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ABSTRACT 

Networked traffic flow is a common scenario for urban 

transportation, where the distribution of vehicle queues either at 

controlled intersections or highway segments reflect the 

smoothness of the traffic flow in the network. At signalized 

intersections, the traffic queues are controlled by traffic signal 

control settings and effective traffic lights control would realize 

both smooth traffic flow and minimize fuel consumption. Funded 

by the Energy Efficient Mobility Systems (EEMS) program of the 

Vehicle Technologies Office of the US Department of Energy, we 

performed a preliminary investigation on the modelling and control 

framework in context of urban network of signalized intersections. 

In specific, we developed a recursive input-output traffic queueing 

models.  The queue formation can be modeled as a stochastic 

process where the number of vehicles entering each intersection is 

a random number. Further, we proposed a preliminary B-Spline 

stochastic model for a one-way single-lane corridor traffic system 

based on theory of stochastic distribution control.. It has been 

shown that the developed stochastic model would provide the 

optimal probability density function (PDF) of the traffic queueing 

length as a dynamic function of the traffic signal setting parameters. 

Based upon such a stochastic distribution model, we have proposed 

a preliminary closed loop framework on stochastic distribution 

control for the traffic queueing system to make the traffic queueing 

length PDF follow a target PDF that potentially realizes the smooth 

traffic flow distribution in a concerned corridor. 

KEYWORDS: 

Traffic queueing length modelling, stochastic distribution control, 

probability density function.  

1 INTRODUCTION 

In the transportation systems field, traffic signal control is a 

challenging problem with the objective to produce a smooth day-

by-day traffic flow distribution with minimum congestions 

everywhere in a traffic network. An urban signalized  traffic 

network consists of traffic signals at road intersections along with 

sensors such as loop detectors and cameras that are capable of 

providing feedback signals to traffic  controllers. It is well-known 

that the traffic flow in the network is randomly distributed both in 

space and time. Therefore, the traffic network can be modeled as a 

large scale multivariable stochastic distribution control system and 

its dynamics is very complex in nature. Indeed, the complex traffic 

network system has the following characteristics: 

 

 The system is of a multiple scale in both the time and the 

space;  

 The system is time-driven and event-driven by nature;  

 The system modeling is generally difficult to perform due 

to nonlinear, stochastic, and strong coupling nature of the 

system components; 

 The performance analysis of the system is difficult to 

realize; 

 The system optimization is both multi-objective and 

stochastic. 

 

 

 Figure 1: Traffic Network. 
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     Major challenges with such a complex traffic system are: (a) 

operational quality - that is how a uniform traffic flow distribution 

can be maintained in the networked traffic flow area with minimum 

energy consumption such as gas and electricity, and (b) how the 

operational safety can be ensured for road users such as drivers, 

passengers and pedestrians. 

 

The operation and control of a complex traffic network system can 

be framed as a three-layered structure as shown in Figure 2. The 

traffic operation control monitors the traffic flow distribution 

across the network and the intersection controls the local traffic 

flow for approaching vehicles through signal control settings.  

 

 Figure 2: 3-Layer Structure of the Traffic Network System. 

     This 3-layered complex system is dynamic in nature having 

interactions among mass, energy, and information flows as shown 

in Figure 3, where the mass flow represents mass and volume of 

vehicle moving streams, the energy flow represents gas/electricity 

consumed by vehicles, and the information flow represents 

information exchange among vehicles, intersection signal 

controllers, and traffic operational monitoring and management.  

Data such as number of vehicles approaching an intersection are 

available from various sensors such as probe detectors, loop 

detectors and camera images, etc. Sometimes individual vehicles 

such as connected and automated vehicles (CAVs) also provide 

information such as vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) that can be used for control operations.  

 

 Figure 3: Mass-Energy-Information Flow of the Traffic 

Network System. 

     In this paper, we consider the problem of controlling traffic 

signal timings of a given traffic network such that the traffic 

distribution in the network can be made uniform and the traffic 

queueing length can be minimized. The traffic control system 

related with this problem is shown in Figure 4, where the traffic 

system consisting of a road network with installed loop detectors 

and traffic signals is represented as the plant 𝑇 in Figure 4. The 

plant 𝑇 has traffic signal timing sequences that are red, green and 

yellow signal timings as the input and traffic distribution (traffic 

queueing length and densities) as the output. The traffic signals 

controller at each intersection of a given network is represented as 

the controller 𝐾 in Figure 4. The goal of the traffic control system 

is to control traffic signals at each intersection of the network using 

the controller 𝐾 such that the traffic distribution in terms of traffic 

queueing length at each intersection of the network is minimized 

and uniformly distributed, namely this means that the distributions 

of the traffic queueing are uniform in their length. 

 

 Figure 4: Traffic Control System. 

2   Traffic Signal Control – Brief Review  

Over the past decades, the traffic signal control for an intersection 

has been well developed, where fixed timing control and adaptive 

timing control are the common ones that are used nowadays. In this 

section, a brief review will be made and further details have been 

given in our recent report [1]. 

 

2.1 Fixed Timing Control: In fixed timing control, the red, green, 

and yellow traffic signal timings and cycles at each intersection of 

a given traffic network are fixed regardless of the actual traffic 

conditions. The actual timings and cycles are designed based upon 

historic traffic data in line with the traffic demand at different times 

of the day and at different intersections of the traffic network. 

Therefore, fixed timing control is an open loop control 

infrastructure that cannot cope with real-time traffic conditions in 

the network which causes uneven traffic flow distribution, albeit 

such a strategy has been widely adopted nowadays. 

 

2.2 Adaptive Timing Control: In adaptive timing control, the red, 

green, and yellow traffic signal timings and cycles at each 

intersection of a given traffic network are tuned adaptively using 

the measurements of the real-time approaching traffic flow near 

intersections. Therefore, adaptive timing control is a closed loop 

control infrastructure that can cope with real-time traffic conditions 

in the network. There are different theories/methods such as fuzzy 

systems, artificial neural networks, evolutionary computing, swarm 

intelligence, reinforced learning and adaptive dynamic 

programming, etc., that have been developed for the realization 

adaptive timing control strategies. However only a limited use (less 

than 300 implementations) has been reported. 

 

Therefore, it is imperative to further develop real-time signal 

control for the networked traffic flow control so as to realize 
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maximized mobility with minimized energy use in the concerned 

networked traffic flow areas.  This forms the main purpose of this 

research where both modelling and control aspects will be 

addressed. 

 

2.3   Traffic Flow Modeling 

The traffic flow modelling aims to establish a dynamic model 

between the signal timing and the traffic queueing length at a 

concerned intersection. In this context, traffic flow can be modeled 

using the following approaches: 

 

 First principle modeling where relevant mass-balance 

principle can be used to develop the basic flow dynamics 

and balance of the traffic flows; 

 Data-driven modeling that uses data from loop 

detector/camera images data and machine learning to 

obtain traffic flow model; 

 Semi-physical modeling which is a combination of the 

first principle modeling and data-driven modeling that 

can also be used to develop traffic flow model. 

Based on these approaches, in this paper we propose to develop the 

following two models for the traffic flow, namely the recursive 

input-output traffic queueing length model and stochastic 

distribution queueing length model. 

 

2.3.1 Recursive Input-Output Traffic Queue Model 

There is a wide spectrum of literature dealing with formulation of 

a deterministic queueing length model for traffic flow (plant) 

system. In [2], a mathematical model of queueing length at an 

intersection has been developed using queueing theory. Similarly 

based on the classic queueing theory, [3] developed a traffic model 

and showed that the queueing system is not Ergodic. In [4], an 

analytical queueing model has been developed to analyze queues 

and delays at an isolated two-phase intersection control that uses a 

simple adaptive signal strategy. The work in [5] proposed a method 

to estimate intersection turning volumes from actuated traffic signal 

information without using loop detector data. A combined queue 

model has been proposed in [6] that captures advantages of the 

existing approaches while deficiencies are avoided. The work in [7] 

has described queue discharge flow and speed models for 

signalized intersections. An analytic model for queues at signalized 

intersections has been introduced in [8] and it is shown to be 

applicable in dynamic assignment problems. The article of [9] has 

reported a time-dependent formulation for queue length. Moreover, 

the book chapter in [10] can be referred for history about the 

evolution of delay and queue length models for traffic signals. 

 

In this paper, we propose to develop the traffic system model in 

terms of traffic queue lengths for the timing of red, green and 

yellow signals for each street of every intersection of the network 

as a function of red, green and yellow signal timings at the fixed 

cycle duration as well as number of vehicles entered and left the 

streets. A recursive input-output model is formulated first for a one-

way single-lane street traffic and then stochastic distribution 

queueing length model is formed.  Using these models, a 

preliminary closed-loop framework is proposed that can be used to 

control the distribution of queueing length for a smooth traffic flow. 

An illustrative example is given to reveal the potential of such a 

closed loop framework. 

 

2.3.2 Stochastic Distribution Traffic Queue Model 

As stated previously, the traffic system is a large-scale 

multivariable stochastic distribution control system because the 

traffic flows are randomly distributed in the network where the 

number of the vehicles entering a road is stochastic in nature. There 

is limited literature [11] - [13] on the real-time control of stochastic 

distributions of traffic queues in the networked traffic flow area. 

According to [14], stochastic distribution control can be used to 

develop distributed traffic flow control to make the probability 

density functions (PDFs) of the traffic queueing length in the 

network to approach narrowly uniform distribution. This would 

reflect a smooth traffic flow. One example of this kind of model is 

given in [15] as 

 

𝜕

𝜕𝑥
�̅�(𝑥, 𝑡) +

𝜕�̅�(𝑥, 𝑡)�̅�(𝑥, 𝑡)

𝜕𝑥
= 0 

(1) 

  

where �̅�(𝑥, 𝑡) is the mean traffic density at point 𝑥 and at time 𝑡 

and �̅�(𝑥, 𝑡) is the average vehicle speed at location 𝑥  at time 𝑡 . 

Considering traffic signal timing sequences as the control input 𝑢 

to the plant with noise, this model can be modified as 

 

𝜕

𝜕𝑥
�̅�(𝑥, 𝑡) +

𝜕�̅�(𝑥, 𝑡)�̅�(𝑥, 𝑡)

𝜕𝑥
= 𝐵𝑢(𝑡) + noise(𝑥, 𝑡) 

(2) 

 

which is in fact a stochastic partial differential equation. Using 

stochastic distribution theory, a controller can be designed to 

generate the control signal 𝑢 to realize a uniform distribution of the 

traffic flow in the concerned networked traffic flow area at any 

time.  

 

A linear B-Spline model is developed in [16]. In this report, we 

propose to develop the stochastic distribution traffic queueing 

length model using the stochastic distribution control theory given 

in [16]. For this purpose, we will represent the stochastic 

distribution traffic queueing length model in terms of probability 

density function of traffic queue length for a one-way single-lane 

street traffic as a function of red, green, and yellow signal timings 

as well as data available from loop detectors and camera images. 

This model will then allow us to obtain a preliminary closed-loop 

control framework for the traffic signal control. 

 

The paper is organized as follows. The necessary and preliminary 

definitions are mentioned in section 3. The problem is formulated 

in section 3, followed by the main results in section 4.  Finally, the 

conclusion is given in section 5. 
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3 PRELIMINARIES AND A SIMPLE 

RECURSIVE QUEUE MODEL 

In this paper, we consider continuous time signals and systems. The 

average length of a vehicle is denoted by 𝑙. The sets of non-negative 

real numbers and non-negative integers are denoted by ℝ+ and ℤ+ 

respectively. The transpose is represented by  [ . ]′ . A diagonal 

matrix whose diagonal entries starting in the upper left corner 

are  𝑎1, … … , 𝑎𝑛  is denoted by  diag(𝑎1, … 𝑎𝑛) . A real valued 

signal  𝑥  truncated between times  𝜏1  and 𝜏2  is denoted by 𝑥[𝜏1,𝜏2] 

such that  

𝑥[𝜏1,𝜏2](𝑡) = {
𝑥(𝑡),   ∀𝑡 ∈ [𝜏1 , 𝜏2]

0, ∀𝑡 ∉ [𝜏1, 𝜏2]
 

(3) 

 

 

Definition 1 (Signal Timing Sequence): Given a traffic signal 𝜎 

taking values in the set  {Red, Green, and Yellow}  as shown in 

Figure 5, the signal timing sequence �̃� is defined as the sequence 

 

�̃� = {𝑡𝑘}, 𝑘 ∈ ℤ+ (4) 

such that 

𝜎(𝑡) = Red (R), ∀𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘] 

𝜎(𝑡) = Green (G), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] 

𝜎(𝑡) = Yellow (Y),          ∀𝑡 ∈ [𝑡𝑘+1, 𝑡𝑘+2]                 □ 

 

 Figure 5: Traffic signal σ and signal timing sequence �̃�. 

Definition 2 (Red Signal Queue): Given a traffic signal  𝜎 with 

signal timing sequence  �̃�  having  𝜎[𝑡𝑘,𝑡𝑘+1] = Red  for a one-way 

single-lane street 𝑆, finite 𝑛 number of adjacent standstill vehicles 

on the street 𝑆 at time 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], then the red signal queue 𝑟(𝑡) 

starting from the traffic signal 𝜎 location on the street 𝑆 at time 𝑡 ∈

[𝑡𝑘 , 𝑡𝑘+1] is defined as 

 

𝑟(𝑡) = 𝑛𝑙 (5) 

 □ 

Definition 3 (Green Signal Queue): Given a traffic signal 𝜎 with 

signal timing sequence �̃� having 𝜎[𝑡𝑘,𝑡𝑘+1] = Green for a one-way 

single-lane street 𝑆, the red signal queue 𝑟(𝑡𝑘), finite 𝑛 number of 

vehicles joined the queue  𝑟(𝑡𝑘)  at time  𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] , finite  𝑚 

number of vehicles left the traffic signal  𝜎  location at time  𝑡 ∈

[𝑡𝑘 , 𝑡𝑘+1], then the green signal queue 𝑔(𝑡) near the traffic signal 𝜎 

location on the street 𝑆 at time 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] is defined as 

 

𝑔(𝑡) = 𝑟(𝑡𝑘) + (𝑛 − 𝑚)𝑙 (6) 

□ 

Definition 4 (Yellow Signal Queue): Given a traffic signal 𝜎 with 

signal timing sequence �̃� having 𝜎[𝑡𝑘,𝑡𝑘+1] = Yellow for a one-way 

single-lane street 𝑆, the green signal queue 𝑔(𝑡𝑘), finite 𝑛 number 

of vehicles joined the queue 𝑔(𝑡𝑘) at time 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], finite 𝑚 

number of vehicles left the traffic signal  𝜎  location at time  𝑡 ∈

[𝑡𝑘 , 𝑡𝑘+1] , then the yellow signal queue  𝑦(𝑡)  near the traffic 

signal 𝜎 location on the street 𝑆 at time 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] is defined as 

 

𝑦(𝑡) = 𝑔(𝑡𝑘) + (𝑛 − 𝑚)𝑙 (7) 

□ 

Definition 5 (Probability Density Function): For a continuous 

random variable𝑥, its probability density function (PDF) is defines 

as 

𝛾(𝑐) =
𝑑𝐹(𝑐)

𝑑𝑐
 

(8) 

where 𝐹(𝑐) denotes the probability of the random variable 𝑥 less 

than c.                                                                                             □  

 

4 PROBLEM FORMULATION  

4.1   One-way Single-lane Corridor Traffic 

Consider a one-way single-lane street having a traffic signal σ as 

shown in Figure 6. We consider two loop detectors, namely N and 

M, as shown in Figure 6. It is assumed that the loop detector or 

other type of sensor M is placed immediately ahead of the stop line 

at the traffic signal σ, while the loop detector or other type of sensor 

N is placed at a distance l from the loop detector M. 

 

  Figure 6: One-way single-lane Street having a traffic signal σ 

and loop detectors N and M. 

     We denote the vehicle detection counters for the loop detectors 

𝑁 and 𝑀 by symbols 𝑛 and 𝑚 respectively taking the values in the 

set  ℤ+ . Detection time of the 𝑛𝑡ℎ  vehicle detected at the loop 

detector 𝑁 is denoted by 𝜏𝑛. The speed of the 𝑛𝑡ℎ vehicle detected 

at the loop detector 𝑁 is denoted by 𝑣𝑛. We use �̃� to denote the 

number of vehicles, detected by the loop detector 𝑁 during given 

signal time interval for a red, green, or yellow signal, which cannot 

reach a respective existing red, green, or yellow signal queue in the 

same time interval. 

     With these notations, we can represent the one-way single-lane 

corridor shown in Figure 6 as a traffic system 𝑇 shown in Figure 7. 

The traffic system  𝑇  has the traffic signal  𝜎  with signal timing 

sequence  �̃�  as the inputs and red signal queue  𝑟 , green signal 

queue 𝑔, and yellow signal queue 𝑦 as the outputs. The state of the 

system 𝑇 at a time 𝑡 depends on the number of vehicles entered and 

left the street at the time 𝑡 which is shown by the loop detector 

counters 𝑛 and 𝑚. 
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  Figure 7: Traffic System  𝑻. 

4.1.1 Recursive Input-Output Traffic Queue Model 

There are several problems that need to be defined for the traffic 

queueing length model.  These are described as follows. 

 

Problem 1 (Input-output model of traffic system 𝑻 for red signal): 

Given the traffic signal  𝜎  with signal timing sequence  �̃�  as the 

inputs to the traffic system 𝑇 as shown in Figure 7, using the loop 

detectors 𝑁 and 𝑀 data, determine the input-output model of the 

traffic system 𝑇 with standstill red signal queue 𝑟 as the output.                 

                                                                       □ 

Problem 2 (Input-output model of traffic system  𝑻  for green 

signal): Given the traffic signal 𝜎 with signal timing sequence �̃� as 

the inputs to the traffic system 𝑇 as shown in Figure 7, using the 

loop detectors 𝑁 and 𝑀 data, determine the input-output model of 

the traffic system  𝑇  with moving green signal queue  𝑔  as the 

output.                                                                                       □ 

 

Problem 3 (Input-output model of traffic system  𝑻  for yellow 

signal): Given the traffic signal 𝜎 with signal timing sequence �̃� as 

the inputs to the traffic system 𝑇 as shown in Figure 7, using the 

loop detectors 𝑁 and 𝑀 data, determine the input-output model of 

the traffic system  𝑇  with moving yellow signal queue  𝑦  as the 

output. 

                                                                                  □ 

4.1.2. Stochastic Distribution Traffic Queueing Length Model 

and Controller 

We consider the traffic system 𝑇  (one-way single-lane street) 

shown in Figure 7 as a stochastic system 𝑆 shown in Figure 8. The 

stochastic system 𝑆  has the traffic signal  𝜎  with signal timing 

sequence  �̃�  as the control input 𝜓 = [𝜎 �̃�]′  coming from a 

controller and the output as a queueing length probability density 

function denoted by 𝛾(𝜙, 𝜓), where 𝜙 = [𝑟 𝑔 𝑦]′ is a function 

of red 𝑟 , green 𝑔 , and yellow 𝑦  signal queues as the output. A 

random number of vehicles entering and leaving the intersection is 

denoted as the random inputs to the stochastic system 𝑆. 

 

Figure 8: Stochastic System 𝑺. 

Problem 4 (Stochastic Distribution Traffic Queueing Length 

Model of Stochastic System 𝑺): Given the traffic signal  𝜎  with 

signal timing sequence �̃� as the inputs to the stochastic system 𝑆 

with number of vehicles as random input shown in Figure 8, 

develop the stochastic distribution traffic queueing length model of 

the system 𝑆 using linear B-Spline stochastic model formulation in 

stochastic distribution control theory. 

                  

Problem 5 (Stochastic Distribution Controller for Stochastic 

System 𝑺 ): Given the stochastic system 𝑆  having traffic signal 

control 𝜓  as the input and queueing length probability density 

function (PDF) 𝛾(𝜙, 𝜓) as the output shown in Figure 8, design a 

stochastic distribution controller 𝐾  for the closed loop system 

shown in Figure 9 to generate the control input 𝜓 so that the output 

PDF (i.e.,  𝛾(𝜙, 𝜓)) is made to follow a target PDF.  

                                           □ 

 

  Figure 9: Stochastic Distribution Control System. 

4.2   Two-way Single-lane Street Traffic Network 

Consider a traffic network of two-way single-lane streets shown in 

Figure 10. Consider an intersection of  𝑖𝑡ℎ  horizontal street 

with 𝑗𝑡ℎvertical street and an east bound lane 𝑖𝑒 approaching it as 

shown in Figure 10. For this particular lane and intersection, we 

denote the traffic signal and signal timing sequence by 𝜎𝑖,𝑗
𝑒  and �̃�𝑖,𝑗

𝑒  

respectively. Two loop detectors are denoted by 𝑁𝑖,𝑗−1
𝑒  and 𝑀𝑖,𝑗

𝑒 . 

The loop detector 𝑁𝑖,𝑗−1
𝑒  is placed at a distance 𝑙𝑖,𝑗

𝑒  from the loop 

detector 𝑀𝑖,𝑗
𝑒 . 

     We denote the vehicle detection counters for the loop detectors 

𝑁𝑖,𝑗−1
𝑒  and 𝑀𝑖,𝑗

𝑒  by symbols 𝑛𝑖,𝑗−1
𝑒  and 𝑚𝑖,𝑗

𝑒  respectively taking the 

values in the set ℤ+. Detection time of the 𝑛𝑡ℎ vehicle detected at 

the loop detector 𝑁𝑖,𝑗−1
𝑒  is denoted by  𝜏𝑛𝑖,𝑗−1

𝑒 . Speed of the 𝑛𝑡ℎ 

vehicle detected at the loop detector 𝑁𝑖,𝑗−1
𝑒  is denoted by 𝑣𝑛𝑖,𝑗−1

𝑒 . 

We use �̃�𝑖,𝑗−1
𝑒  to denote the number of vehicles, detected by the 

loop detector 𝑁𝑖,𝑗−1
𝑒  during given signal time interval for a red, 

green, or yellow signal, which cannot reach a respective existing 

red, green, or yellow signal queue in the same time interval. We 

denote the red, green, and yellow signal queues by 𝑟𝑖,𝑗
𝑒 , 𝑔𝑖,𝑗

𝑒 , and 𝑦𝑖,𝑗
𝑒  

respectively. The same setup of traffic signal and loop detectors 

along with notation is applicable for other streets of the traffic 

network shown in Figure 10.  

 

We represent the two-way single-lane street traffic network shown 

in Figure 10 as a traffic system 𝑇 as follows 

 

𝑇 = diag(… , ⋯ 𝑇𝑖−1,𝑗−1, 𝑇𝑖−1,𝑗 , 𝑇𝑖−1,𝑗+1 ⋯ , ⋯ 𝑇𝑖,𝑗−1, 

𝑇𝑖,𝑗 , 𝑇𝑖,𝑗+1 ⋯ ⋯ 𝑇𝑖+1,𝑗−1, 𝑇𝑖+1,𝑗 , 𝑇𝑖+1,𝑗+1 ⋯ , ⋯ ) 

 

(9) 

 

where 

𝑇𝑖,𝑗 = diag(𝑇𝑖,𝑗
𝑛 , 𝑇𝑖,𝑗

𝑒 , 𝑇𝑖,𝑗
𝑤 , 𝑇𝑖,𝑗

𝑠 ) (10) 
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  Figure 10: Two-way Single-lane Street Traffic Network.       

     The system 𝑇𝑖,𝑗 represents the traffic system consisting of four 

one-way single-lane streets namely  𝑗𝑛, 𝑗𝑠 , 𝑖𝑒  and  𝑖𝑤  approaching 

the  (𝑖, 𝑗)  intersection. The sub-system  𝑇𝑖,𝑗
𝑒  represents the traffic 

system consisting the east-bound one-way single-lane street  𝑖𝑒 

between the intersections (𝑖, 𝑗 − 1) and (𝑖, 𝑗). As shown in Figure 

11, the traffic sub-system  𝑇𝑖,𝑗
𝑒  has the traffic 

signals 𝜎𝑖,𝑗
𝑒 , 𝜎𝑖,𝑗−1

𝑒 , 𝜎𝑖,𝑗−1
𝑠 , 𝜎𝑖,𝑗−1

𝑛  with signal timing sequence �̃�𝑖,𝑗
𝑒  as 

the inputs. The red signal queue 𝑟𝑖,𝑗
𝑒  due to all traffic, red signal 

queue �⃡�𝑖,𝑗
𝑒  due to through traffic of street 𝑖𝑒, red signal queue �⃖�𝑖,𝑗

𝑒  

due to left turning traffic of street (𝑗 − 1)𝑠, and red signal queue 

𝑟𝑖,𝑗
𝑒  due to right turning traffic of street (𝑗 − 1)𝑛 coming from the 

intersection (𝑖, 𝑗 − 1) are some of the outputs of the system 𝑇𝑖,𝑗
𝑒 . 

Similarly, 𝑔𝑖,𝑗
𝑒 , 𝑔𝑖,𝑗

𝑒 , �⃖�𝑖,𝑗
𝑒 , �⃗�𝑖,𝑗

𝑒  and 𝑦𝑖,𝑗
𝑒  are the remaining outputs of 

the system 𝑇𝑖,𝑗
𝑒 . The state of the system 𝑇𝑖,𝑗

𝑒  at a time 𝑡 depends on 

the number of vehicles entered and left the street at the time 𝑡 which 

is shown by the loop detector counters 𝑛𝑖,𝑗
𝑒  and 𝑚𝑖,𝑗

𝑒 .  

 

  Figure 11: Traffic system 𝐓𝐢,𝐣
𝐞 . 

Problem 6 (Input-output model of traffic system 𝑻𝒊,𝒋
𝒆  for red 

signal): Given the traffic signals 𝜎𝑖,𝑗
𝑒 , 𝜎𝑖,𝑗−1

𝑒 , 𝜎𝑖,𝑗−1
𝑠 , and 𝜎𝑖,𝑗−1

𝑛  with 

signal timing sequence �̃�𝑖,𝑗
𝑒  as the inputs to the traffic system 𝑇𝑖,𝑗

𝑒  as 

shown in Figure 11, using the loop detectors 𝑁𝑖,𝑗−1
𝑒  and 𝑀𝑖,𝑗

𝑒  data, 

determine the input-output model of the traffic system 𝑇𝑖,𝑗
𝑒  with red 

signal queue  𝑟𝑖,𝑗
𝑒  due to all traffic, red signal queue �⃡�𝑖,𝑗

𝑒  due to 

through traffic of street 𝑖𝑒, red signal queue �⃖�𝑖,𝑗
𝑒  due to left turning 

traffic of street  (𝑗 − 1)𝑠 , and red signal queue 𝑟𝑖,𝑗
𝑒  due to right 

turning traffic of street  (𝑗 − 1)𝑛  coming from the 

intersection (𝑖, 𝑗 − 1) as the outputs.                                              □ 

Problem 7 (Input-output model of traffic system 𝑻𝒊,𝒋
𝒆  for green 

signal): Given the traffic signal 𝜎𝑖,𝑗
𝑒 , 𝜎𝑖,𝑗−1

𝑒 , 𝜎𝑖,𝑗−1
𝑠 , and 𝜎𝑖,𝑗−1

𝑛  with 

signal timing sequence �̃�𝑖,𝑗
𝑒  as the inputs to the traffic system 𝑇𝑖,𝑗

𝑒  as 

shown in Figure 11, using the loop detectors 𝑁𝑖,𝑗−1
𝑒  and 𝑀𝑖,𝑗

𝑒  data, 

determine the input-output model of the traffic system  𝑇𝑖,𝑗
𝑒  with 

moving green signal queue  𝑔𝑖,𝑗
𝑒  due to all traffic, accumulating 

green signal queue 𝑔𝑖,𝑗
𝑒  due to through traffic of street  𝑖𝑒 , 

accumulating green signal queue �⃖�𝑖,𝑗
𝑒  due to left turning traffic 

of (𝑗 − 1)𝑠, and accumulating green signal queue �⃗�𝑖,𝑗
𝑒  due to right 

turning traffic of street  (𝑗 − 1)𝑛  coming from the intersection 

street (𝑖, 𝑗 − 1) as the outputs.     

                                                    □ 

Problem 8 (Input-output model of traffic system 𝑻𝒊,𝒋
𝒆  for yellow 

signal): Given the traffic signal  𝜎𝑖,𝑗
𝑒  with signal timing 

sequence �̃�𝑖,𝑗
𝑒  as the inputs to the traffic system 𝑇𝑖,𝑗

𝑒  as shown in 

Figure 11, using the loop detectors 𝑁𝑖,𝑗−1
𝑒  and 𝑀𝑖,𝑗

𝑒  data, determine 

the input-output model of the traffic system  𝑇𝑖,𝑗
𝑒  with moving 

yellow signal queue  𝑦𝑖,𝑗
𝑒  due to all traffic coming from the 

intersection (𝑖, 𝑗 − 1) as the output.                                               □ 

     To determine red �⃡�𝑖,𝑗
𝑒  or green 𝑔𝑖,𝑗

𝑒  signal queues due to through 

traffic of street  𝑖𝑒  coming from the intersection  (𝑖, 𝑗 − 1) , we 

consider two counters namely 𝑛𝑖,𝑗−1
𝑒  and  �̃⃡�𝑖,𝑗−1

𝑒 . During red or 

green signal time interval, the counter 𝑛𝑖,𝑗−1
𝑒  counts the number of 

vehicles coming from the through traffic of street  𝑖𝑒  which can 

reach an end of respective existing red or green signal queue in the 

same time interval while the counter �̃⃡�𝑖,𝑗−1
𝑒  counts the number of 

vehicles which cannot reach. Similarly, we consider 

counters  �⃖� 𝑖,𝑗−1
𝑒 , �⃖̃� 𝑖,𝑗−1

𝑒  and  𝑛 ⃗ 𝑖,𝑗−1
𝑒 , �̃� ⃗ 𝑖,𝑗−1

𝑒  to determine red  �⃖�𝑖,𝑗
𝑒  or 

green �⃖�𝑖,𝑗
𝑒  signal queues due to left turning traffic of street (𝑗 − 1)𝑠 

coming from the intersection  (𝑖, 𝑗 − 1)  and red  𝑟𝑖,𝑗
𝑒  or green  �⃗�𝑖,𝑗

𝑒  

signal queues due to right turning traffic of street (𝑗 − 1)𝑛 coming 

from the intersection (𝑖, 𝑗 − 1) respectively. 

5 MAIN RESULTS 

In the following, we develop the recursive input-output models of 

the traffic system 𝑇 shown in Figure 7 for red, green, and yellow 

signals as stated in the problem statements 1, 2, and 3 respectively. 

Due to the space limitation the details of the two-way system will 

not be given. 

5.1   One-way Single-lane Street Traffic  

5.1.1 Recursive Input-Output Traffic Queueing Length Models 

For the one way system, the following theorem can be obtained that 

reveals the relationship between the queueing length and the traffic 

signal timing. 

  

Theorem 1 (Input-output model of traffic system  𝑻  for red 

signal): Consider the given traffic signal  𝜎  with signal timing 

sequence  �̃�  for the traffic system  𝑇  shown in Figure 7. 

If  𝜎[𝑡𝑘,𝑡𝑘+1] = Red  then with initial condition  𝑟(𝑡𝑘) =
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𝑦(𝑡𝑘 , 𝑛, 𝑚) + �̃�𝑙  and re-initialized conditions  𝑛 = �̃� = 0  &  �̃�0 =

𝑡𝑘, for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] we have 

𝑟(𝑡, 𝑛)

= {

𝑟(𝑡𝑘) + 𝑛𝑙, ∀𝑡 ∈ [�̃�𝑛 , 𝑡𝑘+1]

𝑟(𝑡, 𝑛 − 1),    ∀𝑡 ∈ [𝑡𝑘, �̃�𝑛)
,   if   �̃�𝑛 ∈ [𝑡𝑘, 𝑡𝑘+1]

𝑟(𝑡, 𝑛 − 1), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1],   otherwise

 

 

(11) 

and it has been denoted that 

�̃� = �̃� + 1 if �̃�𝑛 ∉ [𝑡𝑘 , 𝑡𝑘+1] 

where 

�̃�𝑛 =
𝑙 − 𝑟(𝑡𝑘) − (𝑛 − 1)𝑙

𝑣𝑛
+ 𝜏𝑛 

Proof: See the appendix A.1.                                                         □ 

 

Theorem 2 (Input-output model of traffic system  𝑻  for green 

signal): Consider the given traffic signal  𝜎  with signal timing 

sequence  �̃�  for the traffic system  𝑇  shown in Figure 11. 

If 𝜎[𝑡𝑘,𝑡𝑘+1] = Green then with initial condition 𝑔(𝑡𝑘) = 𝑟(𝑡𝑘 , 𝑛) +

�̃�𝑙  and re-initialized conditions  𝑛 = �̃� = 𝑚 = 0  &  �̃�0 = 𝑡𝑘 , for 

all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] we have 

 

𝑔(𝑡, 𝑛, 𝑚)

= {

𝑔(𝑡𝑘) + (𝑛 − 𝑚)𝑙, ∀𝑡 ∈ [�̃�𝑛 , 𝑡𝑘+1]

𝑔(𝑡, 𝑛 − 1, 𝑚),           ∀𝑡 ∈ [𝑡𝑘, �̃�𝑛)
,   if   �̃�𝑛 ∈ [𝑡𝑘 , 𝑡𝑘+1]

𝑔(𝑡, 𝑛 − 1, 𝑚), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1],   otherwise

 

 

 

(12

) 

and  

�̃� = �̃� + 1 if �̃�𝑛 ∉ [𝑡𝑘 , 𝑡𝑘+1] 

where 

�̃�𝑛 =
𝑙 − [𝑔(𝑡𝑘) + (𝑛 − 𝑚 − 1)𝑙]

𝑣𝑛
+ 𝜏𝑛 

Proof: See the appendix A.2.                                                         □ 

 

Theorem 3 (Input-output model of traffic system  𝑻 for yellow 

signal): Consider the given traffic signal  𝜎  with signal timing 

sequence  �̃�  for the traffic system  𝑇  shown in Figure 7. 

If  𝜎[𝑡𝑘,𝑡𝑘+1] = Yellow  then with initial condition  𝑦(𝑡𝑘) =

𝑔(𝑡𝑘 , 𝑛, 𝑚) and re-initialized conditions 𝑛 = 𝑚 = 0 & �̃�0 = 𝑡𝑘, for 

all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] we have 

 

𝑦(𝑡, 𝑛, 𝑚)

= {

𝑦(𝑡𝑘) + (𝑛 − 𝑚)𝑙, ∀𝑡 ∈ [�̃�𝑛, 𝑡𝑘+1]

𝑦(𝑡, 𝑛 − 1, 𝑚),           ∀𝑡 ∈ [𝑡𝑘, �̃�𝑛)
,   if   �̃�𝑛 ∈ [𝑡𝑘 , 𝑡𝑘+1]

𝑦(𝑡, 𝑛 − 1, 𝑚), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1],   otherwise

 

 

 

(13

) 

and 

�̃� = �̃� + 1 if �̃�𝑛 ∉ [𝑡𝑘 , 𝑡𝑘+1] 
where 

�̃�𝑛 =
𝑙 − [𝑦(𝑡𝑘) + (𝑛 − 𝑚 − 1)𝑙]

𝑣𝑛
+ 𝜏𝑛 

Proof: See the appendix A.3.                                                         □ 

 

A first principle model has been developed and tested via 

simulations and the results are shown in Figure 12, where red, 

green, and yellow colors stands for the switching on and off for the 

red, green, and yellow signal lights, respectively.   

 
   Figure 12. Simulation results for signaled corridor traffic queue 

length 
 

 

5.2. Stochastic Distribution Based Traffic Queueing 

Length Model 

As stated in the problem statement 4, we want to develop the 

stochastic distribution traffic queue model of the stochastic 

system 𝑆 shown in Figure 8 using linear B-Spline model. For this 

purpose, the linear B-Spline stochastic model formulation will be 

formulated as follows. 

 

At any time instant, the queueing length (output) PDF 𝛾(𝜙, 𝜓) of 

the stochastic traffic flow system 𝑆  shown in Figure 8 is 

approximated by 

 

𝛾(𝜙, 𝜓) = ∑ 𝑤𝑖(𝜓)𝐵𝑖(𝜙) + 𝑒(𝜙, 𝜓)

𝑛

𝑖=1

, 𝜙 ∈ [𝑎, 𝑏] 
 

(14) 

 

where it has been denoted that 

 

●  𝑤𝑖(𝜓), (𝑖 = 1,2, … , 𝑛) are the weights and they are 

functions of the input 𝜓;  

● 𝐵𝑖(𝜙), (𝑖 = 1,2, … , 𝑛)  are the pre-specified basis 

functions defined on the interval 𝜙 ∈ [𝑎, 𝑏]; 

● 𝑒(𝜙, 𝜓)  represents the approximation error which 

satisfies ‖𝑒(𝜙, 𝜓)‖ ≤ 𝛿  , where 𝛿  is a pre-specified 

arbitrary small positive number. 

 

This approximation is represented graphically in the following 

Figure 13. 

Since 𝛾(𝜙, 𝜓) is a PDF defined on the interval [𝑎, 𝑏], the following 

condition should be satisfied.  

∫ 𝛾(𝜙, 𝜓)𝑑𝜙
𝑏

𝑎

= 1 
 

(15) 

Let 

 

          𝑉(𝑡) = [𝑤1   𝑤2   …   𝑤𝑛−1]′ ∈ ℝ𝑛−1 (16) 

          𝐶0(𝜙) = [𝐵1(𝜙)   𝐵2(𝜙)  …   𝐵𝑛−1(𝜙)] ∈

ℝ1×(𝑛−1) 

(17) 
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  Figure 13: Probability Density Function Approximation for 

Queueing Length. 

Then using (14), (15), (16), and (17) and ignoring the 

approximation error, we have 

∫ 𝛾(𝜙, 𝜓)𝑑𝜙

𝑏

𝑎

= (∫ 𝐶0(𝜙)𝑑𝜙

𝑏

𝑎

) 𝑉(𝑡) + (∫ 𝐵𝑛(𝜙)𝑑𝜙

𝑏

𝑎

) 𝑤𝑛(𝜓)

= 1 

This means that the following is true 

 

   𝑤𝑛(𝜓) =
1 − (∫ 𝐶0(𝜙)𝑑𝜙

𝑏

𝑎
) 𝑉(𝑡)

∫ 𝐵𝑛(𝜙)𝑑𝜙
𝑏

𝑎

 

 

(18) 

Therefore, by substituting (18) in (14) and using (16) and (17), we 

have 

 

𝛾(𝜙, 𝜓) = 𝐶0(𝜙)𝑉(𝑡) + 𝐵𝑛(𝜙)
1 − (∫ 𝐶0(𝜙)𝑑𝜙

𝑏

𝑎
) 𝑉(𝑡)

∫ 𝐵𝑛(𝜙)𝑑𝜙
𝑏

𝑎

 

∴      𝛾(𝜙, 𝜓) = 𝐶0(𝜙)𝑉(𝑡) 

−
𝐵𝑛(𝜙) (∫ 𝐶0(𝜙)𝑑𝜙

𝑏

𝑎
) 𝑉(𝑡)

∫ 𝐵𝑛(𝜙)𝑑𝜙
𝑏

𝑎

+
𝐵𝑛(𝜙)

∫ 𝐵𝑛(𝜙)𝑑𝜙
𝑏

𝑎

 

 

 

(19) 

 

Let 

           𝐶(𝜙) = 𝐶0(𝜙) −
𝐵𝑛(𝜙)(∫ 𝐶0(𝜙)𝑑𝜙

𝑏

𝑎
)

∫ 𝐵𝑛(𝜙)𝑑𝜙
𝑏

𝑎

 
 

(20) 

           𝐿(𝜙) =
𝐵𝑛(𝜙)

∫ 𝐵𝑛(𝜙)𝑑𝜙
𝑏

𝑎

  

(21) 

Then by substituting (20) and (21) in (19), we obtain the following 

linear B-Spline stochastic model formulation as 

 

�̇�(𝑡) = 𝐴𝑉(𝑡) + 𝐵𝜓 

𝛾(𝜙, 𝜓) = 𝐶(𝜙)𝑉(𝑡) + 𝐿(𝜙), ∀𝜙 ∈ [𝑎, 𝑏] (22) 

 

This means that the stochastic distribution traffic queueing length 

model of the stochastic system  𝑆  shown in Figure 8 can be 

developed using the linear B-Spline stochastic model formulation 

(22) by specifying weights (𝑤𝑖), basis functions (𝐵𝑖), and matrices 

(𝐴, 𝐵)  based on a number of vehicles data available from loop 

detectors. 

 

5.3 Stochastic Distribution Signal Controller – a 

Preliminary Feedback Framework  

Under the assumption that the signal control is realized via digital 

control framework, we can employ the following procedure to 

design a controller for the stochastic model developed using the 

linear B-Spline model. In this context, the discrete-time input-

output version of the linear B-Spline model (22) is given by 

 

𝛾(𝜙, 𝜓𝑘) = 𝑎1𝛾(𝜙, 𝜓𝑘−1) + ⋯ + 𝑎𝑛𝛾(𝜙, 𝜓𝑘−𝑛) 

+𝐶(𝜙)𝐷0𝜓𝑘 + 𝐶(𝜙)𝐷1𝜓𝑘−1 + ⋯ + 𝐶(𝜙)𝐷𝑚𝜓𝑘−𝑚 

 

(23)  

 

To design a control law 𝜓𝑘 , we use the following cost function 

which considers the difference between the actual queue length 

PDF and its target PDF. 

 

𝐽 = ∫ (𝛾(𝜙, 𝜓𝑘) − 𝑔(𝜙))2𝑑𝜙
𝑏

𝑎

+ 𝑅𝜓𝑘
2 

(24) 

 

 

where 𝑔(𝜙) is a target queueing length PDF and 𝑅 > 0 is a pre-

specified weight.  

 

It can be seen that since the PDF of the queueing length is a function 

both in the time and the space, the first term in the performance 

function (24) is the distance of the two functions in the well-known 

functional space theory. By minimizing this performance function, 

we expect to obtain a preliminary closed loop framework for the 

control of the queueing length distribution using the timing of the 

traffic signals.  

 

The purpose of such a control design is therefore to select the 

optimal signal timing 𝜓𝑘  as the control input so that the distance 

between the actual and the targeted PDFs of the queueing length is 

made as close as possible.  This would lead to a feedback control 

using the PDFs of the actual queueing length as the real-time 

feedback signal.  

 

Assuming that all the information before sample number k is 

available as feedback signals to be used by the controller, we can 

define 

 

𝜋(𝜙, 𝑘) = ∑ 𝑎𝑖𝛾(𝜙, 𝜓𝑖−1)

𝑛

𝑖=1

+ ∑ 𝐶(𝜙)𝐷𝑗𝜓𝑘−𝑗

𝑚

𝑗=1

− 𝑔(𝜙) 
 

(25) 

  

Then using (23) and (25), we can have the PDF of the actual 

queueing length at sample number k as follows 

 

𝛾(𝜙, 𝜓𝑘) − 𝑔(𝜙) = 𝜋(𝜙, 𝑘) + 𝐶(𝜙)𝐷0𝜓𝑘 (26) 

 

By substituting (26) in the cost function (24), it can be obtained that  

 

𝐽 = ∫ (𝜋(𝜙, 𝑘) + 𝐶(𝜙)𝐷0𝜓𝑘)2𝑑𝜙
𝑏

𝑎

+ 𝑅𝜓𝑘
2 
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∴      𝐽 = ∫ 𝜋(𝜙, 𝑘)2𝑑𝜙
𝑏

𝑎

+ 2 [∫ 𝜋(𝜙, 𝑘)𝐶(𝜙)𝐷0𝑑𝜙
𝑏

𝑎

] 𝜓𝑘

+ [∫ (𝐶(𝜙)𝐷0)2𝑑𝜙
𝑏

𝑎

+ 𝑅] 𝜓𝑘
2 

(27) 

  

Therefor the signal timing control law 𝜓𝑘 at sample number k can 

be obtained by minimizing the quadratic cost function 𝐽 in (27) as 

follows 

 

𝑑𝐽

𝑑𝜓𝑘
= 0     

                                         𝜓𝑘 = −
∫ 𝜋(𝜙,𝑘)𝐶(𝜙)𝐷0𝑑𝜙

𝑏

𝑎

𝑅+∫ (𝐶(𝜙)𝐷0)2𝑑𝜙
𝑏

𝑎

                       (28) 

 

It has been shown that (28) constitutes a preliminary closed loop 

feedback control framework, where for the simple corridor traffic 

flow as shown in Figure 6 an illustrative response of the PDF of the 

actual queue length can be shown in the following figure.                                       

□ 

 
Figure 14. The typical response of the queue length PDF for a 

signalized corridor.  

 

Indeed, such a 3D response of queueing length PDF will be a 

typical example of how the response will be like when the traffic 

signal is controlled using (28), where it is expected that the PDF of 

the queueing length will become narrow and narrow along with the 

progress of the time. This would indicate that the traffic flow is 

getting smother and smoother. 

 

Indeed, traffic flow can also be modeled as stochastic distribution 

process using kinematic wave theory [17], where we can denote 

traffic flow as q and its density as k at a point in space x and time t, 

then it can be obtained that 

 

                                                                      (29) 

Using the above notations, the following model can be readily 

obtained 

 

                                                           (30) 

Let w(q, x) be the average speed of a traffic stream/flow, then we 

have  

𝑤(𝑞, 𝑥) =
𝜕𝑘

𝜕𝑞
 

As in [18], the following figure would show the relationship 

between traffic flow, density, and speed profiles. 

 
Figure 15. The relationship between flow, density and speed. 

 

It can be seen that such a model can be modified to include the 

timing of the traffic signal as the control inputs, where stochastic 

distribution control can also be developed to control the probability 

density functions of the flow, density and the speed.  This belongs 

to the scope of future study. 

6 CONCLUSIONS 

In this forward-looking paper, we have developed a recursive input-

output traffic queue models and the stochastic distribution control 

model by taking the timing of red, green and yellow signals as the 

control input and the queue length as the output for traffic flow 

corridor by considering number of vehicles entered and left the 

signaled corridor as both deterministic and stochastic processes. 

Based on such models, we have proposed a real-time framework 

that can have potential to smooth the traffic with minimized energy 

consumption. In particular, we have developed a novel concept for 

the stochastic distribution control of the timing of the traffic signals 

which realizes the uniform distribution of the queue length over the 

concerned networked traffic flow area.       

 

It can also been seen that queueing length has been used as a 

feedback signal to constitute a closed loop control.  This requires 

that the queueing length be measurable.  However, this can be a 

challenging issue albeit the image processing using camera capture 

picture can be used as a measure for the queueing length. In this 

case, the estimation of the queueing length distribution using speed 

profile can be considered.  This belongs to the scope of our future 

work. 

 

Appendix  Main Results 

A.1  One-way Single-lane Street Traffic 

Proof of Theorem 1: Consider the given traffic signal 𝜎 with signal 

timing sequence �̃� for the one-way single-lane street having the 
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loop detectors 𝑁  and  𝑀  shown in Figure 6. Suppose 

that 𝜎[𝑡𝑘,𝑡𝑘+1] = Red. Then we derive the red signal queue 𝑟(𝑡, 𝑛) 

as a function of time  𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1]  and counter  𝑛 . We 

initialize 𝑟(𝑡, 𝑛) using the values of yellow signal queue 𝑦(𝑡, 𝑛, 𝑚) 

and �̃� at the time 𝑡𝑘 as 

 

𝑟(𝑡𝑘) = 𝑦(𝑡𝑘 , 𝑛, 𝑚) + �̃�𝑙 
 

and re-initialize 𝑛 = �̃� = 0. 

Case 1 (𝑛 = 0): If no vehicle is detected at the loop detector 𝑁 for 

all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] then 

𝑟(𝑡, 𝑛) = 𝑟(𝑡𝑘), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] 

Case 2 ( 𝑛 = 1 ): If only one vehicle is detected at the loop 

detector 𝑁 for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] then we use its detection time 𝜏1 

and speed 𝑣1 to determine whether it can reach the end of 𝑟(𝑡𝑘) in 

the interval [𝑡𝑘 , 𝑡𝑘+1] or not. Therefore 

𝑟(𝑡, 𝑛)

=

{
 

 
𝑟(𝑡𝑘) + 𝑙, ∀𝑡 ∈ [�̃�1, 𝑡𝑘+1]

𝑟(𝑡𝑘),           ∀𝑡 ∈ [𝑡𝑘 , �̃�1)
, if 

𝑙 − 𝑟(𝑡𝑘)

𝑣1
+ 𝜏1

⏟        
�̃�1

∈ [𝑡𝑘 , 𝑡𝑘+1]

𝑟(𝑡𝑘), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], otherwise

 

and �̃� = �̃� + 1 if �̃�1 ∉ [𝑡𝑘 , 𝑡𝑘+1]. 

Case 3 (𝑛 > 1): If more than one vehicles are detected at the loop 

detector 𝑁 for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] then we use their detection times 

and speeds to determine whether they can reach the end of 𝑟(𝑡, 𝑛) 

in the interval [𝑡𝑘, 𝑡𝑘+1] or not. Therefore 

𝑟(𝑡, 𝑛) = {

𝑟(𝑡𝑘) + 𝑛𝑙,     ∀𝑡 ∈ [�̃�𝑛 , 𝑡𝑘+1]

𝑟(𝑡, 𝑛 − 1),       ∀𝑡 ∈ [𝑡𝑘 , �̃�𝑛)
, if     �̃�𝑛 ∈ [𝑡𝑘 , 𝑡𝑘+1]

𝑟(𝑡, 𝑛 − 1), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], otherwise

 

and �̃� = �̃� + 1 if �̃�𝑛 ∉ [𝑡𝑘, 𝑡𝑘+1] 

where �̃�𝑛 =
𝑙−𝑟(𝑡𝑘)−(𝑛−1)𝑙

𝑣𝑛
+ 𝜏𝑛. 

Hence the claim follows by initializing �̃�0 = 𝑡𝑘 and combining the 

cases 1, 2, and 3.    

                                                                          □ 

A.2 Proof of Theorem 2: Consider the given traffic signal 𝜎 with 

signal timing sequence �̃� for the one-way single-lane street having 

the loop detectors 𝑁 and 𝑀 shown in Figure 6. Suppose 𝜎[𝑡𝑘,𝑡𝑘+1] =

Green . Then we derive the green signal queue  𝑔(𝑡, 𝑛, 𝑚)  as a 

function of time  𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1]  and counters  𝑛  and  𝑚 . We 

initialize 𝑔(𝑡, 𝑛, 𝑚)  using the values of red signal queue 𝑟(𝑡, 𝑛) 

and �̃� at the time 𝑡𝑘 as 

𝑔(𝑡𝑘) = 𝑟(𝑡𝑘 , 𝑛) + �̃�𝑙 

and re-initialize 𝑛 = �̃� = 𝑚 = 0. 

Case 1 (𝑛 = 0): If no vehicle is detected at the loop detector 𝑁 for 

all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] then 

𝑔(𝑡, 𝑛, 𝑚) = 𝑔(𝑡𝑘) − 𝑚𝑙, ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] 

Case 2 ( 𝑛 = 1 ): If only one vehicle is detected at the loop 

detector 𝑁 for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] then we use its detection time 𝜏1 

and speed  𝑣1  to determine whether it can reach the end 

of 𝑔(𝑡, 𝑛, 𝑚) in the interval [𝑡𝑘 , 𝑡𝑘+1] or not. Therefore 

𝑔(𝑡, 𝑛, 𝑚)

= {

𝑔(𝑡𝑘) − (𝑚 − 1)𝑙,    ∀𝑡 ∈ [�̃�1, 𝑡𝑘+1]

𝑔(𝑡𝑘) − 𝑚𝑙,           ∀𝑡 ∈ [𝑡𝑘 , �̃�1)
, if     �̃�1 ∈ [𝑡𝑘, 𝑡𝑘+1]

𝑔(𝑡𝑘) − 𝑚𝑙, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1], otherwise

 

and �̃� = �̃� + 1 if �̃�1 ∉ [𝑡𝑘 , 𝑡𝑘+1] 

where �̃�1 =
𝑙−[𝑔(𝑡𝑘)−𝑚𝑙]

𝑣1
+ 𝜏1. 

Case 3 (𝑛 > 1): If more than one vehicles are detected at the loop 

detector 𝑁 for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1] then we use their detection times 

and speeds to determine whether they can reach the end 

of 𝑔(𝑡, 𝑛, 𝑚) in the interval [𝑡𝑘 , 𝑡𝑘+1] or not. Therefore 

𝑔(𝑡, 𝑛, 𝑚)

= {

𝑔(𝑡𝑘) + (𝑛 − 𝑚)𝑙,     ∀𝑡 ∈ [�̃�𝑛 , 𝑡𝑘+1]

𝑔(𝑡, 𝑛 − 1, 𝑚),                ∀𝑡 ∈ [𝑡𝑘 , �̃�𝑛)
,     if    �̃�𝑛 ∈ [𝑡𝑘 , 𝑡𝑘+1]

𝑔(𝑡, 𝑛 − 1, 𝑚), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1],     otherwise

 

and �̃� = �̃� + 1 if �̃�𝑛 ∉ [𝑡𝑘, 𝑡𝑘+1] 

where �̃�𝑛 =
𝑙−[𝑔(𝑡𝑘)+(𝑛−𝑚−1)𝑙]

𝑣𝑛
+ 𝜏𝑛.  

Hence the claim follows by initializing �̃�0 = 𝑡𝑘 and combining the 

cases 1, 2, and 3.                                                                             □ 

A.3 Proof of Theorem 3: The proof is similar to the Theorem 2 

proof. We initialize  𝑦(𝑡, 𝑛. 𝑚)  as  𝑦(𝑡𝑘) = 𝑔(𝑡𝑘 , 𝑛, 𝑚)  and 

reinitialize 𝑛 = 𝑚 = 0. Since the time interval for yellow signal is 

very small in practice, we do not reinitialize the counter �̃�.          □ 

.                                                        □ 
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