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Outline

* Single atom positioning with nm-scale resolution
* Donor based qubits
e Defect (color) centers in Diamond

* How accurate are SRIM simulations to predict
implant range and straggle?

* Fidelity of SRIM simulations is compromised for low-
energy heavy-ion implantation into light targets.

* Experiments to compare SRIM to RBS and SIMS



Single atom positioning with nm resolution:
Path to quantum computation

A silicon-based nuclear spin
quantum computer

An integrated diamond nanophotonics platform for
quantum optical networks

A. Sipahigil,”* R. E. Evans,' D. D. Sukachev,"*** M. J. Burek,* J. Borregaard,' M. K. Bhaskar,' C. T. Nguyen,'
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Positioning Requirements:

- Donors in Si: 15 nm +/- 5nm from interface** -
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Defect centers in diamond: < A/2 ~ 300 nm

Deterministic, high precision placement of single atoms
proposed and demonstrated for quantum computation



Shallow Sb donor implantation:
donor based qubits in Si

What is needed:

Electrostatically defined silicon quantum dots with counted antimony donor

- Single atom implants Miplais
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= d nge elow Interrace (0] nm J. R. Wendt,' R. P. Manginell,' J. Dominguez,’ T. Pluym,” D. R. Luhman,'? E. Bielejec,’
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How? Applied Physics Letters 108.6 (2016)

- Implantation of low energy, heavy ions.

SRIM: 20keV Sb into Si

10 nm implant site

Electron tunneling events from donor to dot
(under gate) cause conductance offsets

Simulation shows a position distribution for high yield
fabrication single donor qubits, and it works!! 4



SRIM simulations are key to determine
the final atom position after implantation

20 keV Sb implant distribution
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The question is: How accurate are SRIM simulations?



Low energy electronic stopping
and nuclear stopping

SRIM over-estimates electronic stopping Nuclear stopping theories diverge

Universal is a few % accurate over large
energy range!!

Response of 100% Internal Carrier Collection

Efficiency Silicon Photodiodes to Low-Energy Ions

Herbert O. Funsten, Member, IEEE, Stephen M. Ritzau, Ronnie W. Harper, and
Raj Korde, Member, IEEE
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Measured vs predicted electronic stopping energy fraction values
diverge. Does this affect the range?



Experiments

1) Implant Sb into Si

- Crystalline Si samples with native oxide only

- Sent to EAG* for implantation of natural Sb (121 and 123)
- Range of fluences and range of energies

- Implanted at 7° to substrate normal

T 90111e| 91eJiSqNS

2) Secondary lon Mass Spectrometry (SIMS)

- Depth profiling (range and straggle)
- Determine fluence to implant saturation
- Incorrect sputtering rate can skew results

otope
[for mxample "Cor ")
labvelled ssmple

3) Rutherford Backscattering Spectrometry (RBS) Naturs Rayieves | Microbiology

Non-destructive
Depth profiling (range and straggle)
- Cross-check SIMS (RBS =>SIMS, same sample)
Limited depth and mass resolution
Large fluence needed for measurable backscattered signal

RBS and SIMS techniques are good complements of each other



SIMS for implant saturation and Dynamic-TRIM
simulation for 50keV Sb into Si

Normalized Implant distributions of 50 keV Sb into Si
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Dynamic —TRIM predicts the implant profile shift when the local
antimony fraction becomes large (10% or greater)



Implant Saturation “turn on”

Implant Fluence to Saturation for Sb into Si
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Cross-check SIMS and RBS measurements: need implant fluence
below saturation but high enough to yield an RBS signal



SIMS profiles avoiding implant saturation

SIMS implant profiles for Sb at different energies
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Avoiding saturation we can compare measure range to SRIM
10



RBS: 2MeV as (SNL Pelletron)

Energy Calibration

. . . . . Si3N4 on Si referece (2MeV a's)
Energy Calibration using Origin

Fitting Algorithms

« Counts
Linear trace interp of B

- Gaussian fits to peaks N
[2) ax = .

- Linear interpolation to edges 5 15001 o - 690,17
O Ch #=263.72
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Acquired RBS spectrum for
512 and 1024 channels ol | | , ,
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Si target with Sb implant was simulated using Au Reference (2MeV of's)
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< 0.1 typically



Apples to apples comparison:
Avoid channeling and implant saturation
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“good” agreement is found between SRIM predictions and
experientially measured range values using SIMS and RBS



In conclusion

* SRIM does gives accurate predictions for the projected
range of Sb implantation into Si if:
* Channeling is avoided
* Implant dose is lower than implant saturation “turn on”

* SRIM simulations show a general trend where the
predicted range is larger what we measured

* the experimental error has a magnitude similar to the
difference observed.

» Other studies suggest SRIM range predictions should be
shallower than the actual ion range.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94A1.85000.



Extra slides



Outline

Slide 1 — Title and author list

Slide 2 — Outline

- Single Atom positioning with nm resolution

- Is SRIM a good predictor of the range +/- straggle
- Experimental results comparing SRIM/RBS/SIMS
- Conclusions

Slide 3 — Single Atom Devices (EIPBN intro)

- Si qubits (Kane)

- Diamond nanophotonics (reference Alp Science 2016)
Slide 4 - Shallow Sb donors in Si

- Pathway to donor-donor coupling

- Defines what energies and depth we are interested in (reference Singh APL 2016)

Slide 5 - Graphical picture of Range +/- Straggle
- Two issues
o Nuclear stopping — figure from slide 8
o Electronic stopping — figure from slide 7
- Take-home > How good is SRIM
Slide 6 — Design of experiments (outline of the rest of the talk)
- Predict range with SRIM
- Implant Sb
- Measure with
o RBS
o  SIMS
Slide 7 — Range with SRIM
- 50 keV Sb into Si, what is the issue = implant saturation
- Compare Dyn-TRIM to datasets — range vs. implant fluence and compare
Slide 8 — Implant with Sb
- Balance saturation turn on with high enough fluence to measure
- Saturation curve
Slide 9 — RBS
- Intro RBS and show what we can get from it
- RBS limitations
Slide 10— SIMS
- Intro SIMS and show what we can get from it
- SIMS limitations
Slide 11 — Results
- Range measured over Range predicted vs. energy for Sb implantation
- Correct the figure — use the below saturation datasets
Slide 12 - Conclusions
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The problem: incorrect range
oredictions for low energy of
implantation

12 vErT ' ' L
_ . E 49 B 1 keV (M,,Z,) = Si _
- Low-energy electronic stopping powers of SRIM-2003 were = L i
Ll —eo— fit (exp)
fqund to be much too Iow: ' . Q 8 SRIM.2003 -
- Differences between detailed and quick calculation modes < - —o— SRIM-2000
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- Problems by nonrandom target-atom spacing 5 a4l N
- For energies below 5keV, the projected ranges of heavy ions % 5 -
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Wittmaack, Klaus. "Reliability of a popular simulation code for
predicting sputtering yields of solids and ranges of low-energy . _ _
ions." Journal of applied physics 96.5 (2004): 2632-2637. Predicted range incorrect for low energies

16



SIMS* for 50keV Sb into Si: Multiple Fluences

Normalized Implant distributions of 50 keV Sb into Si

Implant fluence Dyn-TRIM 50keV Sb --> Si implant distribution profiles
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- SRIM predicts a fixed range and straggle vs energy.
- Observed a dependence on implant fluence.
- Agreement found for low implant fluences

*Secondary lon Mass Spectrometry 17



The real challenge: donor-donor coupling

Surface gates mediate interaction
between two donors near surface

Subrsirie

www.cqc2t.org/silicon_qubit_environ

Theory: need <10nm for observable
spectral splitting

lon implantation approaches:

Phosphorus dimer implant

P+

Single atom implant in adjacent sites
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Low-energy heavy-ion high precision implantation may offer a road to

two-qubit prototypes
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Implant Saturation turn on

Compare: SRIM, Dyn-TRIM, SIMS for 50keV Sb into Si
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- Dyn-TRIM tends to SRIM predictions as the fluence is lowered
- For comparison, stay below implant saturation



