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The Magnetized Liner Inertial Fusion (MagLIF)* concept seeks to reduce 
requirements on implosion velocity and pressure by using a magnetic field.
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The magnetic field helps to:
• Thermally insulate hot fuel from a cold pusher 
• Increase confinement of hot fusion products
• Possibly stabilize the liner implosion

Flux compression is a critical component of MagLIF,
required to confine hot fusion products, B·r = 0.5 T·m

1. A 10–50 T axial magnetic 
field is applied (~3-ms rise time) 
to inhibit thermal conduction 
losses and to enhance alpha 
particle deposition.

2. ZBL preheats the 
fuel to ~100–250 eV, 
reducing the required 
final convergence ratio 
to CR 20–30.

3. The Z-pinch drive 
current implodes the 
liner at 50–100 km/s, 
compressing the fuel 
and Bz field by factors 
of 1000.
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*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010);  S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012).



We used a terbium-doped fiber as the magneto-sensitive
element of the probe 
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	= ���

�	is	the	Verdet	constant

• The Verdet Constant of our 65% Tb fiber (by weight) at λ = 1550 nm is -8.2 rad/T/m

• All Tb-doped fiber probes were calibrated at Sandia’s Systems Integration Test Facility

• Overall Calibration of all probes: 20±1 T/radian

R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 
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The Faraday system on Z utilizes commercial off-the-shelf fiber 
optics components from optical communication industry 
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R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 



The Faraday rotation diagnostic uses existing infrastructure (PDV) 
combined with new polarization maintaining fiber components
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R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 



Images and drawings of the load hardware shows configuration 
of the applied BZ coil pair, imploding liner, and Faraday probe.  
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R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 
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R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 
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Lessons Learned: Premature failures with a previous target 
design were initially a mystery

Faraday probe failed ~60 ns into implosion
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R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 
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Lessons Learned: Premature failures with a previous target 
design were initially a mystery

…but micro B-dot probes failed even earlier, 
roughly 40 ns into implosion
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• The 100-micron tolerance gap between liner body and upper electrode 
likely allowed magnetic field to propagate up into the dielectric end-cap

• This first crushed the micro B-dot cable
• The field then propagated down the micro B-dot feed-through 

channel, crushing the Faraday fiber at a slightly later time
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R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 

Lessons Learned – Premature failures with a previous target 
design led to new hypothesis:
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 Monolithic liner-electrode design (“dumbbell” design)

 Angled stainless steel glide planes for reinforced stability

 Faraday probe only (i.e., no micro B-dots)

R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 

Lessons Learned: New target design now successfully tested
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ALEGRA-2D simulations used to 
design an Al liner that implodes in a 
stable 1D manner and remains in a 
compressed solid state until impact.
This simulation is run with the 
measured load current from Z2882.

R·Z plot of density versus time

R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 
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ALEGRA-2D simulations used to 
design an Al liner that implodes in a 
stable 1D manner and remains in a 
compressed solid state until impact.
This simulation is run with the 
measured load current from Z2882.

R·Z plot of BZ versus time

R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 
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*R. D. McBride and S. A. Slutz, Phys. Plasmas, 22, 052708 (2015).
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The Faraday channels are digitized at 20 GHz over a 10 ms window to 
record the entire applied BZ (17.2 T) pulse and ensuing flux compression.
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D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.



The filtered Faraday rotation signal shows oscillations of increasing 
frequency, decreasing amplitude and a varying background offset
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D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.



Shift and scale oscillations between each peak and valley to create 
a signal that varies from 0 to 1 to get polarization rotation angles
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D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.



Normalized Faraday signal, Vf after shifting and scaling
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D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.



Reduced rotation angle: � = cos�� Vf , 0 >  > /2
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D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.



The unfolded rotation angle multiplied by the probe calibration 
factor (20.3 T/radian) gives time dependent magnetic field

19

3.08 3.1 3.12 3.14 3.16 3.18 3.2 3.22 3.24 3.26 3.28

x 10
-6

0

100

200

300

400

500

600

700

Machine time (s)

B
 f

ie
ld

 (
T

e
s
la

)

Magnetic Field vs. Time for Z2883

D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.
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Comparison of Z2883 Faraday Rotation measurements to SAMM-1D 
code shows good overall agreement but contains extra features
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Early time deviation possibly due to 
influence of mechanical strain on 
the PM fiber-probe region. 
(Funky wiggles)

Late time deviation possibly due to 
noise or generation of a surface 
plasma on the silica tube, shielding 
magnetic flux penetration. 

At probe failure:
BZmax = 600 T
B-dot = 2x1011 T·s-1

B·r = 0.18 ±0.03 T·mAbout 50-60% of flux conserved 
(compared to SAMM 1D)
• Though still need to work out 

uncertainties and possible 
relative timing errors

Applied BZ = 17.2 T

D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.



After compression, the conserved flux is 80-90% of predictions 
by ALEGRA simulations and 40% of SAMM/ideal simulations
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D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.



“The secret is comprised in three 
words — Work,  finish, publish.”

-Michael Faraday

 Fiber-based Faraday rotation works in the harsh 
environment on Z and liner design is important!

 For Al liners with a 200-ns implosion time, ~50% of 
the original flux is retained, but with caveats …

 Measured a maximum BZ = 600 Tesla

 Maximum measured B-dot = 2x1011 T/s

 Measured B·r = 0.18 ±0.03 T·m at probe failure  

 Projected B·r at MagLIF stagnation radius will be 
higher and could be sufficient to magnetize alphas;
B·r = 0.5 T·m is not unreasonable

D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation. 22



We used a Tb-doped fiber as the magneto-sensitive
element of the probe 
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�	is	the	Verdet	constant

� =
�

��
= −

1

2

�

�

�

�

��

��

Verdet Constant of Terbium Gallium Garnet
(TGG) vs. Wavelength (Barnes and Petway 1992)

Verdet Constant vs.Tb
at = 1053 nm

The Verdet Constant of our 65 wt% Tb fiber
at  = 1550 nm is -8.2 rad/T/m. 

R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 



All probes calibrated at the Sandia magnet lab with 
3, 10, and 15 Tesla B fields. 
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� = cos�� ����
��

� = 0.75	radian	

Cal	=	20	T·radian-1

V =	-8.3	radian·T-1·m-1

Parallel and perpendicular 
polarization channels scale 
linearly against each other.

Light intensity rotated out 
of the parallel polarization 
channel should end up in 
the perpendicular channel.  

Rotation angle scales 
linearly with B-field. 
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Conceptually, magnet flux compression is the superposition of an 
initial, uniform magnetic field and a dynamic solenoidal 

field due to J on the liner’s inner surface.
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B-dot probes
detect the 

dynamic field.

Faraday rotation and 
Zeeman spectroscopy 
measure the total field

Initial Magnetic Field (Bz0) Dynamic Flux Compression Field Total Magnetic Field Solution

Initial magnetic field 
set by current applied 
to external coils, ABZ.

�� � = �� 0 × � 0
� ��

�

= ��� × CR�Ideal Flux Compression:

R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (2015). 



About 50-60% of the flux is conserved compared
to the SAMM-1D ideal flux compression
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Comparison of Z2883 Faraday Rotation measurements to SAMM-1D 
code shows good overall agreement but contains extra features
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Early time deviation possibly due to 
influence of mechanical strain on 
the PM fiber-probe region. 
(Funky wiggles)

Late time deviation possibly due to 
noise or generation of a surface 
plasma on the silica tube, shielding 
magnetic flux penetration. 
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At probe failure:
BZmax = 600 T
B-dot = 2x1011 T·s-1

B·r = 0.18 ±0.03 T·m

D. E. Bliss, R. D. McBride, M. R. Martin et al., 2016 HTPD Conference (Invited), manuscript in preparation.


