joint Conf. on Neural Networks, 2013.Agarwal et al, IJCNN 2016



Translating non-spiking neural network algorithms 
into hardware
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A resistive memory or ReRAM is a 
programmable resistor
• apply small V to read G
• apply large V to change G
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Write

Read Window

Use resistive memory elements 
for low-power local computation
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Small Images
Large Images
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UCI Small images 3,823 1,797 64×36×10
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Mapping resistive memory devices 
to neural algorithm weights 

Agarwal et al, IJCNN 2016
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High training accuracy 
requires:

 Low Write Variability

 Low Write 
Nonlinearity 

 Low Asymmetry

 Low Read Noise

= Nonlinearity

Resistive memory device characteristics 
are non-ideal
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Agarwal et al, IJCNN 2016



Designing, modeling, and fabricating devices 
with improved neural algorithm characteristics

Mickel, Lohn, James, and Marinella, Adv Mater, 26, 4486, 2014
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Filament surface temperature (Ts):

ON switching, ON state, OFF switching, OFF state

Landon et al., APL 2015, 107, 023108
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Fuller et al., Adv Mater 2016, in press
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Thanks for your time!

Questions?
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