EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-674736

The Future of Software
Engineering for High
Performance Computing

G. Pope

July 17, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

The Future of Software Engineering for High Performance Computing

DOE ASCR requested that from May through mid-July 2015 a study group identify issues and
recommend solutions from a software engineering perspective transitioning into the next generation of
High Performance Computing. The approach used was to ask some of the DOE complex experts who will
be responsible for doing this work to contribute to the study group.

The technique used was to solicit elevator speeches: a short and concise write up done as if the author
was a speaker with only a few minutes to convince a decision maker of their top issues. Pages 2-18
contain the original texts of the contributed elevator speeches and end notes identifying the 20
contributors. The study group also ranked the importance of each topic, and those scores are displayed
with each topic heading. A perfect score (and highest priority) is three, two is medium priority, and one
is lowest priority. The highest scoring topic areas were software engineering and testing resources; the
lowest scoring area was compliance to DOE standards.

The following two paragraphs are an elevator speech summarizing the contributed elevator speeches.
Each sentence or phrase in the summary is hyperlinked to its source via a numeral embedded in the
text. A risk one liner has also been added to each topic to allow future risk tracking and mitigation.

On the topic of software engineering management:

Multi-physics simulation codes may not be ready to operate efficiently on the new hardware by 2017, so
do not set software readiness expectations concurrent with the hardware schedule. 1 Hiring and
retaining staff to accomplish the multi-physics code porting tasks will be challenging. Most software
developers prefer writing their own code in contemporary languages rather than modifying somebody
else’s legacy code. 2, 3 Development teams should consist of physical science domain experts and
computer scientists both skilled in software engineering best practices. 5 A graded approach should be
used to accommodate priorities of projects that produce robust simulation codes 8, as well as support
researchers who focus on innovation and novel approaches 6.

On the topic of software engineering process and tools:

Development lifecycle and DOE compliance 4, 13 must favor best practices 10 that support agility 11
and automation 7 to solve the software engineering challenges 9, 12 posed by next generation HPC.
Automated tools include support of test driven design, continuous integration, regression test
execution, static and dynamic code analysis, the build /test/release process 18 and version control, all of
which are essential. There are a variety of new generation of tools that take full advantage of future
COTS developments 15, 26, such as embedded SQA tools within the delivered codes to expeditiously
resolve user concerns 16, automated and optimized porting capabilities across various HPC architectures
17, visual debugging tools 22, memory optimization 21, 27, and tools to help automate the threading
process 20. In addition, there have been advancements in timely vendor support of desirable library 25
and compiler standards 14, standards for data description 24, and the ability to better manage
simulation results as ensembles 19. To this end, ample HPC resources should be allocated for dedicated
rigorous code testing 23.

The future of Software Engineering for High Performance Computing
Collections of elevator speeches by those who will help make it happen.

DRAFT 7/10/2015

Management

Schedule Expectation: Rank 22

The time frame for getting the software running on the new architecture is too optimistic; the next gen
hardware delivery has become associated with the year 2017. There is a natural tendency to assume the
software will also be ready to run on and take advantage of the new architectures in 2017. However
porting the software to the new architecture will require a significant amount of effort which may or
may not coincide with hardware delivery. !

RISK: Schedule overly optimistic

Staffing: Rank EEZ4EN

Staffing shortages, finding computational computer scientists and SQEs who relish rewriting other
people's code when they could work on new code could be challenging.. When entry level and mid-
career computer scientists look for positions are they going to want re-code someone else’s C++ or
Fortran code so it can run under OpenCL threading or are they going to want to work for the Googles of
the world writing new code in Java? Finding the resources to modify the codes is going to be very
challenging. 2

RISK: Inability to attract CS top talent

Hiring and Retention of Staff: Rank EEZ4EN

The large HPC codes which we develop are complicated beasts with a large number of interacting
pieces. It takes a new hire a significant amount of time to get up to speed on one of our projects and
become fully productive. That's an investment we shouldn't want to lose. However, we face the two
fold challenge of having Silicon Valley over the hill from us. The firms there pay well, and that has the
side effect of raising the cost of living throughout the Bay Area. We need to have a compensation
package in place which makes us competitive with what computer scientists are making there, not only
to keep the staff we have, but also to attract new staff members. We've had at least two offers declined
in recent weeks because the salaries we were offering were not sufficient to cover the cost of living
differences the candidates would experience if they came here. 3

RISK: Attrition of existing employees

Software Development Process:

Managing the Ever-Increasing Need for Compliance-Driven Agile
Development: Rank 18

The needs of the research community increasingly require highly-complex computing environments and
simulations. As these needs continue to increase, the software methodology and associated tools must
mature to allow scientists and engineers to rapidly and efficiently develop state-of-the-art simulation
capabilities while maintaining alignment with national and international consensus standards. The use
of automated tools in support of test-driven development, continuous integration, regression test
execution, and version control practices aligned with strong software management standards is
essential for future software development environments. Keeping these strategies in mind and enabling
modeling and simulation to be developed in a fraction of the time previously required will revolutionize
predictive simulation.*

RISK: Standards and compliance overly restrictive

Management of Advanced Code Projects Rank 22

As we tackle more and more complex science and engineering applications, with sophisticated
algorithms and analysis capabilities, and make strides towards improved SQE, there is too much

for a single Pl to manage. Application projects must be set up with separate leadership roles to cover the
targeted science, software design, discretization/solver choices, multi-core strategy, and SQE tools and
processes. One management model is to have a project Pl, who owns the choice of equations and
analysis, and a separate code owner, who owns the software design and quality.

Moving in this direction requires science and engineering application development teams to cede some
leadership to Computational Science experts that may have little expertise in the application domain,
and cultural changes to the organizational funding and reward systems.”

RISK: Lack of SE experience

Graded Approach: Rank -

While | think this appropriate SE and SQE processes are important, | have serious doubts any attempt at a
grand unification will have much real impact, if any. In my interactions with others at joint ASC/OASCR
meetings and workshops, I've noticed a significant difference of opinions and approaches to these issues (and
other technical concerns as well). | think this is due largely to the differences in developer goals, reward
systems, and development environments. Office of Science software projects are mostly driven by research
goals, developers are rewarded for developing novel things and writing papers, and the developers and users
are loosely connected. ASC code efforts (at least at LLNL) are driven by programmatic goals and user
demands, we are rewarded for delivering on mission goals (often timeline driven), and developers and users
interact daily. Processes and practices reflect these stark differences very clearly.®

RISK: Level of rigor too high or too low

Use of Appropriate Software Engineering Practices Rank -

Two critical factors facing the sustainability of HPC software are the productivity of developers and the
long-term maintainability of the software. The use of appropriate software engineering practices can
greatly help in both of these areas. In terms of developer productivity, software engineering
methodologies and tools can greatly reduce the amount of effort developers must devote to developing
and modifying HPC software. In terms of long-term maintainability, using good software engineering
practices will help developers write code that will be easy to update and modify as machines and
science change over time. The biggest win in both cases is that the amount of effort scientists must
devote to software can be reduced freeing up more time for other scientific endeavors. In both of these
cases, the key factor is having appropriate software engineering practices. While the field of software
engineering has a number of practices that have been show effective in traditional software
engineering, there is a general belief that many of those practices will not work in scientific HPC
domains. While there may be a grain of truth to this belief, the better answer is that proven software
engineering practices need to be tailored to fit within the constraints of the scientific HPC environment.
There is a need for long-term interactions between software engineering experts and scientific HPC
experts to develop and validate these tailored practices. In addition, there is a need for mechanisms to
share successes in this area to help other scientific HPC developers find practices that can be adopted on
their projects.’

RISK: Development in hero mode and code correctness/maintainability suffer.

Upping the Perceived Value of Software Engineering Rank -

The scientific software community for too long has had an unbalanced perspective on the value of good
software engineering, and the advent of exascale computing is making that gap more important to
address. With obvious exceptions, too often researchers are rewarded solely on the merit of
publications of results, and not on building quality software that is usable and maintainable by a broader
set of users. With the value of an exascale computer reaching about $150k/day in capital costs and NRE,
and the operating costs (electricity, system administration, operators, etc...) adding perhaps another
$75k/day - we cannot afford to have software running on these machines that has not undergone a
rigorous process of static and dynamic analysis, regression testing, performance analysis, and debugging
on a broad set of problems. Researchers should be encouraged to adopt at set of Best Practices for
scientific computing assembled by experts in the field who have successfully developed production level
software, and continued funding dependent upon demonstration that these practices are being fulfilled.
Multidisciplinary teams included expertise in computer science and software engineering should be part
of teams seeking exascale funding, and publications in how to improve on graded Best Practices valued
in the research community.®

RISK Best practices not communicated

Attributes of a highly effective software environment Rank TN
e Communication conducted in a shared and searchable database
o Periodic conference calls
e Tightly defined and enforced coding standards
e Documentation included in code, extractable on command

e Small builds
e Automated testing and processing of testing reports
o Digital test reports
e Specific code objectives, with delivery dates
o Flexible / agile approaches to achieving the code objectives
o Specific requirement development part of coding and testing’

RISK: Development approach not agile

The computational science community needs more awareness, knowledge,
understanding, and experience with best practices in software engineering.

Rank 23

We need to raise awareness within the community of the value of software engineering both to
software quality (which is fundamental to producing credible and reproducible simulation results), and
to enhancing software, and ultimately scientific productivity.

We need to expand the level of knowledge and understanding of software engineering best practices
within the community. Most DOE computational scientists do not receive any formal training in
software engineering during their education. My experience is that most of what people know is self-
taught from books, and word of mouth. We need to do a much better job of educating software
developers on software engineering.

They need not only knowledge of the tools and techniques, but also the understanding of the ideas
underlying them that they can figure out how to adapt what they read or hear about to their own
situations, without getting caught up in the SE miracle technique of the week.

Complementary to this, we also need to make a concerted effort to capture the software engineering
experience of people in HPC computational science, and understand how we're both different from and
similar to "classic" industrial software development.

Finally, we need to encourage and incentivize people to actually use SE best practices. | think an
important aspect of this, especially as we're concurrently working on the knowledge and understanding
issues above, is going to be personal interactions between experienced "software engineers" and
software development teams to assess current practices, understand pain points, formulate plans to
address the pain points, and coach the team through their implementations (with an assessment that
contributes back to the understanding aspect of the previous point).

Another aspect of increasing the level of actual experience with SE best practices might be to ensure
that the basic tools and infrastructure to support these practices are readily available to DOE software
developers. There are many tools, and many ways they can be provided.

But today, they are mostly left up to individual projects, many of which do not have the skills, or interest
in setting up and maintaining their own infrastructures. Many will be able to cobble together something
that they consider adequate based on third-party services, poorly advertised, supported, and
maintained institutional services, and the like. If quality tools are widely advertised and readily available
at low or no direct costs to projects, they are more likely to be used. Further incentives deserve thought
too. | could go on, but | won't. The elevator doors are opening.°

RISK: Contemporary tools not available

Introduction Rank BSZ0
Development of production-quality software from a research-driven computational science and
engineering (CSE) / high performance computing (HPC) project is challenging. CSE/HPC software
products tend to be long-lived and multi-component. Ideally they should have reusable components
and rely on external components developed by other expert groups in order to ensure state-of-the art
capabilities. However, this ideal is seldom achieved. Commercial software can become unavailable and
software from other research organizations can be unreliable and poorly supported. Many issues must
be considered by a research-driven software project: research productivity and credibility, reuse and
upgrades, maintenance, support, shared development, continued research with mature software,
balancing backward compatibility and change, and more.

While a great deal of work has been done in the general area of software lifecycle models, Lean/Agile
lifecycle models seem particularly attractive for most CSE projects
[ImplementingleanSoftwareDevelopment2007, AgileSoftwareDevelopment2003, XP2]. There seems to

be little work attempting to define software lifecycle models for research-driven CSE/HPC software.

The primary purpose of this short paper is to propose research into the broad adoption of a modern
Lean/Agile-consistent software lifecycle model and framework that take into account the particular
needs of the CSE/HPC community for both research and production projects. It is based on the
proposed TriBITS Lifecycle Model [TribitsLifecycleModel eScience2012].

Self-Sustaining Software
The primary goal of the proposed lifecycle model is the development of Self-Sustaining Software which
is defined to have the following attributes:

Open-source: The software has a sufficiently loose open-source license allowing the source code to be
arbitrarily modified and used and reused in a variety of contexts.

Core domain distillation document: The software is accompanied with a short focused high-level
document describing the purpose of the software and its core domain model
[DomainDrivenDesign2004].

Exceptionally well tested: The current functionality of the software and its behavior is rigorously
defined and protected with strong automated tests [CSESoftwareTests].

Clean structure and code: The internal code structure and interfaces are clean and consistent.

Minimal, controlled internal and external dependencies: The software has well structured internal
dependencies, and minimal external upstream software dependencies that are carefully managed.

Properties apply recursively to upstream software: All of the external upstream software dependencies
are also themselves self-sustaining software (terminating in ubiquitous universal standards like C++98,
Boost, etc.).

All properties are preserved under maintenance: All maintenance of the software preserves above
properties (by applying Agile/Emergent Design, Continuous Refactoring, and other good Lean/Agile
software development practices).

Software with the above properties poses minimal risks to downstream customer CSE/HPC projects. To
the extent that a piece of software is not consistent with any of the above properties it poses a risk to
downstream customer projects. The motivation for these properties and other issues are discussed in
detail in [TribitsLifecycleModel eScience2012].

An Agile Lifecycle for Research-based CSE/HPC Software

While the goal of the proposed Lean/Agile lifecycle model is to produce self-sustaining software, other
properties of the software are also important and the process by which software is first created in a
research project and is later matured has to be considered. Therefore, the proposed lean/agile lifecycle
model defines several different maturity levels for CSE/HPC software:

Exploratory (EP): Primary purpose is to explore alternative approaches and prototypes.

Research Stable (RS): Developed in a Lean/Agile consistent manner with strong verification tests (i.e.
proof of correctness) written at various levels (e.g. unit, component, and system levels) as the
code/algorithms are being developed. Has a very clean design and code base maintained through Agile
practices of emergent design and constant refactoring [EmergentDesign2008]. However, generally does

not have higher-quality documentation, user input checking and feedback, space/time performance,
portability, or acceptance testing. But is appropriate to be used by “expert” users. Provides a strong
foundation for creating production-quality software.

Production Growth (PG): Includes all the good qualities of Research Stable code. Provides increasingly
improved checking of user input errors and better error reporting. Has increasingly better
documentation as well as better examples and tutorial materials. Maintains clean structure through
constant refactoring of the code and user interfaces to make more consistent. Maintains increasingly
better regulated backward compatibility with fewer incompatible changes with successive releases. Has
increasingly better portability and space/time performance characteristics. Has expanding usage in
more customer codes.

Production Maintenance (PM): Includes the good qualities of Production Growth code. Primary
development includes mostly bug fixes and performance tweaks. Maintains rigorous backward
compatibility with typically no deprecated features or breaks in backward compatibility. Could be
maintained by parts of the user community if necessary (i.e. as “self-sustaining software”).

The transition between the EP, RS, PG, and PM phases is meant to be smooth and without risk. Existing
software is grandfathered in using the Legacy Software Change Algorithm
[WorkingEffectivelyWithLegacyCode2005]. There are many other details and considerations related to

the definition and proposed implementation of this lifecycle model that cannot be discussed here for
lack of space (see [TribitsLifecycleModel eScience2012]).

Summary and Research Opportunities

We propose the adoption of a Lean/Agile lifecycle model for research-driven CSE/HPC software. The
proposed model, if widely adopted, could dramatically improve the productivity and impact of CSE/HPC
research and applications by providing a wide range of compatible high-quality advanced software
capabilities from a wide range of foundational areas.

The primary research questions for the proposed Agile lifecycle model relate to how well it will work at
scale across many organization over a long time period, what level of training will be needed to get is
used effectively, and finding ways to measure the impact using various local and global measures. There
is an ongoing attempt to implement this lifecycle model in the Trilinos project
[TribitsDevelopmentPracticies]. A broader effort would include applying and adapting this model to

other projects as well.}

RISK: Dev approach not agile enough

HPC Software Engineering Centers Rank 23

The future of Software Engineering (SE) for next generation High Performance Computing (HPC) will be
like the past but worse if there are not some fundamental changes to how the work is funded,
rewarded, and managed. The emphasis on research, publications, and proposal writing — for science
and software research — creates a software development quandary, especially for the small teams and
limited resources that seem to be common in today’s research funding climate. Those individuals doing
development are often torn between meeting science goals and writing quality software, with the
science taking precedence in order to enable continued funding. Add to this the increasing complexity
of writing, debugging, porting, maintaining, and running science software at scale and the future of HPC
software seems bleak.

Part of the problem is the inherent nature of computational science. Meeting research deadlines often
leads to the development of prototype, one-off, and stand-alone software programs. These programs
are generally written by people trained in and rewarded for the science, not the development of quality
software. Generalizing and hardening these codes for production use requires expertise, time, and
funding, which tend to be scarce in an environment driven by science goals. This paucity of resources
results in software developer’s time often split between multiple, different projects that have distinct
goals and employ different tools and technologies. The outcome is cognitive overload, reduced
productivity, and the risk of eventual burnout.

A paradigm shift is needed that reflects the importance of the development of quality software to
ensure a more positive outcome for the future of HPC Software Engineering. A significant portion of
funding needs to be earmarked and distributed for establishing, maintaining, managing, and rewarding
SE-HPC expertise. Additional funding is needed for work — separate from the science and research — on
developing, productizing, and maintaining tools, system software, and libraries directed at reducing the

burden faced by software developers during and after the transition to new architectures to include
more robust and scalable capabilities for interacting with the file system; launching, monitoring,
analyzing, and visualizing the results of ensemble simulation runs; and debugging, testing, and porting
HPC software. 1

RISK: Funding for tools and process improvement not available

Compliance to DOE Standards: Rank 18

There will be large technical challenges for software moving to next gen hardware platforms. DOE needs
to relax compliance rigor of standards, orders, and guidance to support a research environment.
Demanding excessive non-value added rigor and documentation will kill creativity, slow progress, and
drive out the best talent.*?

RISK: Compliance to standard will be cumbersome

Standards support: Rank 23

Finally, we need to have the vendors of our HPC platforms commit to supporting language and library
standards in a timely manner (18-24 months after release of the standard?) for the lifetime of the
platform. We write codes which need to run on a variety of HPC platforms, and having different levels
of standards compliance means that we have to code to the lowest common denominator. For
example, it's been four years since the C++ 2011 standard was released. It contains many new features
like lambda functions, auto type declaration, move semantics, etc which can improve the clarity,
performance and maintainability of a C++ code. However, we currently cannot use C++ 11 on the BGQ
platforms because the IBM C++ compilers do not, and will never, support C++ 11. Yes there are other
compilers we could use on Sequoia, but we cannot suffer the ~20% performance loss we'd take by using
them. An example of an important library standard is OpenMP 4.0. Much of our current planning for
using next generation hardware revolves around using OpenMP 4 directives to offload computation to
coprocessors (GPUs or Intel Phis), so we'll need robust support for this.*

RISK: Latest compilers, Libraries and operating systems not available or supported

Tools:

COTS Tools: Rank 2.0

The over one billion dollar per year commercial software engineering tool market is driven by market
demand, so tools that help developers with threading and other HPC development challenges are going
to be targeted for the most widely used platforms, such as Windows applications running on Intel
processors. Tool providers are not motivated to produce tools for niche markets and platforms that are
not widely used. It is important for the future of SE for HPC to make choices of operating systems,
platforms, compilers, parallelism that are widely used to take advantage of commercial tool
development and innovation or be prepared to have to build these tools in house. **

RISK: Not able to take advantage of main stream productivity tools

On Board SQA: Rank 21

Because of the complexity of the next gen software, SQA functions should be built right into the
delivered software code to expedite product maturation. This SQA functionality could consists of:

Built in Tests
Instant Replay
Problem reporting
Problem resolving

A WN PR

Built in test allows the automated running of known problems validated from independent sources and
check for expected results. These problems are specially designed to set up and run end to end
simulations touching the major functions of the software. This function can be engaged on any new
platform or platform variation as a confidence check that it is okay to proceed with new problems.
Failure of the built in tests would indicate a hardware problem, configuration problem, or software
problem.

The instant replay tool allows the user to back the simulation up to a previous check point and proceed
forward with debugging enabled. This may help identify or isolate the source of the concern. Use of
visual debugging tools would fit nicely into this on-board function.

Built in problem reporting allows user to capture and report to developers all the important
environmental information about the hardware, software, configuration, versions, modes, compilers.
flags, displays, processors, cores, stacks, etc. if a problem is detected either running built in tests or user
supplied simulations. The reported issue is given a unique tracking number and status is set to
investigate. The necessary information to repeat the problem is gathered and sent automatically.

The problem resolving tool tracks the reported problem through assignment, fix, ready for retest, and
resolved. It asks the issuer of the problem to verify that the issue is resolved. Use of continuous
integration allows developers to push out new releases multiple times per day.

Each of these SQA supportability features will be built into the main code and easily accessible to users.
Because of the likelihood of numerous reported issues from users the development staff must plan on
staff resources to fix and locally test the reported issues. SQEs can also be a resource for fixing issues
found by users. The combination of the built in test tools, automation, and developer responsiveness
using continuous integration to push out fixes rapidly allows the reliability of the next gen codes to
mature at accelerated rates. °

RISK: Insufficient resources to support user needs

Maintaining a large scientific software base on multiple architectures (RAJA)

Rank 22

Suppose we have a large scientific software project containing tens of thousands of loops, and we must
support that application on multiple resources simultaneously, such as a CPU and GPU. How might we

10

structure the software to make this simple to manage? First, we recognize that the GPU is most
efficient when there are many floating point operations per byte, and the CPU is most efficient when
there is a lot of random data access, and not as much work. We then come up with a mechanism to
map loops to architectures based on type of workload.

Many frameworks and languages support the concept of a parallel for statement, so we can leverage
that commonality. We create a new parallel for statement in C++ :

forall<policy>(iteration bounds)
{ body ; }

And we define specific policies that can help map loops to hardware resources:

#define work_intensive bind_gpu
#define data_injtensive bind cpu

Code that contains many loops can be written like this in C++ using lambda functions for the loop bodies
and specific loops will be bound to the CPU or GPU:

IndexSet domain_bounds ;

forall<work_intensive>(domain_bounds, [] (int i){
/* body 1*/;

)

forallcwork_intensive>(domain_bounds, [] (int i){
/* body 2 */;

)

forall<data_intensive>(domain_bounds, [] (int i){
/* body 3 */;

)

Furthermore, by changing the resource definitions for the loop workloads, we can quickly change which
resource subsets of the loops will run on (here we bind all loops to the CPU):

#define work_intensive bind_cpu
#define data_injtensive bind cpu

Using this general technique, applications can pick broad categories that characterize loops based on
work intensity, data intensity, branching intensity, etc. and then implement ‘“forall’ execution schemes
that can most efficiently execute loop algorithms on underlying architectures. Tools such as ROSE could
be used to automate some of this refactoring. This is the basis of the RAJA programming model
developed at Lawrence Livermore National Laboratory?’

RISK: Manual recoding adds defects to reliable codes

11

Tools for Automating Processes Rank 23

The second area is in the use of tools for automating processes. As the workload on our existing staff
increases, it's important to automate more of building/testing process. We support a variety of
platforms, and developers do not have the time to build and test for all of them. That's where
continuous integration tools like Jenkins or Atlassian's Bamboo can help. They can monitor a software
repository, and after new code is committed, they can get a copy of the new code, build it for all the
platforms/compilers of interest, and run the unit, regression, nightly, etc tests on those platforms. They
then present the results of all of this in a concise manner with the ability to get more detailed
information, if desired. They can also notify a developer that his/her commit has broken the code on
one or more platforms. There needs to be institutional support for at least one of these tools. There
may also be a need for increased computational resources for developers to allow these builds/tests to
be done in a timely manner.1®

RISK: Not testing all platform types supported

Simulation Ensembles: Rank 22

The unit of simulation is the ensemble study, not the single run. We need to invest more in tools to
support ensembles of simulations. Most of our software engineering work in support of simulation goes
into codes and tools that operate at the level of individual simulation runs, i.e. languages, libraries, build
tools, MPI, OpenMP, debuggers, revision control systems, performance instrumentation and analysis
tools, load balancing schemes, etc. But no one ever runs a simulation just once. In any realistic study a
simulation code has to be run hundreds to millions of time, over a multidimensional space of options,
parameter values, and random seeds. Such a collection of related runs of the same code is an ensemble
study, and it is fair to say that the ensemble study is the primary unit of simulation, not the individual
run.

Managing an ensemble of simulation runs involves a lot of complexity:

1. Hundreds or thousands or more of different config files and input files have to be prepared
systematically.

2. Output data has to be organized into databases and/or a hierarchy of files and directories for
offline processing and visualization.

3. Checkpoint/restart files have to be managed.

Performance data has to be saved and analyzed.

5. Failures of all kinds must be logged and analyzed to see if the failed runs should just be repeated
(perhaps with a larger timeout) or if a bug has to be fixed first.

E

Ensemble studies fall into distinct patterns:

1. Logic testing ensembles that are designed to exercise the code on data whose output is
analytically tractable, to test either correctness, numerical accuracy, statistical distributions, etc.

2. Performance testing ensembles for doing scaling studies, or memory management studies, or
load balancing studies, etc.

3. Parametric ensembles for doing sensitivity studies

4. Optimization studies designed to explore a parameter space to find optimal parameter values

12

that maximize some objective function. The optimization can be by hill climbing, simulated
annealing, genetic algorithm, etc.

5. Monte Carlo ensembles designed to measure parameters of various output distributions,
measure correlations, determine the frequency of rare events, etc.

6. Uncertainty quantification studies designed to measure and apportion sources of uncertainty.

These patterns involve different ensemble control logic, run into different resource limitations, and
involve different strategies for deciding what simulations to execute, and in what order. The outputs of
ensemble studies have to be fed into other tools, e.g.

1. Data analysis tools

Visualization tools

3. The ensemble management tool itself, which may use results of early runs in the ensemble to
decide what runs to schedule later in the same ensemble, with what command line inputs,
configurations, model parameters, and random seeds to give them.

N

Managing ensembles of simulation runs is usually done essentially offline (i.e. not on the computer
running the simulations), usually via simple scripts requiring a lot of detailed time, attention, and
guidance from human analysts. Occasionally more automated tools are used, such as DAKOTA. Dakota is
mature and excellent as far as it goes, but it generally does not run on the same platform as the
simulations it launches. Instead, it submits simulation runs to the batch queue of another machine, and
the batch queue scheduling policies and delays can make the full ensemble study far slower than
necessary.

What are needed are ensemble management tools that allow ensemble management to be
programmed and to run concurrently, on the same platform as the simulation runs. It must be able to
launch independent parallel simulations executions asynchronously, within the same job as the ensemble
management tool itself, and must be able can recover from failures of some constituent simulations
without the entire job being abnormally terminated. Such a tool needs operating system or runtime
system support, and needs to be standardized, documented, and portable.*®

RISK: Not having sufficient simulation result management tools

Thread Rescoping Tool Rank EES

Most large parallel scientific software applications are implemented using MPI. In MPIl-parallelism, each
MPI process is executed in serial with messages sent between serial processors to achieve

parallelism. In order for these programs to exploit next-generation programming models, the first step
required is to convert the serial code sections to threaded code sections. The first step to making code
thread safe is to rescope variable declarations so that each variable is owned completely by a local
thread instance. This can be a monumental, exhaustive, and error-prone task to do by hand for legacy
codes that have nearly one million lines of source code. The ROSE team at LLNL has recently written a
thread rescoping tool that automates this process, reducing the largest burden codes have in making
their codes thread safe. These recent improvements to ROSE have been tested in two large ASC
production codes, and the tool has eliminated a line-by-line examination of the code, specifically
eliminating a decision-point for each and every line of code whether it is thread-safe or not.?°

13

RISK: Manual threading process degrades code reliability through typographical errors and not
recognizing thread-unsafe code

Fine-grained parallelism challenges Rank BES

Presently, numerical kernels in most LLNL ASC codes are usually serial and operate on data associated
with an entire domain. However, efficient parallelism is tied closely to memory-locality. One way to
improve locality in a multithreaded environment is to use many small domains, allowing more threads
to simultaneously share data caches without contention. Unfortunately, domain overhead measured in
terms of additional memory needed for non-shared data, and domain management operations that are
hard to amortize away, can lead to space or performance problems on current multicore systems. Thus,
an alternative to traditional domain partitioning will be required to exploit massive on-processor
parallelism.

A better option is to employ fine-grained data “chunking” within a domain where a chunk of data can be
assigned to a work thread or passed to an algorithm kernel. Proper chunk size selection can balance
both instruction and data cache usage so that neither cache becomes overly strained. For example, if an
algorithm works on a single element at a time (typical for a complex material model), the amount of
code executed may not fit into an instruction cache. So the algorithm is always streamed from main
memory (as though there is no instruction cache), while the data may be perfectly cached, with room to
spare. On the other hand, if the chunk size is larger than will fit into the highest level of processor data
cache, then the data is always streamed from main memory (as though there is no data cache).

Careful ordering of array accesses is also important to improve cache reuse, which is critical for good
performance; e.g., ensuring that all entries in a cache line are used before the cache line must be
reloaded. In a multi-material hydrodynamics code, a material model may likely be the primary work unit
on a domain. Ordering elements so that data for elements with the same material are adjacent in
memory can provide an optimal cache mapping. When materials move between mesh elements due to
advection, it may be wise to periodically permute mesh data to retain memory adjacency. Optimal cache
reuse will likely occur when data layout mirrors the needs of dominant numerical operations. However,
which particular loops dominate runtime for a code is often highly problem-dependent. Flexibility to
permute data could save an application from using poor memory access patterns for a given
architecture. Reordering can also enable "lock-free" computations in a multithreaded environment.
Using traditional programming language constructs, such as C-style for-loops, all execution and data
access details are hard coded in the application source code. Without some sort of abstraction layer,
such as RAJA, altering implementation details is difficult and may require creating and maintaining
multiple versions of individual loops.?

RISK: Code modification for porting causes decrease in code reliability

Visual Debugging Rank 200

As we move to next-gen hardware, we expect the complexity of meshes used for simulations to grow
dramatically. Parallel meshes will routinely contain terabytes of information, and some runs may even
contain a petabyte of information. In this environment, how can we expect to quickly find errors

14

introduced into computations? One potential way to reduce time in finding errors is to introduce a

visual debugging capability.

S Lefi-db i,

L-ConnCMFE®) M4 Right-db

In the figure above, the visualization on the far left and far right show the “characteristic length” field of
a physics simulation. The value on the far left is the “correct” answer, and the value on the right is the
answer after a bug is introduced into a simulation. Looking at these arrays visually, there does not
appear to be a large difference. Picking through the actual array used to contain the data for each field,
every element of array data appears to be slightly different in the far left and far right case. How would
a person hope to debug such a case when there is terabytes or even a petabyte of data to comb though?
By taking a difference of the characteristic length field from two runs at the same time step, we get the
picture in the center. Here, we can see that although essentially every value is different, there is a
“front” that is clearly visible in the data. To the trained eye, there is an almost immediate recognition
that there must have been a slight variation in the simulation time generated for the run on the left vs
the run on the right, turning a very complicated analysis problem into a problem that suggests a clear
place to look in the algorithm for the introduced error. Using the C++View capability in the TotalView
debugger, and combining it with the Vislt simulation software, we have prototyped a system where a
baseline simulation can be compared against a modified simulation, running lockstep in the debugger,
to visually look for anomalies in the differences between runs. The prototype is not yet in production
due to some manpower issues, but we feel will be a profitable debugging tool, once in place.?

RISK: Not having a quick way to identify anomalies at scale decreases productivity

HPC Resources For Testing Rank -

To achieve high software quality, application teams must periodically test large-scale codes on large-
scale problems because some software defects only manifest at large scale. Currently, DOE projects
write requests for allocations on DOE supercomputers, and they may neglect or underestimate the time
required for automated testing. In the presence of limited resources, projects may be inclined to
sacrifice quality for the sake of getting results.

There are several frameworks for automated testing (for example Jenkins or Bamboo). It can be difficult
to set up automated testing on HPC systems because normal users may not be able to set up cronjobs,
or there may be firewall restrictions that make it difficult to "checkout"

the latest version of the code from the software repository or to report back to the centralize test
server.?

15

RISK: Testing treated as an afterthought

Data:

Data Rank 22

The three things that matter most in quality engineering of scientific computing software are Data, Data,
Data. This is counter-intuitive. Historically, we think about scientific computing applications and Data as
distinct, nearly entirely independent products. For software, we started with machine languages, then
assembly, then 3rd and 4th generation high level languages and now we are even working on domain-
specific and 5th generation languages. Our treatment of Data, however, has not fared nearly so well.
We're still in the machine-language era with respect to our means for describing Data. However, the
manner in which we describe data governs entirely the community's ability to independently develop
software components that operate upon it. The best way to enable community development of
modular, portable, shareable, quality software components that act in useful and sophisticated ways
upon Data is to foster the adoption of community-wide standards for the flexible storage, description
and exchange, both in-situ and by files, of scientific data.?*

Libraries

The next three things that matter most in quality engineering of scientific computing software are
Libraries, Libraries, Libraries. As scientific computing applications grow in complexity, more and more
functionality is packaged in independently developed libraries. Worse, as the computing environments
in which these applications run grow in complexity, it gets easier to make mistakes in building, installing
and using libraries as well as the applications that depend on them. Unfortunately, SQA standards so far
developed focus primarily on applications, not libraries. SQA standards for libraries differ from
applications in many respects. Libraries for next generation computing must be developed with a
multitude of SQE practices aimed at minimizing the likelihood of making mistakes in using them and at
maximizing users' ability to diagnose and correct them when they occur. Libraries must be "smart"
enough to auto-detect appropriate defaults, enable users to access performance metrics (much like CPU
hardware counters) and even inform users of poor performing configurations and use.?

Operating Systems

The last three things that matter most in quality engineering of scientific computing software are
Windows, OS X, and Linux. Yes folks, believe it or not, a lot of scientific computing software that scales
to 10”76 cores is developed on puny Windows and OS X laptops, even tablets using those platform's
native development environments. Sure, we might *run* only small 4 and 8 processor runs on these
platforms. But, the ability to *develop* next generation software on these platforms is invaluable for
the community at large, particularly Open Source packages where users the world over may download,
modify and submit patches to fix bugs and add features. This is possible only when applications *and*
all of their support libraries are designed to support native development on these platforms. Towards
this end, CMake (as opposed to Autoconf, Scons, etc.) and CMake-ified packages are a good step

16

forward. Maintaining proficiency in all three of these operating systems is essential for the success of
next generation software development efforts.?®

RISK: Development environment overly specialized or expensive

Data and algorithm organization in physics codes Rank 23

Compute Node (Distributed Memory “Locale”) |

Domain | | Domain | | Domain | eee

Shared
Data
Tables

Domain (Data Locality Context) |

[mesh Topotogy meta-data |

| Elements I :
| Nodes | | Element Fields l
| Material Regions | | Nodal Fields l

l Etc. | | Etc. I

Figure 1. Basic organization of a typical domain structure in a mesh-based physics code.

A typical ASC code has clearly-defined mesh and data abstractions. Generally, a problem is decomposed
and distributed across compute nodes on a partition of a parallel HPC platform. Each compute node is
considered a distributed memory “locale” to which some number of MPI processes is assigned. A data
structure, often called a “domain”, owns a description of part of the mesh and the field data for that
mesh part. Each domain is owned by exactly one MPI process and each process may own multiple
domains. The basic elements of a domain structure are illustrated in Figure 1. Data on a domain is
disjoint from data on other domains, and often maps to a “coherence domain” for caching purposes. A
domain is also a “locality context”, typically representing the finest level of data partitioning in a code.
Each mesh field in a domain is associated with a fixed centering on the mesh, such as finite-element or
vertex centered, and the data for each field is held in a distinct array. Field arrays are 1-dimensional
computer science structures regardless of the underlying problem dimension. Fields are typically
registered in a centralized data store, making it easy to map Fields to the peculiarities of the underlying
memory subsystem from a single source code location. Also, there usually exists other metadata on a
domain, for example to map materials to elements, as well as non-mesh data, such as tables of physical
data (e.g., material properties, equation of state, etc.) shared by domains on a compute node.

The mesh topology defines the organization of elements and vertices on the mesh. Generally, there are
two fundamental mesh configurations, structured and unstructured. A structured mesh uses an N-
dimensional Cartesian index space, which defines uniform element-to-vertex connectivity and a single

17

element geometry. Structured mesh algorithms often use nested loops to traverse logically rectangular
regions on a mesh. Such operations rely on zero-overhead implicit relationships between mesh entities,
and allow a high level of compile-time optimization due to stride-1 data access patterns. An
unstructured mesh is composed of arbitrarily connected vertex points that define the elements they
surround; thus, an unstructured mesh admits arbitrary element geometries. Due to the irregular
connectivity, relationships between unstructured mesh entities are defined using lists of array indices.
For example, eight vertices define each element on a three-dimensional hexahedral mesh, so eight
nodal-array indices are stored to access nodal field data for each element. Use of indirection arrays to
manage relationships among mesh entities requires additional memory traffic, involves a much higher
ratio of integer to floating point operations, and precludes many compiler optimizations. Regardless of
the underlying mesh topology, most ASC physics codes employ algorithms involving regular, stride-1
memory accesses as well as those requiring indirection arrays. So, efficient implementations of both
types of operations are important to every code.

Mesh data is often organized into a hierarchy of contexts, typically, where a context represents a
relationship between the mesh and data on the mesh. There will be multiple topological contexts, one
for vertex-centered quantities, one for element-centered quantities, face-centered quantities, etc. An
element context will have child contexts that each enumerate the elements associated with a given
material region. Often, material region contexts are further partitioned into clean elements (single
material) and “mixed” elements (containing multiple materials). When contexts are nested, local indices
are typically used within a child context to index into arrays associated with a parent context.

The context hierarchy in an ASC code is designed to map the conceptual organization of physics
operations to the underlying data structures and memory subsystem. Most physics operations are
encoded in loops; a large code will have tens of thousands of loops, typically. However, within a given
code, there are relative few loop patterns. Common loop patterns involve:
e Simple traversal within a context (e.g., loop over all elements, vertices, etc.)
e “Parent-child” interactions within a topological context (e.g., loop over all elements containing
material “A” and update values for some field defined over all elements)
e Relations between fields in different topological contexts (e.g., difference stencils involving
vertex- and element-centered quantities)
Other operations may involve more elaborate data dependencies, but are less common.?’

RISK: Architecture sprawls and is not optimized

! Tom McAbee LLNL

2 Tom McAbee LLNL, Greg Pope LLNL, Ellen Hill LLNL, Stephanie Dempsey LLNL
3 Burl Hall, LLNL, Derek Gaston, INL

4 patty Loo INL, Derek Gaston, INL

®> Andy Salinger, SNL

& Rich Hornung LLNL

7 Jeffery Carver, University of Alabama

8 Rob Neely LLNL, Ellen Hill LLNL, Greg Pope LLNL
% Robert Blyth, DOE-ID

10 David E. Bernholdt ORNL

11 Roscoe A. Bartlett, ORNL, Michael Heroux, SNL, Jim Willenbring, SNL

18

12 Tamara Dahlgren LLNL

13 Greg Pope LLNL, Ellen Hill LLNL

14 Burl Hall, LLNL

15 Greg Pope LLNL, Stephanie Dempsey LLNL
16 Greg Pope LLNL

17 Jeff Keasler LLNL

18 Burl Hall, LLNL, Derek Gaston, INL

19 David Jefferson LLNL, Stephanie Dempsey LLNL
20 Jeff Keasler LLNL

21)Jeff Keasler LLNL

22)eff Keasler LLNL

23 Tom Epperly, LLNL

24 Mark Miller LLNL

25 Mark Miller LLNL

26 Mark Miller LLNL

27 Jeff Keasler LLNL

19

