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The Magnetized Liner Inertial Fusion (MagLIF)" concept seeks to reduce ) e,

requirements on implosion velocity and pressure by using a magnetic field.

1. A 10-50 T axial magnetic
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particle deposition.
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2. ZBL preheats the
fuel to ~100-250 eV,
reducing the required
final convergence ratio
to CR 20-30.
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The magnetic field helps to:

* Thermally insulate hot fuel from a cold pusher
* Increase confinement of hot fusion products
* Possibly stabilize the liner implosion

Flux compression is a critical component of MagLIF,
required to confine hot fusion products, B:r=0.5T-m

3. The Z-pinch drive
current implodes the
liner at 50—100 km/s,
compressing the fuel
and Bz field by factors
of 1000.

Compressed B,

*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010); S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012).



We used a terbium-doped fiber as the magneto-sensitive ) e,
element of the probe
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« The Verdet Constant of our 65% Tb fiber (by weight) at A = 1550 nm is -8.2 rad/T/m
« All Tb-doped fiber probes were calibrated at Sandia’s Systems Integration Test Facility

« Qverall Calibration of all probes: 20+1 T/radian
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The Faraday system on Z utilizes commercial off-the-shelf fiber i,
optics components from optical communication industry
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The Faraday rotation diagnostic uses existing infrastructure (PDV) ) e,
combined with new polarization maintaining fiber components
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Lessons Learned: Premature failures with a previous target ) e
design were initially a mystery

Faraday probe failed ~60 ns into implosion

Faraday Rotation Results for Z Shot 2713
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Lessons Learned: Premature failures with a previous target ) e
design were initially a mystery

...but micro B-dot probes failed even earlier,
roughly 40 ns into implosion

«Bdot Results for Z shot 2713 (upper plane)
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Lessons Learned — Premature failures with a previous target () i,
design led to new hypothesis:

« The 100-micron tolerance gap between liner body and upper electrode
likely allowed magnetic field to propagate up into the dielectric end-cap
» This first crushed the micro B-dot cable
» The field then propagated down the micro B-dot feed-through
channel, crushing the Faraday fiber at a slightly later time
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Lessons Learned: New target design now successfully tested ) s,
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= Monolithic liner-electrode design (“dumbbell” design)
= Angled stainless steel glide planes for reinforced stability

= Faraday probe only (i.e., no micro B-dots)
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R-Z plot of density versus time

ALEGRA-2D simulations used to
design an Al liner that implodes in a
stable 1D manner and remains in a
compressed solid state until impact.
This simulation is run with the
measured load current from Z2882.

user: mronarti
Thu Jun 2 11:50:152016

R. D. McBride, D. E. Bliss, M. R. Martin et al., Tech. Report No. SAND2015-9860, Sandia National Laboratories (20



DB: fcompfinalgplow4.exo.64.00 :
Cycle:0  Time:2.8e-06 .ﬁgt“. _

+ N 2 4 B (0 a 0 aboratories
Cé’ezm'm THTT e BTETEG

1000 16

10,00

- | R-Z plot of B, versus time

10.00
Max: 10.00
Min: 1000

G : ALEGRA-2D simulations used to

il ol " design an Al liner that implodes in a
stable 1D manner and remains in a
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SAMM™ 1D calculation of the liner’s inner surface trajectory,
magnetic field, and Faraday signal for Z2883
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The Faraday channels are digitized at 20 GHz over a 10 ms window to ) i
record the entire applied B, (17.2 T) pulse and ensuing flux compression. o
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The filtered Faraday rotation signal shows oscillations of increasing h
frequency, decreasing amplitude and a varying background offset

Parallel Polariztion, Z2883
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Shift and scale oscillations between each peak and valley to create ) e,
a signal that varies from O to 1 to get polarization rotation angles o

« 10-3 Parallel Polariztion, 22883
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Normalized Faraday signal, V; after shifting and scaling i)

Normalized Faraday Signal Parallel Polariztation, 22883
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Reduced rotation angle: ¢ = cos™! (\/ﬂ) 0>d>mn/2

Faraday Rotation Angle, 22883
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The unfolded rotation angle multiplied by the probe calibration ) e,
factor (20.3 T/radian) gives time dependent magnetic field reboretores

Magnetic Field vs. Time for 22883
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Comparison of Z2883 Faraday Rotation measurements to SAMM-1D

code shows good overall agreement but contains extra features

Magnetic Field vs. Time for 22883
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After compression, the conserved flux is 80-90% of predictions
by ALEGRA simulations and 40% of SAMM/ideal simulations

Z Shot 2882:
Applied B,=9.9T
Maximum B, =425T
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“The secret is comprised in three

words — Work, finish, publish.”
-Michael Faraday

= Fiber-based Faraday rotation works in the harsh
environment on Z and liner design is important!

= For Al liners with a 200-ns implosion time, ~50% of
the original flux is retained, but with caveats ...

. = Measured a maximum B, = 600 Tesla
= Maximum measured B-dot = 2x10' T/s
. = Measured B-r =0.18 =0.03 T-m at probe failure

= Projected B-r at MagLIF stagnation radius will be
higher and could be sufficient to magnetize alphas;
B:r =0.5 T-m is not unreasonable




We used a Tb-doped fiber as the magneto-sensitive ) e
element of the probe

Verdet Constant of Terbium Gallium Garnet
(TGG) vs. Wavelength (Barnes and Petway 1992
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All probes calibrated at the Sandia magnet lab with
04SITFCaIibr:‘ation, FaraqlayProbe#Q, 15 Tesla 3 10 and 15 TeSIa B fIEIdS
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Conceptually, magnet flux compression is the superposition of an ) e,
e el . . . . . . Laboratories
initial, uniform magnetic field and a dynamic solenoidal
field due to J, on the liner’s inner surface.

Initial magnetic field B-dot probes Faraday rotation and
set by current applied detect the Zeeman spectroscopy
to external coils, ABZ. dynamic field. measure the total field
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About 50-60% of the flux is conserved compared
to the SAMM-1D ideal flux compression
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Comparison of Z2883 Faraday Rotation measurements to SAMM-1D
code shows good overall agreement but contains extra features

Magnetic Field vs. Time for 22883
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