VA

.
s LonLuamos

LA-UR-17-30009

Approved for public release; distribution is unlimited.

Title:
Author(s):

Intended for:

Issued:

Utilizing Weak Indicators to Detect Anomalous Behaviors in Networks
Egid, Adin

Report

2017-11-01

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Utilizing Weak Indicators to Detect Anomalous Behaviors in

Networks

Adin Egid,
Graduate Research Assistant,
A-4 Advanced Research in Cyber Systems
Los Alamos National Laboratory

October 23, 2017

Abstract

We consider the use of a novel weak in-
dicator alongside more commonly used weak
indicators to help detect anomalous behavior
in a large computer network. The data
of the network which we are studying in
this research paper concerns remote log-in
information (Virtual Private Network, or
VPN sessions) from the internal network of
Los Alamos National Laboratory (LANL).
The novel indicator we are utilizing is some-
thing which, while novel in its application
to data science/cyber security research, is a
concept borrowed from the business world.
The Herfindahl-Hirschman Index (HHI) is a
computationally trivial index which provides
a useful heuristic for regulatory agencies to
ascertain the relative competitiveness of a
particular industry. Using this index as a
lagging indicator in the monthly format we
have studied could help to detect anomalous
behavior by a particular or small set of users
on the network.

Additionally, we study indicators related
to the speed of movement of a user based
on the physical location of their current and
previous logins. This data can be ascertained
from the IP addresses of the users, and is
likely very similar to the fraud detection
schemes regularly utilized by credit card
networks to detect anomalous activity. In

future work we would look to find a way
to combine these indicators for use as an
internal fraud detection system.

1 Introduction

1.1 Outline of the Problem

The problem entails using weak indicators
to detect anomalous data from within the
database of user remote logins, or VPN
sessions, from among the lab’s employees.
A weak indicator is one which by definition,
does not by itself immediately and with
certainty identify anomalous or malicious
behavior. Instead, a weak indicator is one
which when combined with other weak
indicators and/or a deeper manual inspec-
tion, may yield this result. An example
of such an indicator may be when one’s
credit card is used unexpectedly at a gas
station a few states away, and the credit
card company, while certainly not being
able to immediately detect a fraud, will
likely call or text the owner of the card to
inquire if this purchase was indeed legitimate.

In this paper we are looking for such
indicators which, due to their deviation from
some normal statistical pattern, present
a raised flag that may warrant at least a
cursory inspection into the underlying data.

When multiple weak indicators are triggered
via a set of data, this may present a red flag
which will require a deeper inspection.

1.2 Data

The data for this study originated in LANL’s
internal databases. After importing the data,
we used the Python programming language,
particularly the pandas data analysis toolkit,
to analyze the data in the desired methods
described in the paper. The data used pro-
vides a user identification number, a session
start time and end time, an external IP ad-
dress as well as whether the user is a US cit-
izen or foreign national. The external IP ad-
dresses will be very critical to our study, as
we can feed these into the Python geoip li-
brary to yield location information about the
VPN sessions.

The IP address data comes from MaxMind,
Inc. When called via a few simple commands,

from geolite2 import geolite2
reader=geolite2 .reader ()
reader.get(’50.130.223.86 ")

we can input an IP address from the inter-
nal list into the reader function, and the geo-
lite2 library returns us a nested dictionary of
relevent location data, as seen below:

{’city ’: {’geoname_id ': 5476825,

'names : {’de’: ’Los Alamos’,
"en’: ’Los Alamos’,
"es’: ’Los lamos ’,
“fr 7. ’Los Alamos’,
’ja R 7’
'pt—BR’: ’Los Alamos’,
‘ru’: — "
"zh—CN’:

’}}7
"continent ': {’code’: 'NA’,

"geoname_id ': 6255149,

'names : {’de’: ’'Nordamerika’,
"en’: ’North America’,
"es’: "Norteam rica ’,

“fr’: 7Am rique du Nord’,
ja .
'pt—BR’: >Am rica do Norte’,
7ru 7:)
"zh—CN’: 1},
"country : {’geoname_id ’:
6252001,
“iso_code ’: 'US’,
'names ’: {’de’: 'USA’,
‘en’: ’United States’,
"es . "Estados Unidos’,
“fr’: 7 tats —Unis’,
7ja 7: 7
'pt—BR’: ’Estados Unidos’,
‘ru’: "
"zh—CN’: 1},
"location ’: {’accuracy_radius ’:
100,
"latitude ’: 35.8366,
"longitude ': —106.3093,
"metro_code ’: 790,
"time_zone ’: ’America/Denver
7}’
"postal 7 {’code’: 87544},
‘registered_country ': {’
geoname_id ": 6252001,
“iso_code : 'US’,
‘names ": {’de’: 'USA’,

With the use of a few for-loops and append
functions, we can build lists of the most
relevant pieces of data derived from the IP
addresses, namely city, state, country, lati-
tude, and longitude, and then append these
lists back to the initial pandas DataFrame we
are working with. It is the first three pieces
of data, particularly the state and country for
VPN sessions, that we will use for our novel
indicator, the Herfindahl-Hirschman Index.
The last two pieces of data, the latitude and
the longitude, will be used to track the rate
of changes of user locations between sessions
in much the same way that a credit card
company could look for anomolous behavior
as described above.

Radius (in km) ggéﬁf,?é Ilgzzrc:ﬁgg Unresolved
10 54% 40% 5%
25 73% 22% 5%
50 81% 14% 5%
100 87% 8% 5%
250 91% 4% 5%
Figure 1: GeoLite2 City Accuracy

It is important to note that accuracy of
these geoip services are not infallible, as the
provider clearly states on their website[l].
The chart on the website shows that for
the United States in particular, while an IP
address can be correctly resolved to a city
within a 250 km radius (i.e., when the stated
city retrieved from the nested dictionary is
within 250 km of the actual location) with
91% accuracy, this accuracy decreases to
less than 54% for resolution within a 10 km
radius. Please see Figure 1 above for more
detailed information.

While the small percentage of incorrectly
resolved /unresolved IP addresses for the 250
km radius are unlikely to have a significant
affect on the HHI calculations, as will see
later on they have the potential to cause sig-
nificant differences and thus raise inaccurate
flags for the speed-of-movement calculations.

1.3 The Herfindahl-Hirschman Index
(HHI)

The purpose of the index in its industry ap-
plication is to measure the concentration of
firms by some metric of market share, most
likely revenue. The higher the index value,
the less competitive an industry is deemed
to be. The index value is obtained by 1) mul-
tiplying the market share of each firm in the
industry by 100, 2) squaring those numbers,
and 3) summing the squared values:

n

HHI =) (100 x s;)°

i=1

where s; = the market share, as a percentage,
of a firm in the industry.

To elucidate the calculation, let’s walk
through a real world example[2]. The
desktop search engine market is primarily
divided between four major players: Google
(~ 79%), Bing(~ 8%), Baidu(~ 8%), and
Yahoo(~ 6%). The HHI calculation is as
follows:

(79% x 100)* + (8% x 100)* + (8% x
100)2 + (6% x 100)? = 6,241 + 64 + 64 + 36

which yields a result of 6,405.

As we can see, the calculation is bounded
by 10,000 as a maximum (100% market share
for one monopolistic firm), and asymptoti-
cally approaches zero on the lower bound (an
example of an industry that fits the market
share criterion for perfect competition could
have 1000 firms each having % of a percent
market share; this would yield an HHI of 1).
The conventional thought on the HHI is that
a value above 2500 represents a relatively
oligopolistic industry while a value below
1500 represents a relatively competitive
industry. The example clearly demonstrates
that Google’s dominance of the search engine
industry makes it a relatively uncompetitive
industry.

We will discuss the novel application of
this index as a weak indicator in section 2.

1.4 Speed of Movement

The speed of movement indicators, which
will be discussed in greater depth in sections
4 and 5, have an underlying theme similar
to those in use by credit card companies.
Namely, we will aggregate all of a user’s
sessions over a given time period, and then
using the geographic coordinates (latitude
and longitude) for the user’s previous and
current VPN session we will find the dis-

tance traveled from the previous session’s IP
address to the current session’s IP address
(this calculation obviously hinges on the
accuracy of the data provided by the GeolP
library, so as we can see from Figure 1,
there will certainly be some errors in this
calculation). Next, using the session start
and session end times, we can find the speed
at which the employee would have had to
have changed location to have the two VPN
sessions be legitimate from that user; a speed
of travel faster than what a commercial air-
craft could travel should certainly raise a flag.

2 Application of the
Herfindahl-Hirschman Index

The application of the HHI to VPN sessions
in our study is based upon treating the num-
ber of VPN sessions for a given user in a given
time period as the market share numbers in
the original industry application of the index.
Specifically, we create a pandas DataFrame
for a given month, where each row is a sep-
arate VPN session, and then find out what
share of the total number of VPN sessions a
particular user accounts for. We can calcu-
late an HHI number for any given month to
see the concentration of VPN sessions across
users for that month (i.e are many different
users each accounting for a small number of
VPN sessions, or are one or a small number
of users accounting for a significant portion
of those sessions). Once we have HHI num-
bers for a sizable sample of different months,
we can look at how the Herfindahl number
changes across months as a possible indica-
tion of changes in user behavior.

It is important to note that given the
10,000+ employee size of the LANL, the
‘market share’ of a specific laboratory em-
ployee in VPN sessions is likely to be much
smaller than what we would see as a lead-
ing market share in even a highly competi-
tive industry. Thus, the HHI numbers given

as guidelines in subsection 1.3 which define
the competitiveness of an industry are not
going to be appropriate for our study. In-
stead, we will look to create confidence inter-
vals based on the mean and standard devia-
tion of monthly HHI numbers, and will look
for deviations outside of a given confidence
interval.

There were two main methods of applying
the HHI that we used in this study: 1) long
duration sessions for each month, and 2) ses-
sions of all durations for each month in the
study. We defined long duration sessions as
those of either 18,000 or 36,000 seconds (5
or 10 hours). The main advantages of focus-
ing on long duration sessions is that 1) these
sessions make up a smaller percentage of all
VPN sessions as most employees will not in-
tentionally stay logged in for such long peri-
ods of time consecutively unless they have a
serious amount of work to do, thus the HHI
numbers will reflect a higher concentration of
users and likely be more significant, and 2) we
will ignore many of the extremely short du-
ration sessions, that while we can’t confirm
directly from the data, likely represent inter-
mittent session breaks and reconnects due to
loss of network connectivity, a user temporar-
ily stepping away from their computer, etc.

However, looking at sessions of all lengths
does provide the advantage of having many
more sessions to look at which will likely, as
confirmed by this study, lead to lower HHI
numbers as these various length VPN sessions
are spread out amongst more users. With
lower HHI numbers for each month, a heavy
concentration of usage by one user will now
potentially be more likely to stand out as
anomalous, and it will thus be easier to have
a flag raised to suspicious activity on the net-
work.

2.1 Code and Implementation

The first step is to take a count of the num-
ber of cumulative sessions by user in our

DataFrame and to normalize these so we can
have a pandas series object with the user id as
the index and the market shares as the series
value:

user_market_shares=sessions_df.
user . value_counts (normalize=
True)

user _market_shares [:10]

The second line of code will output the top
ten users by market share for of VPN sessions;
in this case for a particular month in 2017 we
looked at sessions of all length:

XXXT759 0.022244
XXX500 0.015717
XXX927 0.012601
XXX965 0.010576
XXX861 0.010363
XXX843 0.010096
XXX520 0.009031
XXX099 0.008152
XXX939 0.008045
XXX039 0.007885
Name: user, dtype: float64

This series is sorted by descending market
share. Next, we will feed this series into an
HHI function which also outputs the cumula-
tive HHI value after every new user’s market
share is fed in. Having the output shown
will reiterate the fact that in a given data
sample such as the month we are looking at
(which had 743 unique users initiate over
37,000 VPN sessions), the largest few user
market shares will have the largest impact
on the HHI value, while the users with the
least market share (a number of users had
only one VPN session connection) will barely
push the index at all. For ease of viewing,
only the HHI value after the first 5 (5 largest
market shares) and after the last 5 (all single
VPN session users) will be shown, along with
the final HHI of 41.89.

The HHI function:
def HHI(x):

HHI=0

for value in x:
HHI+=(value*100) **2
print (HHI)

return (HHI)

The user market share Series being fed into
the function and it’s output:

HHI(user_market_shares)

4.94801139385
7.41838002119
9.00612234416
10.1246294656
11.1985124046
.8879707003
887977797

.8879848937
.8879919904
.8879990872

41.88799908716873

2.2 Sample Monthly Data

Before moving on to the HHI results, I
thought it would be helpful to look at the
distribution of VPN sessions by length for the
same given month that the preceding exam-
ples in Section 2 came from.

from datetime import timedelta

as dt
seconds_plot=sessions_df [’
duration’].dt.total_seconds ()

.plot (kind="hist ’,bins=300,
log=True, title="Month X_VPN_
Session.Durations ’)
seconds_plot.set_xlabel (’
Duration.in._Seconds)

The log format was necessary (see Figure
2 due to the fact that two distinct time
frames seemed to have an inordinately high
numbers of sessions bounded within a few

Month X VPN Session Durations

10% 5

107 3

Freguency
|_I
=

101 7

107

1 1 1 1
o 20000 A0 0000 gooon 100000 120000
Dwuration in Seconds

Figure 2: Distribution of VPN sessions by duration

seconds of duration of them. Specifically,
the bin containing 3,600 seconds (1 hour)
duration and the bin containing 36,000
seconds (10 hour) duration window had such
spikes in the number of sessions (1-2 orders
of magnitude higher than surrounding bins),
that the these spike were still clearly visible
even in a log format histogram. This leads
us to surmise that there may be some sort
of default automatic log-off of VPN sessions
around both of these time frames .

sessions_df | duration_seconds’|=
sessions_df [’duration’].dt.
total_seconds ()

sessions_df [’ duration_seconds’].
describe ()

count 37538.000000
mean 2331.160797
std 3142.384160
min 0.000000
25% 493.000000

50% 2142.000000
75% 3613.000000
max 130122.000000

Name: duration_seconds, dtype:
float64

percentiles=sessions_df [’
duration_seconds’]. quantile

([.05,.1,.15,.2,.25,.3,.35,.4,.45 ,

.5,.55,.6,.65,.7,.75,.8,.9,.95])
percentiles

0.05 1.0
0.10 24.0
0.15 119.0
0.20 281.0
0.25 493.0
0.30 757.0
0.35 1015.0
0.40 1318.0
0.45 1707.0
0.50 2142.0

0.55 2676.0
0.60 3290.0
0.65 3610.0
0.70 3613.0
0.75 3613.0
0.80 3614.0
0.90 3615.0
0.95 3616.0
Name: duration_seconds , dtype:
float64

The two previous snippets of code show 1)
the output of the pandas describe method,
which seems to indicate something interesting
occurring around the aforementioned 3600
second mark, and 2) when we drill down into
the percentiles, we see that the 65th to the
95th percentiles of session durations includes
sessions that end shortly after the 1 hour
mark, bolstering our previous suspicion that
there is some sort of default termination of
VPN sessions just after 1 hour.

3 Results of HHI and Hypo-
thetical Example

3.1 Results of HHI

For the study we looked at a period of 15
consecutive months each with VPN session
data similar to what we explored in Section 2.
Running the entire Python script on the file
for each month yielded the results displayed
in Figure 3 for sessions of all durations: We
can create a 95% confidence interval on the
monthly HHI in the following manner:

59.27—(1.96)15.16 <= 59.27-+(1.96)%15.16

= 29.56 <= 88.98

Months 7 and 8 fall just above this confi-
dence interval, signifying a higher concentra-
tion of VPN sessions among a small group of
users, potentially something worth looking in
to. This is a prime example though of how
our novel application of the HHI is clearly
not predictive, it is instead what in economic

HHI for

h Number of Number of
f\eLisllng;tr?; unique users | sessions
Month 1 75.327 509 26957
Month 2 58.733 533 29187
Month 3 50.644 615 37101
Month 4 53.298 593 35964
Month 5 55.966 596 34924
Month 6 63.638 599 32443
Month 7 91.241 623 36606
Month 8 91.477 635 35634
Month 9 56.542 668 36663
Month 10 53.261 639 31828
Month 11 50.444 675 37625
Month 12 49.713 699 38711
Month 13 50.697 737 42624
Month 14 41.888 743 37538
Month 15 46.185 745 35253
Mean 59.27
St. Dev 15.16

Figure 3: HHI for all session lengths by month

terms would be considered a lagging indica-
tor, as a full 9 months passed in this case
from the time activity in Month 7 began to
the point where our analysis would have de-
tected it.

Figure 4 is the result of creating new
DataFrames consisting of sessions of only a
certain duration or longer. Those two spe-
cific durations, 18,000 and 36,000 seconds,
were used as a filter for creating the new
DataFrames in the following manner:

long_duration_sessions=
sessions_df[sessions_df [’
duration_seconds '] >18000]

After creating a pandas Series of normalized
counts of VPN sessions of long duration, we
feed this Series into the HHI function as de-
scribed in Section 2 and are given HHI num-
bers for each month for long duration ses-
sions. This is done for both durations, again
for all 15 months, with the results summa-
rized in Figure 4: As expected, the number
of both sessions and unique users drops sig-
nificantly as we switch from looking at all ses-
sions to sessions of 18,000+ seconds, and then
again as we switch from 18,000+ seconds to

HHI for HHI for
]éae'c?c?r?:j- N_umber of Numb_er of ?égggg N_umber of Numb_er of
duration VPN | Unidue users sessions | 4. —vion veN | Unidue users sessions
sessions sessions
Month 1 300.22 75 373 687.4 35 107
Month 2 286.51 82 366 705.3 34 111
Month 3 342.97 71 320 727.98 25 95
Month 4 443.77 58 244 606.25 30 80
Month 5 403.16 61 288 521.54 35 84
Month 6 392.99 66 287 909.91 27 94
Month 7 353.23 61 303 600.32 33 86
Month 8 371.15 67 298 516.35 39 89
Month 9 459.93 62 297 764.85 35 114
Month 10 466.16 54 242 870.86 26 71
Month 11 410.09 54 322 867.2 29 92
Month 12 416.66 49 276 661.73 29 90
Month 13 353.59 62 310 1003.4 30 84
Month 14 377.88 72 290 532.54 39 78
Month 15 366.61 85 249 371.21 62 107
Mean 382.99 689.79
St. Dev 52.68 172.95

Figure 4: Long duration sessions HHI by month

36,000+ seconds. The drop in the number of
unique users naturally corresponds to larger
‘market shares’ for each, which means signif-
icantly higher HHI numbers.

We again repeat the process of the con-
struction of confidence intervals, first for
18,000+ second sessions:

382.99 — (1.96) * 52.68 <= 382.99 + (1.96) *
52.68
= 279.74 <= 486.24

It appears that none of the months have an
HHI number outside of the 95% confidence
interval. Next we well construct the same
size confidence intervals for 36,000+ seconds:
689.79 — (1.96) * 172.95 <= 689.79 4 (1.96)
172.95

= 350.81 <= 1028.77

While Month 13 comes close with an HHI
number of 1003, no month falls above the 95%
confidence interval. However, we will via ex-
ample see how when used in such a manner,
the HHI indicator would be able to detect
anomalous behavior definitively with only a
1 month lag.

3.2 Hypothetical Example of Clear
Detection

In this example, let’s look at hypothetical
activity in a particular month, for example,
Month 12. we will look at 36,000+ second
sessions. With the current real data, we have
29 users accounting for 90 VPN sessions of
10 hours or longer, and a resultant HHI of
661.73, slightly below the average HHI for the
15 months we looked at.

Now, let’s imagine that a certain malicious
user, denoted by user ID 999999, has an in-
tent of performing some malicious activity
towards the lab’s internal network, perhaps
monitoring something, which requires this
user to be constantly logged in. For simplic-
ity, let’s imagine the user logs in twice in a
24-hour period and leaves the VPN session
running. After perhaps a default logout that
may appear to occur just after 10 hours, the
user logs back in. This is performed twice a
day for 30 days, resulting in 60 VPN sessions
of 36,000+ seconds for this user. The ab-
normally high concentration of long duration

VPN sessions by the user causes a severe spike
in the HHI number for Month 12. The cal-
culations of this hypothetical malicious user’s
affect on the HHI (60 sessions) are shown in
step by step detail, being added on to the
real user activity for 36,000+ second VPN
sessions (90 sessions) for Month 12 in Figure
5:

With this new hypothetical HHI value of
1,838.22, we would have had a HHI mean for
the 15 months of 768.22 and a standard de-
viation of HHI numbers of 342.74. The value
of 1,838.22 would lie above the upper bound
for even the 99% confidence interval,

768.22 + (2.58) x 342.74 = 1652.49

thus definitely raising a flag of suspicious ac-
tivity.

4 Speed of Movement Indicator

4.1 Methodology

In order to track the speed of movement for
each user between their VPN sessions, we will
have to create a separate DataFrame for each
user. This is done in two steps: 1) We first
create a list of all the user id’s who have had
VPN sessions in a given month (sessions of
ALL lengths),

user_list=
user_session_count_list.index

and then 2) we use a for loop to loop over that
list (it is actually a pandas ’'Index’ object)
and create a new DataFrame with each row
from the master DataFrame for that month
that matches the user id in the list being
copied to the specific DataFrame for that
user.

for row in user_list:
individual _user=sessions_df |
sessions_df [’user ’'|==row

]. copy ()

Once we have the DataFrame created for
each user, but still inside the for loop which
iterates over the user list, we will create tuples
of the current and previous latitude and lon-
gitude pairs for each VPN session, and then
will apply the GeoPy vincenty function [3] to
calculate the distance between the previous
session’s coordinates and the current session’s
coordinates.

for row in range(len(
individual _user [’latitude.
change’])):
if pd.isnull(
individual_user.iloc |
row,18])==True:
distance_output=0
else:
distance_output=
vincenty (
individual_user.
iloc [row,20],
individual_user.
iloc [row,21]).
miles
distance_list .append(
distance_output)

(Columns 20 and 21 in the individual user
DataFrames represent tuples for the previ-
ous and current session’s coordinates). Once
we have the distance between sessions, it is
straight forward to find the time between the
end of the previous session and the start of
the current session given that we have both
session start times and session durations.

It is now just a matter of finding speed
in miles per hour as —distance ___ "getting
a speed limit, and creating a ’high speed’
DataFrame where the rows represent VPN
sessions where the speed of movement since
the previous session is over the speed limit:

speed_limit=600

speed_list =[]
for index in range(len(
distance_list)):

. Step 1: .
User ID VPN session Market Share Multir?ly by Step 2: Cumulative
count 100 Square Sum of HHI
999999 60 0.40 40.00 1,600.00 1,600.00
XXX520 11 0.07 7.33 53.78 1,653.78
XXX510 9 0.06 6.00 36.00 1,689.78
XXX209 9 0.06 6.00 36.00 1,725.78
XX X864 8 0.05 5.33 28.44 1,754.22
XXX960 7 0.05 4.67 21.78 1,776.00
XXX165 7 0.05 4.67 21.78 1,797.78
XXX677 5 0.03 3.33 11.11 1,808.89
XXX835 4 0.03 2.67 7.11 1,816.00
XXX218 3 0.02 2.00 4.00 1,820.00
XXX194 2 0.01 1.33 1.78 1,821.78
XXX880 2 0.01 1.33 1.78 1,823.56
XXX599 2 0.01 1.33 1.78 1,825.33
XXX451 2 0.01 1.33 1.78 1,827.11
XXX745 2 0.01 1.33 1.78 1,828.89
XXX360 2 0.01 1.33 1.78 1,830.67
XXX209 2 0.01 1.33 1.78 1,832.44
XXX245 1 0.01 0.67 0.44 1,832.89
XXX693 1 0.01 0.67 0.44 1,833.33
XXX213 1 0.01 0.67 0.44 1,833.78
XXX352 1 0.01 0.67 0.44 1,834.22
XXX163 1 0.01 0.67 0.44 1,834.67
XXX245 1 0.01 0.67 0.44 1,835.11
XXX726 1 0.01 0.67 0.44 1,835.56
XXX970 1 0.01 0.67 0.44 1,836.00
XXX735 1 0.01 0.67 0.44 1,836.44
XXX038 1 0.01 0.67 0.44 1,836.89
XXX969 1 0.01 0.67 0.44 1,837.33
XXX963 1 0.01 0.67 0.44 1,837.78
XXX418 1 0.01 0.67 0.44 1,838.22
Total Sessions: 150 Step 3: Sum 1,838.22

Figure 5: Month 12 36,000+ second VPN sessions with overlay of hypothetical malicious user’s
VPN sessions and calculation of new HHI

10

speed_output=3600x*(

distance_list [index]/
time_change _list |

index|) #need to
make miles/sec into
miles/hr

speed_list .append (
speed_output)

speed=np.asarray (speed_list)
individual_user [’speed’|=
speed

user_high _speed_df=
individual _user |
individual _user [’speed ’']>
speed_limit |

We then create a master high speed
DataFrame by concatenating all of the
individual user high speed DataFrames:

df_high_speed_list =]]

df_high_speed_list .append(
user_high_speed_df)

master_high_speed_df=pd.concat (

df_high_speed_list)

4.2 Results of Concatenating
Speed DataFrames

High

To encompass inter-session activity that
spanned the end of one month and begin-
ning of the next month, we decided to look at
the first 9 months of 2017. Out of a total of
383,142 VPN sessions of all lengths, we found
that 2194, or just over half of one percent, vi-
olated the 600 mph speed limit that modern
commercial air travel would seem to logically
set. Furthermore, there are a small number
of absurdly high speeds that would violate
any sort of common sense, and may at first
glance indicate some sort of compromised cre-
dentials. Figure 6 shows a max speed that
fits this descriptions, as well as mean speed
orders of magnitude above the median speed,

indicating the extreme right skew of the dis-
tributions of inter-session speeds in the mas-
ter high speed DataFrame.

Yet when we look back at Figure 1, we are
reminded that approximately 9% of all IP ad-
dresses in the US are not resolved correctly to
within 250km when using the library behind
the GeoLite2 database (thereare two other re-
lated databases, GeolP2 and GeolP2 Preci-
sion, but with both a still significant portion
of IP addresses are not able to be properly
resolved). This suspicion of the IP address
not accurately resolving to location coordi-
nates was corroborated by our manual input
of the latitude and longitude into third party
tools on the internet which seem to map lat-
itude and longitude coordinates quite accu-
rately. In one instance, a number of users
were repeatedly mapped to a spot in the mid-
dle of a lake of a non-neighboring state [4] [5]
just moments after being connected to a net-
work within the state of New Mexico. So in
summary, while the location pinpointing of a
VPN session is promising and may serve to
warrant manual inspection in some cases, it
still lacks some of the accuracy that a credit
card network’s point of sale location based
fraud system may currently have. One wor-
thy note from MaxMind, Inc. the provider
of these databases, is that IP geolocation is
more accurate from broadband than from cel-
lular networks, however that likely would not
apply in most of the cases which we studied.

5 Conclusion and Future Work

Following off of the previous section, an area
of improvement of this study is the accuracy
of Geolocation IP services. This is something
which we would naturally expect to increase
over time, and is largely in the hands of those
specific service providers. Other types of ge-
olocation include the use of MAC addresses,
but if the VPN session is from a portable
laptop (very likely in our case), this proba-

11

In [23]: master high speed df.describef()
Out[23]:
duration seconds login latitude login longitude time_change latitude change longitude change distance speed
count 2194.000000 2194000000 2194.000000 2194.000000 2194.000000 2194.000000 2194.000000 2.194000e+03
mean 1700.812671 37076316 -100.213043 1674.282133 0.049681 -0.005848 756.162453 2.870815e+13
std 3061.204873 3.877720 23.891236 2314466020 3.604958 16.416408 644452668 1.034145e+14
min 0.000000 -29.643400 -157.858300 0.000000 -32.848300 -135.119800 0537259 6.004204e+02
25% 310250000 35.140400 -111.891100 1.000000 -1.928050 -13.434000 317.422845 1.081538e+03
50% 1005.000000 37.193100 -106.309300 727.000000 -0.002200 -0.008750 779.394441 2.904018e+03
75% 2285.750000 37.666800 -97.622000 2732.000000 2.030200 12.634850 1112.364212 1.193814e+06
max 36005.000000 53.057700 138.690300 29638.000000 24.7439000 236.512300 6220.883164 1.972752e+15

Figure 6: Descriptive statistics for the master high speed DataFrame

bly won’t help this particular study much but
may be broadly applicable if someone’s VPN
session originates from another machine.

As far as our novel (application of) indica-
tor, the Herfindahl-Hirschman Index, we have
considered using both different time periods
and different metrics. Performing the HHI
calculation on shorter time periods such as a
weekly basis may allow us to detect anomalies
with shorter lag times. Further, a weekly HHI
calculation may then adjust for certain users’
travel patterns better than a monthly indi-
cator; more consistent patterns may emerge
when looking at say, a Sunday to Saturday
period than a period, than a period that
starts on an arbitrary day of the week such
as our monthly study. We can also apply the
HHI to different metrics. We considered lo-
gin states, login country, and potentially even
HHI numbers for different hour segments of
the day as considerations of possible further
study.

Finally, we think the idea of combining
these two indicators may potentially yield
some promising results. Some manual inspec-
tion would be required to differentiate be-
tween high speed session changes which re-
sult from incorrect IP address resolution and
those which are legitimate, but then we could
look to combine user movements over a more
modest speed limit with HHI numbers that

12

fall a certain number of standard deviations
above the mean over a certain time period.

Acknowledgements

I would like to thank my mentor at Los
Alamos, Juston Moore, for his patience while
I got up to speed with pandas and for giving
me constant technical help and guidance, par-
ticularly with regular expressions. Addition-
ally, I would like to thank another scientist in
our group, Melissa Turcotte, for teaching me
that a proper scientist cannot write reports or
perform research with Microsoft Office prod-
ucts, and for thus answering all of my ques-
tions about Python and LaTeX in detail and
with great patience.

References

[1] MaxMind, Inc., GeoIP2 City Accuracy,
URL="maxmind.com/en/geoip2-city-
database-accuracy’

[2] netmarketshare.com,
Search Engine Desktop Share,
URL="netmarketshare.com’

[3] python™
geopy 1.11.0

URL="pypi.python.org/pypi/geopy’

[4] Wikipedia,
Geolocation software,
URL="en.wikipedia.org/wiki/Geolocation_software’

[5] Wikipedia,
MaxMind,
URL='en.wikipedia.org/wiki/MaxMind’

13

