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ABSTRACT
High performance is a crucial consideration when executing
a complex analytic query on a massive semantic graph. In a
semantic graph, vertices and edges carry “attributes” of var-
ious types. Analytic queries on semantic graphs typically
depend on the values of these attributes; thus, the com-
putation must either view the graph through a filter that
passes only those individual vertices and edges of interest,
or else must first materialize a subgraph or subgraphs con-
sisting of only the vertices and edges of interest. The filtered
approach is superior due to its generality, ease of use, and
memory efficiency, but may carry a performance cost.

In the Knowledge Discovery Toolbox (KDT), a Python
library for parallel graph computations, the user writes fil-
ters in a high-level language, but those filters result in rel-
atively low performance due to the bottleneck of having to
call into the Python interpreter for each edge. In this work,
we use the Selective Embedded JIT Specialization (SEJITS)
approach to automatically translate filters defined by pro-
grammers into a lower-level efficiency language, bypassing
the upcall into Python. We evaluate our approach by com-
paring it with the high-performance C++ /MPI Combinato-
rial BLAS engine, and show that the productivity gained by
using a high-level filtering language comes without sacrific-
ing performance. We also present a new roofline model for
graph traversals, and show that our high-performance im-
plementations do not significantly deviate from the roofline.

1. INTRODUCTION

1.1 Motivation
Large-scale graph analytics are a central requirement of

bioinformatics, finance, social network analysis, national se-
curity, and many other fields. Going beyond simple searches,
analysts use high-performance computing systems to exe-
cute complex graph algorithms on large corpora of data.
Often, a large semantic graph is built up over time, with
the graph vertices representing entities of interest and the
edges representing relationships of various kinds—for exam-
ple, social network connections, financial transactions, or
interpersonal contacts.

∗Corresponding authors.
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Figure 1: Overview of the high-performance graph-
analysis software architecture described in this pa-
per. KDT has graph abstractions and uses a
very high-level language. Combinatorial BLAS has
sparse linear-algebra abstractions, and geared to-
wards performance.

In a semantic graph, edges and/or vertices are labeled
with attributes that may represent (for example) a time-
stamp, a type of relationship, or a mode of communication.
An analyst (i.e. a user of graph analytics) may want to run
a complex workflow over a large graph, but wish to only use
those graph edges whose attributes pass a filter defined by
the analyst. For example, in a graph whose vertices repre-
sent Twitter users and whose edges represent either “follow-
ing” or “retweeting” relationships, the analyst may want to
search through vertices reachable from a particular user via
the subgraph consisting only of “retweet” edges with time-
stamps earlier than June 30.

The Knowledge Discovery Toolbox [19] is a flexible Python-
based open-source toolkit for implementing complex graph
algorithms and executing them on high-performance paral-
lel computers. KDT achieves high performance by invoking
computational primitives supplied by a parallel C++ /MPI
backend, the Combinatorial BLAS [5]. This paper presents
new work that allows KDT users to define filters in Python,
which act to modify KDT’s action based on the attributes
that label individual edges or vertices.

Filters raise performance issues for large-scale graph anal-
ysis. In many applications it is impossibly expensive to run
a filter across an entire graph data corpus, materializing the
filtered graph as a new object for analysis. In addition to



the obvious storage problems with materialization, the time
spent during materialization is typically not amortized by
many graph queries because the user modifies the query (or
just the filter) during interactive data analysis. The alter-
native is to filter edges and vertices “on the fly” during exe-
cution of the complex graph algorithm. A graph algorithms
expert can implement an efficient on-the-fly filter as a set of
primitive Combinatorial BLAS operations coded in C/C++ ;
but filters written at the KDT level, as graph operations in
Python, incur a significant performance penalty.

Our solution to this challenge is to apply Selective Just-In-
Time Specialization techniques from the SEJITS approach [7].
We define a semantic-graph-specific filter domain-specific
language (DSL), a subset of Python, and use SEJITS to
implement the specialization necessary for filters written in
that subset to execute as efficiently as low-level C code.

As a result, we are able to demonstrate that SEJITS
technology significantly accelerates Python graph analytics
codes written in KDT and running on clusters and multicore
CPUs. An overview of our approach is shown in Figure 1.

Figure 2 compares the performance of four filtering imple-
mentations on a breadth-first search query in a graph with 8
million vertices and 128 million edges. The chart shows time
to perform the query as we synthetically increase the portion
of the graph that passes the filter on an input R-MAT [18]
graph of scale 23, The top two lines are the methods im-
plemented in the current release v0.2 of KDT [2]: slowest
is materializing the subgraph before traversal, and next is
on-the-fly filtering in Python. The third, red, line is our
new SEJITS+KDT implementation, which shows minimal
overhead and comes very close to the performance of native
Combinatorial BLAS in the fourth line.

1.2 Main contributions
The primary new contributions of this paper are:

1. A system design that allows domain-expert graph an-
alysts to describe filtered semantic graph operations in
a high-level language, using KDT v0.2.

2. An domain-specific language implementation that exe-
cutes flexible filtering without sacrificing performance,
using SEJITS selective compilation techniques.

3. Experimental demonstration of excellent performance
scaling to graphs with millions of vertices and hundreds
of millions of edges.

4. A new roofline performance model [24] for high-performance
graph computation, suitable for evaluating the perfor-
mance of filtered semantic graph operations.

5. A detailed case study of the use of algebraic semir-
ing operations as an alternative low-level approach to
filtering, using the Combinatorial BLAS.

1.3 Example of a filtered query
Here we present a simple example of a filtered query in a

semantic graph. We will refer to this example through the
paper, showing how the different implementations of filters
express the query and comparing their performance execut-
ing it.

We consider a graph whose vertices are Twitter users, and
whose edges represent two different types of relationships be-
tween users. In the first type, one user “follows” another; in
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Figure 2: Performance of a filtered BFS query, com-
paring four methods of implementing custom filters.
The vertical axis is running time in seconds on a
log scale; lower is better. From top to bottom, the
methods are: materializing the filtered subgraph;
on-the-fly filtering with high-level Python filters in
KDT; on-the-fly filtering with high-level Python fil-
ters specialized at runtime by SEJITS+KDT (this
paper’s main contribution); on-the-fly filtering with
low-level C++ filters implemented as customized
semiring operations and compiled into Combinato-
rial BLAS. The graph has 8 million vertices and 128
million edges. The runs use 36 cores (4 sockets) of
Intel Xeon E7-8870 processors.

the second type, one user “retweets” another user’s tweet.
Each retweet edge carries as attributes a timestamp and a
count. Figure 3 shows a fragment of such a graph. Our ex-
periments are with several semantic graphs, of various sizes,
constructed from publicly available data on tweets during
2009. The largest graph has about 17 million vertices and
720 million edges. Section 7 describes the datasets in more
detail.

Our sample query is the one mentioned above: Given a
vertex of interest, determine the number of hops required
to reach each other vertex by using only retweeting edges
timestamped earlier than June 30. The filter in this case
is a boolean predicate on edge attributes that defines the
types and timestamps of the edges to be used. The query is
a breadth-first search in the graph that ignores edges that
do not pass the filter.
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Figure 3: Graph of “following” and “retweeting” re-
lationships. Black edges denote following, and red
edges denote retweeting. Red edges are also labelled
with counts and timestamps, not shown.



1.4 Outline of the paper
We first survey related work. Then, Section 3 shows how

a filter can be implemented below the KDT level, as a user-
specified semiring operation in the C++ /MPI Combinato-
rial BLAS library that underlies KDT. This is a path to high
performance at the cost of usability: the analyst must trans-
late the graph-attribute definition of the filter into low-level
C++ code for custom semiring scalar operations in Combi-
natorial BLAS.

Section 4 describes the high-level filtering facility that is
new in Version 0.2 of KDT, in which filters are specified as
simple Python predicates. This approach yields easy cus-
tomization, and scales to many queries from many analysts
without demanding correspondingly many graph program-
ming experts; however, it poses challenges to achieving high
performance.

Section 5 is the technical heart of the paper, which de-
scribes how we meet these performance challenges by selec-
tive, embedded, just-in-time specialization with SEJITS.

Section 6 proposes a theoretical model that can be used
to evaluate the performance of our implementations, giving
“roofline” bounds on the performance of breadth-first search
in terms of architectural parameters of a parallel machine,
and the permeability of the filter.

Section 7 presents our experimental results, and Section 8
gives our conclusions and some remarks on future directions
and problems.

2. RELATED WORK

Graph Algorithm Packages
Pegasus [15] is a graph-analysis package that uses MapRe-
duce [9] in a distributed-computing setting. Pegasus uses
a primitive called GIM-V, much like KDT’s SpMV, to express
vertex-centered computations that combine data from neigh-
boring edges and vertices. This style of programming is
called “think like a vertex” in Pregel [21], a distributed-
computing graph API. Both of these systems require the
application to be written in a low-level language (Java and
C++, respectively) and neither has filter support.

Other libraries for high-performance computation on large-
scale graphs include the Parallel Boost Graph Library [12],
the Combinatorial BLAS [5], Georgia Tech’s SNAP [3], and
the Multithreaded Graph Library [4]. These are all writ-
ten in C/C++ and do not include explicit filter support.
The first two support distributed memory as well as shared
memory while the latter two require a shared address space.

SPARQL [23] is a query language for Resource Descrip-
tion Framework (RDF) [16] that can support semantic graph
database queries. The existing database engines that im-
plement SPARQL and RDF support filtering based queries
efficiently but they are currently not suitable for running
traversal based tightly-coupled graph computations scalably
in parallel environments.

The closest previous work is Green Marl [13], a domain
specific language (DSL) for small-world graph exploration
that runs on GPUs and multicore CPUs without support
for distributed machines.

JIT Compilation of DSLs
Embedded DSLs [10] for domain-specific computations have
a rich history, including DSLs that are compiled instead of

interpreted [17]. Abstract Syntax Tree introspection for such
DSLs has been used most prominently for database queries
in ActiveRecord [1], part of the Ruby on Rails framework.

The approach applied here, which uses AST introspection
combined with templates, was first applied to stencil algo-
rithms and data parallel constructs [7], and subsequently to
a number of domains including linear algebra and Gaussian
mixture modeling [14].

3. FILTERS AS SCALAR SEMIRING OPS
The Combinatorial BLAS (CombBLAS for short) views

graph computations as sparse matrix computations using
various algebraic semirings (such as the tropical (min,+)
semiring for shortest paths, or the real (+,*) semiring/field
for numerical computation). The expert user can define new
semirings and operations on them in C++ at the CombBLAS
level, but most KDT users do not have the expertise for this.

Two fundamental kernels in CombBLAS, sparse matrix-
vector multiplication (SpMV) and sparse matrix-matrix mul-
tiplication (SpGEMM), both explore the graph by expand-
ing existing frontier(s) by a single hop. The semiring scalar
multiply operation determines how the data on a sequence
of edges are combined to represent a path, and the semir-
ing scalar add operation determines how to combine two or
more parallel paths. In a similar framework, Pegasus [15],
semiring multiply is referred to as combine2 and semiring
add is referred to as combineAll, followed by an assign op-
eration. However, Pegasus’s operations lack the algebraic
completeness of CombBLAS’s semiring framework.

Filters written as semiring operations in C++ can have
high performance because the number of calls to the filter
operations is asymptotically the same as the minimum nec-
essary calls to the semiring scalar multiply operation, and
the filter itself is a local operation that uses only the data
on one edge. The filtered multiply returns a “null” object
(formally, the semiring’s additive identity or SAID) if the
predicate is not satisfied.

For example, Figure 4 shows the scalar multiply operation
for our running example of BFS on a Twitter graph. The
usual semiring multiply for BFS is select2nd, which returns
the second value it is passed; the multiply operation is mod-
ified to only return the second value if the filter succeeds. At
the lowest levels of SpMV, SpGEMM, and the other Comb-
BLAS primitive, the return value of the scalar multiply is
checked against SAID, the additive identity of the semiring
(in this example, the default constructed ParentType object
is the additive identity), and the returned object is retained
only if it doesn’t match the SAID.

4. KDT FILTERS IN PYTHON
The Knowledge Discovery Toolbox [19, 20] is a flexible

open-source toolkit for implementing complex graph algo-
rithms and executing them on high-performance parallel com-
puters. KDT is targeted at two classes of users: domain-
expert analysts who are not graph experts and who use KDT
primarily by invoking existing KDT routines from Python,
and graph-algorithm developers who use KDT primarily by
writing Python code that invokes and composes KDT’s com-
putational primitives. These computational primitives are
supplied by a parallel backend, the Combinatorial BLAS [5],
which is written in C++ with MPI for high performance.

4.1 Filter semantics



ParentType multiply( const TwitterEdge & arg1,
const ParentType & arg2)

{
time t end = stringtotime(‘‘2009−06−30’’);
if (arg1.isRetweet() && arg1.latest(end))

return arg2; // unfiltered multiply yields normal value
else

return ParentType(); // filtered multiply yields SAID
}

Figure 4: An example of a filtered scalar semiring
operation in Combinatorial BLAS. This multiply op-
eration only traverses edges that represent a retweet
before June 30.

In KDT, any graph algorithm can be performed with an
edge filter. A filter is a unary predicate on an edge that
returns true if the edge is to be considered, or false if it is
to be ignored. The KDT user writes a filter predicate as
a Python function or lambda expression of one input that
returns a boolean value; Figure 5 is an example.

Using a filter does not require any change in the code for
the graph algorithm. For example, KDT code for between-
ness centrality or for breadth-first search is the same whether
or not the input semantic graph is filtered. This works be-
cause the filtering is done in the low-level primitives; user
code remains ignorant of filters. Our design allows all cur-
rent and future KDT algorithms to support filters without
any extra effort required on the part of the algorithm de-
signer.

Since filtered graphs behave just like unfiltered ones, it
is possible in KDT to add another filter to an already fil-
tered graph. The result is a nested filter whose predicate
is a lazily-evaluated logical and of the individual filter pred-
icates. Filters are evaluated in the order they are added.
This allows both end users and algorithm designers to use
filters for their own purposes without having to worry about
each other.

4.2 Materializing filters and on-the-fly filters
KDT supports two approaches for filtering semantic graphs:

• Materializing filter: When a filter is placed on a
graph (or matrix or vector), the entire graph is tra-
versed and a copy is made that includes only the edges
that pass the filter. We refer to this approach as ma-
terializing the filtered graph.

• On-the-fly filter: No copy of the graph/matrix/vec-
tor is made. Rather, every primitive operation (e.g.
semiring scalar multiply and add) applies the filter to
its inputs when it is called. Roughly speaking, every
primitive operation accesses the graph through the fil-
ter and behaves as if the filtered-out edges were not
present.

Both materializing and on-the-fly filters have their place;
neither is superior in every situation. For example, material-
ization may be more efficient when a user wants to run many
analyses on a well-defined small subset of a large graph. On
the other hand, materialization may be impossible if the
graph already fills most of memory; and materialization may
be much more expensive than on-the-fly filtering for a query

# G is a kdt.DiGraph
def earlyRetweetsOnly(e):

return e.isRetweet() and e.latest < str to date(‘‘2009−06−30”)

G.addEFilter(earlyRetweetsOnly)
G.e.materializeFilter() # omit this line to use on−the−fly filtering

# perform some operations or queries on G

G.delEFilter(earlyRetweetsOnly)

Figure 5: Adding and removing an edge filter in
KDT, with or without materialization.

whose filter restricts it to a localized neighborhood and thus
does not even touch most of the graph. Indeed, an analyst
who needs to modify and fine-tune a filter while exploring
data may not be willing to wait for materialization at every
step of the way.

The focus of this paper is on-the-fly filtering and how to
make it more efficient, though our experiments do include
comparisons with materializing filters.

4.3 Implementation details
Filtering a semiring operation requires the semiring scalar

multiply to be able to return “nothing”, in the sense that the
result should be the same as if the multiply had never hap-
pened. In semiring terms, this means that the multiply op-
eration must return the semiring’s additive identity (SAID
for short). CombBLAS treats the additive identity SAID
the same as any other value. However, CombBLAS uses a
sparse data structure to represent a graph as an adjacency
matrix—and, formally speaking, SAID is the implicit value
of any matrix entry that is not stored explicitly.

CombBLAS ensures that SAID is never stored as an ex-
plicit value in a sparse structure. (This corresponds to Mat-
lab’s convention that explicit zeros are never stored in sparse
matrices [11], and differs from the convention in the CSparse
sparse matrix package [8].) Note that SAID need not be
“zero”: for example, in the min-plus semiring used for short-
est path computations, SAID is∞. Indeed, it is possible for
a single graph or matrix to be used with different underlying
semirings whose operations use different SAIDs.

We benchmarked several approaches to representing, ma-
nipulating, and returning SAID values from semiring scalar
operations. In the end, we decided that the basic scalar op-
erations would include a returnedSAID() predicate, which
can be called after the scalar operation, and that KDT would
not have an explicit representation of a SAID value.

The result is a clean implementation of on-the-fly filters:
filtered semiring operations just require a shim in the multi-
ply() function that causes returnedSAID() to return true
if the value is filtered; the lower-level algorithms call this
function after performing the scalar multiply operation.

5. SEJITS AND FILTERS
In order to mitigate the slowdown caused by defining semir-

ings in Python, which results in a serialized upcall into
Python for each operation, we opt to instead use the Se-
lective Embedded Just-In-Time Specialization (SEJITS) ap-
proach [7]. By defining an embedded DSL for KDT filters,
and then translating it to C++ , we can avoid performance
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Figure 6: Left: Calling process for filters in KDT.
For each edge, the C++ infrastructure must up-
call into Python to apply the filter. Right: Using
our DSL for filters, the C++ infrastructure calls the
translated version for each edge, eliminating the up-
call overhead.

penalties while still allowing users the flexibility to specify
filters in Python. We use the Asp1 framework to implement
our DSL.

Our approach is shown in Figure 6. In the usual KDT
case, filters are written as simple Python functions. Since
KDT uses Combinatorial BLAS at the low level to per-
form graph operations, each operation at the Combinato-
rial BLAS level must check to see whether the vertex or
edge should be taken into account, requiring a per-vertex or
per-edge upcall into Python. Furthermore, since Python is
not thread-safe, this essentially serializes the computation
in each MPI process.

In this work, we define an embedded domain specific lan-
guage for filters, and allow users to write their filters in this
DSL, expressed as a subset of Python with normal Python
syntax. Then, at instantiation, the filter source code is in-
trospected to get the Abstract Syntax Tree (AST), and then
is translated into low-level C++ . Subsequent applications of
the filter use this low-level implementation, sidestepping the
serialization and cost of upcalling into Python.

In the next section, we define our domain-specific language
and show several examples of filters written in Python.

5.1 Semantic Model for Filters
In our approach, we first define the semantic model of fil-

ters, which is the intermediate form of our DSL. The seman-
tic model expresses the semantics of filters. After defining
this, we then map pure-Python constructs to constructs in
the semantic model. It is this pure-Python mapping that
users use to write their filters.

In defining the semantic model, we must look at what
kinds of operations filters perform. In particular, vertex
and edge filters are functions that take in one or two inputs
and return a boolean. Within the functions, filters must
allow users to inspect fields of the input data types, do com-
parisons, and perhaps perform arithmetic with fields. In
addition, we want to (as much as possible) prevent users
from writing filters that do not conform to our assumptions;
although we could use analysis for this, it is much simpler
to construct the language in a manner that prevents users
from writing non-conformant filters. If the filter does not fit
into our language, we run it in the usual fashion, by doing
upcalls into pure Python. Thus, if the user writes their fil-
ters correctly, they achieve fast performance, otherwise the
user experience is no worse than before— the filter still runs,
just not at fast speed.

The semantic model is shown in Figure 7. We have con-

1URL blinded for submission

UnaryPredicate(input=Identifier, body=BoolExpr)

BinaryPredicate(inputs=Identifier∗, body=BoolExpr)
check assert len(self.inputs)==2

Expr = Constant
| Identifier
| BinaryOp
| BoolExpr

BoolExpr = BoolConstant
| IfExp
| Attribute
| BoolReturn
| Compare

Identifier(name=types.StringType)
Constant(value = types.IntType | types.FloatType)
BoolConstant(value = types.BooleanType)

Compare(left=Expr, op=(ast.Eq | ast.NotEq | ast.Lt | ast.LtE
| ast.Gt | ast.GtE), right=Expr)

BinaryOp(left=Expr, op=(ast.Add | ast.Sub), right=Expr)

IfExp(test=BoolExpr, body=BoolExpr, orelse=BoolExpr)

# this if for a.b
Attribute(value=Identifier, attr=Identifier)

# our return type must be provably a boolean
BoolReturn(value = BoolExpr)

Figure 7: Semantic Model for KDT filters using
SEJITS.

structed this to make it easy to write filters that are“correct-
by-construction;” that is, if they fit into the semantic model,
they follow the restrictions of what can be translated. For
example, we require that the return be provably a boolean
(by forcing the BoolReturn node to have a boolean body),
and that there is either a single input or two inputs (either
UnaryPredicate or BinaryPredicate).

Given the semantic model, now we define a mapping from
Python syntax to the semantic model.

5.2 Python Syntax for the Filter DSL
Users of KDT are not exposed to the semantic model. In-

stead, the language they use to express filters in our DSL is
a subset of Python, corresponding to the supported opera-
tions. Informally, we specify the language by talking about
what a filter can do: namely, a filter takes in one or two
inputs (that are of pre-defined edge/vertex types), must re-
turn a boolean, and is allowed to do comparisons, accesses,
and arithmetic on immediate values and edge/filter instance
variables. In addition, to facilitate translation, we require
that a filter be an object that inherits from the PcbFilter

Python class, and that the filter function itself is a member
function called filter.

The example KDT filter from Figure 5 is presented in
SEJITS syntax in Figure 8. Note that because a filter cannot
call a function, we must use immediate values for checking
the timestamp. However, even given our relatively restricted
syntax, users can specify a large class of useful filters in our
DSL. In addition, if the filter does not fit into our DSL, it is
still executed using the slower upcalls to pure Python after



class MyFilter(PcbFilter):
def filter(e):

# if it is a retweet edge
if (e.isRetweet and

# and it is before June 30
e.latest < JUNE 30 2009):

return True
else:
return False

Figure 8: Example of an edge filter that the trans-
lation system can convert from Python into fast
C++ code.

First Run Subsequent
Codegen 0.0545 s 0 s
Compile 4.21 s 0 s
Import 0.032 s 0.032 s

Table 1: Overheads of using the filtering DSL.

issuing a warning to the user.

5.3 Implementation in C++

We modify the normal KDT C++ filter objects, which are
instantiated with pointers to Python functions, by adding a
function pointer that is checked before executing the upcall
to Python. This function pointer is set by our translation
machinery to point to the translated function in C++ . When
executing a filter, the pointer is first checked, and if non-null,
directly calls the appropriate function.

Compared to Combinatorial BLAS, at runtime we have
the additional sources of overheads relating to the null check
and function pointer call. However, relative to the non-
translated KDT machinery, these are trivial costs for filter-
ing, particularly compared to the penalty of upcalling into
Python.

Overheads of code generation are shown in Table 1. On
first running using a particular filter, the DSL infrastructure
translates and compiles the filter in C++ ; most of the time
here is spent calling the external C++ compiler, which is not
optimized for speed. Subsequent calls only incur the penalty
of Python’s import statement, which loads the cached li-
brary.

6. A ROOFLINE MODEL OF BFS
In this section, we extend the Roofline model [24] to quan-

tify the performance bounds of BFS as a function of opti-
mization and filter success rate. The Roofline model is a
visually intuitive representation of the performance charac-
teristics of a kernel on a specific machine. It uses bound and
bottleneck analysis to delineate performance bounds aris-
ing from bandwidth or compute limits. In the past, the
Roofline model has primarily been used for kernels found in
high-performance computing. These kernels tend to express
performance in floating-point operations per second and are
typically bound by the product of arithmetic intensity (flops
per byte) and STREAM [22] (long unit-stride) bandwidth.
In the context of graph analytics, none of these assumptions
hold.

In order to model BFS performance, we decouple in-core
compute limits (filter performance as measured in processed
edges per second) from memory access performance. The in-

core filter performance limits were derived by extracting the
relevant CombBLAS, KDT, and SEJITS+KDT versions of
the kernels and targeting arrays that fit in each core’s cache.
We run the edge processing inner kernels 10000 times (as
opposed to once) to obfuscate any memory system related
effects to get the in-core compute limits.

Analogous to arithmetic intensity, we can quantify the
average number of bytes we must transfer from DRAM per
edge we process — bytes per processed edge. In the follow-
ing analysis, the indices are 8 bytes and the edge payload is
16 bytes. BFS exhibits three memory access patterns. First,
there is a unit-stride streaming access pattern arising from
access of vertex pointers (this is amortized by degree) as well
as the creation of a sparse output vector that acts as the new
frontier (index, parent’s index). The latter incurs 32 bytes of
traffic per traversed edge in write-allocate caches assuming
the edge was not filtered. Second, access to the adjacency
list follows a stanza-like memory access pattern. That is,
small blocks (stanzas) of consecutive elements are fetched
from effectively random locations in memory. These stanzas
are typically less than the average degree. This corresponds
to approximately 24 bytes (16 for payload and 8 for index)
of DRAM traffic per processed edge. Finally, updates to the
list of visited vertices and the indirections when accessing
the graph data structure exhibit a memory access pattern
in which effectively random 64-bit elements are updated (as-
suming the edge was not filtered). Similarly, each visited
vertex generates 24 bytes of random access traffic to follow
indirections on the graph structure before being able to ac-
cess its edges. In order to quantify these bandwidths, we
wrote a custom version of STREAM that provides stanza-
like memory access patterns (read or update) with spatial
locality varying from 8 bytes (random access) to the size of
the array (STREAM).

The memory bandwidth requirements depend on the num-
ber of edges processed (examined), number of edges tra-
versed (that pass the filter), and the number of vertices in
the frontier over all iterations. For instance, an update to
the list of visited vertices only happens if the edge actually
passes the filter. Typically, the number of edges traversed
is roughly equal to the permeability of the filter times the
number of edges processed. To get a more accurate esti-
mate, we collected statistics from one of the synthetically
generated R-MAT graphs that are used in our experiments.
These statistics are summarized in Table 2. Similarly, we
quantify the volume of data movement by operation and
memory access type (random, stanza-like, and streaming)
noting the corresponding bandwidth on Mirasol, our Intel
Xeon E7-8870 test system (see Section 7), in Table 3. Com-
bining Tables 2 and 3, we calculate the average number of
processed edges per second as a function of filter permeabil-
ity by summing data movement time by type and inverting.

Figure 9 presents the resultant Roofline-inspired model for
Mirasol. Note that these are all upper bounds on the best
performance achievable and the underlying implementation
might incur additional overheads from internal data struc-
tures, MPI buffers, etc. For example, it is common to locally
sort the discovered vertices to efficiently merge them later
in the incoming processor; an overhead we do not account
for as it is not an essential step of the algorithm.

As the Roofline model selects ceilings by optimization, and
bounds performance by their minimum, we too may select
a filter implementation (pure Python KDT, SEJITS+KDT,



Table 2: Statistics about the filtered BFS runs on
the R-MAT graph of Scale 23 (M: million)

Filter Vertices Edges Edges
permeability visited traversed processed

1% 655,904 2.5 M 213 M
10% 2,204,599 25.8 M 250 M
25% 3,102,515 64.6 M 255 M
100% 4,607,907 258 M 258 M

Table 3: Breakdown of the volume of data movement
by memory access pattern and operation.

Memory Vertices Edges Edges Bandwidth
access type visited traversed processed on Mirasol

Random 24 bytes 8 bytes 0 9.09 GB/s
Stanza 0 0 24 bytes 36.6 GB/s
Stream 8 bytes 32 bytes 0 106 GB/s

or the CombBLAS limit) and the weighted bandwidth limit
(in black) and look for the minimum.

We observe a pure Python KDT filter will result in a per-
formance bound more than an order of magnitude lower than
the bandwidth limit. Conversely, the bandwidth limit is
about 25× lower than the CombBLAS in-core performance
limit. Ultimately, the performance of a SEJITS specialized
filter is sufficiently fast to ensure a BFS implementation will
be bandwidth-bound. This is a very important observation
that explains why SEJITS+KDT performance is so close
to CombBLAS performance in practice (as shown later in
Section 7) even though its in-core performance is 4× slower.

7. EXPERIMENTS

7.1 Methodology
To evaluate our methodology, we examine graph analysis

behavior on an Mirasol, an Intel Nehalem-based machine,
as well as the Hopper Cray XE6 supercomputer. Mira-
sol is a single node platform composed of four Intel Xeon
E7-8870 processors. Each socket has ten cores running at
2.4 GHz, and supports two-way simultaneous multithread-
ing (20 thread contexts per socket). The cores are connected
to a very large 30 MB L3 cache via a ring architecture. The
sustained stream bandwidth is about 30 GB/s per socket.
The machine has 256 GB 1067 MHz DDR3 RAM. We use
OpenMPI 1.4.3 with GCC C++ compiler version 4.4.5, and
Python 2.6.6.

Hopper is a Cray XE6 massively parallel processing (MPP)
system, built from dual-socket 12-core “Magny-Cours” Op-
teron compute nodes. In reality, each socket (multichip
module) has two dual hex-core chips, and so a node can
be viewed as a four-chip compute configuration with strong
NUMA properties. Each Opteron chip contains six super-
scalar, out-of-order cores capable of completing one (dual-
slot) SIMD add and one SIMD multiply per cycle. Addi-
tionally, each core has private 64 KB L1 and 512 KB low-
latency L2 caches. The six cores on a chip share a 6MB L3
cache and dual DDR3-1333 memory controllers capable of
providing an average STREAM [22] bandwidth of 12GB/s
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Figure 9: Roofline-inspired model for filtered BFS
computations. Performance bounds arise from
bandwidth, CombBLAS, KDT, or SEJITS+KDT fil-
ter performance, and filter success rate.
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Figure 10: Toy example illustrating the process of
building a combined graph induces by the tweets

per chip. Each pair of compute nodes shares one Gemini
network chip, which collectively form a 3D torus. We use
Cray’s MPI implementation, which is based on MPICH2,
and compile our code with GCC C++ compiler version 4.6.2
and Python 2.7. Complicating our experiments, some com-
pute nodes do not contain a compiler; we ensured that a
compute node with compilers available was used to build
the SEJITS+KDT filters.

7.2 Test data sets
For most of our parallel scaling studies, we use synthetically-

generated R-MAT [18] graphs with a very skewed degree
distribution. An R-MAT graph of scale N has 2N vertices
and approximately edgefactor ∗ 2N edges. In our tests, our
edgefactor is 16, and our R-MAT seed paratemeters a, b, c,
and d are 0.59, 0.19, 0.19, 0.05 respectively. After generating
this non-semantic (boolean) graph, the edge payloads are
artificially introduced using a random number generator in
a way that ensures targer filter permeability. The edge type
is the same as the Twitter edge type described below, to be
consistent between experiments on real and synthetic data.

We also use graphs from real social network interactions,
from anonymized Twitter data. In our Twitter graphs, edges
can represent two different types of interactions. The first



struct TwitterEdge
{

bool follower;
time t latest; // set if count>0
short count; // number of tweets

};

Figure 11: The edge data structure used for
the tweet-induced combined (tweeting+following)
graph in C++ (methods are omitted for brevity)

Table 4: Sizes (vertex and edge counts) of different
combined twitter graphs.

Label
Vertices Edges (millions)

(millions) Tweet Follow Tweet&follow
Small 0.5 0.7 65.3 0.3

Medium 4.2 14.2 386.5 4.8
Large 11.3 59.7 589.1 12.5
Huge 16.8 102.4 634.2 15.6

interaction is the“following”relationship where an edge from
vi to vj means that vi is following vj (note that these direc-
tions are consistent with the common authority-hub defini-
tions in the World Wide Web). The second interaction en-
codes an abbreviated “retweet” relationship: an edge from
vi to vj means that vi has mentioned vj at least once in
their tweets. The edge also keeps the number of such tweets
(count) as well as the last tweet date if count is larger than
one.

The tweets occurred in the period of June-December of
2009. To allow scaling studies, we creates subsets of these
tweets, based on the date they occur. The small dataset
contains tweets from the first two weeks of June, the medium
dataset contains tweets that happened in June and July,
the large dataset contains tweets dated June-September, and
finally the huge dataset contains all the tweets from June to
December.

These partial tweets are then induced upon the graph
that represents the follower/followee relationship. If a per-
son tweeted someone or has been tweeted by someone, then
the vertex is retained in the tweet-induced combined graph.
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Figure 12: Relative breadth-first search perfor-
mance of four methods. y-axis uses a log scale.
The experiments are run using 24 nodes of Hopper,
where each node has two 12-code AMD processors.

Table 5: Statistics about the largest strongly con-
nected components of the twitter graphs

Vertices Edges traversed Edges processed
Small 78,397 147,873 29.4 million

Medium 55,872 93,601 54.1 million
Large 45,291 73,031 59.7 million
Huge 43,027 68,751 60.2 million
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Figure 13: Relative filtered breadth-first search per-
formance of four methods on real Twitter data. The
y-axis is in seconds on a log scale. The runs use 36
cores (4 sockets) of Intel Xeon E7-8870 processors.

A simple example shows this process in Figure 10. Node 1
is eliminated because it has not tweeted about anyone, nor
has it been tweeted by someone. All the follower/followee
edges connected to Node 1 are also eliminated. In the com-
bined graph, three edges remain: e(2, 3), e(2, 4), and e(4, 3).
Each edge can potentially encode both the following relation
and the tweeted relationship, however both fields are needed
only in the case of e(4, 3). The data structure for edges in
the combined graph is shown in Figure 11.

More details for these four different (small-huge) combined
graphs is listed in Table 4. Contrary to the synthetic data,
the real twitter data is directed and we only report BFS
runs that hit the largest strongly connected component of
the filter-induced graphs. More information on the statistics
of the largest strongly connected components of the graphs
can be found in Table 5. Processed edge count includes
both the edges that pass the filter and the edges that are
filtered-out. After symmetrization, our huge graph requires
approximately 45GB of memory, not accounting for space for
vectors, MPI buffers, and other auxiliary data structures.

7.3 Experimental results
Synthetic data set: Figure 12 shows the relative dis-

tributed-memory performance of four methods in perform-
ing breadth-first search on a graph with 32 million vertices
and 512 million edges, with varying filter selectivity. The
structure of the input graph is an R-MAT of scale 25, and
the edges are artificially introduced so that the specified per-
centage of edges pass the filter. These experiments are run
on Hopper using 576 MPI processes with one MPI process
per core. A similar figure (Figure 2) for Mirasol exists in the
introduction. The SEJITS+KDT implementation closely
tracks CombBLAS performance, except for the 100% fil-
ter; the performance hit here is mostly due to anomalous
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Figure 14: Relative filtered breadth-first search per-
formance of four methods on real twitter data; y-axis
is in seconds on a log scale. The experiments are run
using 24 nodes of Hopper, where each node has two
12-code AMD processors.

performance variability on the test machine.
Twitter data set: The filter used in the experiments

with the Twitter data set is to keep edges whose latest
retweeting interaction happened by June 30, 2009, and is
explained in detail in Section 1.3. Figure 13 shows the rela-
tive performance of four systems in performing breadth-first
search on real graphs that represent the twitter interaction
data on Mirasol. Figure 14 shows the same graph Hopper
using 576 MPI processes. SEJIT+KDT’s performance is
identical to the performance of CombBLAS in these data
sets, showing that for real-life inspired cases, our approach
is as fast as the underlying high-performance library.

Parallel scaling: The parallel scaling of our approach
is shown in Figure 15 for lower concurrencies on Mirasol.
CombBLAS achieves remarkable linear scaling with increas-
ing process counts (34-36X on 36 cores), while SEJITS+KDT
closely tracks its performance and scaling. Single core KDT
runs did not finish in a reasonable time to report. We do
not report performance of materialized filters as they were
previously shown to be the slowest.

Parallel scaling at higher concurrencies is done on Hop-
per, using the scale 25 synthetic R-MAT data set. Figure 16
shows the comparative performance of KDT on-the-fly fil-
ters, SEJITS+KDT, and CombBLAS, with 10% and 25%
filter permeability.

Finally, we show weak scaling results on Hopper using 1%
filter permeability (other cases experienced similar perfor-
mance). In this run, shown in Figure 17, each MPI process
is responsible for approximately 11 million original edges
(hence 22 million edges after symmetricization). More con-
cretely, 121-concurrency runs are obtained on a scale 23
R-MAT graph, 576-concurrency runs are obtained on scale
25 R-MAT graph, and 2025-concurrency runs are obtained
on scale 27 R-MAT graph (1 billion edges). KDT curve is
mostly flat (only 9% deviation) due to its in-core compu-
tational bottlenecks, while SEJITS+KDT and CombBLAS
shows higher deviations (54% and 62%, respectively) from
the perfect flat line. However, these deviations are expected
on a large scale BFS run and experienced on similar archi-
tectures [6].

8. CONCLUSION
The KDT graph analytics system achieves customizability

through user-defined filters, high performance through the
use of a scalable parallel library, and conceptual simplicity
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(b) 10% permeable
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(c) 25% permeable
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Figure 15: Parallel ‘strong scaling’ results of filtered
BFS on Mirasol, with varying filter permeability on
a synthetic data set (R-MAT scale 23). Both axes
are in log-scale, time is in seconds.
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Figure 16: Parallel ‘strong scaling’ results of filtered
BFS on Hopper, with varying filter permeability on
a synthetic data set (R-MAT scale 25). Both axes
are in log-scale, time is in seconds.

through appropriate graph abstractions expressed in a high-
level language.

We have shown that the performance hit of expressing
filters in a high-level language can be mitigated by Just-in-
Time Specialization. In particular, we have shown that our
embedded DSL for filters can enable Python code to achieve
comparable performance to a pure C++ implementation. A
roofline analysis shows that the specializer enables filtering
to move from being compute-bound to memory bandwidth-
bound. We demonstrated our approach on both real-world
data and large generated datasets. Our approach scales to
graphs on the order of hundreds of millions of edges, and
machines with thousands of processors.

In future work we will further generalize our DSL to sup-
port a larger subset of Python, as well as expand SEJITS
support beyond filtering to cover more KDT primitives. An
open question is whether CombBLAS performance can be
pushed closer to the bandwidth limit by eliminating inter-
nal data structure overheads.
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[5] A. Buluç and J.R. Gilbert. The Combinatorial BLAS:
Design, implementation, and applications.
International Journal of High Performance Computing
Applications (IJHPCA), 25(4):496–509, 2011.
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