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4. Research Accomplishments

Breakthroughs in both science and technology often accompany the discovery of new material
systems with unique physical properties. The goal of our project is to develop, investigate,
formulate and understand a new class of Dirac quantum material, which is layered group VI
transition metal dichalcogenides (MXz), ranging from MoS; to WSe,. Chemically stable and
weakly bound to each other, monolayers of M X have strongly bound hexagonal layers of X-M-X
with trigonal prismatic coordination resulting in a honeycomb structure like graphene (Fig. 1a).
This fact gives them analogous Dirac-like electronic valleys at the corners (K-points) of the
hexagonal Brillouin zone. A key difference from graphene is that MX; has inversion asymmetry,
which gives rise to direct band gaps in the visible regime and non-trivial Berry-phase related
physics. But more profoundly, +K valleys have circularly polarized optical selection rules
providing the first solid state system for dynamic control of valley degrees freedom (Fig. 1b). A
second important difference is the large spin-orbit coupling (150 ~ 450 meV) which arises due to
the transition metal. Combined with the inversion-symmetry breaking, this truly two-dimensional
semiconductor affords new possibilities for manipulating charge, layer (dipole), spin, and valley
degrees of freedom to explore exotic physical phenomena (Fig. 1c).
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Figure 1| Physical properties of monolayer dichalcogenides. (a), Left: unit cell. Right: top view of the
hexagonal lattice structure of monolayer MoXa. (b), Schematic of inequivalent valleys at the band edges located
at the K points with circularly polarized optical selection rules. (c), Energy level diagram of coupled spin-valley
degrees of freedom with optical selection rules.

Supported by DoE career award, the Pl established his group as the leader in the investigation of
this new class of 2D materials and heterostructures by developing a suite of advanced nano-optical
spectroscopy tools. We have made a number of breakthroughs which resulted in a total of 41
publications, including Nature (1), Science (1), Science Advances (2), Nature Physics (7), Nature
Nanotechnology (3), Nature Materials (1), Nature Communications (7), Nature Review Materials
(1), Physical Review Letters (4), Nano Letters (2), and Physical Review B (2). Below are the brief
summaries of the major results.




a. Electrical Control of Neutral and Charged Excitons in a Monolayer Semiconductor, J.S. Ross,
et al. Nature Communication, 4, 1474 (2013) | doi: 10.1038/ncomms2498.

In this work, we demonstrated the full tunability of positively charged (X*), neutral (X°), and
negatively charged (X°) excitons in a 2D semiconductor, monolayer MoSey, for the first time (Fig.
2a). The charging energy for X* and X" are nearly identical, implying the same effective mass for
electrons and holes, consistent with their description as massive Dirac Fermions at the band edges.
Due to reduced screening effects in the monolayer limit, the charging energy of about 30 meV is
an order of magnitude larger than that of 3D bulk semiconductors. The linewidth of these excitons
can be as narrow as 2 meV at a temperature of 30K. These narrow, well-separated resonances
provide remarkable opportunities to selectively probe and control individual excitons in 2D
crystals.

b. Electrical Tuning of Valley Magnetic Moment Through Symmetry Control in Bilayer MoS, S.
Wu, et al. Nature Physics 9, 149-153 (2013) | doi:10.1038/nphys2524.

Monolayer MoS. has broken inversion symmetry, which leads to valley-dependent physical
properties, such as magnetic moment (m), Berry curvature (Q), and circularly polarized optical
selection rules. Unlike monolayer, bilayer MoS: is inversion symmetric and thus valley-dependent
physical properties will vanish. However, the intrinsic inversion symmetry can be broken simply
by applying a perpendicular electric field. In principle, this offers the possibility of switching
on/off and continuously tuning valley-dependent properties near the Dirac valleys by reversible
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Figure 2. Selected results | (a) Photoluminescence (PL) intensity map of monolayer WSe; as a function of gate
voltage and emission energy, showing charge tunable excitons. (b) Degree of circular polarization (n) of PL from
bilayer MoS; as a function of perpendicular gate voltage. (c) Polarization resolved PL under ¢* excitation with ¢*
(black) and o~ detection (red). The doublet is due to the electric field induced spin Zeeman splitting. Inset: Peak
splitting as a function of gate voltage (left) and schematic of spin and layer pseudospin coupling (right). (d) Optical
image of lateral MoSe,/WSe; heterostructure. Inset: PL intensity map of a triangular sample. (e) Valley Zeeman
splitting as a function of magnetic field. Inset: cartoon depicting the valley magnetic moments. (f) Polarization-
resolved PL spectra, revealing the excitonic nature of the emission from monolayer black phosphorus. Inset: real
space exciton wave function by DFT calculation.



electrical control. We investigated this possibility using polarization-resolved photoluminescence
(PL) of bilayer MoS>. We find that in bilayer MoS; the circularly polarized PL can be continuously
tuned from -15% to 15% as a function of gate voltage (Fig. 2b), whereas in structurally non-
centrosymmetric monolayer MoS,, the PL polarization is gate-independent. The observations are
well explained as resulting from the continuous variation of orbital magnetic moments between
positive and negative values via symmetry control.

c. Spin-Layer Locking Effects in Optical Orientation of Exciton Spin in Bilayer WSez, A. M.
Jones, et al. Nature Physics, 10, 130 -134 (2014) | doi:10.1038/nphys2848.

A central theme in condensed matter physics is to study and understand the consequences of the
interplay between distinct quantum degrees of freedom of electrons. One seminal example is the
coupling between the electronic spin and motional degrees of freedom (spin-orbit interaction). In
bilayer WSe>, we discovered a new coupling effect between spin, valley, and layer pseudospins.
Here, both spin and valley degrees of freedom are associated with magnetic moments. The layer
degree of freedom is associated with electrical polarization, which corresponds to electrons either
in the top or bottom layers (Fig. 2c, inset). We demonstrated the strong coupling effects between
spin and layer pseudospin, resulting in the electrical control of spin Zeeman splitting without
applied magnetic fields (Fig. 2c). Further, we provided spectroscopic evidence of interlayer and
intralayer trion states, where intralayer (interlayer) means the exciton binds an additional electron
or hole from the same (different) layer. We also demonstrated the optical generation of valley
coherence in the interlayer trions.

d. Lateral heterojunctions within monolayer MoSe,-WSe, semiconductors, C. Huang et al.
Nature Materials 13, 1096 (2014) | doi:10.1038/nmat4064.

We demonstrated for the first time epitaxial growth of seamless lateral heterostructures in an
atomic plane by physical vapor transport method. Figure 2d is an optical micrograph of an as-
grown sample. Remarkably, each large crystal here exhibits two concentric regions with different
optical contrast. We identified that the inside and outside triangles are MoSe, and WSey,
respectively. Using high-resolution transmission electron microscopy, we confirmed that all the
atoms lie in a single MX> honeycomb lattice. There are no dislocations or grain boundaries with
nearly perfect lateral epitaxy. The importance of heterojunctions stems from the substantial
difference between the electronic and optical properties of the two joined semiconductors. For
instance, the inset in Fig. 2d is a spectrally integrated PL intensity map for a lateral heterostructure.
Interestingly, the emission from the heterojunction is brighter than the bulk, highlighting the 1D
heterojunction, possibly due to local potential traps at the interface.

e. Magnetic Control of Valley Pseudospin in Monolayer WSe;, G. Aivazian, et al., Nature
Physics 11, 148 (2015) | doi:10.1038/nphys3201.

In monolayer TMDs, electrons in the two valleys can have finite orbital contributions to their
magnetic moments which are equal in magnitude but opposite in sign by time-reversal symmetry.
The orbital magnetic moment has two parts: a contribution from the parent atomic orbitals, and a
“valley magnetic moment” contribution from the lattice structure (Inset, Fig. 2e). In this project,
we investigated the magnetic response of valley degrees of freedom. We observed the valley
Zeeman splitting (Fig. 2e) and magnetic tuning of polarization and coherence of the excitonic
valley pseudospin, by performing polarization-resolved magneto-PL on monolayer WSe>. We also
realized magnetic control of valley polarization and valley coherence via this magnetic moment,
analogous to what is possible with real spin.



f. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus, X. Wang et al. Nature
Nanotechnology 10, 517-521 (2015) | doi:10.1038/nnano.2015.71.

Recently, black phosphorus emerged as a promising 2D semiconductor due to its widely tunable
and direct bandgap, high carrier mobility, and remarkable in-plane anisotropic electrical, optical
and phonon properties. In collaboration with Prof. Fengnian Xia’s group at Yale University, we
revealed highly anisotropic and strongly bound excitons in monolayer black phosphorus (Fig. 2f),
using polarization-resolved PL measurements at room temperature. We show that regardless of the
excitation laser polarization, the emitted light from the monolayer is linearly polarized along the
light effective mass direction and centers around 1.3 eV, a clear signature of emission from highly
anisotropic bright excitons. In addition,
PL excitation spectroscopy suggests a
quasiparticle bandgap of 2.2 eV, from
which we estimate an exciton binding
energy of around 0.9 eV, consistent with
theoretical results based on first-
principles.

g. Electrical Tunable Excitonic Light
emission from monolayer p-n junctions,
J. Ross et al., Nature Nanotechnology 9,
268 (2014).
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junction area (Figs. 3a-b). We identify that the light emission is from the radiative combination of
excitons, which are created by strong Coulomb interaction between electrically injected electrons
and holes. By tuning the amplitude of the electrically current, we observe electroluminescence
from impurity bound exciton, negatively charged exciton, positively charged exciton, and neutral
exciton (Fig. 3c). The tuning of light emission by current demonstrates a sequential population of
excitonic levels from low to high energy states. We further compare the electroluminescence
intensity plot as a function of current with the photoluminescence intensity plot as a function of
gate voltage and photon energy (Figs. 3c-d). We find that these excitons involved in the
electroluminescence are valley excitons, i.e. excitons localize at the corner of hexagonal Brillouin
zone, which will be important for further investigation of polarized light emission using unique
spin-valley coupled physics in MXa.

h. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe; heterostructures, P.
Rivera et al., Nature Communications 6, 7472 (2015).

The discovery of two-dimensional quantum materials provide unprecedented opportunities to
explore new physical phenomena by precisely assemble 2D van der Waals heterostructures. We
investigate such possibilities using monolayer MoSe>-WSe> heterostructures, which is expected to
have a type Il band alignment of the heterostructure (Fig. 4a). Using photoluminescence
spectroscopy, we found that the heterostructure not only maintains the intralayer excitons from



individual monolayers, but also host
interlayer  excitons, i.e. bound
electron and hole localized in
different layers (Fig. 4b). We find that
the energy and luminescence intensity
of interlayer excitons are highly
tunable by an applied vertical gate
voltage. Moreover, the power
dependent measurements shows the
blue shift of the interlayer excitons,
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i. Directional interlayer spin-valley

transfer in 2D heterostructures, J. R. Schaibley et al, Nature Communications, Article 13747
(2016) | d0i:10.1038/ncomms13747.

The advancement of precisely assembling isolated atomic monolayers has opened up an exciting
new field based on quantum engineering of van der Waals heterostructures, which promises as a
new material platform for potential breakthrough in both science and technology. However, most
currently studies focus on interface effects on charge degrees of freedom, i.e. the effect of the
interaction between layers on the electronic structure and thus charge transport phenomena (both
within and between layers). Based on our progress in creation of 2D semiconductor
heterostructures, we performed the first study of spin and valley pseudspin transport between
monolayers in 2D MoSe,/WSe: heterostructures (Fig. 4c). Monolayer materials such as WSe> are
famous for unique spin-valley coupling properties, which enables the first solid state system for
optical generation of spin-valley polarization in individual monolayers. Using nondegenerate
optical circular dichroism spectroscopy, we report the direct observation that optically generated
spin-valley polarization in a monolayer can be transferred between layers. We show that charge
transfer between two monolayers conserves spins, which is robust against twist angle between
layers from near zero to near 60 degree. We demonstrate directional pumping of spin polarized
carriers into individual layers, i.e. polarized hole spins into WSe;, and electron spins into MoSe;.
Spin initialization is a crucial operation for spintronic devices which require a net spin polarization
for reading, writing, and transferring information. Our work not only provides a fundamental
understanding of spin transfer across the 2D interface, but also points to a new spin pumping
scheme in nanoscale devices by using 2D semiconductors as a spin-valley generator for storing
and processing information.

J. Band parameters and hybridization in 2D semiconductor heterostructures from photoemission
spectroscopy, Neil R. Wilson, et al., Science Advances Vol. 3, no. 2, €1601832 (2017);

Although optical spectroscopy has revealed emerging physical phenomena in 2D WSez/MoSe>
heterostructures, the restrictions of optical characterization leave many key questions open. For
example, is a semiconductor heterobilayer still a direct-bandgap system with band edges at the K
points? To what extent do the orbitals hybridize at the K and I" points, and can one regard the
bands at K simply as being those from isolated monolayers? What is the band offset? Is the



interlayer exciton as strongly bound as excitons in the isolated monolayers are known to be? These
questions illustrate the pressing need for direct and accurate measurements of the band parameters
in order to establish authoritative basis of understanding of 2D heterostructures. We employed
angle-resolved photoemission spectroscopy with submicron spatial resolution (JtARPES) to study
MoSe2/WSe2 van der Waals heterostructures (Fig. 4d). We find that in a MoSe2/WSe2
heterobilayer the bands in the K valleys are weakly hybridized, with the conduction and valence
band edges originating in the MoSe2 and WSe2 respectively. There is stronger hybridization at
the I" point, but the valence band edge remains at the K points. This is consistent with the recent
observation of interlayer excitons where the electron and hole are valley polarized but in opposite
layers. We determine the valence band offset to be 300 meV, which combined with
photoluminescence measurements implies that the binding energy of interlayer excitons is at least
200 meV, comparable with that of intralayer excitons.

k. Valley-Polarized Exciton Dynamics in a 2D Semiconductor heterostructure, P. Rivera et al,
Science 351, 688 (2016)).

The observation of interlayer exciton enables us to investigate its associated valley degrees of
freedom. We performed polarization-resolved PL of interlayer exciton. We apply circularly
polarized continuous wave laser excitation and separately detect the right circular (¢*) and left
circular (6~) PL. Figure 5a shows the o* (black) and o~ (red) components of the X; PL under
circularly polarized excitation. We find that the degree of X, valley polarization can be electrically
controlled by the gate, as shown in Fig. 5b. Time-resolved measurements reveal the dynamics of
the X, PL polarization. In Fig. 5c, we show the decay of co-polarized (black) and cross-polarized
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Figure 5. Interlayer exciton valley dynamics | (a) Circular polarization-resolved PL spectra of the interlayer
exciton showing the generation of strong valley polarization. (b) Polarization-resolved interlayer exciton
photoluminescence at selected gate voltages. (c), Time-resolved interlayer exciton photoluminescence at
selected gate voltages. The blue curve (right axis) shows the decay of valley polarization.

(red) interlayer exciton PL, as well as the degree of polarization (blue). The valley polarization
lifetime increases with Vg, reaching 3942 ns at +60 V, as determined by fitting a single exponential
decay. These measurements imply a strong suppression of intervalley scattering for interlayer
excitons and a valley lifetime several orders of magnitude longer than that of intralayer excitons
in monolayers, where valley depolarization occurs on picosecond timescales.



The long valley lifetime of the X, allows visualization of their lateral drift and diffusion. The
bottom panels of Fig. 6 display a sequence of spatial maps of the X; PL polarization under pulsed
excitation (40 MHz repetition rate) at Vg = 60 V for selected average excitation powers. The spatial
pattern of p shows the evolution of a ring with diameter that increases with excitation intensity.
The pattern of polarization stands in stark contrast to the spatial distribution of the emission. The
top panels of Fig. 6 show the polarization-resolved PL intensity spatial maps, where both ¢* and
o~ PL components display an approximately Gaussian profile centered at the excitation spot. The
data shows striking difference between the spatial distribution of polarization and the total density
of X,. The observed spatial patterns in the valley polarization can be understood well as
manifestations of valley-dependent many-body interactions in the dense interlayer exciton gas.

Po 3P, 10P, 20P, 40P, 60P,

Figure 6 | Spatially resolved valley transport. Spatial maps of valley polarization under o* pulsed laser
excitation with Po =1 uW. Scale bar is 2 um. At each power, the spatial profile of co- and cross-polarized PL is
shown (normalized to the peak co-polarized intensity) in the top and middle panels, respectively, and the degree
of valley polarization is shown in the bottom. The spatial pattern of valley polarization displays the evolution of
a ring with increasing diameter under higher excitation power.
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