SAND2016- 11359C

Using Computational Game Theory To Guide
Verification and Security in Hardware Designs

Andrew M. Smith*, Jackson Mayo', Vivian Kammler!, Robert C. Armstrong*, and Yevgeniy Vorobeychik®
*Digital and Quantum Information Systems, Sandia National Laboratories, Livermore, California 94551-0969
Email: amsmit@sandia.gov
fScalable Modeling and Analysis, Sandia National Laboratories, Livermore, California 94551-0969
{Embedded Systems Analysis, Sandia National Laboratories, Albuquerque, NM 87185
§Department of Computer Science, Vanderbilt University, Nashville, TN 37235

Abstract—Verifying that hardware design implementations ad-
here to specifications is a time intensive and sometimes intractable
problem, due to the massive size of the system’s state space.
Formal methods techniques can be used to prove certain tractable
specification properties; however, they are expensive, and often
require subject matter experts to develop and solve. Nonetheless,
hardware verification is a critical process to ensure security and
safety properties are met, and encapsulates problems associated
with trust and reliability. For complex designs where coverage of
the entire state space is unattainable, prioritizing regions most
vulnerable to security or reliability threats would allow efficient
allocation of valuable verification resources. Stackelberg security
games model interactions between a defender, whose goal is to
assign resources to protect a set of targets, and an attacker,
who aims to inflict maximum damage on the targets after first
observing the defender’s strategy. In equilibrium, the defender
has an optimal security deployment strategy, given the attacker’s
best response. We apply this Stackelberg security framework
to synthesized hardware implementations using the design’s
network structure and logic to inform defender valuations and
verification costs. The defender’s strategy in equilibrium is thus
interpreted as a prioritization of how verification resources
should be allocated in the presence of an adversary. We demon-
strate this technique on several open-source synthesized hardware
designs.

I. INTRODUCTION

Validation and verification are crucial processes in hardware
design, and directly affect the confidence associated with a
properly functioning, and a sufficiently reliable and secure
system. Hardware validation involves ensuring design proper-
ties and specifications are accurate for the actual intent of the
design; this process has few objective measures for accuracy or
completeness, and relies heavily on effective communication
between design teams. Verification of a hardware design
typically involves using a mathematical model to prove that
properties in a validated specification hold in the design’s
implementation. Since a complete and correct specification
ideally includes properties of how a system should and should
not behave in desired operating environments, a completely
verified system is also secure and trusted, with respect to
the design’s intent'. Verifying that a design implementation

Concluding that a design is completely secure and trusted is a strong
statement, but is prefaced with an equally strong, idealistic assumption: that
all inputs into the verification process are flawless. We make this statement
to draw ties between verification, security, and trust.

complies with a validated specification has an exact, objective
measure of completeness for each specification property: an
exhaustive search of the system’s state space, a nontrivial
and extremely costly (sometimes intractable) process. Even
with current state space pruning techniques used in formal
verification tools, expertise in model checkers/theorem provers
and specific design functionality is often required for guiding
complete verification proofs, if possible, and results in up to
80% of the design process [1]. This results in potentially using
valuable resources exploring portions of the design that have
little or no effect on critical elements of the system. The ability
to prioritize particularly vulnerable regions of a design for
further, more costly verification methods will direct efforts
towards critical safety and security requirements and increase
confidence in overall design fidelity.

Game theory has been used for securing physical assets,
such as power infrastructure, strategic resources, and airports.
In such settings, Stackelberg game formulations are typically
used, with the assumption that an attacker can observe security
decisions put in place by the defender. These applications
require deployment of costly physical resources, and strategies
are often framed in the form of money allocation (for sensors,
guard salaries, etc.). Verification as a security strategy in
hardware design, however, is more time-sensitive due to strict
deployment schedules. The cost of verifying a hardware design
is a function of how complex (i.e., the size of the state
space of the system) and how critical (i.e., the number of
safety and security properties must be verified) the design is.
Furthermore, the designers’ valuation of a particular portion
of the circuit ultimately reduces to the logic implementation
and how likely failures are to spread to other, more critical
portions of the circuit.

In this work, we develop a game-theoretic model for pri-
oritizing components of a hardware netlist implementation to
guide costly verification efforts. To achieve this, we propose
3 main contributions:

1) we inform defender’s utility via abstraction of hardware
netlists into Boolean networks, using functional influ-
ence as a measure of expected failure propagation;

2) we extend Stackelberg security games (SSGs) to hard-
ware implementations (hardware SSGs), interpreting
defender equilibrium strategies as a prioritization of

verification effort;
3) we apply our game model to synthesized open-source
hardware designs popular in the trust community.

The rest of this paper is laid out as follows. In Section II, we
discuss previous related research. Section III describes in detail
our extension of Stackelberg security games to verification
prioritization in hardware designs, including formulation of
player utilities. Section IV applies our game theoretic model
to open-source hardware design. Finally, Section V further
discusses the implications of our model and future work.

II. PREVIOUS WORK

Security games have been used to guide protection strategies
in physical and cyber security [2]. In both settings, Stackelberg
games (also known as leader-follower or defender-attacker
games) are commonly used to model the fact that the attacker
can often observe realizations of a defense strategy over time
before attacking. Properties of Stackelberg equilibria, includ-
ing existence, and equivalence with Nash equilibria (under
certain reasonable constraints) have been well studied [3].
Interdependencies between defenders and their targets have
also been considered in such models. However, such models
often assume a defender only controls one target [4], [5].
Synthesized hardware designs are complex logic networks,
that are often analyzed by one or many verification engineers.
Game theoretic models of such systems often require computa-
tional methods to gain insight into equilibrium bounds. Smith,
et al. developed a mixed-integer linear program approach to
approximating equilibrium in general multi-defender, multi-
target settings [6]. Lou, et al. extend this approach to prove
formal equilibrium bounds (in certain settings) and provide a
more in-depth computational analysis [7]. We specialize this
approach to a hardware design setting, and interpret defender
strategies to be applicable to verification.

Few game theoretic models have been applied to hardware
design settings. Games applied to trust in hardware design
abstract away the design itself in lieu of understanding the
interactions of categories of Trojans (attacker actions) and their
corresponding detection methods (defender actions) [8], [9].
Security games in deployed FPGAs have also been studied,
where an attacker’s attempt to gain access to a defender’s
bitstream for reverse engineering [10]. However, players’
utility depend only on an abstract notion of design value. To
our knowledge, our model is the first to consider hardware
design structure and functionality in a game theoretic setting.

Previous work in guiding formal verification of hardware
circuits over the past couple decades has overcome several
hurdles associated with design complexity. Relevant works
include leveraging interdependencies between complex veri-
fication tasks, informative interaction between various proof
methods, and guidance from automated test generation meth-
ods. Jones, et al. develop a verification framework for large
scale designs, allowing (among other significant organizational
tasks) decomposition of verification tasks and reusability of ar-
tifacts between proofs [11]. Bhadra, et al. provide an overview
of hybrid techniques for guiding verification, combining the

strength of mathematical provability of formal methods and
the scalability of simulation, testing, and other more informal
methods [12]. Recently, automated use of state space cover-
age from past simulations is used to guide simulation-based
verification (sometimes referred to as informal verification)
via machine learning techniques [13]. Such methods can also
work as hybrid techniques for assisting formal methods. Our
proposed prioritization metric would be of use upstream from
any of the previously discussed methods, providing an efficient
ordering of critical design components to cover.

ITI. MODEL

For our problem, we are interested in finding regions in a
complex hardware design (represented as a netlist) that are
the most vulnerable to attack. Since targets in synthesized
netlists represent logic gates, the primary property of interest
is a gate’s propensity to propagate a failure or attack to the
output of the system itself, or to some predetermined high
value signal. We apply the general Stackelberg security game
(SSG) model on interdependent targets of Lou, et. al [6],
[7] to scenarios specific to security in hardware designs. In
SSGs, there are typically 2 players: a defender, who aims
to protect a set of resources, and an attacker that aims to
corrupt a target that maximizes their expected utility. The
players move sequentially, with the defender leading, and the
attacker observing the defender’s (possibly mixed) strategy
before responding. Such games are representative of security
scenarios in hardware development, since we can assume the
attacker has the ability to run the same set of vulnerability
analysis tools on a particular implementation as the defender.

For our model, there are 2 players: an attacker, A, and a
defender (or hardware designer/verification engineer), D. The
defender has a continuous action space q = (g1, q2, - , q|71)-
where ¢; € [0, 1], for all sequential logic nodes in the netlist,
t € T, which represents the level of effort given to verifying
node t. Each sequential node has a cost to verify, ¢;, Vt € T,
relative to the number of inputs, and an inherent value, vy,
Vt € T, that the defender loses if an attack is successful on
node t. The defender’s utility function, u, selects a strategy, g,
that minimizes total loss, considering both loss from attack and
cost to verify (with respect to certain equilibrium constraints,
given in Section III-C). The attacker’s action space is defined
as p € {l,---,|T|}, representing a choice of one of the
defender’s targets to attack. The attacker’s utility function, v,
maximizes total loss for the defender. Note that the attacker
can be modeled to represent other forms of attack (i.e.,
a random failure, avoiding detection, etc.), however, in the
interest of prioritizing critical regions, we wish to find defender
strategies that reflect protection against maximum damage.

In the rest of this section, we discuss (i) the computation of
defender node values and defense costs, (ii) utility calculation
for the defender and the attacker, and (iii) a mixed integer
linear program (MILP) based equilibrium solution for solving
SSGs in hardware design scenarios.

A. Computing Defender Values

Computing defender values relies on two well-studied con-
cepts, influence' and independent cascade contagion.

Influence — The probability that changing the value of bit
1 of an input vector y changes the output of the transfer
function f;(y) for node j. Formally, Inf;(f;) = Pr[f;(y) #
fj(y(i))], where (") indicates an input vector y with the
ith bit flipped. Relatively low influence inputs are targeted
in Trojan detection, since these inputs are more likely to
avoid standard coverage tests [14], [15]. High influence inputs
are of more interest in critical applications, however, due to
their propensity to spread failure throughout the system [16].
Influence can be calculated exactly by enumerating the truth
table, or via harmonic analysis [16].

Independent cascade contagion — A process for determin-
ing contagion spread, typically used in disease or information
propagation in social network contexts, but more recently used
as a method for calculating failure spread in interdependent
systems [5]-[7]. The independent cascade contagion process
takes as input a graph G = (T, F) with targets 7', and a set of
edges E, where (i,4') € E indicates that a successful attack on
1 may affect 7’ with some probability p;;:. The process starts at
some target 7 € T and spreads to each to each outgoing node
¢/ with probability p;;/, which then spreads to i’’s neighbors,
et cetera, affecting each node only once. With enough samples
of this process, an expected affliction value can be obtained
for each node given various starting points.

The value of a target in a network combines both the
inherent, independent value of a target, as well as how a
successful attack on that target propagates to other targets.
In order to consider the dependencies between targets, we
abstract the HDL netlist into a Boolean network. To make this
transformation, we select each output wire of each flip-flop to
be a Boolean node. We then construct the sequential fan-in
of each output wire to be the input to each node, terminating
once another flip-flop is reached. Connections between nodes
are maintained as edges, such that if a flip-flop output node
i is an input to a node j, there is a directed edge (i, j). This
process results in a Boolean network G = (T, E'), where T is
the set of nodes or targets, and E is the set of directed edges
between nodes. Truth tables for each node can be obtained
through independent simulation of each individual gate, or
from target technology documentation. Boolean functions (or
transfer functions) are derived as the composition of the
combinational logic within each node. Figure 1 illustrates the
conversion process.

Once a Boolean network is created, we calculate the in-
fluence of each input on each node, assuming independently
and identically distributed values (i.e., we assume each row
in a truth table is equally likely). For each edge (i,7) in the
Boolean network, we set the cascade probability p;; equal to
the input influence of the input corresponding to node % on
node j. Using inherent valuations of each node combined with

IThe influence of an individual input on a transfer function is also known
as control value (CV).

~ -

N o -

(b) Boolean network of the sample netlist above, with corresponding
cascade probabilities, p; nodes indexed by flip-flop IDs.

Fig. 1: Illustrates a simple transformation from a netlist to a
Boolean network. Cascade probabilities, p, are determined by
the influence (control value) of each input.

cascade probabilities on each edge, an independent cascade
contagion process is applied to the network to determine the
valuations of each node as a result of potential failure propa-
gation. Final defender valuations are ultimately determined by
running this process K times for each node, and is expected to
converge quickly in tree-like network structures [5]. As a result
of this iterative process, defender valuations now inherently
include network structure and functional dependence. We will
now describe how the defender’s (and attacker’s) utility is
computed using these target valuations.

B. Player Utilities

The defender’s utility, Uy, at a particular target ¢ depends
on the level of verification effort applied to ¢, ¢, the initial
valuation of ¢, v, and the probability that a successful attack
on ¢ spreads to other nodes via independent cascade contagion,
py (t), for some t' € T. We model the defender’s utility
function as a loss function, so that successfully attacked nodes
result in negative utility. Formally,

Up = E[(1 — q¢)(—ve) Z (—ve)pe (1)]

t'el

. While interesting utility functions can result from initially
uniform valuations (as in the previous work in [5]-[7]),
hardware design experts may have preliminary knowledge that,
regardless of network structure, some nodes are more critical
than others. For instance, nodes within a controlling state
machine may be an expected target for attack or a known

source of harmful design flaws; higher initial values can be
given to these nodes.

Since we are aiming to prioritize the most critical compo-
nents with respect to failure or attack, we wish to model an
attacker that maximizes loss for the defender. As such, we
assume the attacker’s utility is V; = —U,, for a target node ¢.

C. Stackelberg Equilibrium in Hardware SSGs

With the structure of our hardware SSG model, our solution
method aims to find equilibrium strategies such that neither
the defender or attacker wish to deviate from their strategy,
given that the defender knows the attacker’s utility function
(to maximize damage), and the attacker can observe the
probability of complete verification at each of the defender’s
targets prior to selecting a target node to attack. Such an
equilibrium is known as the Stackelberg equilibrium. For our
model, we adopt the average-case Stackelberg equilibrium
(ASE) proposed in Smith, et al. [6]. ASE demonstrates the
equilibrium properties stated above, and enforces that if the
attacker is ever indifferent over which target node to attack,
then one is selected uniformly at random. We suggest using
ASE to include uncertainty over attacker actions for equally
attractive targets, as well as the potential to include multiple
(potentially noncooperative) hardware design teams in future
work.

To compute ASE for hardware SSGs, we use a specialized
version of the mixed-integer linear program (MILP) formu-
lation developed in Smith, et al. and Lou, et al. [6], [7].
While the original formulation includes multiple defenders
and arbitrary security configurations, we model one central-
ized hardware designer/verification engineer and one security
configuration (verification effort). The reduced formulation is
given below.

The objective function, shown in Equation 1, ultimately
maximizes the defender’s utility, considering the verification
costs, ¢ for each target node.

e tez;ctqt (D
s.t.

0<q <1 VteT)
a; € {0,1} VteT 3)
dar>1)
teT

0<v—qVi <(1—a)M vteT &)
St =v—q Vs VteT (6)
ar+Ms; > 1 VteT @)

u = L (Z CLtQtUt>) 3)
2ter teT
where M is some sufficiently large number, and a; = 1 if
target node ¢ is attacked.
Constraints 4- 7 enforce that the defender’s utility is being
maximized with respect to the attacker’s best strategy after
observing verification efforts. Individually, constraint 4 forces

the attacker to attack at least one target node. Constraints 6
creates a variable, s;, indicating the gap between the optimal
attacker value v and the value of attacking target node ¢. If
s¢ = 0, t is an optimal target node to attack. Constraints 7
together with constraints 5 ensure that the attacker chooses to
attack a target ¢ if and only if it is the maximum utility target
to attack given the defender’s strategy q. Finally, constraint 8
computes the defender’s utility, u, given defender strategy q
and attacker strategy a. Note that this is a nonlinear constraint,
but can be linearized, resulting in a mixed-integer linear
program. Sorting the resulting q* from this optimization from
highest to lowest results in a prioritization of components for
which we can allocate verification resources.

D. Interpreting equilibrium strategies

We interpret the defender’s strategy in equilibrium, q*, as
the distribution of verification effort that should be given to
each target node in the Boolean network representation of
the synthesized hardware design. A high ¢; value indicates
a high ratio of criticality to cost of verification at target
node t. While the exact value of g; for each target node
does not translate into specific verification tasks, the relative
values between targets suggest a prioritization of verification
resources. As such, this does not necessarily mean that targets
with ¢; = 0 should be neglected. Certain elements of safety
and security properties present in requirements are not found
in the individual logic gates of the netlist. Prioritization results
can be better represented by assigning more insightful initial
target node valuations derived from the design specification
(as discussed in Section III-B).

IV. EMPIRICAL ANALYSIS

For this case study, we apply our hardware SSG model to
an open-source microcontroller design popular in the hardware
trust community [17]. Typically, this design suite is used
for Trojan detection [14], [15], however, it also serves as a
good testbench for comparing the results of various synthe-
sized implementations, especially since the reference design
serves as an ideal target specification. For our analysis, we
select inserted Trojans that could also represent unintentionally
harmful design flaws (i.e., a portion of the logic that does not
comply with the written specification). We chose the reference
design (UART_REF), as well as versions that include three
different Trojans (or “design flaws™): (i) corruption of received
data when a certain input is received (UART_T400), (ii)
errantly enabling the “receiver ready” signal (UART_T800),
and (iii) blocking of the “transmission signal” (UART_T900).
Each design is synthesized to a Verilog netlist of FPGA
primitives using identical processes and target technology, and
converted to a Boolean network via the process described in
Section III

We focus our analysis on varying the base cost of verifica-
tion with respect to the number of inputs at each node, Cgse-
CBase indireclty represents the sophistication of formal meth-
ods tools available for verification. A low base cost means
it is cheap to formally verify a design, which may indicate

— UART_REF
@-@ UART_T400
V-V UART_T800
<= UART_T900

Fraction of design covered

0.0 05 1.0
CB(LSE?

Fig. 2: Comparison of total verification coverage for several
implementations of Trust-Hub microcontroller, varying the
cost per node input of verification.

advanced heuristics or the availability of large computing
resourses. Higher base costs correspond to naive exhaustive
testing , or similar exhaustive state space exploration methods.
For a given target node, ¢, with K inputs, we set the cost of
verification, ¢; = C'ggse * K. Figure 2 shows a comparison of
the total percentage of target nodes covered in each variation
of the microcontroller design, varying the base cost. A target
node ¢ is said to be “covered” by verification if ¢; > 0.
Here we see a logarithmic curve, where the gains of using
hardware SSGs for prioritization decrease exponentially when
CBase < 0.1. Less than this value, verification is cheap enough
to cover a fairly large portion of the circuit. In the next
sections, we further compare the verification strategies of each
microcontroller implementation.

A. Prioritization of verification strategies

Figure 3 displays the verification prioritization resulting
from ASE in hardware SSGs run on the various microcon-
troller implementations, sampling from Cp,se values. Perhaps
not surprisingly, the prioritization signatures of each design
is relatively similar (with few exceptions, particularly in the
middle of each spectrum). While we know UART_REF to
be the “correct” specification, the deviations in spectrum
alone are not enough to tell us if formal verification of the
prioritized strategies will reveal the design flaws that exist in
the remaining 3 implementations. To investigate deeper, we
will discuss the details of each individual implementation.

1) UART _T400: The design flaw present in the
UART_T400 gives an incorrect data payload in the receiver
portion of the microcontroller. The specific register associated
with the data affected is named “iRECEIVER/recDatH” in
the synthesized netlist, and is indicated by a dashed red line
in the prioritized strategy plot in Figure 3 (top, right). This
particular register is incredibly crucial to the functionality
of the microcontroller, and appears in similar places in the
verification ordering of the other implementations as well.

2) UART_T800: This implementation contains a rather
complex injection of malicious logic that consists of a 19-

o UART REF o UART T400
0.8} {1 o8
0.6 {1 06
__ 04 1 o4
=
=
4 02 1 o2
—
o
Y= 0.0 0.0
(0] 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
S .. UART T800 . UART T900
o — X T
= 1 1
8 1 1
S o8t 0.8 "
:‘E 1 1
1 1
g 06f 1 0.6 1
1 1
1 1
1
0.4 \ 0.4 :
1 1
1 1
0.2 1 0.2 1
] 1
] 1
0.0 5 0.0 -
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80

Node ID (Priority sorted)

Fig. 3: Priority sorted strategy spectrum ¢; for each target
node t, varying Cpgse from 0.01 — 1.0, where darker lines
indicate higher base costs. Node targets with low IDs represent
high priority verification targets. Dashed red lines indicate
the location in the priority ordering of the target node with
a known design flaw.

bit combinational trigger, resulting in the “receiver ready”
(rec_readyH) signal to go high against specification. While
the trigger is relatively large, the payload is a primary output
to the system, and encapsulated by the sequential nodes in
the receiver’s state machine. The sequential node representing
the least significant bit in the receiver’s state machine (named
“iRECEIVER/state[0]”) is indicated in Figure 3 (bottom, left),
and is the lowest priority of the other 3 bits contained in the
state. While this node is further back in the priority ordering
than the node of interest in the UART_T400 implementation,
it becomes covered once the Cg,s. < 0.15. Referring back to
Figure 2, this remains in the top 12% of the critical nodes in
the design.

3) UART_T900: UART_T900 differs from the previous two
implementations in that the injected logic is an entire state
machine which is not present in the specification. This state
machine blocks transmission when particular rare states are
reached. Referring to Figure 3 (borrom, right), the dashed red
marker indicates the payload of the injected state machine
(named “iXMIT/DataSend_ena”, which also corresponds to
the trigger of the transmission denial of service). Even though
the reference design did not contain this logic, the effect of
an attack on this implementation of the system prioritizes the
“IXMIT/DataSend_ena” node in the top 20% of the design.

V. DISCUSSION AND FUTURE WORK

In this work, we apply a recently developed interdependent
security game model to the guidance of hardware design veri-

fication, which we call hardware SSGs. We abstract hardware
netlists into Boolean networks, as seen in previous hardware
modeling work, and apply influence metrics from complexity
theory to inform defender valuations of sequential portions of a
design. Using strategies obtained from computing equilibrium
in hardware SSGs, we interpret sorted defender strategies as
a prioritization of verification efforts. We then apply hard-
ware SSGs to variants of an open source microcontroller
design, showing that prioritized verification efforts are likely
to capture design flaws known to be present in the specified
implementations.

Sandia National Laboratories is a multi-mission laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energys National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

[1] R. Drechsler et al., Advanced formal verification. Springer, 2004, vol.
122.

[2] A. Sinha, T. H. Nguyen, D. Kar, M. Brown, M. Tambe, and A. X. Jiang,
“From physical security to cybersecurity,” Journal of Cybersecurity, p.
tyv007, 2015.

[3] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe,
“Stackelberg vs. nash in security games: An extended investigation
of interchangeability, equivalence, and uniqueness.” J. Artif. Intell.
Res.(JAIR), vol. 41, pp. 297-327, 2011.

[4] A. Laszka, M. Felegyhazi, and L. Buttyan, “A survey of interdependent
security games,” CrySyS, vol. 2, 2012.

[5] J. Letchford and Y. Vorobeychik, “Computing optimal security strategies
for interdependent assets,” arXiv preprint arXiv:1210.4873, 2012.

[6] A. Smith, Y. Vorobeychik, and J. Letchford, “Multidefender security
games on networks,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 41, no. 4, pp. 4-7, 2014.

[71 J. Lou, A. M. Smith, and Y. Vorobeychik, “Multidefender security
games,” IEEE Intelligent Systems: Special Issue on Artificial Intelligence
and Economics, 2016.

[8] J. Graf, “Trust games: How game theory can guide the development of
hardware trojan detection methods,” in Hardware Oriented Security and
Trust (HOST), 2016 IEEE International Symposium on. 1EEE, 2016,
pp- 91-96.

[9] C. A. Kamhoua, M. Rodriguez, and K. A. Kwiat, “Testing for hardware
trojans: A game-theoretic approach,” in International Conference on
Decision and Game Theory for Security. Springer, 2014, pp. 360-369.

[10] J. Graf and P. Athanas, “How threats drive the development of secure
reconfigurable devices,” in 2008 IEEE National Aerospace and Elec-
tronics Conference. 1EEE, 2008, pp. 239-245.

[11] R. B. Jones, C.-J. H. Seger, M. D. Aagaard, and T. Melham, “Practical
formal verification in microprocessor design,” IEEE design & test of
computers, vol. 18, no. 4, 2001.

[12] J. Bhadra, M. S. Abadir, L.-C. Wang, and S. Ray, “A survey of
hybrid techniques for functional verification,” IEEE Design & Test of
Computers, vol. 24, no. 2, pp. 0112-122, 2007.

[13] C. Ioannides and K. I. Eder, “Coverage-directed test generation auto-
mated by machine learning—a review,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 17, no. 1, p. 7, 2012.

[14] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: identifi-
cation of stealthy malicious logic using boolean functional analysis,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 697-708.

[15] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: verification
for hardware trust,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 7, pp. 1148-1161, 2015.

[16] C. Seshadhri, A. M. Smith, Y. Vorobeychik, J. R. Mayo, and R. C.
Armstrong, “Characterizing short-term stability for boolean networks
over any distribution of transfer functions,” Phys. Rev. E, vol. 94, p.
012301, Jul 2016.

[17] (2016) Trust-Hub website.
hub.org

[Online].

Available:

https://www.trust-

