
LA-UR-17-30204
Approved for public release; distribution is unlimited.

Title: Enhancements to the Image Analysis Tool for Core Punch Experiments and
Simulations (vs. 2014)

Author(s): Hogden, John Edward
Unal, Cetin

Intended for: Report

Issued: 2017-11-06

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Enhancements to the Image Analysis Tool for Core
Punch Experiments and Simulations (vs. 2014)

John Hogden
M.S. B297

Computer & Computational Sciences Division
Los Alamos National Laboratory

Los Alamos, NM 87545
Email: hogden@lanl.gov

Cetin Unal
M.S. F606

Decision Applications Division Office
Los Alamos National Laboratory

Los Alamos, NM 87545
Email: cu@lanl.gov

Abstract—A previous paper (Hogden & Unal, 2012, Image
Analysis Tool for Core Punch Experiments and Simulations)
described an image processing computer program developed
at Los Alamos National Laboratory. This program has proven
useful so developement has been continued. In this paper we
describe enhacements to the program as of 2014.

I. PURPOSE

In 2012, Los Alamos National Laboratory developed an
image processing tool to aid in the analysis and comparison
of images obtained experimentally and through simulation.
The program, called ProcessImage, comprised various anal-
yses previously performed by a collection of command line
tools developed in MATLAB [1] and added a graphical user
interface to simplify the use of the tools.

ProcessImage proved useful so development has continued.
This paper describes enhancements made to the program.

II. OLD VS. NEW

A. Overview

The 2014 version of ProcessImage can also read two
additional file types. The new file formats are described in
Section II-B.

Some additional features are calculated in the 2014 version.
The additional features are discussed in Section II-C.

The biggest changes between the two versions are the
additional commands that can be used for modifying and
visualizing the images. The new commands are apparent from
looking at the buttons present when the program opens. These
additions are summarized in Section II-D and then discussed
in more depth in Section III.

B. Image File Formats

In addition to the legacy and KevinB formats that can be
read by the 2012 version, the 2014 version of the code can
read a slash-delimited fole format and and XYZV format.

A slash-delimited file has a one-line header like that shown
in 1. The first line in the file containing eight slash-delimited
values is assumed to be the header line. Although the header
line must contain eight slash-delimted values, only the first
four will be used. The first four entries are: the number of
rows, the number of columns, the horizontal size of each

pixel in centimeters, and the vertical size of each pixel
in centimeters. The pixel values are then entered as slash-
delimited entries in row order on subsequent rows of the file,
with any number of entries per line.

The XYZV format header can specify arbitrary positions of
points in three dimension space. Each line of an XYZV file
after the header specifies a position in cartesian coordinates
(x,y,z) followed by a value of the density at that position.
While XYZV files can give arbitrary positions and values,
ProcessImage can only work with values sampled on a uniform
grid with the points given in row order. XYZV files that do not
give samples from a uniform grid may be read, without and
error, but the sampling in the image will be read incorrectly.

To read an XYZV file, ProcessImage looks for the first line
containing the comma-delimited characters ’x’, ’y’, and ’z’, as
shown in 2. Subsequent lines are treated as data until a line that
does not contain four comma-delimited values is encountered,
at which point the program stops reading the data. The values
in each data line comprise a position on the x-axis, a position
in the y-axis, a position on the z-axis, and the density at that
position. Positions on the z-axis are ignored.

C. New Features

In both the 2012 and 2014 versions of ProcessImage,
pressing the “Get Features” or “Write Features” button will
calculate features that describe the working image. However,
in addition to the image features calculated in the 2012 version,
the 2014 version of ProcessImage calculates 12 new features.
These features are:

1) CenterOfMassX: The position of the center of mass of
the image on the x-axis.

2) CenterOfMassY: The position of the center of mass of
the image on the y-axis.

3) CenterOfMassOffset: the distance between the center
of mass and the center of the image.

4) sumM3OverR:
5) M3OverEquivRadius:
6) equivThickness:
7) rMOverMTotal:
8) eqReqTOverr1t1:

1 0 / 4 2 / 0 . 5 / 1 . 0 / 5 / 6 / 7 / 8

Listing 1. Example header from a file stored in slash-delimted file format

x , y , z , v

Listing 2. Example header from a file stored in a new format format

D. New Commands

Figures 1a and 1b show the top-level windows of the 2012
and 2014 version of ProcessImage. Some of the buttons from
the original version have been removed in the 2014 version,
but in these cases the buttons have either been relabeled or re-
placed by a button with identical or very similar functionality.
Briefly, the deleted buttons and their replacements are:

1) Show Top: In the 2012 version, this button opened a new
window displaying the the image in the “Top” memory.
This button is replaced by the new “recall Top” and
“working <> Top” buttons. Both of the new buttons
are described below.

2) Show Bottom: As with “Show Top”, this button opened
a new window displaying the an image in the memory
– in this case, the image stored in the bottom location.
This button is replaced by the new “recall Bottom” and
“working <> Bottom” buttons, described below.

3) Top/Bottom: This button has been renamed
“concat(Top/Bottom)”, but the functionality is identical

4) Top|Bottom: This button has been renamed
“concat(Top|Bottom)”, but the functionality is identical

5) Top@Bottom: This button has been renamed
“Top@Bottom Plot”, and has been moved next to
other buttons that create new plots, but the functionality
is retained in the new program.

The new buttons, ignoring those that are merely renamed
version of old buttons, are summarize below. The more com-
plex of these are further described in separate sections.

1) Cylinder Integral: Treat the value in each pixel as a
density, and then replace the value in each pixel with
the mass of the rectangular torroid it represents.

2) Cylinder Derivitive: Treat the value in each pixel as the
mass of the corresponding torroid, and then replace the
value in each pixel with the density of the torroid.

3) Scale Density: When this button is pressed, the user is
prompted to input a floating point factor. Then the value
in each pixel is multiplied by the factor.

4) Scale Size: When this button is pressed, the user is
prompted to input a floating point factor. Then the hor-
izontal and vertical extents of the pixels are multiplied
by the factor.

5) Draw Ellipse: When this button is pressed, the user is
prompted for the half-width and half-height in centime-
ters of an ellipse. The ellipse will then be drawn on
the image centered at the center of the image. Drawing
an ellipse does not change the actual pixel values in

the image, it merely changes the display of the image.
This functionality is somewhat useful for measuring
the image, but is largely used in conjunction with the
“Spherize top and bottom” function described below.

6) Add Region: This button’s operation assumes that
thresholds have been set to segment the working image
into regions, with each region designated by an integer.
Pressing the button causes a region designated by the
user to be surrounded by a new region with a user-
specified mass. The operation of adding a region is
similar to the morphological dilate operator except that
the pixels added do not generally have the same value as
the region they are surrounding. The user gives a desired
density for the pixels in the new region. The new region
will have the mass specified by the user and a density
as close to that specified by the user as practical. This
operation is described more fully in Section XXX.

7) recall Top: Replaces the working image with the Top
image.

8) recall Bottom: Replaces the working image with the
Bottom image.

9) working <> Top: exchange the working image with the
top image. Stores the working image in the Top memory
location and stores the image from the Top memory
location as the working image.

10) working <> Bottom: exchange the working image
with the bottom image. Stores the working image in the
Bottom memory location and stores the image from the
Bottom memory location as the working image.

11) Working + Top: Replace the working image with a
new image created by adding the values of the pixels
in the working image to the values of the pixels stored
in the top image location, pixel-by-pixel. If the size or
sampling of the top image is different from that of the
working image, the top image is resampled to match the
sampling of the working image.

12) Working − Top: Identical to “Working + Top” except
that pixel values from the top image are subtracted from
the working image.

13) Stitch bot(top)bottom: This button opens a new win-
dow that allows the user to create a new image made
by copying the pixels values inside a circle centered
at the origin of the top image into the corresponding
positions in the bottom image. If the sample positions
of the top and working image are not the same, the top
image will be resampled to match the sample positions
in the working image. An example is shown in Section

2

(a) A window from the original version of ProcessImage.

(b) A window from the 2014 version of ProcessImage.

Fig. 1. A comparison of functions in the original and 2014 versions of ProcessImage

3

XXX.
14) Top vs. Working Colored by Radius (2D): This creates

a new window with a two-dimensional plot of the values
of pixels in the top image versus the values of pixels in
the working image. The points in the plot are given a
color corresponding to their distance from the center of
the image. An example is shown in Section XXX.

15) Top vs. Working vs. Radius (3D): This creates a new
window with a three-axis plot of the values of pixels in
the top image versus the values of pixels in the working
image with the third axis being the distance of the pixel
center from the center of the image. The points in the
plot are given a color corresponding to their distance
from the center of the image. An example is shown in
Section XXX.

16) Σρ ∗ r: Pressing this button opens a new window
showing a plot of the summed density times the line
length along lines passing through the image at different
angles. An example is shown in Section XXX.

17) Spherized top and bottom: Pressing this button dis-
plays a plot of the spherized density of the top and
bottom images. The notion of a spherized density is
discussed in Section XXX.

18) Region Contours top and bottom: Opens a window
allowing the user to choose different threshold for the
top and bottom images and plot the region boundaries
for both images in a single plot. An example is shown
in Section XXX.

19) Ray length distribution: This open a new window
showing the distribution of lengths of rays originating
in pixels of region one. The directions of the rays are
random and travel through three-dimensional space, i.e.,
the image is rotated around the axis of symmetry to
create a three-dimensional object, and rays are traced
through the object. The lengths of the rays are only
calculated for the parts that are in region one. This is
discussed more fully in Section XXX.

III. NEW COMMANDS IN DEPTH

IV. FEATURES

When the “Get Features” button is pressed, a window
like that shown in Fig. 2 is displayed. The window shows
information about the image (pixel size, rows, columns, etc.)
and features calculated for the seed, shell, and husk regions.
In this example there are features calculated for three regions
but if no shell region is defined the features for two regions
will be given.

Most of the features are derived from a few primitive
features, e.g., bounding box, volume, mass, surface area,
variance of the region, the minimum enclosing circle, and the
Legendre moments. For those who want more details of the
computations, we describe the primitive features in Section
??.

Fig. 2. A window displaying features calculated for the segments of the
window shown in Fig. ??, which is the heartsNDiamonds.leg file analyzed
with thresholds of 10, 5, and 15 for the inside, outside, and middle,
respectively

A. Volume

The most straightforward way to calculate the volume of
an arbitrary pixelized region is to sum the volumes associated
with each pixel in the region. The volume added by a pixel
is the volume of a rectangular toroid (or cylinder for pixels
touching the horizontal mid-line) created by rotating the pixel
360 degrees around the horizontal mid-line. Letting r be the
distance from the center of the pixel to the horizontal mid-line,
and keeping in mind that r must either be ih, i ∈ N (for an
odd number of rows) or ih+ h

2 (for an even number of rows),
the volume added by a pixel is

dVi =

{
π
(
1
2h
)2
w if r = 0,

2πrhw if r 6= 0
(1)

.
We average the volumes obtained from the top and bottom

halves of the image to get a final volume.
A complication is that we are actually interested in the

volume of the object that has been pixelized instead of the
volume of the rotated region, and these are not the same.
Attempts have been made to increase the accuracy of area
estimates from pixelized images, and these techniques can
be extended to volume estimates as well, e.g., MATLAB’s
“bwarea” function [1] [2]. Nonetheless, for our work to date,

4

the volume of the pixels in the image region appears to be
a sufficiently accurate approximation to the volume of the
imaged object.

B. Mass

This feature assumes that the pixel values give densities.
The mass added by a pixel is the volume added by that pixel
times the density of the pixel.

C. Perimeter and Surface Area

In this work we use “boundary” to mean the edge of an
object and “perimeter” to be the length of the edge. Both the
perimeter and the surface area are commonly used to calculate
features for selected sets of pixels. For example, we can get
a feature characterizing the circularity of a region from the
area and the perimeter because area/perimeter2 is largest
for a circle and has a maximum value of 1/4π. Our interest
is in three-dimensional objects, so we focus on surface area
rather than perimeter. Nonetheless, since the surface area is
calculated for the surface of rotation of the perimeter of a
region, we first discuss the perimeter of a pixelized region.

As with calculating the volume, pixelation of an object
introduces errors in our measurements of the perimeter length;
however, the errors caused by pixelation cannot be ignored
because they can become very large when estimating the
length of perimeter. Consider a region containing a single
pixel. The obvious approach to calculating the perimeter is to
simply measure the length of the border of the pixelized object,
so for a single pixel the perimeter is 2(w + h). For regions
comprising many pixels, using the distance around the edges of
the pixels will only give an accurate measure of the perimeter
if the edges of the object are vertical or horizontal. For edges
at any other angle the edge length will be overestimated.

The three images in Fig. IV-C illustrate the problem. If the
perimeter is estimated by tracing the pixel edges around the
region each of these objects will have the same perimeter. In
fact, a pixelized square has a larger value of area/perimeter2

than a pixelized circle — a result that contradicts standard
geometry and which would invalidate a measure of circularity.

A common (although not necessarily accurate) approxima-
tion of the boundary of an object from a pixelized image is
the polygon (call it the edge polygon) connecting the centers
of adjacent pixels that are included in the object but which
share a side with a pixel that is not in the object. This is the
approach used at Los Alamos National Laboratory in the past.
As discussed in [3], using the perimeter of the edge polygon
as an approximation of the perimeter of the object is accurate
for edges that are oriented at an integer multiple of a 45 degree
angle, but overestimates the length for edges that are at other
angles. Since this measure of the perimeter always results in
lengths that are equal or larger than the actual perimeter, better
estimates can be obtained using a variety of other techniques
[3], [4], e.g., subtracting a bias term. However, even in cases
where all of the edges are at integer multiples of 45 degrees,
the volume of the region is not completely encompassed by

the perimeter, so the ratio of area to perimeter will not match
our geometric expectations.

There is no single accurate way to measure the perimeter
of every object from its pixelized image. Following what has
been done at LANL in the past, we use the edge polygon as
our estimate of the boundary. Rotating the portion of the edge
polygon that lies above the horizontal mid-line by 360 degrees
around the horizontal mid-line produces a surface. Rotating the
portion of the polygon that lies below the mid-line produces a
second surface. We use the average area of these two surfaces
as the surface area.

We calculate the perimeter and surface area in one pass
through the data. The approach we use is to move a 2x2 pixel
window over the image looking for horizontal, vertical, or
diagonal edges. Since a 2x2 window of binary pixel values can
have only 16 different pixel combinations, we pre-calculate the
amount of surface area added by each of the 16 windows.

With this approach, single pixels do not contribute to the
surface area, nor do isolated sets of pixels centered on the
horizontal mid-line. In software previously used at LANL,
small values were added to the surface area for isolated pixels
and pixels on the mid-line. Differences between the surface
area calculations of previous LANL software and this package
appear to be minimal.

D. Region Statistics

The centroid and variance of selected sets of pixels are
used in some of our image features. For the purpose of this
calculation, the image is binary with pixels in the region
having value 1 and pixels outside the region having value 0.
The image variance calculation is not obvious, so we describe
it here.

A set of pixels can be treated as the convolution of a single
pixel, centered at the origin, with a set of Dirac delta functions
positioned at the pixel centers [5]. It is well known that the
variance of a convolution is the sum of the variances of the
terms in the convolution [6] — a fact we use when calculating
the variance:

Varx = Varx (centers) + Varx (pixel) , (2)

where the subscript x shows that this is the variance along the
x-axis. The equations for the variance on the x-axis and the
y-axis are nearly identical so we only give equations for the
x-axis variance.

Calculating the variance of the pixel centers is straightfor-
ward. Let xi be the x-axis position of the center of the ith pixel
and N be the number of pixels in the image. The standard
formulas for the variances of the pixel centers on the x-axis
are given in EQs 3 and 4.

Centroidx =

∑
i xi
N

(3)

Varx (centers) =

∑
i x

2
i

N
− (Centroidx)

2 (4)

5

(a) (b) (c)

Fig. 3. A straight line is the shortest distance between two points. However, when a straight line is pixelized, as in the case of the diagonal edge in Fig.
3a, the straight line is not necessarily shorter than other paths. Using the pixel edges to measure the distance, the pixelized straight line is the same length as
paths that we know to be longer, such as those in Figs. 3b and 3c.

The variance of a single pixel centered on the origin (and
therefore having mean 0) can be calculated from the 0th and
2nd order moments, m0 and m2, respectively:

m0 =

∫ w
2

−w
2

∫ w
2

−w
2

1dxdy = w2 (5)

m2 =

∫ w
2

−w
2

∫ w
2

−w
2

x2dxdy =
w4

12
(6)

Varx (pixel) =
m2

m0
=
w2

12
(7)

The covariance value for uniform distribution with the
support being a single pixel centered on the origin is always 0,
so the covariance value for a region is simply the covariance
value of the pixel centers. Using the standard equation:

Cov =

∑
i xiyy
N

− (Centroidx)(Centroidy) (8)

V. EXAMPLE CALCULATIONS

For those who wish to test their understanding of the image
features and/or verify the accuracy of the calculations, we
calculate the features for the example image shown in Fig.
4.

The image is a 20x20 grid of pixels with each pixel having
height and width set to 0.5 cm. The image is a set of concentric
squares. The center of the set of squares is offset 0.25 cm to
the right and 0.25 cm below the center of the image. The
density values in each square, from the center out, are 0, 1, 2,
3, 4, 5, 4, 3, 2, 1, 0.

A segmented version of the image is shown in Fig. 5. When
the image is segmented we have a seed that is a 2.5×2.5 cm
offset square extending from -1 cm to 1.5 cm on the x-axis
and from -1.5cm to 1 cm on the y-axis. The seed is surrounded
by a hollow square (the shell) that extends from -2.5cm to 3
cm on the x-axis and from -3 cm to 2.5 cm on the y-axis. The
density values for each pixel in the seed and shell are shown
in Fig. 7.

We focus on the calculations of the primitive features but
mention the features derived from them. We do not check

Fig. 4. A simple image used for checking the accuracy of the calculations

the calculations of the Legendre moments by hand in this
paper, but the Legendre moment algorithms have be validated
in previous work [7]. We compared results from our inde-
pendently programmed algorithms to the previous results for
confirmation.

A. Seed Features

1) Bounding box: The bounding box is the same size as the
seed so has width and height of 2.5 cm. The center of the
bounding box is the same as the center of the seed so is
at (0.25, -0.25). Therefore the distance (or equivalently
the offset) between the center of the bounding box and
the center of the image is

√
0.252 + 0.252 = .353553.

The ratio of the bounding box height and width is 1.
2) Volume: When rotated 360 degrees around the horizontal

mid-line, the section of the seed above the horizontal
mid-line is a cylinder with radius 1 cm and width 2.5
cm. The cylinder with these dimensions has volume =
πr2w ≈ 7.853982. The rotated section below the hori-
zontal mid-line has radius 1.5 so volume ≈ 17.671459.

6

Fig. 5. The segmented version of simple image from Fig. 4

Fig. 6. Features calculated from the image in Fig. 4

The average volume of the rotated seed is shown in Fig.
6. The volume V is used to calculate various ratios and
is also used to calculate the equivalent radius using the
relationship r = 3

√
3V
4π = 1.449722.

3) Surface area: recall that, for the purpose of calculating
surface area, the boundary of an area is the polygon
comprising the line segments that connect the centers
of the boundary pixels. The polygons connecting the
boundary pixels for the shell and the seed are shown
in Fig. 7. The surface area of the seed is not the
surface area of the two half-cylinders used for finding
the volume because the polygons are inset a half pixel
from the edges used for finding the volume. For finding
the surface area the top cylinder has radius = 0.75 and
width = 2. The lower cylinder has radius = 1.25 and

0

11

1

1 1 1

1

1

2

2

2

2

2 2 2 2 2

2

2

2

2222

3

3

3

3

3

3

3 3 3 3 3 3 3

3

3

3

3

3

333333

4 4 4 4 4 4 4 4 4

4

4

4

4

4

4

4

444444444

4

4

4

4

4

4

4

5 5 5 5 5 5 5 5 5 5 5

5

5

5

5

5

5

5

5

5

55555555555

5

5

5

5

5

5

5

5

5

0

1

2

-1

-2

-3
0 1 2 3-1-2

Fig. 7. The shell and seed portion of Fig. 4 with the density values shown
by the numbers in each pixel. The boundary pixels of the seed are connected
by the blue polygon. The inner and outer boundary pixels of the shell are
connected by the red polygons. The x and y coordinates are shown by the
numbers outside the pixels.

width = 2. The surface area of a cylinder of radius r
and width w is the area of the two ends plus the area of
the side, which amounts to 2πr(r + w). Therefore the
surface area of the top cylinder is 12.959070 cm2 and
the surface area of the bottom cylinder is 25.525440.
The average of the surface areas is 19.242255.

4) Region Statistics: The centroid is at (0.25, -0.25), just
like for the bounding box, so the centroid offset is the
same as the bounding box offset. The easiest way to
calculate the seed variance for both axes is to use EQ.
7, treating the seed like a 2.5×2.5 cm pixel: 2.52/12 =
0.520833. The covariance for a uniform square (note
that density values are not used) is always 0. EQ. ??
then gives the result 2.886751 cm for the Major Axis
length, EQ. ?? gives the same result for the minor axis
length: 2.886751 cm, and the eccentricity is seen to be
0.

5) Minimum Enclosing Circle: Inspection of the Fig. 5
shows the circle with its center on the line y = 0 that
touches the lower-left and lower-right corners of the seed
is the minimum enclosing circle – if it becomes any
smaller at least one point in the seed will be excluded.
EQ. ?? shows that the center of the circle is at (0.25,0)
so the enclosing circle offset is 0.25. Furthermore, EQ.
?? gives us the radius of the circle: 1.952562 cm. Since
the area of the seed is 2.52 = 6.25, and the area of a
circle with radius 1.952562 is 11.977322, the ratio of
the seed’s area to the area of the Minimum Enclosing
Circle is 0.521819. The volume of a sphere with radius
1.952562 is 4

3πr
3 = 31.181958. Therefore, dividing

the volume (calculated above) by the volume of the
minimum enclosing sphere, we get 0.409298, which is

7

r dV

0.25 0.196349541

0.75 0.589048623

1.25 0.981747704

1.75 1.374446786
2.25 1.767145868

2.75 2.159844949

TABLE I
THE VALUES GIVEN IN THIS TABLE SIMPLIFY THE PROBLEM OF

CALCULATING THE MASS OF THE SEED AND THE SHELL FOR THE
EXAMPLE PROBLEM. THE DISTANCE BETWEEN THE PIXEL CENTER AND
THE HORIZONTAL MID-LINE IS GIVEN BY r. THE VOLUME ADDED BY A
PIXEL ROTATED 360 DEGREES AROUND THE HORIZONTAL MID-LINE IS

dV .

the ratio of the volume to the sphere.
6) Mass: Holding the pixel height and width constant, EQ.

1 shows that dV (the amount of volume associated with
a rotated pixel) varies only with the distance between
pixel center and the horizontal mid-line. Given that, the
easiest way to calculate the mass is to first find dV
for each row of pixels in the image. Table 5 shows
the relationship of r to dV for the rows of pixels in
the example image. The density of every pixel in the
rows that are 0.25 cm from the horizontal mid-line is
multiplied by the same dV so we can sum those densities
and multiply the sum by dV . The sum of the densities in
rows that are 0.25 cm from the horizontal mid-line is 13.
The summed densities for rows with r = 0.75 is 17. The
summed densities for r = 1.25 is 10. Multiplying these
values by the corresponding dV and summing gives
a total mass of 22.383848. Dividing the mass by the
volume gives the density of 1.75385.

B. Shell Features

1) Bounding box: The bounding box is the same size as
the outside of the shell, so has width and height of 5.5
cm. The center of the bounding box is the same as the
center of the seed so the offset between the center of the
bounding box and the center of the seed is the same as
that of the seed. The ratio of the bounding box height
and width is 1.

2) Volume: We can calculate the volume of the shell by
calculating the volume of the shell with the seed and
then subtracting the volume of the seed. The section
of the seed and shell above the horizontal mid-line is
a cylinder with radius 2.5 cm and width 5.5 cm. The
cylinder with these dimensions has volume = πr2w ≈
107.992247. The rotated section below the horizontal
mid-line has radius 3.0 so volume ≈ 155.508836.
The average volume of the rotated shell and seed is
131.750542. Subtracting the volume of the seed we get
118.987822. The equivalent radius using the relationship

r = 3

√
3V
4π = 3.051204.

3) Surface area: The surface area of the shell includes the
surface area of the outside of the shell and the inside of
the shell. Note that the inside of the shell is not the same
as the outside of the seed for the purposes of calculating
the surface area because the boundary polygons are inset
by half a pixel. The surface area of the outside of the
shell is the average of the surface areas of the top
cylinder and the bottom cylinder. The top cylinder has
radius = 2.25 and width = 5 and so a surface area of
102.494460. The lower cylinder has radius = 2.75, width
= 5, and so surface area of 133.910387. The average
outer surface area is 118.202424. Five lines make up the
polygon for the top of the inside portion of the shell. The
left and right vertical lines contribute the surface area
of disks with radius 0.75 cm, which comes to 3.534292
combined. The left and right diagonal lines contribute
the surface area of the side of a truncated cone, which
comes to 8.885766 combined. The horizontal line at
the top of the inside polygon contributes a surface area
of 15.707963. The total for the top inside surface area
for the shell is 28.128021. The bottom half of the
polygon making up the inside of the shell also has
5 lines contributing to the surface area. The left and
right edges contribute 9.817477 combined. The diagonal
lines contribute 13.328649 cm2 when combined. The
bottom horizontal line contributes 21.991149 cm2. So
the bottom half of the inside surface of the shell has a
surface area of 45.137275 cm2. The average of the top
and bottom inside surface areas is 36.632648. Adding
the inside and the outside surface area give a combined
surface area for the shell of 154.835072.

4) Region Statistics: The centroid is at (0.25, -0.25), just
like for the bounding box, so the centroid offset is the
same as the bounding box offset. The nth order moment
for the shell can be calculated by subtracting the nth

order moment of the seed from the nth order moment
of the combined shell and seed. Since the width of the
seed is 2.5 cm and the width of the shell is 5.5 cm,
EQ.5 shows the 0th order moment of the shell is 5.52−
2.52 = 24. The second-order moment of the shell is
5.54

12 −
2.54

12 = 73. Then from EQ. 7 we get that the
variance of the shell is 3.041666. The variance on the
y-axis is the same, so EQs. ??, ??, and ?? give values of
6.976150, 6.976150, and 0 for the major axis, the minor
axis, and the eccentricity, respectively.

5) Minimum Enclosing Circle: Similar to the situation for
the seed, the minimum enclosing circle touches the
lower-left and lower-right corners of the shell with
its center at (0.25,0). The enclosing circle offset is
clearly 0.25, and EQ. ?? gives us the radius of the
circle: 4.069705 cm. Since the area of the shell is
5.52 − 2.52 = 24, and the area of a circle with radius
4.069705 is 52.032628, the ratio of the seed’s area to the
area of the minimum enclosing circle is 0.461249. The

8

volume of a sphere with radius 4.069705 is 282.343274.
Therefore, dividing the volume (calculated above) by
the volume of the minimum enclosing sphere, we get
.421430 for the ratio of the volume to the sphere.

6) Mass: As with the seed, we use Table 5 to help calculate
the mass of the shell. The sum of the densities for the
shell in rows that are 0.25 cm from the horizontal mid-
line is 48. The summed density values for progressively
more distant rows are: 48, 63, 85, 101, and 55. Multiply-
ing these values by the corresponding dV and summing
gives a total mass of 513.65040. Dividing the mass by
the volume gives the density of 4.316831.

C. Combined Features

The three features listed at the top of the features window
can be confirmed by hand calculation from the volumes and
masses calculated above. To simplify comparisons, note that
ρm is the same as the density of the shell and r seed is the
same as the equivalent radius of the seed. One number that
has not been directly calculated above is r m, which, as stated
above, is the radius of the sphere having the same volume as
the seed plus the shell. This value is 3.156612464.

VI. CONCLUSION

We have described a program that allows the user to quickly
and easily perform many of the most common tasks needed to
compare density images, tasks that were previously performed
using MATLAB tools with a command line interface. Not only
were a graphical user interface and new image features added,
but details of feature analyses and example calculations have
been presented here to enable other researchers to provide
feedback and refine the features. The example calculations
help verify that the values generated by the software are
accurate. However, the example calculations are performed
on typical images – images with an even number of rows,
for which the pixel height and width are the same, and for
which reasonable thresholds have been set. Further testing is
necessary to verify the calculations for images that do not meet
these criteria.

REFERENCES

[1] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The Math-
Works Inc., 2010.

[2] W. K. Pratt, Digital Image Processing (2nd Edition). New York, New
York: John Wiley & Sons, Inc., 1991.

[3] L. Dorst and A. W. M. Smeulders, “Length estimators for digitized
contours,” Computer Vision, Graphics, and Image Processing, vol. 40,
no. 3, pp. 311–333, Dec. 1987.

[4] D. Coeurjolly and R. Klette, “A comparative evaluation
of length estimators of digital curves,” Nov. 06 2007.
[Online]. Available: http://hal.archives-ouvertes.fr/hal-00185088/en/;
http://hal.archives-ouvertes.fr/docs/00/18/50/88/PDF/116125-2.pdf

[5] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, 1st ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1992.

[6] R. N. Bracewell, The Fourier transform and its applications, 2000.
[7] K. McLenithan, F. Hemez, and R. Krajcik, “Analysis of late-time im-

plosion images (U),” Los Alamos National Laboratory, Fiscal Year 2010
Report of the Penetrating Image Project LA-CP-10-1778, 2010.

9

