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What is DMS? *;
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Fig. 1 Schematic representation of the processes and pools
involved in the marine biogeochemical cycling of DMSP and
DMS. Dominant role of functional groups in the different
processes is indicated by coloured ellipses: green, phytoplank-
ton; blue, zooplankton; red, bacteria; black, abiotic factors.

(Simé, 2001)
TRENDS in Ecoloav & Evolution

CCN, cloud-condensation nuclei; DOM, dissolved organic
material; DMSO, dimethyl sulphoxide; MeSH, methanethiol;
MPA, mercaptopropionate; MMPA, methylmercaptopropio-
nate; MSA, methanesulphonic acid



Importance of DMS
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Magnitude and sources of uncertainty in aerosol
first indirect forcing (Carslaw et al., 2013)

\_ » These all point out the importance of improving DMS simulations.
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CAM DMS annual emission

» DMS annual emission is 37.1 Tg/yr in data forced simulation

» Previous data-based estimates suggest annual DMS fluxes of 17.6 — 34.4
Tg/yr (Lana et al., 2011) and 15.0 — 29.4 Tg/yr (Kettle and Andreae, 2000)

» There are significant differences between prescribed emission and data based
estimates

» The DMS production should be dynamically simulated! y
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Importance of marine ecosystems

100°wW 0°t 100°E
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» The underestimated DMS concentrations at high latitudes are
potentially due to the absence of Phaeocystis group (Vogt et al., 2010)

» Phaeocystis is important for high latitude DMS distribution
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A previous DMS model
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> In the earlier DMS module, Phaeocystis was simulated implicitly as a fraction of
the global small phytoplankton. The simulated time and location of DMS peaks

are biased.

» These results suggest the need of improving the representation of ecosystem
\ structure




/To simulate DMS...
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(Simé, 2001)
TRENDS in Ecoloav & Evolution

» Marine microorganisms are controlling various processes in the
sulfur cycle!
_ » We first need to have the ecological/biogeochemical models

/




Ocean Biology

Trophic Level

A tuna sandwich 100 g (/4 pound)

5 For each kilogram of tuna,

4 roughly 10 kilograms of midsize fish
must be consumed,

3 and 100 kilograms of small fish,

2 and 1,000 kilograms of small
herbivores,

1 and 10,000 kilograms of primary
producers.

Tuna (top consumers)

Midsize fishes
(consumers)

Small fishes and larvae
(consumers)

Zooplankton
(primary consumers)

Phytoplankton
(primary producers)

@ 2002 Brooks/Cole, a division of Thomson Learning, Inc.

» Higher trophic levels -Important for ecology, marine resources for humans
» Lower trophic levels - Important impact on global biogeochemical cycles

» Many BGC models adapt the concept of “functional group”. A function group is a
\ collection of organisms that express a similar biogeochemical role.
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Major Phytoplankton Functional Groups

Nano- and Pico-phytoplankton (nano 2-20 um, pico <2 pum)
Diverse classes of smaller species

High surface/volume ratios

Thrive under low nutrient conditions

Dominate community in mid-ocean gyres

Under strong grazing pressure (especially <5 uM)

Smaller contribution to sinking C export

V V V V V VYV V

Usually considered as the background community.
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Major Phytoplankton Functional Groups

Diatoms (20-500 uM)
> Outer frustule composed of biogenic silica
» Large phytoplankton, low grazing losses

» Low surface/volume ratio, thrive under high nutrient
concentrations

» Often dominate phytoplankton blooms
» Often dominate sinking C export out of surface waters.
» Weak DMS producers
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Major Phytoplankton Functional Groups

Coccolithophores (10-30 uM)

» Outer platelets, "coccoliths" of CaCO,

» Carbonate requirement alters surface pCO,

» Important component of sinking C export.

» Medium size, moderate grazing losses

» Moderate surface/volume, thrive under medium-high nutrient levels

» Bloom mainly at low to mid-latitudes, typically not found in coldest
polar waters.
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Major Phytoplankton Functional Groups

Diazotrophs (Cells 1 uM, colonies can be mm to cm)
» Capable of fixing dissolved N, gas into NH,".

» Source of new nitrogen to surface waters in tropical/subtropical regions.
May influence total ocean nitrate and productivity over long timescales.

» Slow growth rates, low grazing losses. A

» High light and Fe requirements.

» Thrive in warm, tropical and subtropical
regions, not found at high latitudes.

» Do not produce DMS
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Major Phytoplankton Functional Groups

Phaeocystis (solitary 3-9 uM, colonies to 3 cm)

» Thrive in colder, polar waters

» Exist in single cell and colonial forms

» Often dominate non-diatom blooms polar waters
>

Colonies held together by carbohydrate rich, extra-cellular mucus (~50% of

carbon). This can gives colonies higher C/N and C/P ratios, leading to
efficient export of carbon.

» Strong producers of DMSP and DMS.

FPhaeocysfis anfarchicg solitary cell

Clapubl. photo by A, Shields)

k http://www.vims.edu/phae/
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Controls of phytoplankton growth and competition
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(Cassar et al., 2007)

» The distribution of phytoplankton biomass and NPP is determined by the availability of
light and nutrients (nitrogen, phosphate, iron, silicate).

» Different phytoplankton groups have different requirements for these factors

/
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Model Description
Biogeochemical Elemental Cycling (BEC) model

Atmospheric deposition

4

N

Phytoplankt
AN, Chlorophyll
Small phytoplankton -7 S
lithooh e (sp, diat. diaz, phaeo)
Growth (cocco ithop ores)
N fixation Dlatomsh
Calcification Diazotrop 'S Grazing
Phaeocystis
Inorganic
NO;, NH,, PO,, Excretion Joanlank
Si(OH),, Fe, O,, DIC < ‘ L ooplankton
& alkalinity Mortality
Aggregation

Remineralizati\ Detritus Mortalit
DOM(C, N, P, Fe) Y

Dissolution Feedin
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l/ Sinking
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Model performance

CO2 flux in 2000 estimated using the CCSM (moIC/mzlyr) 20.0
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©
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ey, R .
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(Wang and Moore, 2012)

» The modeled global sea-air CO, flux is comparable to the observation-based estimate by
Takahashi et al. (2009)

» The BEC model reasonably reproduces the patterns of surface chlorophyll
concentrations.

- /
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/DMS module

ProdPMSP = scale X (2 Prod?™" + Prod™** + Prodl}'°F
i

phaeo—dir)

Prod®™s = yield x k x Prod”™s*

DMS

LossPMS = Lossp + Loss2MS

DMS
+ LOSSbkg photo

DMSP — DMSP DMSP
Loss = Losspys + LoSS,y,

T sea-air flux

exudation
Intracellular (DMSP), >
for n= Phaeocystis, released DMSP lyase photo-oxidation
i viral/autolysis

diatoms, small y DMSP — DMS >

phytoplankton, >
coccolithophores

grazing / \ /
mixing
zooplankton bacterial background loss
removal
\4

Other losses
(mixing, sinking,
demethylation)




: Model Description

Biogeochemical elemental cycling (BEC) model

/ Ecosystem Module

5 phytoplankton groups
One zooplankton group
DOM, sinking particulates

~

DMS module

Prognostic calculations of
the DMS production and

Multiple growth limiting removal

nutrients

Ocean circulation component in Community Climate System
Model / Community Earth System Model

- /




4 Previous studies
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Fig. 3. Relationship between Phaeocystis specific growth rate p and -90°
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g Incorporating Phaeocystis

» Two groups of Phaeocystis: One group for northern species, combining P.
globosa and P. pouchetii; One group of P. antarctica

» Only the blooming colonial form considered

. (thres — TEMP)
"(thres — Tpeak)

PCmax = PCmax X min(

PCmax = max(PCmax,0)

phaeoC
(phaeoC + diatC + Zgrz)

graze = Zumax X zooC X

» Key parameters: kyos, kg, grazing, T,

T res» and alpha
» The values of T, are 16.3 °C and 5 °C in NH and SH, respectively

» (@Grazing on Phaeocystis or diatoms is influenced by the total biomass of both
groups

> In general, our preferred physiological parameters suggest that Phaeocystis is well
adapted to low-light and nutrient-rich conditions




e

Simulated Phaeocystis

May-Jun-Jul Nov-Dec-Jan

200

50
20

Mo06

3,06
Surface Phaeocystis Carbon (ugC/l)

o
o
urd

(Wang et al., 2015)

» In general, the model does a reasonable job reproducing the observed seasonality and
spatial distributions of Phaeocystis

» Phaeocystis contributed ~13% of annual primary production and ~19% of sinking
carbon export in the Southern Ocean (>40°S).

» Simulated Phaeocystis biomass cannot reproduce the extreme high concentrations
sometimes reported in field studies due to averaging in large grid and underestimated
surface nutrients

- /




/Simulated DMS
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DMS maximum in the North Pacific in May and along the Antarctic coast in December, in
k agreement with Lana et al. (2011)

Surface DMS concentration (nM)
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" Simulated DMS
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Simulated DMS shows strong bloom behavior at high latitudes, but weak seasonal cycling at low

-

latitudes. Seasonality and distributions are in good agreement with observations.
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/Zonal DMS distributions

1

— CESM explicit phaeo
—-—- CESM prescribed phaeo .
— — Lana 2011

DMS (nM)

-90 —6.0 —3.0 (l) 3l0 6.0 90
latitude (Wang et al., submitted)
» The simulated average DMS concentration for the surface ocean is 2.26 nM,
comparable to data-based estimate of 2.34nM
» Zonal mean DMS is clearly improved, and matches the observation-based estimate
closely, with observed DMS peaks between 50° — 60° N and south of 60° S well

reproduced
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4 DMS-climate feedback
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4 Pre-industrial Difference (without DMS — with DMS) N
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/“Surface nutrients
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/” Phytoplankton and DMS
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Model top
radiation
(W/m?)
Sea ice area
(September, 6.34
millions of km?)

Sea ice area

mifﬂjﬁ;“f;‘;{y;ﬂ The feedback seems weak, then 1.95
is phytoplankton important?

SST (°C) 23.34
Primary
Production 2236
Sinking BOCAC 7,63 7.51 7.62 7.5 6.65 6.37
00m
Surface DMS 2.30 2.23 2.30 2.23 1.96 1.89
(nM)
LD B D 19.74 19.61 19.62 19.39 18.14 17.81

(Tg/yr) /




/Phytoplankton cannot be ignored -Phaeocystis

10 T

— CESM explicit phaeo
9t ==+ CESM no phaeo
— =— Lana 2011

DMS (nM)

-90 -60 -30 0 30 80 90
latitud .
e (Wang et al., submitted)

» Phaeocystis contributes up to 23% of upper ocean DMS during the growing seasons,
and 8.6% of the annual DMS flux.

» Phaeocystis dominates DMS distribution at middle to high latitudes.

» None previous global DMS simulations included dynamically simulated Phaeocystis.
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Without Phaeocystis

-

» Phaeocystis contributes 8.6% of the DMS flux
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. Without Phaeocystis A
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> Without DMS produced by Phaeocystis, there are significant changes in the
shortwave cloud radiative forcing and warms the surface ocean at high latitudes
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Phytoplankton cannot be ignored - Cyanobacteria

A Prochlorococcus
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(Flombaum et al., 2013)

» Cyanobacteria group does not produce DMS.

» Fraction and total biomass of this group will increase in a warmer climate
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Phytoplankton cannot be ignored
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» Increasing cyanobacteria fraction leads to declines in DMS production at low-middle
latitudes.

» If the maximum fraction of this group increases by 50%, DMS flux decreases ~39%
at middle — low latitudes
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/Phytoplankton cannot be ignored
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» Significant change in sw cloud radiative forcing at
k low to middle latitudes, > 4 W/m? in some regions.
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Summary

» Given the new explicit Phaeocystis representation, the DMS distribution
shows significant improvements, especially regarding the amplitude and
location of high latitude peaks

»> The simulated mean surface DMS value 1s 2.26 nM. The total oceanic
DMS source to the atmosphere 1s 20.3 Tg S/yr. Both are comparable to
data-based estimates.

» Different phytoplankton groups play various roles in the DMS production.
Shifts in phytoplankton community composition will feedback to climate

» DMS plays an important role in regulating climate

» Production of DMS varies with climate. It is therefore necessary to couple
the dynamic DMS module in climate projections.

Thanks!







