

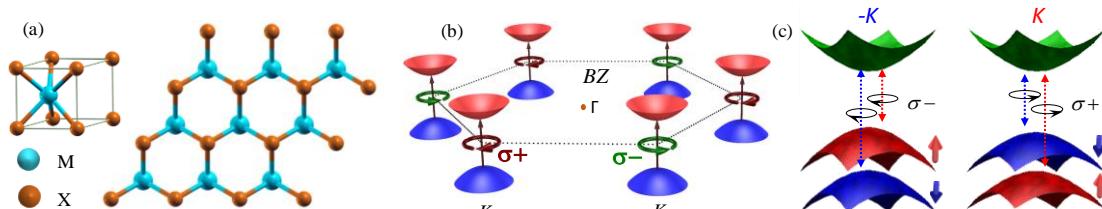
DoE Final Technical Report

1. DoE Career Award #: DE-SC0008145

Recipient: University of Washington

2. Project Title: Photon-Electron Interactions in Dirac Quantum Materials

Principle Investigator: Prof. Xiaodong Xu, Department of Physics, Department of Material Science and Engineering, University of Washington, Seattle, WA 98195


Email: xuxd@uw.edu; Phone: 206-543-8444

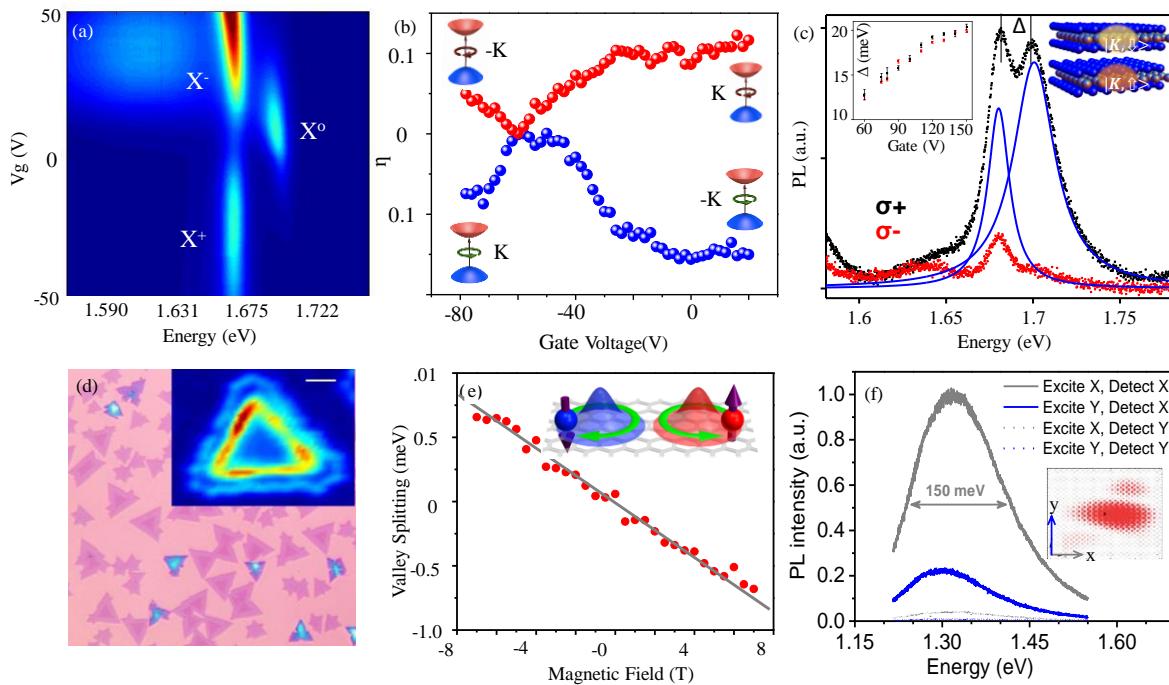
3. Date of the report: Nov. 10, 2017

Period covered by the report: 07/01/2012 – 06/30/2017

4. Research Accomplishments

Breakthroughs in both science and technology often accompany the discovery of new material systems with unique physical properties. The goal of our project is to develop, investigate, formulate and understand a new class of Dirac quantum material, which is layered group VI transition metal dichalcogenides (MX_2), ranging from MoS_2 to WSe_2 . Chemically stable and weakly bound to each other, monolayers of MX_2 have strongly bound hexagonal layers of X-M-X with trigonal prismatic coordination resulting in a honeycomb structure like graphene (Fig. 1a). This fact gives them analogous Dirac-like electronic valleys at the corners (K-points) of the hexagonal Brillouin zone. A key difference from graphene is that MX_2 has inversion asymmetry, which gives rise to direct band gaps in the visible regime and non-trivial Berry-phase related physics. But more profoundly, $\pm K$ valleys have circularly polarized optical selection rules providing the first solid state system for dynamic control of valley degrees freedom (Fig. 1b). A second important difference is the large spin-orbit coupling (150 ~ 450 meV) which arises due to the transition metal. Combined with the inversion-symmetry breaking, this truly two-dimensional semiconductor affords new possibilities for manipulating charge, layer (dipole), spin, and valley degrees of freedom to explore exotic physical phenomena (Fig. 1c).

Figure 1| Physical properties of monolayer dichalcogenides. (a), Left: unit cell. Right: top view of the hexagonal lattice structure of monolayer MoX_2 . (b), Schematic of inequivalent valleys at the band edges located at the K points with circularly polarized optical selection rules. (c), Energy level diagram of coupled spin-valley degrees of freedom with optical selection rules.


Supported by DoE career award, the PI established his group as the leader in the investigation of this new class of 2D materials and heterostructures by developing a suite of advanced nano-optical spectroscopy tools. We have made a number of breakthroughs which resulted in a total of 41 publications, including *Nature* (1), *Science* (1), *Science Advances* (2), *Nature Physics* (7), *Nature Nanotechnology* (3), *Nature Materials* (1), *Nature Communications* (7), *Nature Review Materials* (1), *Physical Review Letters* (4), *Nano Letters* (2), and *Physical Review B* (2). Below are the brief summaries of the major results.

a. *Electrical Control of Neutral and Charged Excitons in a Monolayer Semiconductor*, J.S. Ross, et al. *Nature Communication*, 4, 1474 (2013) | doi: 10.1038/ncomms2498.

In this work, we demonstrated the full tunability of positively charged (X^+), neutral (X^0), and negatively charged (X^-) excitons in a 2D semiconductor, monolayer MoSe₂, for the first time (Fig. 2a). The charging energy for X^+ and X^- are nearly identical, implying the same effective mass for electrons and holes, consistent with their description as massive Dirac Fermions at the band edges. Due to reduced screening effects in the monolayer limit, the charging energy of about 30 meV is an order of magnitude larger than that of 3D bulk semiconductors. The linewidth of these excitons can be as narrow as 2 meV at a temperature of 30K. These narrow, well-separated resonances provide remarkable opportunities to selectively probe and control individual excitons in 2D crystals.

b. *Electrical Tuning of Valley Magnetic Moment Through Symmetry Control in Bilayer MoS₂*, S. Wu, et al. *Nature Physics* 9, 149–153 (2013) | doi:10.1038/nphys2524.

Monolayer MoS₂ has broken inversion symmetry, which leads to valley-dependent physical properties, such as magnetic moment (\mathbf{m}), Berry curvature (Ω), and circularly polarized optical selection rules. Unlike monolayer, bilayer MoS₂ is inversion symmetric and thus valley-dependent physical properties will vanish. However, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field. In principle, this offers the possibility of switching on/off and continuously tuning valley-dependent properties near the Dirac valleys by reversible

Figure 2. Selected results | (a) Photoluminescence (PL) intensity map of monolayer WSe₂ as a function of gate voltage and emission energy, showing charge tunable excitons. (b) Degree of circular polarization (η) of PL from bilayer MoS₂ as a function of perpendicular gate voltage. (c) Polarization resolved PL under σ^+ excitation with σ^+ (black) and σ^- detection (red). The doublet is due to the electric field induced spin Zeeman splitting. Inset: Peak splitting as a function of gate voltage (left) and schematic of spin and layer pseudospin coupling (right). (d) Optical image of lateral MoSe₂/WSe₂ heterostructure. Inset: PL intensity map of a triangular sample. (e) Valley Zeeman splitting as a function of magnetic field. Inset: cartoon depicting the valley magnetic moments. (f) Polarization-resolved PL spectra, revealing the excitonic nature of the emission from monolayer black phosphorus. Inset: real space exciton wave function by DFT calculation.

electrical control. We investigated this possibility using polarization-resolved photoluminescence (PL) of bilayer MoS₂. We find that in bilayer MoS₂ the circularly polarized PL can be continuously tuned from -15% to 15% as a function of gate voltage (Fig. 2b), whereas in structurally non-centrosymmetric monolayer MoS₂, the PL polarization is gate-independent. The observations are well explained as resulting from the continuous variation of orbital magnetic moments between positive and negative values via symmetry control.

c. *Spin-Layer Locking Effects in Optical Orientation of Exciton Spin in Bilayer WSe₂*, A. M. Jones, et al. *Nature Physics*, 10, 130 -134 (2014) | doi:10.1038/nphys2848.

A central theme in condensed matter physics is to study and understand the consequences of the interplay between distinct quantum degrees of freedom of electrons. One seminal example is the coupling between the electronic spin and motional degrees of freedom (spin-orbit interaction). In bilayer WSe₂, we discovered a new coupling effect between spin, valley, and layer pseudospins. Here, both spin and valley degrees of freedom are associated with magnetic moments. The layer degree of freedom is associated with electrical polarization, which corresponds to electrons either in the top or bottom layers (Fig. 2c, inset). We demonstrated the strong coupling effects between spin and layer pseudospin, resulting in the electrical control of spin Zeeman splitting without applied magnetic fields (Fig. 2c). Further, we provided spectroscopic evidence of interlayer and intralayer trion states, where intralayer (interlayer) means the exciton binds an additional electron or hole from the same (different) layer. We also demonstrated the optical generation of valley coherence in the interlayer trions.

d. *Lateral heterojunctions within monolayer MoSe₂-WSe₂ semiconductors*, C. Huang et al. *Nature Materials* 13, 1096 (2014) | doi:10.1038/nmat4064.

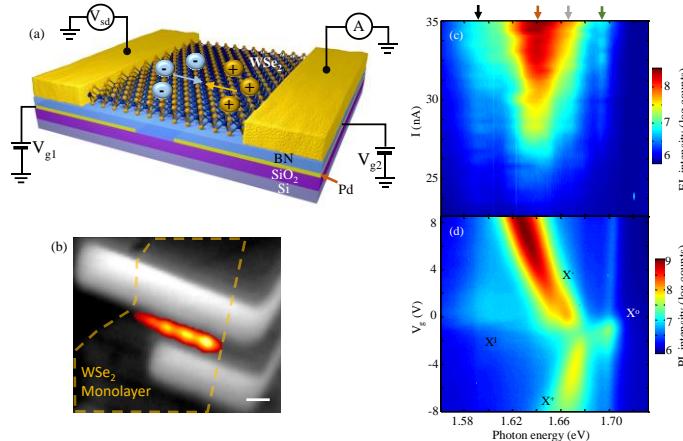
We demonstrated for the first time epitaxial growth of seamless lateral heterostructures in an atomic plane by physical vapor transport method. Figure 2d is an optical micrograph of an as-grown sample. Remarkably, each large crystal here exhibits two concentric regions with different optical contrast. We identified that the inside and outside triangles are MoSe₂ and WSe₂, respectively. Using high-resolution transmission electron microscopy, we confirmed that all the atoms lie in a single MX₂ honeycomb lattice. There are no dislocations or grain boundaries with nearly perfect lateral epitaxy. The importance of heterojunctions stems from the substantial difference between the electronic and optical properties of the two joined semiconductors. For instance, the inset in Fig. 2d is a spectrally integrated PL intensity map for a lateral heterostructure. Interestingly, the emission from the heterojunction is brighter than the bulk, highlighting the 1D heterojunction, possibly due to local potential traps at the interface.

e. *Magnetic Control of Valley Pseudospin in Monolayer WSe₂*, G. Aivazian, et al., *Nature Physics* 11, 148 (2015) | doi:10.1038/nphys3201.

In monolayer TMDs, electrons in the two valleys can have finite orbital contributions to their magnetic moments which are equal in magnitude but opposite in sign by time-reversal symmetry. The orbital magnetic moment has two parts: a contribution from the parent atomic orbitals, and a “valley magnetic moment” contribution from the lattice structure (Inset, Fig. 2e). In this project, we investigated the magnetic response of valley degrees of freedom. We observed the valley Zeeman splitting (Fig. 2e) and magnetic tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-PL on monolayer WSe₂. We also realized magnetic control of valley polarization and valley coherence via this magnetic moment, analogous to what is possible with real spin.

f. *Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus*, X. Wang et al. *Nature Nanotechnology* 10, 517–521 (2015) | doi:10.1038/nnano.2015.71.

Recently, black phosphorus emerged as a promising 2D semiconductor due to its widely tunable and direct bandgap, high carrier mobility, and remarkable in-plane anisotropic electrical, optical and phonon properties. In collaboration with Prof. Fengnian Xia's group at Yale University, we revealed highly anisotropic and strongly bound excitons in monolayer black phosphorus (Fig. 2f), using polarization-resolved PL measurements at room temperature. We show that regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centers around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. In addition,


PL excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of around 0.9 eV, consistent with theoretical results based on first-principles.

g. *Electrical Tunable Excitonic Light emission from monolayer p-n junctions*, J. Ross et al., *Nature Nanotechnology* 9, 268 (2014).

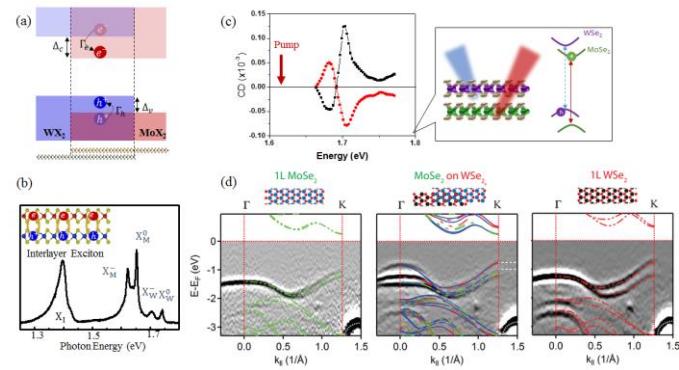
How to efficiently convert electronic energy into light emission is one of the DoE grand challenges. We address this topic by investigating the electroluminescence at single atomic layer limit. We design a monolayer WSe₂ p-n junction and observe bright electroluminescence from the p-n junction area (Figs. 3a-b). We identify that the light emission is from the radiative combination of excitons, which are created by strong Coulomb interaction between electrically injected electrons and holes. By tuning the amplitude of the electrically current, we observe electroluminescence from impurity bound exciton, negatively charged exciton, positively charged exciton, and neutral exciton (Fig. 3c). The tuning of light emission by current demonstrates a sequential population of excitonic levels from low to high energy states. We further compare the electroluminescence intensity plot as a function of current with the photoluminescence intensity plot as a function of gate voltage and photon energy (Figs. 3c-d). We find that these excitons involved in the electroluminescence are valley excitons, i.e. excitons localize at the corner of hexagonal Brillouin zone, which will be important for further investigation of polarized light emission using unique spin-valley coupled physics in MX₂.

h. *Observation of long-lived interlayer excitons in monolayer MoSe₂-WSe₂ heterostructures*, P. Rivera et al., *Nature Communications* 6, 7472 (2015).

The discovery of two-dimensional quantum materials provide unprecedented opportunities to explore new physical phenomena by precisely assemble 2D van der Waals heterostructures. We investigate such possibilities using monolayer MoSe₂-WSe₂ heterostructures, which is expected to have a type II band alignment of the heterostructure (Fig. 4a). Using photoluminescence spectroscopy, we found that the heterostructure not only maintains the intralayer excitons from

Figure 3 | Monolayer light emitting diode. (a) Schematic of monolayer WSe₂ p-n junctions. (b) Electroluminescence image (red) superimposed on a pn junction image (grayscale). The orange dashed lines outline the WSe₂ monolayer. Scale bar: 2 μ m. (c) Electroluminescence intensity plot as function of bias current and photon energy. (d) Plot of photoluminescence intensity as a function of photon energy and gate voltage.

the monolayer. The electroluminescence is observed at a bias current of approximately 10 μ A and a photon energy of about 1.65 eV. The intensity of the electroluminescence increases with bias current, reaching a maximum at approximately 30 μ A. The photoluminescence intensity is also observed to increase with bias current, reaching a maximum at approximately 30 μ A. The gate voltage V_g is varied from -8 to 8 V, and the photoluminescence intensity is observed to decrease as the gate voltage increases. The color maps in panels (c) and (d) show the sequential population of excitonic levels from low to high energy states. The excitons involved in the electroluminescence are valley excitons, which are localized at the corner of the hexagonal Brillouin zone. This is consistent with the theoretical calculations and previous reports on valley excitons in WSe₂.


individual monolayers, but also host interlayer excitons, i.e. bound electron and hole localized in different layers (Fig. 4b). We find that the energy and luminescence intensity of interlayer excitons are highly tunable by an applied vertical gate voltage. Moreover, the power dependent measurements shows the blue shift of the interlayer excitons, implying the repulsive dipole-dipole interactions, which implies 2D heterostructure is a promising system for study exciton many-body interaction effect.

i. Directional interlayer spin-valley transfer in 2D heterostructures, J. R. Schaibley et al, *Nature Communications*, Article 13747 (2016) | doi:10.1038/ncomms13747.

The advancement of precisely assembling isolated atomic monolayers has opened up an exciting new field based on quantum engineering of van der Waals heterostructures, which promises as a new material platform for potential breakthrough in both science and technology. However, most currently studies focus on interface effects on charge degrees of freedom, i.e. the effect of the interaction between layers on the electronic structure and thus charge transport phenomena (both within and between layers). Based on our progress in creation of 2D semiconductor heterostructures, we performed the first study of spin and valley pseudospin transport *between* monolayers in 2D MoSe₂/WSe₂ heterostructures (Fig. 4c). Monolayer materials such as WSe₂ are famous for unique spin-valley coupling properties, which enables the first solid state system for optical generation of spin-valley polarization in individual monolayers. Using nondegenerate optical circular dichroism spectroscopy, we report the direct observation that optically generated spin-valley polarization in a monolayer can be transferred between layers. We show that charge transfer between two monolayers conserves spins, which is robust against twist angle between layers from near zero to near 60 degree. We demonstrate directional pumping of spin polarized carriers into individual layers, i.e. polarized hole spins into WSe₂ and electron spins into MoSe₂. Spin initialization is a crucial operation for spintronic devices which require a net spin polarization for reading, writing, and transferring information. Our work not only provides a fundamental understanding of spin transfer across the 2D interface, but also points to a new spin pumping scheme in nanoscale devices by using 2D semiconductors as a spin-valley generator for storing and processing information.

j. Band parameters and hybridization in 2D semiconductor heterostructures from photoemission spectroscopy, Neil R. Wilson, et al., *Science Advances* Vol. 3, no. 2, e1601832 (2017);

Although optical spectroscopy has revealed emerging physical phenomena in 2D WSe₂/MoSe₂ heterostructures, the restrictions of optical characterization leave many key questions open. For example, is a semiconductor heterobilayer still a direct-bandgap system with band edges at the K points? To what extent do the orbitals hybridize at the K and Γ points, and can one regard the bands at K simply as being those from isolated monolayers? What is the band offset? Is the

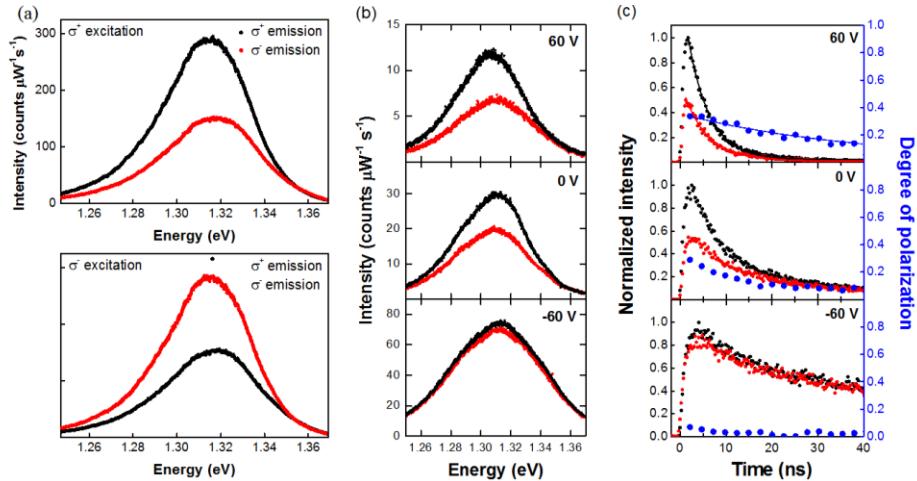


Figure 4 | Interlayer Exciton in MoSe₂/WSe₂ Heterostructures.
(a) Schematic of type-II band. **(b)** PL spectra of a heterostructure. **(c)** Non-degenerated circular dichroism spectroscopy reveals directional charge transfer with spin/valley conservation. **(d)** μ -ARPES spectra of monolayer MoSe₂ (left), MoSe₂/WSe₂ heterostructure (middle), and monolayer WSe₂ (right).

interlayer exciton as strongly bound as excitons in the isolated monolayers are known to be? These questions illustrate the pressing need for direct and accurate measurements of the band parameters in order to establish authoritative basis of understanding of 2D heterostructures. We employed angle-resolved photoemission spectroscopy with submicron spatial resolution (μ -ARPES) to study MoSe₂/WSe₂ van der Waals heterostructures (Fig. 4d). We find that in a MoSe₂/WSe₂ heterobilayer the bands in the K valleys are weakly hybridized, with the conduction and valence band edges originating in the MoSe₂ and WSe₂ respectively. There is stronger hybridization at the Γ point, but the valence band edge remains at the K points. This is consistent with the recent observation of interlayer excitons where the electron and hole are valley polarized but in opposite layers. We determine the valence band offset to be 300 meV, which combined with photoluminescence measurements implies that the binding energy of interlayer excitons is at least 200 meV, comparable with that of intralayer excitons.

k. Valley-Polarized Exciton Dynamics in a 2D Semiconductor heterostructure, P. Rivera et al, *Science* 351, 688 (2016)).

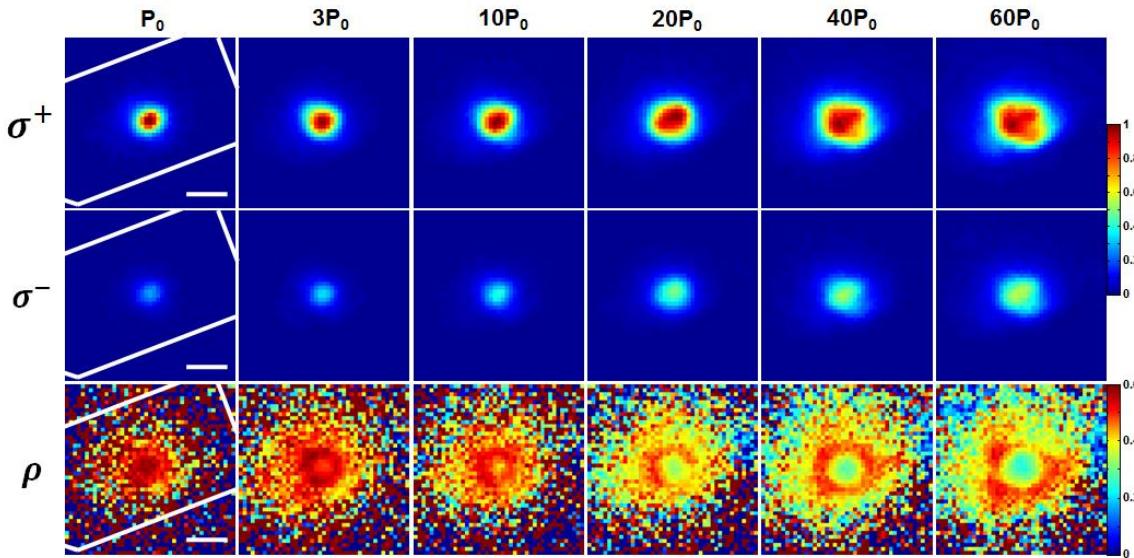

The observation of interlayer exciton enables us to investigate its associated valley degrees of freedom. We performed polarization-resolved PL of interlayer exciton. We apply circularly polarized continuous wave laser excitation and separately detect the right circular (σ^+) and left circular (σ^-) PL. Figure 5a shows the σ^+ (black) and σ^- (red) components of the X_I PL under circularly polarized excitation. We find that the degree of X_I valley polarization can be electrically controlled by the gate, as shown in Fig. 5b. Time-resolved measurements reveal the dynamics of the X_I PL polarization. In Fig. 5c, we show the decay of co-polarized (black) and cross-polarized

Figure 5. Interlayer exciton valley dynamics | (a) Circular polarization-resolved PL spectra of the interlayer exciton showing the generation of strong valley polarization. (b) Polarization-resolved interlayer exciton photoluminescence at selected gate voltages. (c), Time-resolved interlayer exciton photoluminescence at selected gate voltages. The blue curve (right axis) shows the decay of valley polarization.

(red) interlayer exciton PL, as well as the degree of polarization (blue). The valley polarization lifetime increases with V_g , reaching 39 ± 2 ns at +60 V, as determined by fitting a single exponential decay. These measurements imply a strong suppression of intervalley scattering for interlayer excitons and a valley lifetime several orders of magnitude longer than that of intralayer excitons in monolayers, where valley depolarization occurs on picosecond timescales.

The long valley lifetime of the X_I allows visualization of their lateral drift and diffusion. The bottom panels of Fig. 6 display a sequence of spatial maps of the X_I PL polarization under pulsed excitation (40 MHz repetition rate) at $V_g = 60$ V for selected average excitation powers. The spatial pattern of ρ shows the evolution of a ring with diameter that increases with excitation intensity. The pattern of polarization stands in stark contrast to the spatial distribution of the emission. The top panels of Fig. 6 show the polarization-resolved PL intensity spatial maps, where both σ^+ and σ^- PL components display an approximately Gaussian profile centered at the excitation spot. The data shows striking difference between the spatial distribution of polarization and the total density of X_I . The observed spatial patterns in the valley polarization can be understood well as manifestations of valley-dependent many-body interactions in the dense interlayer exciton gas.

Figure 6 | Spatially resolved valley transport. Spatial maps of valley polarization under σ^+ pulsed laser excitation with $P_0 = 1 \mu\text{W}$. Scale bar is $2 \mu\text{m}$. At each power, the spatial profile of co- and cross-polarized PL is shown (normalized to the peak co-polarized intensity) in the top and middle panels, respectively, and the degree of valley polarization is shown in the bottom. The spatial pattern of valley polarization displays the evolution of a ring with increasing diameter under higher excitation power.

5. Publication (All work at UW is exclusively supported by DMSE)

1. Colin M. Chow, Hongyi Yu, Aaron M. Jones, John R. Schaibley, Michael Koehler, David G. Mandrus, R. Merlin, Wang Yao, Xiaodong Xu, “Phonon-assisted oscillatory exciton dynamics in monolayer MoSe₂”, **NPJ 2D Materials and Applications**, 1, Article number: 33 (2017);
2. Michael A. McGuire, Genevieve Clark, Santosh KC, W. Michael Chance, Gerald E. Jellison, Jr., Valentino R. Cooper, Xiaodong Xu, and Brian C. Sales, Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl₃ crystals, **Physical Review Materials** 1, 014001 (2017);
3. Bevin Huang, Genevieve Clark, Efren Navarro-Moratalla, Dahlia R. Klein, Ran Cheng, Kyle L. Seyler, Ding Zhong, Emma Schmidgall, Michael A. McGuire, David H. Cobden, Wang Yao, Di Xiao, Pablo Jarillo-Herrero, Xiaodong Xu, “Layer-dependent Ferromagnetism in a van der Waals Crystal down to the Monolayer Limit”, **Nature** 546, 270-273 (2017);
4. F. Hu, Y. Luan, M. E. Scott, J. Yan, D. G. Mandrus, X. Xu, Z. Fei, “Nano-optical imaging of the tailored exciton-polariton transport in MoSe₂ waveguides”, **Nature Photonics** 11, 356-360 (2017);

5. Ding Zhong, Kyle L. Seyler, Xiayu Linpeng, Ran Cheng, Nikhil Sivadas, Bevin Huang, Emma Schmidgall, Takashi Taniguchi, Kenji Watanabe, Michael A. McGuire, Wang Yao, Di Xiao, Kai-Mei C. Fu, Xiaodong Xu, “Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics”, *Science Advances*, Vol. 3, no. 5, e1603113 DOI: 10.1126/sciadv.1603113 (2017);
6. Grant Aivazian, Hongyi Yu, Sanfeng Wu, Jiaqiang Yan, David G. Mandrus, David Cobden, Wang Yao, Xiaodong Xu, “Many-body effects in nonlinear optical responses of 2D layered semiconductors”, *2D Mater.* 4 025024 (2017).
7. Colin Ming Earn Chow, Hongyi Yu, Aaron Mitchell Jones, Jiaqiang Yan, David G. Mandrus, Takashi Taniguchi, Kenji Watanabe, Wang Yao, and Xiaodong Xu, “Unusual Exciton–Phonon Interactions at van der Waals Engineered Interfaces”, *Nano Letters*, DOI: 10.1021/acs.nanolett.6b04944 (2017).
8. Neil R. Wilson, Paul V. Nguyen, Kyle L. Seyler, Pasqual Rivera, Alexander J. Marsden, Zachary P.L. Laker, Gabriel C. Constantinescu, Viktor Kandyba, Alexei Barinov, Nicholas D.M. Hine, Xiaodong Xu, David H. Cobden, “Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures”, *Science Advances*, Vol. 3, no. 2, e1601832 DOI: 10.1126/sciadv.1601832 (2017).
9. John R. Schaibley, Pasqual Rivera, Hongyi Yu, Kyle L. Seyler, Jiaqiang Yan, David G. Mandrus, Takashi Taniguchi, Kenji Watanabe, Wang Yao, and Xiaodong Xu, “Directional Interlayer Spin-Valley Transfer in 2D Heterostructures”, *Nature Communication* 7, Article13747, doi:10.1038/ncomms13747 (2016).
10. Qingjun Tong, Hongyi Yu, Qizhong Zhu, Yong Wang, Xiaodong Xu, and Wang Yao, “Topological Mosaic in Moire Supperlattices of van der Waals Heterobilayers”, *Nature Physics*, doi:10.1038/nphys3968 (2016).
11. John R. Schaibley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S. Ross, Kyle L. Seyler, Wang Yao & Xiaodong Xu, “Valleytronics in 2D materials”, *Nature Reviews Materials* 1, Article number: 16055 (2016).
12. Fucai Liu, Lu You, Kyle L. Seyler, Xiaobao Li, Peng Yu, Junhao Lin, Xuewen Wang, Jiadong Zhou, Hong Wang, Haiyong He, Sokrates T. Pantelides, Wu Zhou, Pradeep Sharma, Xiaodong Xu, Pulickel M. Ajayan, Junling Wang, Zheng Liu., “Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes”, *Nature Communications* Article number: 12357 doi:10.1038/ncomms12357 (2016).
13. Andreas V. Stier, Nathan P. Wilson, Genevieve Clark, Xiaodong Xu, and Scott A. Crooker, “Probing the Influence of Dielectric Environment on Excitons in Monolayer WSe2: Insight from High Magnetic Fields”, *Nano Letters* DOI: 10.1021/acs.nanolett.6b03276, (2016).
14. Hongtao Yuan, Zhongkai Liu, Gang Xu, Bo Zhou, Sanfeng Wu, Dumitru Dumcenco, Kai Yan, Yi Zhang, Sung-Kwan Mo, Pavel Dudin, Victor Kandyba, Mikhail Yablonskikh, Alexei Barinov, Zhi-Xun Shen, Shoucheng Zhang, Ying-Sheng Huang, Xiaodong Xu, Zahid Hussain, Harold Y. Hwang, Yi Cui, and Yulin Chen, “Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and their Mono-Layer Limit”, *Nano Letters* DOI: 10.1021/acs.nanolett.5b05107 (2016).
15. Zhe Fei, M. Scott, D. J. Gosztola, J. J. Foley, J. Yan, D. G. Mandrus, H. Wen, P. Zhou, D. W. Zhang, Y. Sun, J. R. Guest, S. K. Gray, W. Bao, G. P. Wiederrecht, X. Xu, “Nano-optical imaging of exciton polaritons inside WSe2 waveguides”, *Phys. Rev. B* (2016);

16. A. M. Jones, Hongyi Yu, John R. Schaibley, Jiaqiang Yan, David G. Mandrus, Takashi Taniguchi, Kenji Watanabe, Hanan Dery, Wang Yao, Xiaodong Xu, "Excitonic Luminescence Up-Conversion in a 2D Semiconductor", *Nature Physics* 12, 323 (2016).
17. Pasqual Rivera, Kyle Seyler, Hongyi Yu, John Schaibley, Jiaqiang Yan, D. G. Mandrus, Wang Yao, Xiaodong Xu, "Valley-Polarized Exciton Dynamics in a 2D Semiconductor Heterostructure", *Science* 351, 688 (2016).
18. Akshay Singh, Galan Moody, Kha Tran, Marie Scott, Vincent Overbeck, Gunnar Berghäuser, John Schaibley, Edward J. Seifert, Dennis Pleskot, Nathaniel M. Gabor, Jiaqiang Yan, David G. Mandrus, Marten Richter, Ermin Malic, Xiaodong Xu, Xiaoqin Li, "Trion Formation Dynamics in Monolayer Transition Metal Dichalcogenides", *Phys. Rev. B* 93, 041401 (2016).
19. Galan Moody, Chandriker K. Dass, Kai Hao, Chang-Hsiao Chen, Lain-Jong Li, Akshay Singh, Kha Tran, Genevieve Clark, Xiaodong Xu, Gunnar Berghäuser, Ermin Malic, Andreas Knorr, and Xiaoqin Li, "Intrinsic Homogeneous Linewidth and Broadening Mechanisms of Excitons in Monolayer Transition Metal Dichalcogenides", *Nature Communication*, doi:10.1038/ncomms9315 (2015).
20. Xiaomu Wang, Mitch Jones, Kyle Seyler, Vy Tran, Yichen Jia, Hua Zhao, Han Wang, Li Yang, Xiaodong Xu, and Fengnian Xia, "Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus", *Nature Nanotechnology* 10, 517 (2015).
21. Kyle L. Seyler, John R. Schaibley, Pu Gong, Pasqual Rivera, Sanfeng Wu, Aaron Mitchell Jones, Jiaqiang Yan, David G. Mandrus, Wang Yao, Xiaodong Xu, "Electrical Control of Second-Harmonic Generation in a WSe₂ Monolayer Transistor", *Nature Nanotechnology* 10, 407 (2015).
22. John R. Schaibley, Todd Karin, Hongyi Yu, Jason S. Ross, Pasqual Rivera, Aaron M. Jones, Marie Scott, Jiaqiang Yan, D. G. Mandrus, Wang Yao, Kai-Mei Fu, Xiaodong Xu, "Population Pulsation Resonances of Excitons in Monolayer MoSe₂ With sub 1 μ eV Linewidths", *Physical Review Letters* 114, 137402 (2015).
23. Pasqual Rivera, John R. Schaibley, Aaron M. Jones, Jason S. Ross, Sanfeng Wu, Grant Aivazian, Philip Klement, Nirmal J. Ghimire, Jiaqiang Yan, D. G. Mandrus, Wang Yao, Xiaodong Xu, "Observation of Long-Lived Interlayer Excitons in Monolayer MoSe₂-WSe₂ Heterostructures", *Nature Communication* 6, 7472 (2015).
24. Grant Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, J. Yan, D. G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, Xiaodong Xu, "Magnetic Control of Valley Pseudospin in Monolayer WSe₂", *Nature Physics* 11, 148 (2015).
25. Hongyi Yu, Yue Wu, Gui-Bin Liu, Xiaodong Xu, Wang Yao, "Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals", *Phys. Rev. Lett.* 114, 156604 (2014).
26. C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, Xiaodong Xu, "Lateral heterojunctions within monolayer semiconductors", *Nature Materials* 13, 1096 (2014).

27. J. A. Crosse, Xiaodong Xu, M. S. Sherwin, R. B. Liu, Theory of Low power ultra-broadband terahertz sideband generation in bilayer graphene, *Nature Communication* 5, Article number: 4854 doi:10.1038/ncomms5854 (2014).

28. A. Singh, G. Moody, S. Wu, Y. Wu, N. J. Ghimire, J. Yan, D.G. Mandrus, Xiaodong Xu, X. Li, "Coherent Electronic Coupling in Atomically Thin MoSe2", *Phys. Rev. Lett.* 112, 216804 (2014).

29. Xiaodong Xu, W. Yao, D. Xiao, T. F. Heinz, "Spins and Pseudospins in Transition Metal Dichalcogenides", Invited Review Article, *Nature Physics* 10, 343(2014).

30. H. Yu, G. Liu, P. Gong, Xiaodong Xu, W. Yao, "Bright excitons in monolayer transition metal dichalcogenides: from Dirac cones to Dirac saddle points", *Nature Communications* 5, Article number: 3876 | doi:10.1038/ncomms4876 (2014).

31. J. Ross, P. Klement, A. Jones, N. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. Cobden, Xiaodong Xu, "Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe₂ p-n Junctions", *Nature Nanotechnology* 9, 268 (2014).

32. A. M. Jones, H. Yu, J. Ross, P. Klement, N.J. Ghimire, J. Yan, D.G. Mandrus, W. Yao, Xiaodong Xu. "Spin-Layer Locking Effects in Optical Orientation of Exciton Spin in Bilayer WSe₂." *Nature Physics*, 10, 130 -134 (2014).

33. R. Chu, G. Liu, W. Yao, Xiaodong Xu, D. Xiao, C. Zhang, Majorana Fermions on Zigzag Edge of Monolayer Transition Metal Dichalcogenides, *Physical Review B* 89, 155317 (2014).

34. R. Chu, X. Li, S. Wu, Q. Niu, W. Yao, Xiaodong Xu, and C. Zhang, "Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer MoS₂ quantum Hall systems", *Physical Review B* doi: 10.1103/PhysRevB.90.045427 (2014).

35. A. M. Jones, H. Yu, N.J. Ghimire, S. Wu, G. Aivazian, J.S. Ross, B. Zhao, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, Xiaodong Xu. "Optical Generation of Excitonic Valley Coherence in Monolayer WSe₂." *Nature Nanotechnology* 8, 634-638 (2013).

36. J. S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, Xiaodong Xu. "Electrical Control of Neutral and Charged Excitons in a Monolayer Semiconductor." *Nature Communication* 4, Article number: 1474 | doi: 10.1038/ncomms2498 (2013).

37. S. Wu, C. Huang, G. Aivazian, J. S Ross, D. H Cobden, Xiaodong Xu, "Vapor-Solid Growth of High Quality MoS₂ Monolayers With Near-Unity Valley Polarization", *ACS Nano* 7, 2768 | doi: 10.1021/nn4002038 (2013)

38. Z. Gong, G. Liu, H. Yu, D. Xiao, X. Cui, Xiaodong Xu, W. Yao. "Magnetoelectric Effects and Valley Controlled Spin Quantum Gates in Transition Metal Dichalcogenide Bilayers." *Nature Communication* 4, Article number: 2053 | doi: 10.1038/ncomms3053 (2013)

39. H. Yuan, M.S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, Xiaodong Xu, R. Arita, N. Nagaosa, Y. Iwasa. "Zeeman-type Spin Splitting Controlled by an Electric Field." *Nature Physics* 9, 563-569 (2013).

40. S. Wu, J.S. Ross, G. Aivazian, A. Jones, Z. Fei, G. Liu, W. Zhu, D. Xiao, W. Yao, D. Cobden,

Xiaodong Xu. "Electrical Tuning of Valley Magnetic Moment through Symmetry Control in Bilayer MoS₂." *Nature Physics* 9, 149-153 (2013).

41. C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R. S. Ruoff, R. M. Wallace, K. Cho, Xiaodong Xu, and Y. J. Chabal, "Metal Contacts on Physical Vapor Deposited Monolayer MoS₂", *ACS Nano*, 10.1021/nn4052138 (2013).

6. Students involved in this project

Graduate Student: Kyle Seyler (50%), Gen Clark (0%), Aaron M Jones (50%); Jason Ross (50%); Sanfeng Wu (50%); Grant Aivazain (50%);

Postdoc: John Schaibley (100%);

Undergraduate Student: Jacob Watkins (0%); Essance Ray (0%); Mari Scott (10%)

Visiting Scholar: Chunming Huang (0%); Liefeng Feng (10%)

Aaron Jones and Grant Aivazian defended their thesis and obtained PhD degree in summer, 2015. Both of their thesis works are mainly based on this project. Sanfeng Wu and Jason Ross got their PhD degrees summer 2016. 50% of their thesis work are based on this project.

Postdoc John Schaibley is now a tenure-tracked assistant professor in Physics Department at U. Arizona.

7. Unexpended funds

The grant is fully expended.