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Neural-inspired (data-driven) computing
IS necessary for real-world problems

Conventional numerical computing Data-driven computing

C. Lampert, VRML 2013 yann.lecun.com




Neural-inspired algorithms have matured & are
achieving success on recognition problems
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Modern machine learning only captures limited
characteristics of neural computing

Temporal feature extraction via LSMs
(Mante, Sussilo, Shenoy, Newsome,
Nature 2013).

R

A ) i)
One-shot learning & generation of @ l!

new concepts (Lake, Salakhutdinov,
Tenenbaum, Science 2015).

Lake et al., Science 2015, 350, 1332




Neural computing at Sandia Labs
leverages a large research foundation
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Hardware Acceleration of Adaptive Neural

Algorithms (HAANA)

Algorithms
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End of Moore’s Law-
Motivation for Neuromorphic Architectures

= Post Moore’s Law effects
= Processing limited by power not complexity
= \We can build it but we can’t cool it

= QOperational cost > capital costs
= Power, People & Space

= However, economics still driving change
= Virtualization: Improved server utilization
= Cloud: Reduced user complexity & cost

* Cloud/Virtualization approaching maturity




Changing Nature of Computing

= Cultural changes altering use model
= Ubiquitous connectivity
= Social media
= Data explosion
= |nternet of things

= Time value of data increasing rapidly

= Streaming Analytics fundamental to
= Financial industry: Banking, Wallstreet, fraud detection
= Social media: Google, Facebook
= Intelligence community: NSA, CIA, FBI
= etc.




von Neumann Architecture

= Strengths
= Ubiquitous & bullet proof
= Memory model offers maximum flexibility

= \Weaknesses
= Performance is power limited
= Primary culprit: Memory model
= Typically sub-optimal for high repetition tasks

= Floating point, ex. Nvidia
= Network Protocols




Neuromorphic Computing

= Strength, ideal for streaming analytics

= Extraordinary at matching patterns
= FPGA >1,000x ops/watt vs IA server demonstrated
= ASIC >1,000,000x ops/watt projected

= Not power or routing limited

= Weaknesses
= Not Turing complete in traditional sense
= Not general purpose

= Architecturally processor or memory?

= Neuromorphic computers blur the distinction




HAANA relies on applications to drive S&T
for algorithms, architecture, and hardware
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Neural-inspired algorithms: dentate gyrus pre-
processing formats data for learning

=

Entorhinal
Cprtex

Iﬂ * Direct EC—CA3 is dense but weak (recall)

Dentate Gyrus « Path via DG is sparse and strong (training)

DG performs:
v .; 1. Sp[irsity increases
CA3
: (i‘ addressable
l Memory
¥

CA1 2. Pattern separation

| Threat detection




Modeling the “sparsity transformation” in
neurobiological systems
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Severa et al, accepted Neural Computation 2016




Neurogenesis increases coding flexibility

* Adult neurogenesis improves

Overly differentiating Adaptive resolution
information capacity /
: [ ) L) [ ]
* Grid cells (EC to DG) encode °aly ° & N (‘ vl
spatial dimensions . " i
[ ] o ° (] o ® ° o ]
Nestin-CreER™¢ e '\' ®oe 7 e, R X,’ °
o o /9 ® o
o o O
T Undifferentiated novel inph T
Uncoded novel input Uncoded novel input  Differentiated novel input
Single-value coding, Single-value coding, Mixed Coding
large p small p

» Dentate code is compatible with the introduction of

Dieni et al, Nature Comm 2016 new neurons and the refinement of old neurons
‘ AT ¥ - » Mixed heterogeneous code allows for adaptation to
BTSN g 1T novel inputs, increased capacity
& -_";":.‘- | ':*.‘:" . 'l".._-. _::lj

+ ||

Bir R A
.-u'l-'\‘--l .-:‘;,;.'.I' "'I - o o
- L iy
Skl

Giocomo et al, Neuron 2011 Severa et al, accepted Neural Computation 2016




Quantifying information content in neural signals

= Information and probability are connected:

HX) = Z p(x)log(p(x) 2=2

= Transform spike trains into compressed representations of
information:

L. 110111 e 1011100, .

= Complexity and entropy are related and can be estimated:

n
cy(x™) = C“(Tic ) x log,m lim sup ¢ (x™) < Hy(S)

n—->00




Exploring the impact of neural information content
In a real-world application

- Estimate the neural information
content in place cell encoding of
spatial locations

- Map information content to the
neural space (resolution, efficiency)

- Examine the impact of
neurogenesis on encoding and
information content

A Immature neurons B Mature neurons
AAa g 0o+ Aa ¢ 0+nH

Tuning of immature neurons
Tuning of mature neurons

Low information coding of all content High information coding of some content

Aimone, Deng and Gage, Neuron 2011
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Algorithmic approaches
to handle concept drift in data
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Data-driven computing methods are limited...
by data; auto-encoder for data reconstruction
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Draelos et al, ICLR 2016




“Neurogenic deep learning” enables adaptation =
to changing data
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Cyber data identification

with a deep neural network classifier
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Tracking the Known: Bracketing Previously @D
Identified Threats o

Architecture Core
— S(t)

Algorithms Core

known
rules

Potential,
= unknown
signatures

Historical
Bulk
Collect

Learning Hardware Core
Candidate Threats

Validation Candidate PCRE Rules
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Accelerate PCRE processing with 7%,

a ]
LEWIS RHODES
LABS L]

Temporal Processing Unit (TPU) a0t

= Collaboration with Lewis Rhodes Labs (LRL)

= Patented neural inspired architecture for temporal processing
of streaming data

(Un)Structured
Input Stream(s)

Metadata

Lo

| Match | ICIassification |Fi|ter| IPrediction I | Pipeline |

== Neuromorphic
. Proc

Policy
Recognition:

Find Ex,,, n>>1
Behavioral:
Find !Ex,, n>>1

Structured Output
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TPU Integration for PCRE Processing

= API for usability

= Hide complexity so no neural knowledge required by practitioners

= Waterslide is an opensource highly optimized stream processing code
= Hear all about this from Karl Anderson tomorrow
= Seamlessly integrated TPU API in a mater of weaks

= Significant PCRE performance improvement

= My initial testing showed 15X improvement over Google re2 library
= Significant demonstrated power reduction

= David Follett will tell the rest of the story tomorrow

= Seamlessly integrated in the Tracking the Known testbed

= TPU product “Neuromorphic Cyber Microscope” is an R&D100
finalist in 3 categories




Spiking Temporal Processing Unit (STPU)
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Liguid State Machine

= Developed by Wolfgang
Maass
= Reservoir computing
= Echo State Machines
= Liguid State Machines
= Different items at different
locations at different times

= Differences between the
patterns are amplified by the
liquid

= Mimics brain functionality

= Supervised learning

Maass, W., Markram, H., On the Computational Power of Recurrent Circuits of Spiking Neurons, Journal of Computer
and System Sciences 69(4): 593-616, 2004. 28




Demonstrated LSM Applications

= Speech and audio recognition
= |mage Pattern Recognition

= Music Classification

= Robot Path Planning

= Fingerprint Scanners

= Facial emotion recognition




Mapping LSMs onto the STPU

= Goals:
= |Implement the rich dynamics of a LSM efficiently
= Recurrence
= Exponential synaptic response functions
= Drives improvements to STPU architecture

Currently implemented LSM on version 1 of STPU

= Demonstrated speech recognition with minimal parameter
tuning using ridge regression
= Comparison with Zhang et al. 2015:

= Use state variables to keep track of synaptic responses. Time
constants are binary (division becomes bit shifting)

= STPU uses weights to put values into the temporal stack
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Spiking network algorithm for computing cross-
correlations in particle image velocity (PIV)

Key
B Input Neuron
» Data can be stored in the dynamics of a network Readout Neuron
* Dynamics allow for trade-off: Time <> Neurons — Synapse
. ‘s (L - , Standard Neuron
* Neural algorithms can match or best traditional ‘big O @ Scheduled Neuron
 Efficient implementation on the STPU Synapse (Scheduled)
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Use hardware acceleration (existing or novel technology)
to speed-up data processing in neural-inspired algorithms

N Codesign
5 7
c 7
8 7
T s
] — Software

k ° S PSS

A n Lee et al.}’roc World Cong Eng Comp Sci 2013
Example 1: 25.600 neurons
100,000 iterations/s
. Chip Power
J # of area % Power eff. over
Configuration chips (mm?) active (W)  Xeon
Memristor Analog (config 4) 1 5.9 38.6% 0.07 234,859
Memristor Digital (config 5) 1 18.2 89.6% 0.62 16.968
SRAM (config 6) 1 29.1 89.6% 1.13 8,215
NVIDIA M2070 12 529.0 99.2%  2700.00 6
Intel Xeon X5650 179  240.0 99.9% 17005.00 1

Agarwal et al, IJCNN 2016 el T A e R aTenCe D DO T I adrks, 2013,

a eura




Translating non-spiking neural network algorithms
into hardware

VW=l
Network RRAM analog
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Agarwal et al, IJCNN 2016




Use resistive memory elements
for low-power local computation

A resistive memory or ReRAM is a
programmable resistor

« apply small V to read G

« apply large V to change G

Current
A
OFF ON
Read Window
Pt Pt ‘
.\/RESI§T T i T SET
@@()D @@@@ ® ; ; L H » Voltage
TaO, @0 @ @ Veero Ve
@0 _® @ ®0 _® @ -
@ @ o @ @ @ |
Ta Ta PRI
Write = “RESET




Mapping resistive memory devices
to neural algorithm weights

# Training # Test Network Size Conductance Welght
Data set A
Examples | Examples Gmax Wmax
UCI Small images 3,823 1,797 64 X36X10 G /2
File types 4,501 900 256 X512 X9 max 0
MNIST large images 60,000 10,000 784 X300 X10 0 W
max
Small Images, First Layer Weight Range Clipping
> T T T T 99 T T T T T
I 1.4 C||_p— 1 Large Image
2 1.2 |- Clip = 157 Small Images
_.2\ 1.0 — . - >
= sl Clp=2 | ® File Types g
8 Unclipped o 90 ]
o 0.6 | | o
o <
= 041 2 .
< %
© 0.2 F L J . :
o | N u
= 0.0 L v | | Lo | 0E | | | | ] ;
-4 -3 -2 -1 0 1 2 3 4 0.0 05 10 15 20 25 3.0
Normalized Weights Normalized Clip Range

Agarwal et al, IJCNN 2016




Resistive memory device characteristics
are non-ideal

Conductance versus Pulse

High training accuracy

A requires:
= Low Write Variability
2 00000030932908,../ = Low Write
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Agarwal et al, IJCNN 2016
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Designing, modeling, and fabricating devices
with improved neural algorithm characteristics

ON switching, ON state, OFF switching, & -
3 T - L]
anode!gate .
Ve electrolytef/insulator
g 2+ LiCoO, — Li;xCos + xLi; + xh
':-E: _:<source cathode/channel  drain
g Vsp[ T
o 1r File types
99
0 B L A | A 1 A L
0 500 1000 1500 X
Resistance (Q) § E
£ - LISTA_ |
. -8 numerica
Filament surface temperature (T,): § —e- TaO,
dg kp 17 .
Ty = Trr + oV? - = 5
S 2ked, kp4dgd, 904, . , ] .
0 10 - _20 30 40
Mickel, Lohn, James, and Marinella, Adv Mater, 26, 4486, 2014 Training epoch
Landon et al., APL 2015, 107, 023108 Fuller etal. Adv Mater 2016, in press



Combined impact of device non-idealities
on algorithm performance

MNIST Accuracy File Types Accuracy
Asymmetric, v=1

Linear Asymmetric, v=1 Linear
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Thanks for your time!
Questions?




