A Programming Framework for Neuromorphic Systems with
Emerging Technologies’

Catherine D. Schuman
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6085
schumancd@ornl.gov

James S. Plank, Garrett S. Rose,
Gangotree Chakma,

Austin Wyer, Grant Bruer
University of Tennessee

Nouamane Laanait
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6487
laanaitn@ornl.gov

Knoxville, Tennessee 37996
[plank,garose,gchakma,awyer,

gbruer]@utk.edu

ABSTRACT

Neuromorphic computing is a promising post-Moore’s law era tech-
nology. A wide variety of neuromorphic computer (NC) architec-
tures have emerged in recent years, ranging from traditional fully
digital CMOS to nanoscale implementations with novel, beyond
CMOS components. There are already major questions associated
with how we are going to program and use NCs simply because
of how radically different their architecture is as compared with
the von Neumann architecture. When coupled with the implemen-
tations using emerging device technologies, which add additional
issues associated with programming devices, it is clear that we
must define a new way to program and develop for NC devices. In
this work, we discuss a programming framework for NC devices
implemented with emerging technologies. We discuss how we have
applied this framework to program a NC system implemented with
metal oxide memristors. We utilize the framework to develop two
applications for the memristive NC device: a simple multiplexer and
a simple control task (the cart-pole problem). Finally, we discuss
how this framework can be extended to NC systems implemented
with a variety of novel device components and materials.

CCS CONCEPTS

- Computer systems organization — Neural networks; - Hard-
ware — Emerging technologies; Analog and mixed-signal cir-
cuits; « Computing methodologies — Neural networks; Genetic
algorithms;

*“This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
000R22725 with the U.S. Department of Energy and Air Force Research Laboratory
under agreement number FA8750-16-1-0065. The United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

NANOCOM ’17, Washington D.C., DC, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4931-4/17/09...$15.00

DOI: 10.1145/3109453.3123958

ACM Reference format:

Catherine D. Schuman, James S. Plank, Garrett S. Rose, Gangotree Chakma,
Austin Wyer, Grant Bruer, and Nouamane Laanait. 2017. A Programming
Framework for Neuromorphic Systems with Emerging Technologies. In
Proceedings of NANOCOM 17, Washington D.C., DC, USA, September 27-29,
2017, 7 pages.

DOI: 10.1145/3109453.3123958

1 INTRODUCTION

The end of Moore’s law, and associated issues such as the end of
Dennard scaling, have spurred the computing, devices, and materi-
als communities into a flurry of activity in the creation of beyond
CMOS and beyond von Neumann architectures. One field that has
emerged as a popular post-Moore’s era technology is neuromor-
phic computing [25]. Neuromorphic computing clearly falls into
the category of beyond von Neumann as it’s a novel architecture
type, but it often falls into the category of beyond CMOS as well,
as more and more novel devices and materials are used to imple-
ment neuromorphic computing systems. A key issue associated
with neuromorphic computing in general and neuromorphic de-
vices utilizing novel devices and materials in particular is how to
program them effectively. Neuromorphic systems usually (though
not always) implement spiking neural networks, and spiking neu-
ral networks are typically capable of realizing complex topologies,
including recurrent connections and non-layered structures. These
factors already significantly narrow the list of potential training
algorithms. When we allow for the inclusion of emerging technolo-
gies into the neuromorphic device itself, we introduce additional
factors that can make it more difficult to program the device, such
as lower weight resolution on synapses than is possible with digital
memory, stochasticity, and inconsistencies in component operation
due to fabrication faults.

In this work we discuss a software framework designed for pro-
gramming spiking neuromorphic systems implemented with emerg-
ing technologies. We discuss the application of this software frame-
work to a memristive neuromorphic implementation and provide
some preliminary results on two applications for that device type.
We also discuss how this software framework can be applied to
emerging devices and materials in the future in order to fully take
advantage of the properties and characteristics of those devices and
materials for neuromorphic implementations.

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA

2 BACKGROUND AND RELATED WORK

Though there have been algorithms developed specifically for train-
ing spiking neural networks (SNNs), such as SpikeProp, a variation
of back-propagation [29], these algorithms can be restrictive in
terms of the topologies that they can handle. Other methods for
training SNNs include weight learning mechanisms such spike-
timing dependent plasticity (STDP), which have demonstrated ca-
pabilities for some tasks [35], but are also not an all-encompassing
training method as they have yet to be demonstrated for general
tasks. Others have proposed utilizing genetic algorithms [21] and
particle swarm optimization [19] to train SNNs. These types of train-
ing methods are more widely applicable, as they are not restricted in
the types of spiking neuron models or the network topologies that
they can accommodate. They can train over not only weights of the
synapses, but also delays and topologies. Their primary downside
is that they can be relatively slow to train when compared with
other neural network training implementations.

SNNs are one of the most popular neural network implemen-
tations for neuromorphic implementation, and have been used in
several major neuromorphic projects, including SpiNNaker [10],
TrueNorth [24], and Neurogrid [3]. There are a variety of neuro-
morphic implementations of SNNs that utilize emerging device
types and materials, including carbon nanotubes [2], spintronics
[12], graphene [40], and memory technologies such as conductive-
bridging RAM (CBRAM) [22] and atomic switches [37]. A common
device type that is used in neuromorphic systems is the memory-
resistor or memristor. Memristors can exhibit a functionality similar
to STDP, so they have commonly been used to implement synapses
[18]. A wide variety of different types of memristors have been
used in the literature, including metal-oxide based memristors [27],
polymer memristors [42], and other organic memristors [20]. In this
work, we are concerned primarily with oxide-based memristors,
but as we discuss in Section 6, we believe our approach will be
applicable to a wide variety of neuromorphic implementations that
include emerging devices and materials.

Training and learning algorithms for spiking neuromorphic sys-
tems are very similar to training algorithms for SNNs. One approach
that has been used for training spiking neuromorphic systems is to
train another type of artificial neural network model and map the
resulting network to the spiking neuromorphic architecture. This
approach has been used for a variety of different neural network
model types, including feed-forward [23] and recurrent neural net-
works [8], but one of the most popular approaches for recent neural
network systems is the mapping of convolutional neural networks
to spiking neuromorphic architectures [9]. Training algorithms
specifically for certain device types have also been developed, as
such as back-propagation adaptations for memristive neural net-
works [26]. Genetic algorithms [13] and particle swarm optimiza-
tion methods [5] have been commonly applied to neuromorphic
implementations for the same reasons as they have been applied to
SNNs, but also because they can optimize to device variations and
faults by utilizing the chip-in-the-loop approach.

C. Schuman et al.

3 PROGRAMMING FRAMEWORK

In this section, we present the elements of our programming frame-
work for spiking neuromorphic systems, and we highlight the fea-
tures of our framework that make it amenable to systems that
utilize emerging devices and materials. Our framework assumes a
simple spiking neural network model implementation. In particular,
we assume some basic characteristics of the network model: input
charges are applied to input neurons and output neurons are mon-
itored for output fires over the course of activity in the network.
Otherwise, there is very little assumption made about the internal
structure of the network or the network’s operation, allowing for a
wide range of network models and device level characteristics to be
implemented. There are three major components to the software
framework: models, training, and applications.

3.1 Models

In our software framework, a model is a particular device implemen-
tation. There are two major components of models: networks and
devices. Networks represent an instance of the model and describe
a set of parameters for the structural elements (usually neurons and
synapses), as well as the network structure itself (the configuration
of neurons and synapses). Networks are “loaded” onto the device
instance. The device implements some basic commands such as
apply input, monitor output, and “run” to indicate that activity
should be simulated. A key component of the network implementa-
tion for our software framework is the model-specific evolutionary
optimization operations; for our framework, these operations are
crossover and mutation, which will be discussed in Section 3.3.
Three models have currently been implemented in this frame-
work: neuroscience-inspired dynamic architectures (NIDA), a sim-
ple spiking neural network model implemented entirely in software
[32]; Dynamic Adaptive Neural Network Arrays (DANNA), a fully
digital neuromorphic system currently implemented on FPGA [6];
and memristive DANNA (mrDANNA), a mixed analog-digital imple-
mentation that utilizes memristive circuitry as part of the synapse
implementation. In this work, we highlight mrDANNA as the model,
because it utilizes an emerging device technology (memristors).
When implementing a new model for our programming frame-
work, there are a variety of aspects that can be specified that are
helpful for emerging device types and materials. The model allows
the user to specify connectivity restrictions, components of the
model (e.g., neurons and synapses) and any number of parameters
per component. If there are parameters that are specific to a par-
ticular device type or material that are not typically included in
neuromorphic systems, the model implementation can accommo-
date those parameters, and they can be optimized during training.

3.2 Applications

The application modules are tasks to which a neuromorphic im-
plementation may be applied. In this case, the task usually applies
input to a neuromorphic implementation and expects output. Ap-
plications include a fitness function implementation, which is used
to evaluate how well a particular network instance is performing
for that task. Examples include control applications such as pole-
balancing and navigation, classification tasks and logic applications
such as exclusive-or. The key property of our application modules

Neuromorphic Programming Framework

is that any model can be “compiled” with any application and is
treated in the same way from the application perspective. As such,
it is straightforward to complete an apples-to-apples comparison
between two neuromorphic model implementations or a single
model implementation with different parameters. This is especially
important in determining which device type or material performs
best for a particular application, and it allows us to begin to make
conclusions about which device types and materials are best suited
in general for neuromorphic implementations.

3.3 Training

Our current training module implementations are based on evolu-
tionary optimization (EO), but future implementations may include
simulated annealing, particle swarm optimization, and/or gradient-
based methods for fixed topologies. The two training modules are
a basic EO [34], which is meant to be run on a single machine, and
a distributed EO, which is meant to be run on a supercomputer or
cluster [33]. We utilize an evolutionary optimization (EO) approach
because it does not require a particular neuron or synapse model to
function appropriately; it is not restricted to networks with neuron
and synapse components; it can train within the characteristics of
a particular device implementation (e.g., connectivity restrictions
between neurons or synaptic weight resolution restrictions); it can
train over both parameters and network topology, and it can utilize
either a software simulation or the device itself (if it is available).
The key issues associated with our current EO implementation are
that it can be difficult to extend to larger network sizes (beyond
several hundred neurons and several thousand synapses), and it
can be slow to converge. As such, in the future, we plan to de-
velop other, custom optimization methods to work alongside or
independently of an EO method. At present, however, EO gives a
convenient way to explore the characteristics of network models,
devices, and materials that are not well understood.

The EO modules are standalone and do not require any adapta-
tion to deal with different models and applications. However, there
are EO components that must be addressed as part of implementing
a particular model or application. For the application side, a fitness
function must be implemented in order for the EO to function prop-
erly. The fitness function takes a network and a device instance,
loads the network onto the device, and returns a fitness score corre-
sponding to how well the provided network on the provided device
is performing the task. Care must be taken that the specified fitness
function evaluates how well the network actually accomplishes the
given task. For example, consider a data classification task where
95 percent of the data instances are of class A and 5 percent are
distributed across other classes. In this case, a simple classification
accuracy measure will not be the most appropriate fitness measure,
as it will likely produce many networks that simply classify all data
instances into class A.

Two model-specific EO components are crossover and mutation.
Crossover is an operation that takes two parent networks as input
and produces two children networks as output, where each child
contains some component of each parent. Mutation takes a single
network as input and produces a mutated version of that network,
in which a relatively small scale change has been made to the
network. The model-specific EO components can be more difficult

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA

DANNA Crossover

Parent 1 Parent 2

g | o
=1 Rty o f g
<5 {7 s = :
i1 7 N |
’ \ |
£ | 1
| - |

NIDA Crossover

|

3t
I A Resulting Child

Figure 1: Crossover operations for both NIDA and DANNA
rely on the way they are embedded in physical space. Similar
crossover operations based on placement in physical space
can be created for new neuromorphic models.

to implement; however, there are usually commonalities across
models that can be exploited when implementing crossover and
mutations for a new model. For example, our crossover operations
for all three currently implemented models (NIDA, DANNA, and
mrDANNA) rely on network instances for each being embedded
into physical space (two-dimensional layouts for both DANNA and
mrDANNA and a three-dimensional layout for NIDA), as shown in
Figure 1. Crossover in NIDA, DANNA, and mrDANNA leverages the
spatial relationships in the networks when recombining two parent
networks to produce children networks. Similarly, NIDA, DANNA,
and mrDANNA are all composed of neurons and synapses, and
mutations for each of those models deal with updating parameter
values for neurons and synapses (though the parameters themselves
are slightly different across models) and adding or deleting neurons
or synapses in a network.

With respect to models for devices that include emerging device
components or materials, EO can accommodate a variety of param-
eters for each component, even if the parameter is not related to
the neuromorphic functionality or representation at all. EO can
also accommodate whatever restrictions are required because of a
particular device implementation. For example, a common restric-
tion on novel synapse implementations is the number of weight
values the synapse implementation can realistically attain. EO will
operate within and optimize to those restrictions. Finally, a major
feature of EO that is important for implementations with emerging
devices and materials is that EO can utilize the chip in the loop as
part of the optimization. In particular, the EO can use a given chip
or device to perform the fitness evaluation and therefore benefit
from whatever performance gains can be attained by using the chip,
without changing the underlying circuitry. As such, the EO can
train to take into account the actual operation of the device, rather
than assuming that the operation of the device adheres to some
theoretical constraints.

4 MEMRISTIVE NETWORKS

In this work, we apply our neuromorphic programming framework
to a memristive neuromorphic implementation called memristive
DANNA (mrDANNA). In mrDANNA, neurons are implemented

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA

with digital CMOS and synaptic weights are represented using mem-
ristors, where the memristance of the memristor is proportional
to the weight value. Synapses in the mrDANNA inspired circuit
must represent either a positive or negative weight and include
delay distance as prescribed by the NIDA/DANNA model [7, 31].
We use two memristors to represent each synapse, so that both
positive and negative weights can be represented. The memristive
device considered here is an hafnium oxide (HfO3) memristor. In
the memristor pair for each synapse, one memristor is used to drive
positive current while the other drives negative current (pulls cur-
rent from the integrator). If the memristance of both memristors
in the pair are equal then the currents will cancel each other for
any given input spike and the effective weight is zero. Over the
course of operation, a synapse’s weight value adjusts based on the
activation of that synapse and the firing activity of that synapse’s
post-synaptic neuron. The current driving the input of an integrate-
and-fire neuron will either be negative or positive based on the
effective conductance (weight) of the memristor pair. For the neu-
ron, we implement an integrate-and-fire circuit. The neurons are
designed to produce spikes based on the incoming synaptic signals.
The design allows the neurons to operate in two different phases, in-
tegration phase and the firing phase. When the neuron operates in
its integration phase, the op amp acts as an integrator accumulating
charge resulting in the membrane potential. A comparator circuit
compares the membrane potential with the threshold voltage and
generates a firing event.

Rather than training using an ideal network model in software on
traditional digital computers, where any network topology can be
realized and weight values are usually represented as floating point
values (with 32 or 64-bit weight resolution), the EO training method
operates within the characteristics and restrictions of mrDANNA.
For example, mrDANNA synapses can realistically achieve around
ten activation levels, which results in a total of around eleven pos-
sible weight values including zero (a four-bit weight resolution).
Additionally, the online learning operations are significantly sim-
pler than spike-timing-dependent plasticity (STDP) mechanisms
implemented in most neuromorphic hardware [11, 35]. The EO
relies on a simulation of mrDANNA, and this simulation includes
the simple online learning mechanism. As such, the EO learns to
operate the network as the weight values are updating. As we un-
derstand the physical characteristics of fabricated mrDANNA chip,
we may also include device variation into the simulation or, in the
best case scenario, utilize the actual chip itself instead of simulation
over the course of EO, to train within the specific characteristics of
a particular fabricated chip.

5 RESULTS

Here, we present two applications: a micro-application (multiplexer)
and a control application (the cart-pole problem). In our program-
ming framework, we have implemented a variety of micro applica-
tions (including logic gates such as exclusive-or, and, not, or, etc.)
that are convenient for testing functionality of the framework, and
that can be used as building blocks to build more complex neuro-
morphic networks. We use the w = 1 version of the multiplexer
task, which takes three inputs: two input lines, which can take the
value 1 or 0, and an input line selector, which specifies which input

C. Schuman et al.

Figure 2: One of the mrDANNA networks for the multi-
plexer task, showing input neurons (yellow), output neu-
rons (red), and hidden neurons (blue). The label for the neu-
rons are the location on the array, and the label on the
synapses are the weights followed by the delays.

line should be selected as output. There are three corresponding
input neurons, and we use rate coding to encode a value of 0 or 1
for that neuron. If the input value is 0, we fire once on that input
neuron. If the input value is 1, we fire two pulses on that input
neuron with the pulses separated by 5 units of time.The units of
time are determined by the neuromorphic model the application is
compiled with. For mrDANNA, the time units are clock cycles.

We have also implemented a variety of control applications,
including one and two-dimensional navigation with obstacles. In
this work, the control application that we utilize is the cart-pole
problem, which is described in more detail in [30]. There are four
values that are included as input (cart position, cart velocity, pole
position, and pole velocity), which are each categorized into one of
two bins (low or high). There is a corresponding neuron for each
of the two bins for each of the four inputs, resulting in eight total
input neurons. There are two output neurons; one corresponds to
applying 10 N to the cart and the other corresponds to applying
-10 N to the cart. It is worth noting that nothing about either of
the applications described herein was tailored to the mrDANNA
model; the application code can easily be compiled with any of the
neuromorphic models in the framework (e.g., NIDA and DANNA).

Using the described software framework, mrDANNA networks
for both the multiplexer and pole balancing problems were created.
For the multiplexer, we ran 662 instances of the EO training method
for up to 200 epochs. Training for 200 epochs with the basic EO
method using four fitness threads for evaluation took an average
of four minutes and fifty seconds. Out of the 662 instances, six-
teen networks were created that achieved “perfect” performance,
which means that with randomly generated streams of input, each
of those 16 networks is capable of performing 50,000 operations
correctly. For these sixteen networks, the average energy consumed
per evaluation of the multiplexer is 4.63 nJ, and the network with
the minimum energy consumed per evaluation is 2.63 nJ. One of
the associated multiplexer networks is shown in Figure 2.

For pole balancing, seven runs were completed of the distributed
EO method (the master-slave parallel method described in [33]) on
eight nodes using eight threads each for parallel fitness evaluation.
The training runs took an average time of 9 minutes and 13 seconds
to reach the maximum fitness value. The resulting networks had
an average size of 12.75 neurons and 14 synapses, and the smallest

Neuromorphic Programming Framework

Figure 3: One of the mrDANNA networks for the pole balanc-
ing task, showing input neurons (yellow), output neurons
(red), and hidden neurons (blue). The label for the neurons
are the location on the array, and the label on the synapses
are the weights followed by the delays.

network had 11 neurons and 9 synapses. The networks for the pole
balancer are larger than those for the multiplexer, and thus, the
energy consumption per network goes up. For each evaluation of
the pole balancer (a single input instance applied to get a single
force value), the average energy consumption for the networks was
14.34 nJ and the minimum energy consumption for a network was
10.9 nJ. One of the pole balancing networks is shown in Figure 3.
The key components of these results are that, utilizing the frame-
work, it is fairly easy to build networks for various applications. We
showed that for two simple applications, networks can be be built
using the EO in a relatively short amount of time. The resulting
networks can also be used to estimate energy usage, which gives us
an understanding of the performance we can expect on real tasks.

6 DEVICES AND MATERIALS MOVING
FORWARD

In this work, we focus our attention specifically on a device con-
taining HfO, memristors, and our resulting networks are built
assuming the synapse behaves in a particular way due to the char-
acteristics of that material. Underlying the characteristic response
of any memristor device is a physical phenomenon known as resis-
tive switching (RS), whereby a material undergoes large changes
in its electrical resistance that are reversible and hysteretic. RS has
been observed in many dielectrics, in particular those based on
transition metal oxides (TMOs) [28], including insulating binary
compounds of TMOs, such as TiO2 and HfO,. Resistive switching
is by no means restricted to insulating binary oxides but has been
observed in many classes of materials [15], ranging from Mott in-
sulators to strongly-correlated electron systems such as VO3 [1].
The microscopic mechanisms responsible for RS are equally diverse
and range from coupled electronic/structural phase transitions as
a function of temperature [4] (e.g. VO3) and pressure [16] (e.g.
(V1-xCry)203), electric field-induced creation and migration of

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA

oxygen vacancies (e.g. TiO3), and electric field-induced electronic
phase separation (e.g. GaV4Sg)[39].

Many fundamental questions underpinning RS have only re-
cently became addressable through the advent of sophisticated
microscopy techniques [41]. A fundamental challenge remains in
exploiting RS in practical applications; namely the presence of scale-
dependent or localized states in a material at the microscopic level
[36] leading to vastly different yet co-existing resistance responses.
These localized material responses, ranging from conductive fila-
ments in insulating binary TMOs to segregated electronic phases in
Mott insulators [38], have pronounced sensitivities to the initial con-
ditions in a material such as oxygen vacancy distributions/profiles.
Complete control over these initial material conditions via synthesis
is currently beyond the reach of even the most advanced material
growth techniques, as it would essentially require atom-by-atom
synthesis precision. Consequently, harnessing the inherent and
material-intrinsic variability in RS responses of existing materials
in practical implementations is of substantial value.

For future work, we propose utilizing our software framework
to exploit non-uniformity of RS in materials. For example, our EO
training approach for building neuromorphic computing models
and architectures can be optimized based on databases of nanoscale
current-voltage responses of different materials. The current-voltage
responses can be acquired via advanced scanning probe microscopy
(SPM) on a variety of materials ranging from epitaxial thin-films,
nanostructures, nanocomposites, and so on. Moreover, various
frequency-modulated and bias amplitude-modulated waveforms
can now be encoded in multi-frequency scanning probe microscopy
[17] to spatially map various responses of memristors with nanome-
ter/nanosecond spatiotemporal resolutions, and emulate device
operation at the nanoscale via pulse-coding. Given the close corre-
spondence between the nanoscale memristor characteristics, mea-
surable in principle via SPM, and hyper-parameters of neuromor-
phic model architectures, one can foresee the optimization of the
latter via EO to derive optimal SNNs topologies, synapse activation
functional forms, time-constants and synapse weights, etc., that are
material-specific. In essence, utilizing this software framework to
build material-specific neuromorphic networks is the first step of
neuromorphic computing co-design.

Future investigations into materials that can emulate synaptic
connections can also target the presence of novel topological mag-
netic structures such as skyrmions [14] whose practical robustness
is guaranteed via the topology of fundamental physical interactions
and whose readout speeds can potentially far exceed those of tra-
ditional memristor implementation via binary oxides. Here again,
we foresee the application of EO as a key component in harnessing
fundamental nanoscale physics to go beyond Moore’s law.

7 CONCLUSIONS AND FUTURE WORK

In this work, we describe a software framework that enables the
exploration of neuromorphic systems implemented with emerging
technologies. We describe the framework and how we apply it to
a neuromorphic implementation that includes HfO; memristors.
We present results on two applications, a multiplexing task and a
control task. Finally, we discuss how we can leverage our existing

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA

software framework to study a variety of other materials that can
be used in nanoscale neuromorphic devices.

Our programming framework provides a way to evaluate new
neuromorphic devices, and enables ease of comparison across mul-
tiple neuromorphic systems. The training method tailors to each
neuromorphic device. We believe that this approach gives a fairer
comparison of potential performance than attempting to map a
pre-existing network model onto each platform, as each individual
device may have different restrictions associated with its physical
limitations. In future work, we intend to utilize this framework to
compare various metrics, including training performance, energy
efficiency, cost, and speed of computation, across a variety of plat-
forms, such as implementations running on CPUs and/or GPUs,
custom fully digital devices implemented in CMOS, and devices
implemented with other emerging device types and materials.

ACKNOWLEDGEMENTS

Research sponsored in part by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory, man-
aged by UT-Battelle, LLC, for the U. S. Department of Energy. This
work was funded in part by the Air Force Research Laboratory,
Information Directorate under award number FA8750-16-1-0065.

REFERENCES

[1] 2014. Measurement of a solid-state triple point at the metal-insulator transition
in VO2. 500, 7463 (April 2014), 431-434.

[2] S. Barzegarjalali and A.C. Parker. 2016. A neuromorphic circuit mimicking
biological short-term memory. In Engineering in Medicine and Biology Society
(EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE, 1401-1404.

[3] B.V.Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.M.
Bussat, R. Alvarez-Icaza, JV. Arthur, P.A. Merolla, and K. Boahen. 2014. Neurogrid:
A mixed-analog-digital multichip system for large-scale neural simulations. Proc.
IEEE 102, 5 (2014), 699-716.

[4] A Cavalleri, M Rini, HH W Chong, S Fourmaux, T E Glover, P A Heimann,] C
Kieffer, and R W Schoenlein. 2005. Band-Selective Measurements of Electron
Dynamics in VO2 Using Femtosecond Near-Edge X-Ray Absorption. Physical
Review Letters 95, 6 (Aug. 2005), 067405.

[5] M.A. Cavuslu, C. Karakuzu, and F. Karakaya. 2012. Neural identification of
dynamic systems on FPGA with improved PSO learning. Applied Soft Computing
12, 9 (2012), 2707-2718.

[6] M.E.Dean, J. Chan, C. Daffron, A. Disney, J. Reynolds, G. Rose, J.S. Plank, JD.
Birdwell, and C.D. Schuman. 2016. An Application Development Platform for
Neuromorphic Computing. In Neural Networks (IJCNN), 2016 International Joint
Conference on. IEEE, 1347-1354.

[7] M.E. Dean, C.D. Schuman, and J.D. Birdwell. 2014. Dynamic Adaptive Neu-
ral Network Array. In Unconventional Computation and Natural Computa-
tion, Oscar H. Ibarra, Lila Kari, and Steffen Kopecki (Eds.). Lecture Notes in
Computer Science, Vol. 8553. Springer International Publishing, 129-141. DOI:
https://doi.org/10.1007/978-3-319-08123-6_11

[8] P.U.Diehl, B.U. Pedroni, A. Cassidy, P. Merolla, E. Neftci, and G. Zarrella. 2016.
Truehappiness: Neuromorphic emotion recognition on truenorth. In Neural
Networks (IJCNN), 2016 International Joint Conference on. IEEE, 4278-4285.

[9] SK.Esser, P.A. Merolla, JV. Arthur, A.S. Cassidy, R. Appuswamy, A. Andreopou-
los, DJ. Berg, J.L. McKinstry, T. Melano, D.R. Barch, and others. 2016. Convolu-
tional networks for fast, energy-efficient neuromorphic computing. Proceedings
of the National Academy of Sciences (2016), 201604850.

[10] S.B. Furber, D.R. Lester, L.A. Plana, J.D. Garside, E. Painkras, S. Temple, and
A.D. Brown. 2013. Overview of the spinnaker system architecture. IEEE Trans.
Comput. 62, 12 (2013), 2454-2467.

[11] S. Fusi. 2002. Hebbian spike-driven synaptic plasticity for learning patterns of
mean firing rates. Biological cybernetics 87, 5 (2002), 459-470.

[12]]J. Grollier, D. Querlioz, and M.D. Stiles. 2016. Spintronic Nanodevices for Bioin-
spired Computing. Proc. IEEE 104, 10 (2016), 2024-2039.

[13] D.Howard, L. Bull, and B. de Lacy Costello. 2015. Evolving Unipolar Memris-
tor Spiking Neural Networks. In Artificial Life and Computational Intelligence.
Springer, 258-272.

[14] Y. Huang, W. Kang, X. Zhang, Y. Zhou, and W. Zhao. 2017. Magnetic skyrmion-
based synaptic devices. Nanotechnology 28, 8 (Jan. 2017), 08LT02-8.

[15

(16]

(17]

(18]

[20]

(23]

[24

[27]

(28]

[29]

(32]

(33]

(34]

(36]

(37]

(38]

(39]

C. Schuman et al.

E.Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren,
D. Roditchev, V.T. Phuoc, M.P. Besland, and L. Cario. 2015. Resistive Switching
in Mott Insulators and Correlated Systems. Advanced Functional Materials 25, 40
(Oct. 2015), 6287-6305.

A Jayaraman, D B McWhan,] P Remeika, and P D Dernier. 1970. Critical Behavior
of the Mott Transition in Cr-Doped V,03. Physical Review B 2, 9 (Nov. 1970),
3751-3756.

S. Jesse and S.V. Kalinin. 2011. Band excitation in scanning probe microscopy:
sines of change. Journal of Physics D-Applied Physics 44, 46 (Nov. 2011), 464006.
S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, and W. Lu. 2010.
Nanoscale memristor device as synapse in neuromorphic systems. Nano letters
10, 4 (2010), 1297-1301.

N. Kasabov and H.N.A. Hamed. 2011. Quantum-inspired particle swarm opti-
misation for integrated feature and parameter optimisation of evolving spiking
neural networks. International Journal of Artificial IntelligenceaDé 7, A11 (2011),
114-124.

Y.P. Lin, C.H. Bennett, T. Cabaret, D. Vodenicarevic, D. Chabi, D. Querlioz, B.
Jousselme, V. Derycke, and J.O. Klein. 2016. Physical Realization of a Supervised
Learning System Built with Organic Memristive Synapses. Scientific Reports 6
(2016).

L.P. Maguire, T.M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin.
2007. Challenges for large-scale implementations of spiking neural networks on
FPGAs. Neurocomputing 71, 1 (2007), 13-29.

D Mahalanabis, M Sivaraj, W Chen, S Shah, HJ Barnaby, MN Kozicki, J Blain
Christen, and S Vrudhula. 2016. Demonstration of spike timing dependent
plasticity in CBRAM devices with silicon neurons. In Circuits and Systems (ISCAS),
2016 IEEE International Symposium on. IEEE, 2314-2317.

D. Marti, M. Rigotti, M. Seok, and S. Fusi. 2016. Energy-efficient neuromorphic
classifiers. Neural Computation (2016).

P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan,
B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, and others. 2014. A million spiking-
neuron integrated circuit with a scalable communication network and interface.
Science 345, 6197 (2014), 668-673.

D. Monroe. 2014. Neuromorphic computing gets ready for the (really) big time.
Commun. ACM 57, 6 (2014), 13-15.

D. Neil, M. Pfeiffer, and S.C. Liu. 2016. Learning to be efficient: Algorithms for
training low-latency, low-compute deep spiking neural networks. In Proceedings
of the 31st Annual ACM Symposium on Applied Computing. ACM, 293-298.

M. Prezioso, F. Merrikh-Bayat, BD Hoskins, GC Adam, K.X. Likharev, and D.B
Strukov. 2015. Training and operation of an integrated neuromorphic network
based on metal-oxide memristors. Nature 521, 7550 (2015), 61-64.

A. Sawa. 2008. Resistive switching in transition metal oxides. Materials Today
11, 6 (2008), 28 — 36. DOI : https://doi.org/10.1016/S1369-7021(08)70119-6

B. Schrauwen and J. Van Campenhout. 2004. Extending spikeprop. In Neural
Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, Vol. 1.
IEEE, 471-475.

C.D. Schuman and J.D. Birdwell. 2013. Dynamic artificial neural networks with
affective systems. PloS one 8, 11 (2013), e80455.

C.D. Schuman, J.D. Birdwell, and M. Dean. 2014. Neuroscience-inspired inspired
dynamic architectures. In Biomedical Science and Engineering Center Conference
(BSEC), 2014 Annual Oak Ridge National Laboratory. 1-4. DOI : https://doi.org/10.
1109/BSEC.2014.6867735

C.D. Schuman, J.D. Birdwell, and M.E. Dean. 2014. Spatiotemporal classification
using neuroscience-inspired dynamic architectures. Procedia Computer Science
41 (2014), 89-97.

C.D. Schuman, A. Disney, S.P. Singh, G. Bruer, J.P. Mitchell, A. Klibisz, and
J.S Plank. 2016. Parallel evolutionary optimization for neuromorphic network
training. In Proceedings of the Workshop on Machine Learning in High Performance
Computing Environments. IEEE Press, 36-46.

C.D Schuman, J.S Plank, A. Disney, and J. Reynolds. 2016. An evolutionary
optimization framework for neural networks and neuromorphic architectures. In
Neural Networks (IJCNN), 2016 International Joint Conference on. IEEE, 145-154.
S. Song, K.D. Miller, and L.F. Abbott. 2000. Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity. Nature neuroscience 3, 9 (2000), 919
926.

S. Tang, F. Tesler, F.G. Marlasca, P. Levy, V. Dobrosavljevi¢, and M. Rozenberg.
2016. Shock Waves and Commutation Speed of Memristors. Physical Review X
6, 1 (March 2016), 011028.

T. Tsuruoka, T. Hasegawa, and M. Aono. 2014. Synaptic plasticity and memristive
behavior operated by atomic switches. In Cellular Nanoscale Networks and their
Applications (CNNA), 2014 14th International Workshop on. IEEE, 1-2.

C. Vaju, L. Cario, B. Corraze, E. Janod, V. Dubost, T. Cren, D. Roditchev, D. Braith-
waite, and O. Chauvet. 2008. Electric-Pulse-driven Electronic Phase Separation,
Insulator-Metal Transition, and Possible Superconductivity in a Mott Insulator.
Advanced Materials 20, 14 (July 2008), 2760-2765.

C Vaju, L Cario, B Corraze, E Janod, V Dubost, T Cren, D Roditchev, D Braithwaite,
and O Chauvet. 2008. Electric-pulse-induced resistive switching and possible

https://doi.org/10.1007/978-3-319-08123-6_11
https://doi.org/10.1016/S1369-7021(08)70119-6
https://doi.org/10.1109/BSEC.2014.6867735
https://doi.org/10.1109/BSEC.2014.6867735

Neuromorphic Programming Framework

[40]

[41]

[42

superconductivity in the Mott insulator GaTa4Se8. Microelectronic Engineering
85, 12 (Dec. 2008), 2430-2433.

L. Wang, Z. Wang, W. Zhao, B. Hu, L. Xie, M. Yi, H. Ling, C. Zhang, Y. Chen, J.
Lin, and others. 2017. Controllable Multiple Depression in a Graphene Oxide
Artificial Synapse. Advanced Electronic Materials 3, 1 (2017).

JJ. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, and R.S.
Williams. 2009. The mechanism of electroforming of metal oxide memristive
switches. Nanotechnology 20, 21 (May 2009), 215201.

C. Zhang, Y.T. Tai, J. Shang, G. Liu, K.L. Wang, C. Hsu, X. Yi, X. Yang, W. Xue,
H. Tan, and others. 2016. Synaptic plasticity and learning behaviours in flexi-
ble artificial synapse based on polymer/viologen system. Journal of Materials
Chemistry C 4, 15 (2016), 3217-3223.

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Programming Framework
	3.1 Models
	3.2 Applications
	3.3 Training

	4 Memristive Networks
	5 Results
	6 Devices and Materials Moving Forward
	7 Conclusions and Future Work
	References

