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The Future of Software Engineering for High Performance Computing

DOE ASCR requested that from May through mid-July 2015 a study group identify issues and 

recommend solutions from a software engineering perspective transitioning into the next generation of 

High Performance Computing. The approach used was to ask some of the DOE complex experts who will 

be responsible for doing this work to contribute to the study group. 

The technique used was to solicit elevator speeches: a short and concise write up done as if the author 

was a speaker with only a few minutes to convince a decision maker of their top issues.  Pages 2-18 

contain the original texts of the contributed elevator speeches and end notes identifying the 20 

contributors. The study group also ranked the importance of each topic, and those scores are displayed 

with each topic heading. A perfect score (and highest priority) is three, two is medium priority, and one 

is lowest priority. The highest scoring topic areas were software engineering and testing resources; the 

lowest scoring area was compliance to DOE standards. 

The following two paragraphs are an elevator speech summarizing the contributed elevator speeches. 

Each sentence or phrase in the summary is hyperlinked to its source via a numeral embedded in the 

text. A risk one liner has also been added to each topic to allow future risk tracking and mitigation.

On the topic of software engineering management:

Multi-physics simulation codes may not be ready to operate efficiently on the new hardware by 2017, so

do not set software readiness expectations concurrent with the hardware schedule. 1 Hiring and 

retaining staff to accomplish the multi-physics code porting tasks will be challenging. Most software 

developers prefer writing their own code in contemporary languages rather than modifying somebody 

else’s legacy code. 2, 3 Development teams should consist of physical science domain experts and 

computer scientists both skilled in software engineering best practices. 5 A graded approach should be 

used to accommodate priorities of projects that produce robust simulation codes 8, as well as support 

researchers who focus on innovation and novel approaches 6.

On the topic of software engineering process and tools:

Development lifecycle and DOE compliance 4, 13 must favor best practices 10 that support agility 11

and automation 7 to solve the software engineering challenges 9, 12 posed by next generation HPC. 

Automated tools include support of test driven design, continuous integration, regression test 

execution, static and dynamic code analysis, the build /test/release process 18 and version control, all of 

which are essential. There are a variety of new generation of tools that take full advantage of future 

COTS developments 15, 26, such as embedded SQA tools within the delivered codes to expeditiously 

resolve user concerns 16, automated and optimized porting capabilities across various HPC architectures

17, visual debugging tools 22, memory optimization 21, 27, and tools to help automate the threading 

process 20.  In addition, there have been advancements in timely vendor support of desirable library 25

and compiler standards 14, standards for data description 24, and the ability to better manage 

simulation results as ensembles 19.  To this end, ample HPC resources should be allocated for dedicated

rigorous code testing 23.



2

The future of Software Engineering for High Performance Computing

Collections of elevator speeches by those who will help make it happen. 

DRAFT 7/10/2015

Management

Schedule	Expectation: Rank	 2.2

The time frame for getting the software running on the new architecture is too optimistic; the next gen 
hardware delivery has become associated with the year 2017. There is a natural tendency to assume the 
software will also be ready to run on and take advantage of the new architectures in 2017. However 
porting the software to the new architecture will require a significant amount of effort which may or 
may not coincide with hardware delivery. 1

RISK: Schedule overly optimistic

Staffing: Rank 2.4

Staffing shortages, finding computational computer scientists and SQEs who relish rewriting other 
people's code when they could work on new code could be challenging.. When entry level and mid-
career computer scientists look for positions are they going to want re-code someone else’s C++ or 
Fortran code so it can run under OpenCL threading or are they going to want to work for the Googles of 
the world writing new code in Java? Finding the resources to modify the codes is going to be very 
challenging. 2

RISK: Inability to attract CS top talent

Hiring and	Retention	of	Staff: Rank 2.4

The large HPC codes which we develop are complicated beasts with a large number of interacting 

pieces. It takes a new hire a significant amount of time to get up to speed on one of our projects and 

become fully productive. That's an investment we shouldn't want to lose. However, we face the two 

fold challenge of having Silicon Valley over the hill from us. The firms there pay well, and that has the 

side effect of raising the cost of living throughout the Bay Area. We need to have a compensation 

package in place which makes us competitive with what computer scientists are making there, not only 

to keep the staff we have, but also to attract new staff members. We've had at least two offers declined 

in recent weeks because the salaries we were offering were not sufficient to cover the cost of living 

differences the candidates would experience if they came here. 3

RISK: Attrition of existing employees
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Software	Development	Process:

Managing	the	Ever-Increasing	Need	for	Compliance-Driven	Agile	

Development: Rank 1.8

The needs of the research community increasingly require highly-complex computing environments and 
simulations.  As these needs continue to increase, the software methodology and associated tools must 
mature to allow scientists and engineers to rapidly and efficiently develop state-of-the-art simulation 
capabilities while maintaining alignment with national and international consensus standards.  The use 
of automated tools in support of test-driven development, continuous integration, regression test 
execution, and version control practices aligned with strong software management standards is
essential for future software development environments.  Keeping these strategies in mind and enabling 
modeling and simulation to be developed in a fraction of the time previously required will revolutionize 
predictive simulation.4

RISK: Standards and compliance overly restrictive

Management	of	Advanced	Code	Projects Rank 2.2

As we tackle more and more complex science and engineering applications, with sophisticated

algorithms and analysis capabilities, and make strides towards improved SQE, there is too much

for a single PI to manage. Application projects must be set up with separate leadership roles to cover the 

targeted science, software design, discretization/solver choices, multi-core strategy, and SQE tools and 

processes. One management model is to have a project PI, who owns the choice of equations and 

analysis, and a separate code owner, who owns the software design and quality.

Moving in this direction requires science and engineering application development teams to cede some 

leadership to Computational Science experts that may have little expertise in the application domain, 

and cultural changes to the organizational funding and reward systems.5

RISK: Lack of SE experience 

Graded	Approach: Rank 2.7

While I think this appropriate SE and SQE processes are important, I have serious doubts any attempt at a 

grand unification will have much real impact, if any. In my interactions with others at joint ASC/OASCR 

meetings and workshops, I’ve noticed a significant difference of opinions and approaches to these issues (and 

other technical concerns as well). I think this is due largely to the differences in developer goals, reward 

systems, and development environments. Office of Science software projects are mostly driven by research 

goals, developers are rewarded for developing novel things and writing papers, and the developers and users 

are loosely connected. ASC code efforts (at least at LLNL) are driven by programmatic goals and user 

demands, we are rewarded for delivering on mission goals (often timeline driven), and developers and users 

interact daily. Processes and practices reflect these stark differences very clearly.6

RISK: Level of rigor too high or too low
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Use	of	Appropriate	Software	Engineering	Practices Rank 2.8

Two critical factors facing the sustainability of HPC software are the productivity of developers and the 

long-term maintainability of the software. The use of appropriate software engineering practices can 

greatly help in both of these areas. In terms of developer productivity, software engineering 

methodologies and tools can greatly reduce the amount of effort developers must devote to developing 

and modifying HPC software. In terms of long-term maintainability, using good software engineering 

practices will help developers write code that will be easy to update and modify as machines and 

science change over time. The biggest win in both cases is that the amount of effort scientists must 

devote to software can be reduced freeing up more time for other scientific endeavors. In both of these 

cases, the key factor is having appropriate software engineering practices. While the field of software 

engineering has a number of practices that have been show effective in traditional software 

engineering, there is a general belief that many of those practices will not work in scientific HPC 

domains. While there may be a grain of truth to this belief, the better answer is that proven software 

engineering practices need to be tailored to fit within the constraints of the scientific HPC environment. 

There is a need for long-term interactions between software engineering experts and scientific HPC 

experts to develop and validate these tailored practices. In addition, there is a need for mechanisms to 

share successes in this area to help other scientific HPC developers find practices that can be adopted on 

their projects.7

RISK: Development in hero mode and code correctness/maintainability suffer.

Upping	the	Perceived	Value	of	Software	Engineering Rank 2.8

The scientific software community for too long has had an unbalanced perspective on the value of good 
software engineering, and the advent of exascale computing is making that gap more important to 
address. With obvious exceptions, too often researchers are rewarded solely on the merit of 
publications of results, and not on building quality software that is usable and maintainable by a broader 
set of users. With the value of an exascale computer reaching about $150k/day in capital costs and NRE, 
and the operating costs (electricity, system administration, operators, etc…) adding perhaps another 
$75k/day - we cannot afford to have software running on these machines that has not undergone a 
rigorous process of static and dynamic analysis, regression testing, performance analysis, and debugging 
on a broad set of problems. Researchers should be encouraged to adopt at set of Best Practices for 
scientific computing assembled by experts in the field who have successfully developed production level 
software, and continued funding dependent upon demonstration that these practices are being fulfilled. 
Multidisciplinary teams included expertise in computer science and software engineering should be part 
of teams seeking exascale funding, and publications in how to improve on graded Best Practices valued 
in the research community.8

RISK Best practices not communicated 

Attributes	of	a	highly	effective	software	environment Rank 1.9

 Communication conducted in a shared and searchable database

o Periodic conference calls 

 Tightly defined and enforced coding standards

 Documentation included in code, extractable on command
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 Small builds

 Automated testing and processing of testing reports

o Digital test reports

 Specific code objectives, with delivery dates

o Flexible / agile approaches to achieving the code objectives

o Specific requirement development part of coding and testing9

RISK: Development approach not agile

The	computational	science	community	needs	more	awareness,	knowledge,	

understanding,	and	experience	with	best	practices	in	software	engineering.

Rank 2.5

We need to raise awareness within the community of the value of software engineering both to 
software quality (which is fundamental to producing credible and reproducible simulation results), and 
to enhancing software, and ultimately scientific productivity. 

We need to expand the level of knowledge and understanding of software engineering best practices 
within the community.  Most DOE computational scientists do not receive any formal training in 
software engineering during their education.  My experience is that most of what people know is self-
taught from books, and word of mouth.  We need to do a much better job of educating software 
developers on software engineering.
They need not only knowledge of the tools and techniques, but also the understanding of the ideas 
underlying them that they can figure out how to adapt what they read or hear about to their own 
situations, without getting caught up in the SE miracle technique of the week.
Complementary to this, we also need to make a concerted effort to capture the software engineering 
experience of people in HPC computational science, and understand how we're both different from and 
similar to "classic" industrial software development.

Finally, we need to encourage and incentivize people to actually use SE best practices. I think an 
important aspect of this, especially as we're concurrently working on the knowledge and understanding 
issues above, is going to be personal interactions between experienced "software engineers" and 
software development teams to assess current practices, understand pain points, formulate plans to 
address the pain points, and coach the team through their implementations (with an assessment that 
contributes back to the understanding aspect of the previous point).

Another aspect of increasing the level of actual experience with SE best practices might be to ensure 
that the basic tools and infrastructure to support these practices are readily available to DOE software 
developers.  There are many tools, and many ways they can be provided.
But today, they are mostly left up to individual projects, many of which do not have the skills, or interest 
in setting up and maintaining their own infrastructures.  Many will be able to cobble together something 
that they consider adequate based on third-party services, poorly advertised, supported, and 
maintained institutional services, and the like.  If quality tools are widely advertised and readily available 
at low or no direct costs to projects, they are more likely to be used. Further incentives deserve thought 
too. I could go on, but I won't.  The elevator doors are opening.10

RISK: Contemporary tools not available 
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Introduction Rank 2.0

Development of production-quality software from a research-driven computational science and 

engineering (CSE) / high performance computing (HPC) project is challenging.  CSE/HPC software 

products tend to be long-lived and multi-component.  Ideally they should have reusable components 

and rely on external components developed by other expert groups in order to ensure state-of-the art 

capabilities. However, this ideal is seldom achieved.  Commercial software can become unavailable and 

software from other research organizations can be unreliable and poorly supported.  Many issues must 

be considered by a research-driven software project: research productivity and credibility, reuse and 

upgrades, maintenance, support, shared development, continued research with mature software, 

balancing backward compatibility and change, and more.

While a great deal of work has been done in the general area of software lifecycle models, Lean/Agile 

lifecycle models seem particularly attractive for most CSE projects 

[ImplementingLeanSoftwareDevelopment2007, AgileSoftwareDevelopment2003, XP2].  There seems to 

be little work attempting to define software lifecycle models for research-driven CSE/HPC software.

The primary purpose of this short paper is to propose research into the broad adoption of a modern 

Lean/Agile-consistent software lifecycle model and framework that take into account the particular 

needs of the CSE/HPC community for both research and production projects.  It is based on the 

proposed TriBITS Lifecycle Model [TribitsLifecycleModel_eScience2012].

Self-Sustaining Software

The primary goal of the proposed lifecycle model is the development of Self-Sustaining Software which 

is defined to have the following attributes:

Open-source: The software has a sufficiently loose open-source license allowing the source code to be 

arbitrarily modified and used and reused in a variety of contexts.

Core domain distillation document: The software is accompanied with a short focused high-level 

document describing the purpose of the software and its core domain model 

[DomainDrivenDesign2004].

Exceptionally well tested: The current functionality of the software and its behavior is rigorously 

defined and protected with strong automated tests [CSESoftwareTests].

Clean structure and code: The internal code structure and interfaces are clean and consistent.

Minimal, controlled internal and external dependencies: The software has well structured internal 

dependencies, and minimal external upstream software dependencies that are carefully managed.

Properties apply recursively to upstream software: All of the external upstream software dependencies 

are also themselves self-sustaining software (terminating in ubiquitous universal standards like C++98, 

Boost, etc.).
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All properties are preserved under maintenance: All maintenance of the software preserves above 

properties (by applying Agile/Emergent Design, Continuous Refactoring, and other good Lean/Agile 

software development practices).

Software with the above properties poses minimal risks to downstream customer CSE/HPC projects.  To 

the extent that a piece of software is not consistent with any of the above properties it poses a risk to 

downstream customer projects.  The motivation for these properties and other issues are discussed in 

detail in [TribitsLifecycleModel_eScience2012].

An Agile Lifecycle for Research-based CSE/HPC Software

While the goal of the proposed Lean/Agile lifecycle model is to produce self-sustaining software, other 

properties of the software are also important and the process by which software is first created in a 

research project and is later matured has to be considered.  Therefore, the proposed  lean/agile lifecycle 

model defines several different maturity levels for CSE/HPC software:

Exploratory (EP): Primary purpose is to explore alternative approaches and prototypes.

Research Stable (RS): Developed in a Lean/Agile consistent manner with strong verification tests (i.e. 

proof of correctness) written at various levels (e.g. unit, component, and system levels) as the 

code/algorithms are being developed.  Has a very clean design and code base maintained through Agile 

practices of emergent design and constant refactoring [EmergentDesign2008].  However, generally does 

not have higher-quality documentation, user input checking and feedback, space/time performance, 

portability, or acceptance testing.  But is appropriate to be used by “expert” users.  Provides a strong 

foundation for creating production-quality software.

Production Growth (PG): Includes all the good qualities of Research Stable code.  Provides increasingly 

improved checking of user input errors and better error reporting.  Has increasingly better 

documentation as well as better examples and tutorial materials.  Maintains clean structure through 

constant refactoring of the code and user interfaces to make more consistent.  Maintains increasingly 

better regulated backward compatibility with fewer incompatible changes with successive releases.  Has 

increasingly better portability and space/time performance characteristics.  Has expanding usage in 

more customer codes.

Production Maintenance (PM): Includes the good qualities of Production Growth code.  Primary 

development includes mostly bug fixes and performance tweaks.  Maintains rigorous backward 

compatibility with typically no deprecated features or breaks in backward compatibility. Could be 

maintained by parts of the user community if necessary (i.e. as “self-sustaining software”).

The transition between the EP, RS, PG, and PM phases is meant to be smooth and without risk.  Existing 

software is grandfathered in using the Legacy Software Change Algorithm

[WorkingEffectivelyWithLegacyCode2005].  There are many other details and considerations related to 
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the definition and proposed implementation of this lifecycle model that cannot be discussed here for 

lack of space (see [TribitsLifecycleModel_eScience2012]).

Summary and Research Opportunities

We propose the adoption of a Lean/Agile lifecycle model for research-driven CSE/HPC software.  The 

proposed model, if widely adopted, could dramatically improve the productivity and impact of CSE/HPC 

research and applications by providing a wide range of compatible high-quality advanced software 

capabilities from a wide range of foundational areas.

The primary research questions for the proposed Agile lifecycle model relate to how well it will work at 

scale across many organization over a long time period, what level of training will be needed to get is 

used effectively, and finding ways to measure the impact using various local and global measures.  There 

is an ongoing attempt to implement this lifecycle model in the Trilinos project 

[TribitsDevelopmentPracticies].  A broader effort would include applying and adapting this model to 

other projects as well.11

RISK: Dev approach not agile enough

HPC	Software	Engineering	Centers Rank	 2.3

The future of Software Engineering (SE) for next generation High Performance Computing (HPC) will be 

like the past but worse if there are not some fundamental changes to how the work is funded, 

rewarded, and managed.   The emphasis on research, publications, and proposal writing – for science 

and software research – creates a software development quandary, especially for the small teams and 

limited resources that seem to be common in today’s research funding climate.  Those individuals doing 

development are often torn between meeting science goals and writing quality software, with the 

science taking precedence in order to enable continued funding.  Add to this the increasing complexity 

of writing, debugging, porting, maintaining, and running science software at scale and the future of HPC 

software seems bleak.

Part of the problem is the inherent nature of computational science.  Meeting research deadlines often 

leads to the development of prototype, one-off, and stand-alone software programs.  These programs 

are generally written by people trained in and rewarded for the science, not the development of quality 

software.  Generalizing and hardening these codes for production use requires expertise, time, and 

funding, which tend to be scarce in an environment driven by science goals.  This paucity of resources 

results in software developer’s time often split between multiple, different projects that have distinct 

goals and employ different tools and technologies.  The outcome is cognitive overload, reduced 

productivity, and the risk of eventual burnout.

A paradigm shift is needed that reflects the importance of the development of quality software to 

ensure a more positive outcome for the future of HPC Software Engineering.   A significant portion of 

funding needs to be earmarked and distributed for establishing, maintaining, managing, and rewarding 

SE-HPC expertise.  Additional funding is needed for work – separate from the science and research – on  

developing, productizing, and maintaining tools, system software, and libraries directed at reducing the 
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burden faced by software developers during and after the transition to new architectures to include 

more robust and scalable capabilities for interacting with the file system; launching, monitoring, 

analyzing, and visualizing the results of ensemble simulation runs; and debugging, testing, and porting 

HPC software. 12

RISK: Funding for tools and process improvement not available 

Compliance	to	DOE	Standards: Rank 1.8

There will be large technical challenges for software moving to next gen hardware platforms. DOE needs 
to relax compliance rigor of standards, orders, and guidance to support a research environment.  
Demanding excessive non-value added rigor and documentation will kill creativity, slow progress, and 
drive out the best talent.13

RISK: Compliance to standard will be cumbersome

Standards	support: Rank 2.3

Finally, we need to have the vendors of our HPC platforms commit to supporting language and library 

standards in a timely manner (18-24 months after release of the standard?) for the lifetime of the 

platform. We write codes which need to run on a variety of HPC platforms, and having different levels 

of standards compliance means that we have to code to the lowest common denominator. For 

example, it's been four years since the C++ 2011 standard was released. It contains many new features 

like lambda functions, auto type declaration, move semantics, etc which can improve the clarity, 

performance and maintainability of a C++ code. However, we currently cannot use C++ 11 on the BGQ 

platforms because the IBM C++ compilers do not, and will never, support C++ 11. Yes there are other 

compilers we could use on Sequoia, but we cannot suffer the ~20% performance loss we'd take by using 

them. An example of an important library standard is OpenMP 4.0. Much of our current planning for 

using next generation hardware revolves around using OpenMP 4 directives to offload computation to 

coprocessors (GPUs or Intel Phis), so we'll need robust support for this.14

RISK: Latest compilers, Libraries and operating systems not available or supported

Tools:

COTS	Tools: Rank 2.0

The over one billion dollar per year commercial software engineering tool market is driven by market 
demand, so tools that help developers with threading and other HPC development challenges are going 
to be targeted for the most widely used platforms, such as Windows applications running on Intel 
processors. Tool providers are not motivated to produce tools for niche markets and platforms that are 
not widely used. It is important for the future of SE for HPC to make choices of operating systems, 
platforms, compilers, parallelism that are widely used to take advantage of commercial tool 
development and innovation or be prepared to have to build these tools in house. 15

RISK: Not able to take advantage of main stream productivity tools
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On	Board	SQA: Rank 2.1

Because of the complexity of the next gen software, SQA functions should be built right into the 
delivered software code to expedite product maturation. This SQA functionality could consists of:

1 Built in Tests
2 Instant Replay
3 Problem reporting
4 Problem resolving

Built in test allows the automated running of known problems validated from independent sources and 
check for expected results. These problems are specially designed to set up and run end to end 
simulations touching the major functions of the software. This function can be engaged on any new 
platform or platform variation as a confidence check that it is okay to proceed with new problems. 
Failure of the built in tests would indicate a hardware problem, configuration problem, or software 
problem. 

The instant replay tool allows the user to back the simulation up to a previous check point and proceed 
forward with debugging enabled. This may help identify or isolate the source of the concern. Use of 
visual debugging tools would fit nicely into this on-board function. 

Built in problem reporting allows user to capture and report to developers all the important 
environmental information about the hardware, software, configuration, versions, modes, compilers. 
flags, displays, processors, cores, stacks, etc. if a problem is detected either running built in tests or user 
supplied simulations. The reported issue is given a unique tracking number and status is set to 
investigate. The necessary information to repeat the problem is gathered and sent automatically.

The problem resolving tool tracks the reported problem through assignment, fix, ready for retest, and 
resolved. It asks the issuer of the problem to verify that the issue is resolved. Use of continuous 
integration allows developers to push out new releases multiple times per day. 

Each of these SQA supportability features will be built into the main code and easily accessible to users. 
Because of the likelihood of numerous reported issues from users the development staff must plan on 
staff resources to fix and locally test the reported issues. SQEs can also be a resource for fixing issues 
found by users.  The combination of the built in test tools, automation, and developer responsiveness 
using continuous integration to push out fixes rapidly allows the reliability of the next gen codes to 
mature at accelerated rates.  16

RISK: Insufficient resources to support user needs 

Maintaining	a	large	scientific	software	base	on	multiple	architectures		(RAJA)

Rank 2.2

Suppose we have a large scientific software project containing tens of thousands of loops, and we must 

support that application on multiple resources simultaneously, such as a CPU and GPU.  How might we 
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structure the software to make this simple to manage?  First, we recognize that the GPU is most 

efficient when there are many floating point operations per byte, and the CPU is most efficient when 

there is a lot of random data access, and not as much work.  We then come up with a mechanism to 

map loops to architectures based on type of workload.

Many frameworks and languages support the concept of a parallel for statement, so we can leverage 

that commonality.  We create a new parallel for statement in C++ :

forall<policy>(iteration bounds)

{  body ; }

And we define specific policies that can help map loops to hardware resources:

#define work_intensive    bind_gpu

#define data_injtensive   bind_cpu

Code that contains many loops can be written like this in C++ using lambda functions for the loop bodies 

and specific loops will be bound to the CPU or GPU:

IndexSet domain_bounds ;

forall<work_intensive>(domain_bounds, [] (int i){

   /* body 1 */ ;

} ) ;

forall<work_intensive>(domain_bounds, [] (int i){

   /* body 2 */ ;

} ) ;

forall<data_intensive>(domain_bounds, [] (int i){

   /* body 3 */ ;

} ) ;

Furthermore, by changing the resource definitions for the loop workloads, we can quickly change which 

resource subsets of the loops will run on  (here we bind all loops to the CPU):

#define work_intensive    bind_cpu

#define data_injtensive   bind_cpu

Using this general technique, applications can pick broad categories that characterize loops based on 

work intensity, data intensity, branching intensity, etc. and then implement ‘forall’ execution schemes 

that can most efficiently execute loop algorithms on underlying architectures.  Tools such as ROSE could 

be used to automate some of this refactoring. This is the basis of the RAJA programming model 

developed at Lawrence Livermore National Laboratory17

RISK: Manual recoding adds defects to reliable codes
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Tools	for	Automating	Processes Rank 2.3

The second area is in the use of tools for automating processes. As the workload on our existing staff 

increases, it's important to automate more of building/testing process. We support a variety of 

platforms, and developers do not have the time to build and test for all of them. That's where 

continuous integration tools like Jenkins or Atlassian's Bamboo can help. They can monitor a software 

repository, and after new code is committed, they can get a copy of the new code, build it for all the 

platforms/compilers of interest, and run the unit, regression, nightly, etc tests on those platforms. They 

then present the results of all of this in a concise manner with the ability to get more detailed 

information, if desired. They can also notify a developer that his/her commit has broken the code on 

one or more platforms. There needs to be institutional support for at least one of these tools. There 

may also be a need for increased computational resources for developers to allow these builds/tests to 

be done in a timely manner.18

RISK: Not testing all platform types supported

Simulation	Ensembles: Rank 2.2

The unit of simulation is the ensemble study, not the single run.  We need to invest more in tools to 
support ensembles of simulations. Most of our software engineering work in support of simulation goes 
into codes and tools that operate at the level of individual simulation runs, i.e. languages, libraries, build 
tools, MPI, OpenMP, debuggers, revision control systems, performance instrumentation and analysis 
tools, load balancing schemes, etc. But no one ever runs a simulation just once. In any realistic study a 
simulation code has to be run hundreds to millions of time, over a multidimensional space of options, 
parameter values, and random seeds. Such a collection of related runs of the same code is an ensemble 
study, and it is fair to say that the ensemble study is the primary unit of simulation, not the individual 
run. 

Managing an ensemble of simulation runs involves a lot of complexity:

1. Hundreds or thousands or more of different config files and input files have to be prepared 
systematically.

2. Output data has to be organized into databases and/or a hierarchy of files and directories for 
offline processing and visualization. 

3. Checkpoint/restart files have to be managed. 
4. Performance data has to be saved and analyzed. 
5. Failures of all kinds must be logged and analyzed to see if the failed runs should just be repeated 

(perhaps with a larger timeout) or if a bug has to be fixed first. 

Ensemble studies fall into distinct patterns:

1. Logic testing ensembles that are designed to exercise the code on data whose output is 
analytically tractable, to test either correctness, numerical accuracy, statistical distributions, etc.

2. Performance testing ensembles for doing scaling studies, or memory management studies, or 
load balancing studies, etc.

3. Parametric ensembles for doing sensitivity studies
4. Optimization studies designed to explore a parameter space to find optimal parameter values 
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that maximize some objective function. The optimization can be by hill climbing, simulated 
annealing, genetic algorithm, etc. 

5. Monte Carlo ensembles designed to measure parameters of various output distributions, 
measure correlations, determine the frequency of rare events, etc.

6. Uncertainty quantification studies designed to measure and apportion sources of uncertainty.

These patterns involve different ensemble control logic, run into different resource limitations, and 
involve different strategies for deciding what simulations to execute, and in what order. The outputs of 
ensemble studies have to be fed into other tools, e.g.

1. Data analysis tools
2. Visualization tools
3. The ensemble management tool itself, which may use results of early runs in the ensemble to 

decide what runs to schedule later in the same ensemble, with what command line inputs, 
configurations, model parameters, and random seeds to give them.

Managing ensembles of simulation runs is usually done essentially offline (i.e. not on the computer 
running the simulations), usually via simple scripts requiring a lot of detailed time, attention, and 
guidance from human analysts. Occasionally more automated tools are used, such as DAKOTA. Dakota is 
mature and excellent as far as it goes, but it generally does not run on the same platform as the 
simulations it launches. Instead, it submits simulation runs to the batch queue of another machine, and 
the batch queue scheduling policies and delays can make the full ensemble study far slower than 
necessary.

What are needed are ensemble management tools that allow ensemble management to be 
programmed and to run concurrently, on the same platform as the simulation runs. It must be able to
launch independent parallel simulations executions asynchronously, within the same job as the ensemble 
management tool itself, and must be able can recover from failures of some constituent simulations 
without the entire job being abnormally terminated.  Such a tool needs operating system or runtime 
system support, and needs to be standardized, documented, and portable.19

RISK: Not having sufficient simulation result management tools

Thread	Rescoping	Tool Rank 1.9

Most large parallel scientific software applications are implemented using MPI. In MPI-parallelism, each 

MPI process is executed in serial with messages sent between serial processors to achieve 

parallelism. In order for these programs to exploit next-generation programming models, the first step 

required is to convert the serial code sections to threaded code sections. The first step to making code 

thread safe is to rescope variable declarations so that each variable is owned completely by a local 

thread instance. This can be a monumental, exhaustive, and error-prone task to do by hand for legacy 

codes that have nearly one million lines of source code. The ROSE team at LLNL has recently written a 

thread rescoping tool that automates this process, reducing the largest burden codes have in making 

their codes thread safe.  These recent improvements to ROSE have been tested in two large ASC 

production codes, and the tool has eliminated a line-by-line examination of the code, specifically 

eliminating a decision-point for each and every line of code whether it is thread-safe or not.20
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RISK: Manual threading process degrades code reliability through typographical errors and not 

recognizing thread-unsafe code

Fine-grained	parallelism	challenges Rank 1.9

Presently, numerical kernels in most LLNL ASC codes are usually serial and operate on data associated 
with an entire domain. However, efficient parallelism is tied closely to memory-locality. One way to 
improve locality in a multithreaded environment is to use many small domains, allowing more threads 
to simultaneously share data caches without contention. Unfortunately, domain overhead measured in 
terms of additional memory needed for non-shared data, and domain management operations that are 
hard to amortize away, can lead to space or performance problems on current multicore systems. Thus, 
an alternative to traditional domain partitioning will be required to exploit massive on-processor 
parallelism.

A better option is to employ fine-grained data “chunking” within a domain where a chunk of data can be 
assigned to a work thread or passed to an algorithm kernel. Proper chunk size selection can balance 
both instruction and data cache usage so that neither cache becomes overly strained. For example, if an 
algorithm works on a single element at a time (typical for a complex material model), the amount of 
code executed may not fit into an instruction cache. So the algorithm is always streamed from main 
memory (as though there is no instruction cache), while the data may be perfectly cached, with room to 
spare. On the other hand, if the chunk size is larger than will fit into the highest level of processor data 
cache, then the data is always streamed from main memory (as though there is no data cache).

Careful ordering of array accesses is also important to improve cache reuse, which is critical for good 
performance; e.g., ensuring that all entries in a cache line are used before the cache line must be 
reloaded. In a multi-material hydrodynamics code, a material model may likely be the primary work unit 
on a domain. Ordering elements so that data for elements with the same material are adjacent in 
memory can provide an optimal cache mapping. When materials move between mesh elements due to 
advection, it may be wise to periodically permute mesh data to retain memory adjacency. Optimal cache 
reuse will likely occur when data layout mirrors the needs of dominant numerical operations. However, 
which particular loops dominate runtime for a code is often highly problem-dependent. Flexibility to 
permute data could save an application from using poor memory access patterns for a given 
architecture. Reordering can also enable "lock-free" computations in a multithreaded environment. 
Using traditional programming language constructs, such as C-style for-loops, all execution and data 
access details are hard coded in the application source code. Without some sort of abstraction layer, 
such as RAJA, altering implementation details is difficult and may require creating and maintaining
multiple versions of individual loops.21

RISK: Code modification for porting causes decrease in code reliability

Visual	Debugging Rank 2.0

As we move to next-gen hardware, we expect the complexity of meshes used for simulations to grow 

dramatically.  Parallel meshes will routinely contain terabytes of information, and some runs may even 

contain a petabyte of information.  In this environment, how can we expect to quickly find errors 
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introduced into computations?  One potential way to reduce time in finding errors is to introduce a 

visual debugging capability.

In the figure above, the visualization on the far left and far right show the “characteristic length” field of 

a physics simulation.  The value on the far left is the “correct” answer, and the value on the right is the 

answer after a bug is introduced into a simulation.  Looking at these arrays visually, there does not 

appear to be a large difference.  Picking through the actual array used to contain the data for each field, 

every element of array data appears to be slightly different in the far left and far right case. How would 

a person hope to debug such a case when there is terabytes or even a petabyte of data to comb though?  

By taking a difference of the characteristic length field from two runs at the same time step, we get the 

picture in the center.  Here, we can see that although essentially every value is different, there is a 

“front” that is clearly visible in the data.  To the trained eye, there is an almost immediate recognition 

that there must have been a slight variation in the simulation time generated for the run on the left vs 

the run on the right, turning a very complicated analysis problem into a problem that suggests a clear 

place to look in the algorithm for the introduced error.  Using the C++View capability in the TotalView 

debugger, and combining it with the VisIt simulation software, we have prototyped a system where a 

baseline simulation can be compared against a modified simulation, running lockstep in the debugger, 

to visually look for anomalies in the differences between runs.  The prototype is not yet in production 

due to some manpower issues, but we feel will be a profitable debugging tool, once in place.22

RISK: Not having a quick way to identify anomalies at scale decreases productivity

HPC	Resources	For	Testing Rank 2.7

To achieve high software quality, application teams must periodically test large-scale codes on large-
scale problems because some software defects only manifest at large scale. Currently, DOE projects 
write requests for allocations on DOE supercomputers, and they may neglect or underestimate the time 
required for automated testing. In the presence of limited resources, projects may be inclined to 
sacrifice quality for the sake of getting results.

There are several frameworks for automated testing (for example Jenkins or Bamboo). It can be difficult 
to set up automated testing on HPC systems because normal users may not be able to set up cronjobs, 
or there may be firewall restrictions that make it difficult to "checkout" 
the latest version of the code from the software repository or to report back to the centralize test 
server.23
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RISK: Testing treated as an afterthought 

Data:

Data Rank 2.2

The three things that matter most in quality engineering of scientific computing software are Data, Data, 

Data. This is counter-intuitive. Historically, we think about scientific computing applications and Data as 

distinct, nearly entirely independent products. For software, we started with machine languages, then 

assembly, then 3rd and 4th generation high level languages and now we are even working on domain-

specific and 5th generation languages. Our treatment of Data, however, has not fared nearly so well. 

We're still in the machine-language era with respect to our means for describing Data. However, the 

manner in which we describe data governs entirely the community's ability to independently develop 

software components that operate upon it. The best way to enable community development of 

modular, portable, shareable, quality software components that act in useful and sophisticated ways 

upon Data is to foster the adoption of community-wide standards for the flexible storage, description 

and exchange, both in-situ and by files, of scientific data.24

Libraries
The next three things that matter most in quality engineering of scientific computing software are 

Libraries, Libraries, Libraries. As scientific computing applications grow in complexity, more and more 

functionality is packaged in independently developed libraries. Worse, as the computing environments 

in which these applications run grow in complexity, it gets easier to make mistakes in building, installing 

and using libraries as well as the applications that depend on them. Unfortunately, SQA standards so far 

developed focus primarily on applications, not libraries. SQA standards for libraries differ from 

applications in many respects. Libraries for next generation computing must be developed with a 

multitude of SQE practices aimed at minimizing the likelihood of making mistakes in using them and at 

maximizing users' ability to diagnose and correct them when they occur. Libraries must be "smart" 

enough to auto-detect appropriate defaults, enable users to access performance metrics (much like CPU 

hardware counters) and even inform users of poor performing configurations and use.25

Operating	Systems
The last three things that matter most in quality engineering of scientific computing software are 

Windows, OS X , and Linux. Yes folks, believe it or not, a lot of scientific computing software that scales 

to 10^6 cores is developed on puny Windows and OS X laptops, even tablets using those platform's 

*native* development environments. Sure, we might *run* only small 4 and 8 processor runs on these 

platforms. But, the ability to *develop* next generation software on these platforms is invaluable for 

the community at large, particularly Open Source packages where users the world over may download, 

modify and submit patches to fix bugs and add features. This is possible only when applications *and* 

all of their support libraries are designed to support native development on these platforms. Towards 

this end, CMake (as opposed to Autoconf, Scons, etc.) and CMake-ified packages are a good step 
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forward. Maintaining proficiency in all three of these operating systems is essential for the success of 

next generation software development efforts.26

RISK: Development environment overly specialized or expensive

Data	and	algorithm	organization	in	physics	codes Rank 2.3

A typical ASC code has clearly-defined mesh and data abstractions. Generally, a problem is decomposed 
and distributed across compute nodes on a partition of a parallel HPC platform. Each compute node is 
considered a distributed memory “locale” to which some number of MPI processes is assigned. A data 
structure, often called a “domain”, owns a description of part of the mesh and the field data for that 
mesh part. Each domain is owned by exactly one MPI process and each process may own multiple 
domains. The basic elements of a domain structure are illustrated in Figure 1. Data on a domain is 
disjoint from data on other domains, and often maps to a “coherence domain” for caching purposes.  A 
domain is also a “locality context”, typically representing the finest level of data partitioning in a code. 
Each mesh field in a domain is associated with a fixed centering on the mesh, such as finite-element or 
vertex centered, and the data for each field is held in a distinct array. Field arrays are 1-dimensional 
computer science structures regardless of the underlying problem dimension. Fields are typically 
registered in a centralized data store, making it easy to map Fields to the peculiarities of the underlying 
memory subsystem from a single source code location. Also, there usually exists other metadata on a 
domain, for example to map materials to elements, as well as non-mesh data, such as tables of physical 
data (e.g., material properties, equation of state, etc.) shared by domains on a compute node.
The mesh topology defines the organization of elements and vertices on the mesh. Generally, there are 
two fundamental mesh configurations, structured and unstructured. A structured mesh uses an N-
dimensional Cartesian index space, which defines uniform element-to-vertex connectivity and a single 

Figure 1. Basic organization of a typical domain structure in a mesh-based physics code.
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element geometry. Structured mesh algorithms often use nested loops to traverse logically rectangular 
regions on a mesh. Such operations rely on zero-overhead implicit relationships between mesh entities, 
and allow a high level of compile-time optimization due to stride-1 data access patterns. An 
unstructured mesh is composed of arbitrarily connected vertex points that define the elements they 
surround; thus, an unstructured mesh admits arbitrary element geometries. Due to the irregular 
connectivity, relationships between unstructured mesh entities are defined using lists of array indices. 
For example, eight vertices define each element on a three-dimensional hexahedral mesh, so eight 
nodal-array indices are stored to access nodal field data for each element. Use of indirection arrays to 
manage relationships among mesh entities requires additional memory traffic, involves a much higher 
ratio of integer to floating point operations, and precludes many compiler optimizations. Regardless of 
the underlying mesh topology, most ASC physics codes employ algorithms involving regular, stride-1 
memory accesses as well as those requiring indirection arrays. So, efficient implementations of both 
types of operations are important to every code. 

Mesh data is often organized into a hierarchy of contexts, typically, where a context represents a 
relationship between the mesh and data on the mesh. There will be multiple topological contexts, one 
for vertex-centered quantities, one for element-centered quantities, face-centered quantities, etc. An 
element context will have child contexts that each enumerate the elements associated with a given 
material region. Often, material region contexts are further partitioned into clean elements (single 
material) and “mixed” elements (containing multiple materials). When contexts are nested, local indices 
are typically used within a child context to index into arrays associated with a parent context.

The context hierarchy in an ASC code is designed to map the conceptual organization of physics 
operations to the underlying data structures and memory subsystem. Most physics operations are 
encoded in loops; a large code will have tens of thousands of loops, typically. However, within a given 
code, there are relative few loop patterns. Common loop patterns involve:

 Simple traversal within a context (e.g., loop over all elements, vertices, etc.)

 “Parent-child” interactions within a topological context (e.g., loop over all elements containing 
material “A” and update values for some field defined over all elements)

 Relations between fields in different topological contexts (e.g., difference stencils involving 
vertex- and element-centered quantities)

Other operations may involve more elaborate data dependencies, but are less common.27

RISK: Architecture sprawls and is not optimized 
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