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ABSTRACT

In the multicore era it was possible to exploit the increase
in on-chip parallelism by simply running multiple MPI pro-
cesses per chip. Unfortunately, manycore processors’ greatly
increased thread- and data-level parallelism coupled with
a reduced memory capacity demand an altogether differ-
ent approach. In this paper we explore augmenting two
NWChem modules, triples correction of the CCSD(T) and
Fock matrix construction, with OpenMP in order that they
might run efficiently on future manycore architectures. As
the next NERSC machine will be a self-hosted Intel MIC
(Xeon Phi) based supercomputer, we leverage an existing
MIC testbed at NERSC to evaluate our experiments. In or-
der to proxy the fact that future MIC machines will not
have a host processor, we run all of our experiments in
native mode. We found that while straightforward appli-
cation of OpenMP to the deep loop nests associated with
the tensor contractions of CCSD(T) was sufficient in at-
taining high performance, significant effort was required to
safely and efficiently thread the TEXAS integral package
when constructing the Fock matrix. Ultimately, our new
MPI4+OpenMP hybrid implementations attain up to 65x
better performance for the triples part of the CCSD(T) due
in large part to the fact that the limited on-card memory
limits the existing MPI implementation to a single process
per card. Additionally, we obtain up to 1.6x better perfor-
mance on Fock matrix constructions when compared with
the best MPI implementations running multiple processes
per card.

Categories and Subject Descriptors

D.1.3 [Software]: Programming Techniques— Concurrent
Programming; D.2 [Software Engineering]: Metrics—Per-
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1. INTRODUCTION

Over the course of the last decade, multicore architectures
emerged as the standard for all major HPC computing plat-
forms. Today, manycore and accelerated architecture offer
substantially higher performance and may eclipse multicore
as the basis for HPC. Unfortunately, both manycore and ac-
celerated architectures demand extreme thread- and data-
level parallelism to attain high performance. As existing
compilers and runtime systems lack the maturity to auto-
matically extract these forms of parallelism from existing
applications, users must express these forms of parallelism
explicitly (e.g. OpenMP pragmas and intrinsics) in their
codes. To maximize performance, users must consider load
balancing, task granularity, software overhead, and many
other performance factors. Thus, for many large-scale ap-
plications, efficiently exploiting manycore and accelerated
architectures can be challenging.

NWChem [24] is a comprehensive open source computa-
tional chemistry package for solving challenging chemical
and biological problems using large scale ab initio molecular
simulations. It has been widely used all over the world to
solve a wide range of complex scientific problems. NWChem
provides many methods for computing the properties of molec-
ular and periodic systems using standard quantum mechan-
ical descriptions of the electronic wave function or density.

In this work, we focus on two frequently used NWChem
modules — CCSD(T) and Fock matrix construction. In the
existing implementations of these modules, multicore par-
allelism is only exploited using MPI; there is no explicit
thread-level parallelism. As such, on manycore platforms,
the current performance is severely limited as it is often not
able to make full use of all the available computing resources
due to the constraints of limited memory. Our approach
uses OpenMP to express thread-level parallelism for these
two modules. In order to proxy the future NERSC-8 super-
computer Cori [4] which is based on a future self-hosted In-
tel manycore MIC architecture, we use the NERSC testbed
Babbage and run in native mode. In native mode, one pro-
grams the MIC as if it were a self-hosted processor with 60
cores each with 4 hardware thread contexts (240 threads to-
tal). Thus, the host is unused, host memory is unavailable,
and there are no PCle transfers. Without a fast, latency-
optimized host processor, native-mode configurations can be
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very sensitive to Amdhal’s Law.
The principle contributions of this work include:

1. Quantifying the impact of limited application paral-
lelism when running on manycore architectures in the
context of two different NWChem modules.

2. Evaluating several threading and parallelization tech-
niques that allow one to exploit the full 240 hardware
thread contexts on MIC. Previously, CCSD(T) could
only exploit a single MPI process per MIC while the
Fock matrix construction could only exploit up to 60
MPI processes per MIC.

3. With further optimization, our hybrid MPI+OpenMP
codes attain net speedups of 65x and 1.6x relative to
the original MPI implementations for the triples part
of the CCSD(T) and Fock matrix construction, respec-
tively.

The rest of the paper is organized as follows. After dis-
cussing some related work, we describe our evaluation plat-
form and experimental setup. We then proceed to describe
the algorithmic details, threading approaches, and other op-
timizations for the triples part of the CCSD(T) and Fock
matrix construction modules in Sections [4] and [5] respec-
tively. Finally, we summarize our results and outline some
future work.

2. RELATED WORK

The performance of NWChem has been extensively stud-
ied on a variety of compute architectures. However, few of
them focus on the thread-level parallelism issue on manycore
architectures as we do. In our previous work, we studied
how to optimize the performance of the Fock matrix con-
struction on the Intel MIC architecture [21]. That approach
was restricted to a flat MPI implementation and focused on
improving load balancing and data-level parallelism. A re-
sultant observation was that due to memory constraints, we
were not able to run more than 60 MPI processes per MIC
card. Although tailoring the code to reduce the memory re-
quirements allowed up to 120 MPI processes, the approach
was not a general solution and was not repeated here. Apra
et al. studied CCSD(T) performance on the Intel MIC ar-
chitecture for a large-scale application [1|. In their study,
the Intel MIC cards are used in offload mode and not in
native mode as we do. As such, their work would not be
a good proxy for the NERSC8 Cori supercomputer as one
may rely on the fast host processor to avoid performance
limitations arising from Amdahl’s Law. Nevertheless, we
found that similar optimizations could be applied in both
native and offload mode. Ma et al. studied CCSD(T) per-
formance on several GPU platforms using hybrid CPU-GPU
execution |14, |15]. Ghosh et al. studied the communication
performance for TCE [8]. Ozog et al. explored a set of static
and dynamic scheduling algorithms for block-sparse tensor
contractions within the NWChem computational chemistry
code [17].

Liu et al. developed a new scalable parallel algorithm for
Fock matrix construction. Their focus was on large hetero-
geneous clusters [26]. Foster et al. presented scalable al-
gorithms for distributing and constructing the Fock matrix
in SCF problems on several massively parallel processing
platforms [7]. Tilson et al. compared the performance of

TEXAS integral package with the McMurchie-Davidson im-
plementation on the IBM SP, Kendall Square KSR-2, Cray
T3D, Cray T3E, and Intel Touchstone Delta systems [23].

With respect to OpenMP performance on the Intel MIC,
Carmer et al. evaluated the overhead of OpenMP program-
ming using a couple of simple benchmarks [6], while Schmidl
et al. studied the OpenMP performance using kernels and
applications and found that porting OpenMP codes to the
Intel MIC needs performance tuning [20].

3. EXPERIMENTAL SETUP

Babbage is an Intel MIC testbed at NERSC [2] with 45
compute nodes connected by an Infiniband network. Each
node contains two Intel Xeon (host) processors and two MIC
(Xeon Phi) cards. Each MIC card contains 60 cores running
at 1.05 GHz and 8 GB GDDR memory. Although the the-
oretical memory bandwidth is 352GB/s, it is nearly impos-
sible to exceed about 170 GB/s using the STREAM bench-
mark [22]. Each core includes a 32KB L1 cache, a 512KB
L2 cache, a 8-way SIMD vector processing unit, supports 4
hardware threads, and provides a peak performance of about
16.8 GFlop/s (1 TFlop/s per chip). Unfortunately, the core
can only issue up to two instructions per cycle and then only
if there are at least two threads per core. In order to proxy
the NERSC8 Cori supercomputer [4], we run in native mode.
As such, the Xeon cores cannot be used to hide sequential
bottlenecks. Moreover, the PCle bus is unused and thus
does not artificially impair performance. In all experiments,
we use the Intel Fortran 64 Compiler XE version 14.0.1 and
use balanced affinity as it delivered the best performance.

In the paper, we use CCSD(T) and the Fock matrix con-
struction modules as the basis for our evaluation. The input
file for CCSD(T) is tce_ccsd2_t_cl2o.nw which can located
in the NWChem distributed package. However, we changed
the tile size from 15 to 24 to improve performance and the
basis set from cc-pvdz to aug-cc-pvdz which is augmented
with added diffuse functions. For Fock matrix construc-
tion, we use the same input file (c20h42.nw) as our previous
study |21]. This benchmark is designed to measure the per-
formance of the Hartree-Fock calculations on a single node
with a reasonable runtime for tuning purposes.

4. COUPLED CLUSTER TRIPLES ALGO-
RITHM IN CCSD(T)

CCSD(T) is often called the Ogold standardO of compu-
tational chemistry [19 [18]. It is one method in the Cou-
pled Cluster (CC) family. The coupled cluster methods are
widely used in quantum chemistry as a post-Hartree-Fock
ab initio quantum chemistry method due to their high ac-
curacy and polynomial time and space complexity [5]. They
perform extremely well for the molecular systems as they
accurately describe electron correlation part of the interac-
tions.

In this section, we will focus on the triples algorithm
in CCSD(T), which is the most computationally expensive
component of the calculation. We will discuss the algorithm
and then will discuss our approach to OpenMP paralleliza-
tion and performance optimization.

4.1 Algorithm

The dominant computations in the CCSD(T) algorithm
are double-precision tensor contractions. Tensor contrac-
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Algorithm 4.1 CCSD(T) Triples Algorithm

1: for p4 =1 to nvab do

2: for p5 = p4 to nvab do

3 for p6 = p5 to nvab do

4 for hl =1 to noab do

5 for h2 = h1 to noab do

6: for h3 = h2 to noab do

7 allocate d_singles and d_doubles (6D tensors)
8.

9

0

call ccsd_t_doubles_1(d_doubles,p4,p5,p6,h1,h2,h3)
call ccsd_t_singles_1(d_singles,p4,p5,p6,h1,h2,h3)

10: Sum d_singles & d_doubles into energyl & en-
ergy2

11: end for

12: end for

13: end for

14: end for

15: end for

16: end for

tions are generalized multidimensional matrix-matrix mul-
tiplications. The typical tensor contractions involved in the
triples part of the CCSD(T) algorithm can be represented
by the following equations that generate a six-dimensional
tensor from either the contraction of a two-dimensional and

four-dimensional tensor or two four-dimensional tensors shown

in Equations[[Jand[2} Eventually, the 6D tensors are reduced
into a single number. In the triples algorithm, there are 9
tensor contractions that are similar to Equation [I] and 18
like Equation

T(p4, p5, p6, hl, h2, h3) =T'1(p4, hl) *x T2(p5, p6, h3, h2) (1)
T(p4,p5, p6, h1, h2, h3) =T2(p4, p7, h1l, h2) * V2(p5, p6, h3, p7) (2)

The multidimensional arrays that represent a tensor (typ-
ically 200-2000 for each dimension) are stored in a tiled fash-
ion to enable the distribution of the work over many proces-
sors and to limit local memory usage on each processor. The
size of the tile will depend on available memory and typi-
cally ranges from 10 to 40. We use 24 in our experiments.
In practice, tensor operations are often dominated by index
permutation and generalized matrix-matrix multiplication.

The pseudocode for the triples algorithm is shown in Al-
gorithm Lines 1-6 loop through all the occupied and
unoccupied tiles. The loop body contains four major steps
(Lines 7-10). Line 7 allocates the temporary buffers for the
6D tensors of Equations (1| and The upper memory re-
quirement for each 6D tensor is tilesize® doubles (roughly
1.46GB using our tile size of 24). Line 8 fetches the two 4D
tensors in Equation [2] from the tile domain space and com-
putes the 6D tensor d_doubles. Similarly, Line 9 fetches the
2D and 4D tensors in Equation [I|and computes the 6D ten-
sor d_singles. Finally, Line 10 sums the two 6D tensors with
the appropriate scaling factors and increments the global
variables energyl and energy?2.

4.2 Baseline OpenMP Parallelization and Per-
formance

The most computationally intensive part of Algorithm 4]
is Line 8, where the tensor d_doubles are calculated. This
phase therefore often becomes the main target for perfor-
mance optimization [1}, 14, [15]. In particular, Apra et al. [1]
have studied the CCSD(T) performance on the Intel MIC
architecture, where the MIC node is used as an accelera-

Algorithm 4.2 Nested Loop to Compute 6D Tensor

(d_doubles)

1: I$OMP Parallel do private(p4,p5,p6,p7,h1,h2,h3), col-
lapse(3)

2: for p5 =1 to p5d do

3: for p6 =1 to p6d do

4:  for p4 =1 to pd4d do

5: for hl =1 to hld do

6: for h3 =1 to p3d do

7 for h2 =1 to p2d do

8: for p7 =1 to p7d do

9: triplesx(h2,h3,h1,p4,p6,p5) +=
10: t2sub(p7,p4,h1,h2) * v2sub(p7,h3,p6,p5)
11: end for

12: end for

13: end for

14: end for

15:  end for

16: end for

17: end for

tor, and the OpenMP parallelized d_doubles computation is
offloaded to the MIC processor. Their study leveraged the
high-performance host processor to compute both d_singles
and the sum operation, as well as computing d_doubles.
However, for future self-hosted homogeneous manycore pro-
cessors, running these computations sequentially on a light-
weight core can result in a major performance impediment,
thus motivating our study.

In practice, the high memory requirements of CCSD(T)
often precludes running more than one process per MIC pro-
cessor. This motivates entirely threading CCSD(T) to en-
sure efficient execution on homogeneous manycore systems.
In order to highlight this importance, we evaluated per-
formance by threading either d_doubles, or all three major
steps (d_doubles, d_singles, as well as summation). Figure
presents the overall performance as a function of the number
of OpenMP threads. There is one thread per core from 1-60
threads, two at 120, three at 180, and four at 240 threads.
Figure [1| conclusively shows that failing to thread d_singles
and the summation results in nearly a 2.1x loss in perfor-
mance. As such, it is obvious that it is imperative one thread
all of these routines when running on a homogenous many-
core processor. We discuss our approach and optimization
here.

The computation of the 6D tensors on Lines 8-9 of Algo-
rithm [4.T]includes two major substeps: calculating the lower
dimensional tensors with correct order and computing the
6D tensors. Computing the 6D tensors is implemented us-
ing a deep loop nest. Based on type of contraction, there
are 9 different loop structures in ccsd_t_singles_1 and 18 in
cesd_t_doubles_1 (27 total). Algorithm shows an exam-
ple contraction from ccsd_t_doubles_l, where h1, h2, and h3
are the occupied spin-orbital indices and p4, p5, p6, and
p7 are the unoccupied spin-orbital indices. The two 4D
tensors t2sub and v2sub are sub-blocks of cluster amplitude
and two-electron tensors, respectively. The 6D tensor triples
(another name for d_doubles) is the projections of the tiles.

The most straightforward approach to threading Algo-
rithm is to simply add an ! SOMP parallel do direc-
tive to the outermost loop. We use the collapse clause
to increase the total number of loop iterations threaded at a
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Figure 1: Benefit of progressive OpenMP threading
in CCSD(T) on MIC in Native mode. Whereas an
accelerated system can rely on a fast host processor,
it is essential that one thread Doubles, Singles, and
the Summation when using a homogeneous many-
core processor.

Algorithm 4.3 Original 6D Tensor Sum Implementation
1:i=0
2: for p4 =1 to range_p4 do

3: d4 = array(offset_p4 + p4)

4: for p5 =1 to range_p5 do

5. d5 = array(offset_p5 + p5)

6: for p6 =1 to range_p6 do

T d6 = array(offset_p6 + p6)

8: for h1 =1 to range_hl do

9: dl = array(offset_h1 + h1)

10: for h2 =1 to range_h2 do

11: d2 = array(offset_h2 + h2)

12: for h3 =1 to range_h3 do

13: d3 = array(offset_h3 + h3)

14: d = 1.0 / ((d14d2+d3) - (d4+d5+d6))
15: energyl += factor*d*d_doubles(i)*d_doubles(i)
16: energy2 += factor*d*d_doubles(i)*

(d_doubles(i)+d_singles(i))

17: i=i+1

18: end for

19: end for
20: end for
21:  end for
22: end for
23: end for

time — an essential step as the small value of p5d would oth-
erwise lead to underutilization of the 240 threads on MIC.
This directive was applied to all 27 nested loops.

The summation of Line 10 of Algorithm [{] is shown in
Algorithm Unfortunately, the variable ¢ impedes the
compiler from correctly threading this loop nest. As such,
we rewrote the loop nest to be thread-safe (Algorithm [£.4)).
In addition to the OpenMP parallelization, we optimize the
performance further by extracting the common variable “fac-
tor” in Lines 15-16 of Algorithm[£:3]out of the loops and mul-
tiply it only once after the whole computation as in Lines 28-
29 of Algorithm

Algorithm 4.4 OpenMP Parallelized 6D Tensor Sum
(Line 10)
1: el=e2 =10.0
2: ISOMP Parallel do private(p4,p5,p6,h,h2,h3), col-
lapse(3)
private(d4,d5,d6,d1,d2,d3,d, el, e2, offset,nom, i)
reduction(+:el, €2)
for p4 =1 to range_p4 do
for p5 =1 to range_pb do
for p6 = 1 to range_p6 do
d4 = array(offset_p4 + p4)
d5 = array(offset_p5 + p5)
d6 = array(offset_p6 + p6)
10: offset = p6-1+range_p6*(p5-1+range_p5*(p4-1))
11: for h1 =1 to range_hl do

@

12: for h2 =1 to range_h2 do

13: for h3 =1 to range_h3 do

14: dl = array(offset_h1 + hl)

15: d2 = array(offset_h2 + h2)

16: d3 = array(offset_h3 + h3)

17: d =10/ ((d14+d2+d3) - (d4-+d5+d6))

18: i = h3-14range_h3*(h2-1+
range_h2*(h1-1+range_h1*offset))

19: el = el+d*d_doubles(i)*d_doubles(i)

20: €2 = e2+d*d_doubles(i)*(d_doubles(i)+d_singles(i))

21: end for

22: end for

23: end for

24:  end for

25: end for

26: end for

27: 1$OMP end parallel do
28: energyl = energyl + el * factor
29: energy2 = energy2 + e2 * factor

Figureshows more details of the scalability of the initial
(unoptimized) OpenMP performance. There is one thread
per core from 1-60 threads, two at 120, three at 180, and
four at 240 threads. The reduction in total run time scales
almost linearly up to 16 OpenMP threads. The line labeled
Loop Nests represents the total time spent across the 27
deep loop nests plus the summation loop. These operations
scale well to 120 threads beyond which the benefits of Hy-
perThreading are asymptotic. Conversely, the time spent
fetching the lower dimensional tensors (GetBlock) shows no
improvement as it was not initially threaded. Unfortunately,
it appears that HyperThreading elsewhere has a deleterious
effect on this routine. As such, the baseline implementation
attains its best performance with 120 threads. The best
times for each line have been labeled.

4.3 Performance and Further Optimization

To further improve the code performance, we implemented
the following optimizations listed below. The resultant op-
timized nested loop implementation for Algorithm (2] is
shown in Algorithm

1. Parallelize tce_sort: To reduce memory consumption,
the 2D and 4D tensors are divided into tiles and stored
in a complex hash space |3, 8]. Once fetched, their in-
dices need to be permuted to proper order by calling
function tce_sort. We apply the OpenMP parallel do
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Figure 2: Baseline OpenMP CCSD(T) run time.
There is one thread per core through 60 cores. For
120-240 threads, HyperThreading is exploited. Ob-
serve the effects of the GetBlock sequential bottle-
neck. Labels record time in seconds.

directive to parallelize this sorting process. This sort-
ing time is included in the GetBlock time.

2. Optimize get_block_ind: Using optimized nested loops
to replace generalized sorting function tce_sortacc. For
some cases, we simplify the loop body statement from
: sorted(i) = sorted(i) + unsorted(j) to sorted(i) =
unsorted(j) to avoid reading array sorted.

3. Reorder the indices for 2D and 4D tensors: As shown
in Algorithm [4.2] the index order of the tensor t2sub is
p7, p4, h1, h2, while the nested loop is ordered as p7,
h2, h1, p4 from inner to outsider. The different index
and loop order will cause noncontiguous data access,
resulted in lower memory performance. To improve the
data locality, we permute the index for tensor t2sub so
that the index order becomes the same as they appear
in the nested loops.

Algorithm 4.5 Optimized Nested Loops to Compute 6D
Tensor (d_doubles)

1: 'SOMP Parallel do private(p6p5,p7,h1p4,h2,h3), col-
lapse(2)

2: for p6p5 = 1 to p6d * p5d do

3: for hlp4 =1 to hld * p4d do

4 for h3 =1 to p3d do

5: for h2 =1 to p2d do

6

7

8

for p7 =1 to p7d do
IDIR$ ASSUME_ALIGNED triplesx: 64
: IDIR$ ASSUME_ALIGNED t2sub: 64
9: IDIR$ ASSUME_ALIGNED v2sub: 64

10: IDIR$ LOOP COUNT AVG=24

11: triplesx(h2,h3,h1p4,p6p5) +=

12: t2sub(p7,h2,h1p4)*v2sub(p7,h3,p6p5)
13: end for

14: end for

15: end for

16: end for

17: end for

Optimized OpenMP
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Figure 3: Optimized OpenMP CCSD(T) run time.
The performance for the nested loops has been sig-
nificantly improved. The GetBlock sequential bot-
tleneck is mitigated so long as there is only one
thread per core. Overall, we achieve a 2.5x speedup.
Labels record time in seconds.

4. Merge adjacent loop indices to increase the number of
iterations.

5. Align the array data to 64 bytes.

6. Exploit OpenMP loop control directives.

Figure |3| presents the resultant benefit of our optimiza-
tions. Compared with the baseline OpenMP implementa-
tion of Figure [2| the Loop Nests performance has been im-
proved about 1.54x while the best GetBlock time has been
improved from 121 seconds to 30 seconds — with an over-
all performance gain of 2.5x. The best total running time
is obtained when 180 threads are used. Compared to the
original flat MPI implementation that could only run one
process per card due to memory constraints, our approach
resulted in a 65X improvement in run time. Unfortunately,
further performance gains are impeded by the GetBlock bot-
tleneck that is related with Global Array [10]; optimization
of the Global Array implementation is beyond the scope of
this paper.

S. FOCK MATRIX CONSTRUCTION

The Fock matrix construction is the core computational
operation of the widely used Hartree-Fock (HF) method [11,
12,[9] which is a fundamental approach for solving the Schré-
dinger equation in quantum computing and is often used as
the starting point for the accurate but more time consuming
electronic correlation methods such as the coupled cluster
approach we described in Section[d] Efficient parallelization
of the Fock matrix construction can be much more challeng-
ing than optimizing CCSD(T). To that end, we will begin by
discussing the algorithm and its challenges and then explore
different approaches to exploiting thread-level parallelism in
combination with load balancing techniques on MIC.

5.1 Algorithm

In the HF algorithm, the Fock matrix (F) must be re-
peatedly constructed. The Fock matrix is a square N x N
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matrix where N is the number of the basis functions used to
describe the system. Each element ij is updated using the
following equation [7]:

N N

Fu=hiy + 325" Du(Gilk) - JGKD)  (3)

k=11=1

where h is one-electron Hamiltonian, D is the one-particle
density matrix, and (ij|kl) is a six dimensional integral,
called a two-electron repulsion integral (ERI). As each ele-
ment of the N x N Fock matrix requires one calculate O(N?)
two-electron integrals, the naive time required for these inte-
grals is computationally prohibitive. However, by applying
some screening for small values as well as exploiting molecu-

lar and permutation symmetry, the total complexity can be
reduced to between O(N?) and O(N?®).

Algorithm 5.1 Fock Matrix Construction — Original Im-
plementation

1: current_task_id =0

2: my_task = global task counter(task_block_size)

3: for ij =1 to nij do
for kIl =1 to nij do

if (my_task .eq. current_task_id) then

my_task=global task_counter(task_block size)
10: end if

11: current_task id = current_task id + 1

12: end for

13: end for

The dominating cost in the construction of the Fock ma-
trix is the calculation of the two-electron integrals. The
primary integral driver for NWChems [24] is the TEXAS in-
tegral package. The 70-thousand line TEXAS integral pack-
age |25] computes quadruple integrals in blocks (chunks).
Although computing the large number of integrals makes
Fock matrix construction numerically very expensive, each
computation is independent. Unfortunately, as any screen-
ing and symmetry are intertwined with the integral cal-
culations, the actual time to compute an ERI may differ
several orders of magnitude. Worse, varying angular mo-
mentums of the corresponding basis functions can further
exacerbate the variability. To cope with this execution vari-
ability, NWChem uses a shared global task counter (essen-
tially an efficient task queue) to dynamically load balance
work among MPI processes. In order to minimize network
pressure on the global task counter, tasks are doled out in
blocks.

Algorithm presents the pseudocode for the Fock ma-
trix construction. The variable nij is the number of blocks of
pairs of shells ij. Lines 3-4 loop through all pairs of blocks.
Line 6 constructs the quartet list using the pairs from blocks
ij and kl based on the pair information stored in array pinfo,
plist and other data structures. Once the quartet list qlist
has been created, the TEXAS integral package in Line 7 is
invoked to perform the integrals using the Obara-Saika (OS)
method |16} |25 |13] with the results stored into the array re-
sults. For efficiency, integrals with similar characteristics are
computed together in order to maximize sharing and reuse
of temporary data. As each integral may affect a number of

Prep_quartet_list_for_integral calc(ij,kl,qlist,pinfo,plist,...)
Calculate_integrals_using TEXAS(qlist,results,scratch)
Update_Fock_matrix_using_integral results(fock,results)

Fock matrix elements related by values of 4, j, k, and [, the
update on Line 8 is a potential impediment to straightfor-
ward threading.

5.2 Thread safety of TEXAS integral routines

NWChem and the TEXAS integral package is 15-year
old legacy fortran code that makes extensive use of com-
mon blocks to pass variables. In order to ensure this code
is thread-safe, one must declare OpenMP attributes (e.g.
shared or threadprivate) for every variable in every com-
mon block. If a common block appears in multiple sub-
routines, the variable attributes should be defined for every
occurrence. In some cases, this necessitated partitioning a
common block. For example, the common block pnl002 in-
cludes four variables. Among them, ncshell, ncfunct, nblock2
should be defined as shared (by default) and integ-n0 should
be separated from the original common block and defined as
threadprivate. The corresponding codes have been shown
below.

Original:
common /pnl002/ ncshell,ncfunct,nblock2, integ_n0

OpenMP :

common /pnl002/ ncshell,ncfunct,nblock2
common /pnl0022/ integ_nO

c$OMP threadprivate (/pnl0022/)

5.3 OpenMP Parallelization and Optimization

We explored three different OpenMP parallelization ap-
proaches to exploiting thread-level parallelism on MIC. These
approaches span a spectrum that trades programability for
performance through massive thread-level parallelism. The
first approach OpenMP directives are added to the compu-
tationally expensive TEXAS integral routines to allow for
fine grain parallelization. The second approach parallelizes
the code in a coarse-grained manner so that each OpenMP
thread will essentially perform the same work as an addi-
tional MPI process would have. Unfortunately, significant
programming effort is required to make the code thread safe.
Finally, we use the OpenMP task model to overcome this
overhead and inefficiency.

5.3.1 Approach #1: OpenMP Parallelization of the
TEXAS integral routines

For Approach #1 OpenMP directives are used to enable
threading of the loop structures within the individual rou-
tines of the TEXAS integral package. In our previous study,
we identified the top ten subroutines in the TEXAS integral
package that accounted for about 75% of the Fock matrix
construction time [21]. Although these routines use vari-
ous loop nests that can be threaded, they tend to be short,
much more complex and irregular in code structures and
data access patterns. The first attempt at threading these
routines involved placing c$OMP parallel do or c$OMP do
directives on these loops where appropriate. As the c$OMP
parallel do directive has slightly more overhead than ¢$OMP
do directive, we aggregate parallel regions and use multiple
c$OMP do directives. Every variable inside the threaded
loops must define their OpenMP attribute correctly (shared,
private, first private, etc.). Loop collapsing is difficult to be
applied here because of the data dependence between the
loop indices.

5.3.2 Approach #2: OpenMP Parallelization at the
Fock Matrix Construction Level
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Algorithm 5.2 Fock Matrix Construction — OpenMP Im-
plementation

Algorithm 5.3 Fock Matrix Construction — OpenMP
Task Implementation

1: ¢c$OMP  parallel  private(mytid,  current_task_ id,
my_task, ij, kl, qlist, results, scratch, ...)
c¢$OMP shared(pinto, plist, ...)
c¢$OMP reduction (+: fock)
current_task id = 0
c¢SOMP critical
my_task = global task _counter(task block_size)
c¢$OMP end critical
for ij =1 to nij do
for kl =1 to nij do
10:  if (my_task .eq. current_task id) then

Allocation of myfock for each thread
c$OMP parallel
myfock() = 0
c$OMP master
current_task_id = 0
my_task = global task _counter(task block_size)
for ij =1 to nij do

for kl =1 to nij do

if (my_task .eq. current_task id) then

10: c$OMP task firstprivate(ij,kl) default(shared)
11: create_task(ij,kl,myfock, ...)

11: Prep_quartet_list_for_integral calc(ij,kl,qlist,pinfo,plist,...) 12:
12: Calculate_integrals_using_ TEXAS(qlist,results,scratch)  13:
13: Update_Fock matrix_using_integral results(fock,results) 14:

c¢$OMP end task
my_task=global task_counter(task_block size)
end if

14: c$OMP critical
15: my_task=global task_counter(task_block_size)
16: c¢$OMP end critical

17: end if

18: current_task_id = current_task_id + 1
19: end for

20: end for

21: ¢cSOMP end parallel

Approach #2 attempts to replicate the task parallelism
of each of the MPI ranks of the Fock matrix construction
routine using threads. Although structurally similar, this
approach has the advantage that it should use significantly
less memory than simply adding more MPI processes on
a chip. Moreover, unlike Approach #1, the coarse-grained
parallelism employed by this approach (one thread per task)
minimizes any OpenMP overheads for the TEXAS integral
package. To accomplish this approach, one must address
three challenges — ensuring thread-safety of common blocks
(see [5.2)), extending the existing process-based dynamic load
balancing to OpenMP threads, and ensuring the Fock matrix
can be efficiently updated. The resultant OpenMP imple-
mentation of the new dynamic load balancing algorithm is
shown in Algorithm

Approach #2 still depends on the use of the global_-
task_counter to provide dynamic load balancing among
OpenMP threads. As this call necessitates MPI commu-
nication by multiple threads, the function must be called
from within an OpenMP Critical section and MPI must be
initialized at the level of MPI_THREAD_SERIALIZED.

With multiple threads independently calculating ERI’s,
there is the possibility that two threads will simultaneously
attempt to update the same Fock matrix element. In the
MPI implementation, this data hazard is avoided by creat-
ing independent copies of the Fock matrix. Although using
an OpenMP critical section or atomic updates could ad-
dress this data hazard, the performance penalties are se-
vere. Although OpenMP locks (e.g. one per row of the
Fock matrix) seemed to be an attractive solution, the over-
head coupled with the sheer number of updates per ERI
resulted in impaired performance. Ultimately, the best solu-
tion was to mimic the MPI implementation at the OpenMP
level. That is, each thread receives a copy of the Fock
matrix. These copies are reduced to the master using a
reduction (+:fock) clause.

15:  current_task_id = current_task_id + 1

16: end for

17: end for

18: ¢$OMP end master

19: ¢c$OMP taskwait

20: ¢c3OMP end parallel

21: Explicit Reduction on myfock to Fock matrix
22:

23: subroutine create_task(ij,kl,myfock, ...)

24: Prep_quartet_list_for_integral_calc(ij,kl,qlist,pinfo,plist,...)

25:  Calculate_integrals_using TEXAS(qlist,results,scratch)

26: Update_Fock_matrix_using_integral results(myfock,results)

27: end subroutine

5.3.3 Approach #3: Using OpenMP Task Directives
in Fock Matrix Construction

In Approach #3 OpenMP in the Fock matrix construc-
tion is exploited using the OpenMP task model to dynam-
ically assign work to threads. Algorithm [5-3] illustrates our
implementation. The code begins by creating an OpenMP
parallel region with per-thread copies of the Fock matrix
(myfock). The per-thread copies are explicitly allocated in
advance and initialized to 0, instead of implicility as done
in Algorithm #2. The master thread then traverses the
loop iteration space spawning OpenMP tasks that calculate
ERIs and update their own copy of the Fock matrix. Ob-
serve that only one thread will call global_task_counter
thereby minimizing contention. After all tasks have been
completed, a explicit hand-coded reduction is performed to
fold the per-thread copies of the Fock matrix into the mas-
ter copy. NWChem manages memory itself using a preallo-
cate stack and we leverage this functionality, guarded with
an OpenMP atomic directive, to allocate the thread-private
variables like glist and scratch. Restoration of this stack is
easily facilitated upon completion of all tasks.

5.4 Performance Comparison and Tuning

Figure [ presents the total execution time for each of
the ten most important subroutines of the TEXAS integral
package as well as the total running times (total) under five
different parallelization strategies — flat MPI with 60 pro-
cesses, and using the hybrid implementation of Approach
#1 (fine-grained threading of the TEXAS integrals) with
60 processes using 1, 2, 3, or 4 threads per process (Hy-
perThreading on a core). Note, although hybrid with 60
processes and 1 thread per process expresses no more par-
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Figure 4: The total time spent in each of the top ten
subroutines in the TEXAS integral package (and the
total running time) using Approach #1 (loop-level
threading) as a function of the number of OpenMP
threads per process. In all cases, there are 60 MPI
processes. Note, Pure MPI is not the same as MPI
with one thread per process as the latter incurs
wasted overhead for each omp parallel region.

allelism than flat MPI, it does incur additional overhead for
each OpenMP parallel region. The 60 process limit is an ar-
tifact of the high memory requirements per process and the
limited memory per MIC card. As one can see, although the
benefit of threading varies significantly from loop to loop,
the net benefit using this style of OpenMP parallelization is
minimal.

There are several reasons why the fine-grained approach to
OpenMP parallelization provided less of a benefit than it did
for CCSD(T). First, each OpenMP parallel region requires
some overhead. Thus, with one OpenMP thread per pro-
cess, there is only additional overhead with no paralleliza-
tion benefit. Second, the total time spent in these routines
is much less than the time spent in the similar CCSD(T)
operations. As such, even with multiple threads per pro-
cess, it is difficult to amortize the initial overhead. Third,
the depth of the iterations for each loop is relatively small.
When combined with the fact that data dependencies across
loops prevent collapsing the nested loops, we find it is diffi-
cult to efficiently thread and vectorize the routines. Finally,
the data access pattern is much less regular than the loop
nests in CCSD(T). This prevents easy vectorization and may
incur much more cache coherency transactions.

Figure [5| compares the scalability of all three OpenMP
approaches to the flat MPI implementation. Approach #1
(threading in the integrals) with one OpenMP thread tracks
the performance of the flat MPI implementation perfectly
up to 60 processes. Beyond 60 MPI processes, Approach
#1 uses 2, 3, or 4 threads per process to provide threading
within the TEXAS integrals. As discussed at the beginning
of this section, the lack of performance gain in threading
the integrals (Figure [4]) leads to no performance gain of Ap-
proach #1 beyond 60 MPI processes — hardly an ideal use
of a manycore processor.

In contrast to the flat MPI with 60 procceses, Approach
#2 and #3 use 1 MPI process with 1 to 240 threads. All
implementations scale well to 8 cores. Unfortunately, at
that point, Approach #2 (parallelization at the module-
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Figure 5: The performance and scalability of

the hybrid MPI4+OpenMP Approaches #1, #2, #3
compared with original flat MPI implementation.
The flat MPI implementation is limited to 60 pro-
cesses, while the OpenMP implementations can use
all 240 hardware thread contexts. While approach
#1 uses 60 MPI processes with 1,2,3, or 4 OpenMP
threads per MPI process, both Approach #2 and #3
use 1 MPI process with up to 240 OpenMP threads.

level) saturates. However, beyond 60 threads, it exploits
HyperThreadding and can see some benefit as it fully ex-
ploits each MIC core. This strange performance is due
to several factors. Although, the OpenMP critical section
that safe guards task dissemination causes some serializa-
tion overhead but not significant. Nevertheless, most of the
additional time is spent in the preparation stage and is likely
due to inefficiencies in the OpenMP run time’s management
and reduction of the long list of potentially large private
variables.

Unlike Approach #2, Approach #3 (OpenMP Tasks) con-
tinues to scale from 8 through 60 cores and tracks the flat
MPI performance perfectly. Beyond 60 cores, exploiting
HyperThreading through the OpenMP task model allows
NWChem to make full use of the MIC processor. Unlike
Approach #2, the ERI preparation time has been greatly
reduced and is no longer an impediment. Ultimately, with
1 process of 180 threads, the OpenMP task implementation
outperforms the flat MPI implementation by 1.33x.

Thus far, when using the OpenMP task model, we have
always fixed the number of MPI processes at 1 and simply
varied the number of OpenMP threads. In order to find the
globally optimal balance between threads and processes, we
benchmarked all combinations of MPI ranks and threads
per core. Figure |§| presents the resultant performance. In
all cases, we have fixed the total concurrency to 60, 120, 180,
or 240 hardware thread contexts (i.e. 60 cores with 1, 2, 3, or
4 threads per core). We observe that the best performance
can be obtained using all 240 thread contexts configured
as 4 processes each of 60 threads. Moreover, this process
of tuning the balance of threads and processes provided a
22% improvement over the fully threaded (1 process of 240
threads) configuration and 1.64x faster than the original flat
MPI implementation.

6. SUMMARY AND FUTURE WORK

Unlike multicore architectures which one could exploit by
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Figure 6: Performance of the OpenMP task imple-
mentation as a function of the number of threads
and processes. Note, in all cases, we have fixed the
total concurrency to 60, 120, 180, or 240 hardware
thread contexts (i.e. 60 cores with 1, 2, 3, or 4
threads per core). The best performance is obtained
with 4 MPI processes of 60 threads and is 1.64x
faster than the original flat MPI implementation.

simply running multiple processes per chip, manycore ar-
chitectures require a concerted effort to restructure legacy
codes to exploit the massive degree of thread-level paral-
lelism. In this paper, we investigated how to restructure
two NWChem modules, the triples part of the CCSD(T)
and Fock matrix construction, using portable OpenMP di-
rectives in order to exploit the full capability of the Intel
MIC architecture. In order to proxy the NERSC8 homoge-
nous manycore supercomputer, we perform all calculations
in native mode. Unlike the offload model in which MIC is
treated like an accelerator and one can exploit the fast host
processor for sequential computations, in native mode, all
computations must be efficiently threaded in order to avoid
any sequential bottlenecks.

Threading the the triples part of the CCSD(T) is rela-
tively straightforward. Omne can apply the OpenMP direc-
tives directly to each tensor contraction. Nevertheless, naive
threading was insufficient and some optimization was nec-
essary. The result is far superior to the existing flat MPI
implementation (which was constrained to a single process)
as it delivers 65x the performance. Conversely, attempting
a similar approach for the calculation of the TEXAS two-
electron integrals used to construct the Fock matrix pro-
vides no benefit. Applying thread-parallelism in a coarse-
grained approach provided a more efficient use of hardware.
However, the specifics on how to realize coarse-grained par-
allelism with an inherent lack of thread safety within the
module, the presence of high temporary data requirements,
and data hazards that impede threading are subtle. Ulti-
mately, we found that use of the OpenMP task model pro-
vided a succinct, portable, high-performance solution that
allowed the Fock matrix construction routines to exploit the
full hardware capability of the MIC processor and delivered

a 1.6x speedup over the existing flat MPI implementation.
Future work will continue to the process of threading other
NWChem packages with OpenMP. Unfortunately, this pro-
cess of restructuring the code to be thread-friendly was par-
ticularly time-consuming and error-prone. Looking forward,
tools to remedy this portability gap for legacy codes are es-
sential.
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