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Abstract

Simulations of tokamak plasmas require a number of inputs whose values are uncertain.
The effects of these input uncertainties on the reliability of model predictions is of great im-
portance when validating predictions by comparison to experimental observations, and when
using the predictions for design and operation of devices. However, high fidelity simulation
of tokamak plasmas, particular those aimed at characterization of the edge plasma physics,
are computationally expensive, so lower cost surrogates are required to enable practical un-
certainty estimates. Two surrogate modeling techniques have been explored in the context of
tokamak plasma simulations using the XGC family of plasma simulation codes. The first is
a response surface surrogate, and the second is an augmented surrogate relying on scenario
extrapolation. In addition, to reduce the costs of the XGC simulations, a particle resampling
algorithm was developed, which allows marker particle distributions to be adjusted to maintain
optimal importance sampling. This means that the total number of particles in and therefore
the cost of a simulation can be reduced while maintaining the same accuracy.

2



Summary

This project has been focused on the development and application of uncertainty quantification
techniques to simulations of tokamak plasmas with particle-in-cell (PIC) methods for the solu-
tion of gyrokinetic models using the XGC code family. The primary challenge in this application
is the great cost of high-fidelity simulations, which make it impractical to perform high fidelity
simulations of more than a hand full of cases. Multi-fidelity Monte-Carlo techniques and related
approaches have been identified as most promising for this application. These techniques require
that lower fidelity, less expensive models be identified to be used to explore the the mapping be-
tween uncertain model inputs to model outputs. To explore this possibility, two approaches have
been pursued to define lower-cost surrogates for the system model, a response surface surrogate
and a surrogate based on scenario extrapolation. Another way to reduce the cost of uncertainty
quantification is to reduce the cost of each model evaluation. Uncertainty quantification tools were
applied to develop a resampling method to increase accuracy and reduce the number of marker
particles required in a PIC simulation. These were three main research thrusts pursued under this
project, and they are summarized briefly below.

1. Response Surface Surrogates: a response surface surrogate is explored to represent the up-
shift (Dimits shift) in the critical gradient due to the presence of non-linear stationary states.
Results demonstrate moderate variation in the critical gradient as a function of R0 and B0,
and in a cross validation, the global surrogate agreed well with a nominal base case chosen
within the parameter space. However, it is unclear how far this surrogate representation can
be extrapolated, and surrogates for another quantity (the linear departure rate) were not as
well behaved.

2. Scenario Extrapolation Surrogates: Scenario extrapolation (also dubbed “telescoping”)
was used to develop a hybrid scheme we call an augmented surrogate. By combining (po-
tentially uncertain) scenario parameters with the dimensionless plasma scaling parameter ρ∗,
we are able to construct reasonable response surface approximations, yielding extrapolative
predictions as well as parameter space gradients at a reduced cost. Additional testing of our
predictive extrapolation methodology is part of an ongoing power scaling study.

3. Marker Particle Resampling: The resampling algorithm developed under this project is
designed to reduce the sampling noise in PIC codes while preserving important features
of the distribution being represented by the particles. By resampling the distribution in
bins, the general features of the distribution are preserved, and by enforcing the preservation
of a specified set of moments in each bin, the dynamically relevant characteristics of the
distribution remain unchanged after the resampling. In a test problem, it was found that
periodic resampling allowed simulations to be performed with a factor of 10 fewer particles,
while retaining the same accuracy.
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1 Introduction

Computational simulations of complex systems, such a tokamak plasmas generally require many
inputs, many of which may be uncertain. These inputs could include parameters in submodels in
the system, or inputs that define the conditions under which the system is operating. As part of the
EPSi SciDAC partnership (Edge Physics Simulation), the team at the University of Texas pursued
the development of uncertainty quantification tools and techniques for the characterization of these
uncertainties and their impact on the results of simulations of edge plasmas in tokamaks.

There are two primary motivations for the quantification of these uncertainties. First, models
of complex systems need to be validated by determining whether the models are consistent with
experimental observations. Rigorous validation tests require careful characterization of uncertain-
ties, since it is the uncertainties in both the experimental measurements, and in the simulation
outputs that determine how well experiments and simulations can be expected to match. They also
determine how strong a test any particular comparison is. In the case of tokamak simulations, a val-
idation test generally involves using numerous experimental measurements to infer the conditions
for an experimental shot (e.g. the equilibrium magnetic field), using these as inputs to a simulation
and determining if simulation outputs are consistent with measurements of other quantities (e.g.
temperature and density gradients in the pedestal). In this case, it is important to account for the
uncertainties in the measurements that are used as inputs and the resulting uncertainty in model
outputs, in addition to uncertainties in the measurements to which the model outputs are compared.
This requires “forward propagation” of uncertainties through the model.

The second motivation for quantifying uncertainties in model outputs, is to characterize the
reliability of model predictions when they are to be used to support decision-making about the
system. An example for tokamak plasma simulations is using them to predict ITER performance.
In this context, uncertainty characterization is important to ensure that simulation results are not
relied on when their predictions are not sufficiently certain. As with validation, this application
requires forward propagation of uncertainties from inputs to outputs.

Fundamental to forward propagation of input uncertainties is the exploration of the mapping
from inputs to outputs. This generally requires the evaluation of the model for many values of the
inputs. For the edge physics simulations considered here, the computational model is instantiated
in the PIC (particle-in-cell) code family XGC [32, 13]. The computational cost of a single eval-
uation of this model can be very high, with cost increasing with the non-dimensional size of the
tokamak. For example, an ITER-scale simulation may require 10’s of millions of core hours. This
makes many evaluations of the model impractical. The primary computational challenge is thus
to develop uncertainty estimates with as few evaluations of the model as possible. Multi-fidelity
Monte-Carlo techniques [43, 48] and related approaches have been identified as most promising for
this application. These techniques require that lower fidelity, less expensive models be identified
to be used to explore the input-output map. To explore this possibility, two approaches have been
pursued to define lower-cost surrogates for the system model. In the first, a response surface surro-
gate is explored to represent the up-shift (Dimits shift) in the critical gradient due to the presence
of non-linear stationary states (see 2). In the second, scenario extrapolation (also dubbed “tele-
scoping”), in which sensitivities and uncertainties from a system scenario that is less expensive to
simulate (e.g. a smaller tokamak) are used to inform uncertainties at the scenarios of interest. The
viability of this approach was explored, as described in section 3.

Another way to reduce the cost of uncertainty quantification is to reduce the cost of each model
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evaluation. In the XGC PIC code, the cost is dominated by the evolution of the particles. Thus
to reduce the cost, one can reduce the number of particles needed to represent the distribution
function f . The tools of uncertainty quantification can be brought to bear on this problem as well.
Essentially, one wants to optimally distribute the marker particles to minimize the uncertainty
introduced by the finite sample of the distribution function. As the simulation evolves, the particle
distribution will generally evolve away from the optimal representation of f , so the particles will
need to be “resampled” periodically, to maintain a near-optimal particle distribution. The capability
to do this was developed under this project as described in section 4.

In addition to the major efforts described briefly above and in more detail in the remainder of
this report, other preliminary investigations of uncertainty issues were pursued. First, the possi-
bility of accounting for measurement uncertainties in the Grad-Shafranov inverse problem used to
construct magnetohydrodynamic equilibria was explored, with the conclusion that it is feasible.
This will be an important component of the validation under uncertainty. Secondly, a preliminary
parameter estimation exercise with under uncertainty was conducted for contaminant transport
models.

A way to model neoclassical impurity transport in plasma is by using the 1D transport approx-
imation [58]:

∂n
i,Z

∂t
= Q

i,Z
− g−1/2 ∂

∂x
g1/2Γ

i,Z
, (1)

where Γ
i,Z

is the transport flux, Q
i,Z

the mass action of the relevant plasma chemistry, and n
i,Z

(r)
the radial charge density of species i in charge state Z.

In the STRAHL code [18] such an approach to match impurity transport during TESPEL in-
jection in [59]. In this approach the transport model is specified in terms of the input fields Ti,
Te, and φ, which are provided from experimental measurements, given pointwise as spatial and
temporal distributions. Thus in order to understand the transport of ni,Z , it is paramount that the
inputs be sampled from their respective distributions, and then propagated through the transport
algorithm, leading to a distribution in ni,Z , rather than a single solution. In this way it is possible
to propagate uncertainty through neoclassical impurity transport that is consistent with evidence.
Preliminary work has been conducted on this problem, which suggests strong dependencies on
the uncertainties in the experimentally determined inputs. These uncertainties can then be used to
optimize transport coefficients via an inverse problem, which has also been tested.

In this project, we use the gyrokinetic hybrid Eulerian-Lagrangian particle-in-cell codes XGC1
and XGCa. These codes are used to solve the gyrokinetic equations for the evolution of the par-
ticle distribution function f . The distribution f is represented by a sampling of marker particles
which evolve in five-dimensional phase space including physical space and a two-dimensional
representation of the velocity space. The XGC codes support three different representations of the
distribution function. The full-f representation is most straight-forward as the marker particles are
simply samples from the distribution f . The full-f formulation is expensive as it takes many parti-
cles to obtain an accurate sampling representation of the distribution. A cheaper alternative is the
commonly used δf representation which is essentially a variance reduction approach in which only
the difference between f and a reference distribution f0 is represented by particles. However, this
requires the reference distribution to be specified a priori, and particularly for the mean profiles to
be specified, precluding the possibility for the means to evolve in response to the dynamics of the
system. The so-called ”total-f” formulation [36], also uses variance reduction through a reference
distribution, but in this case f0 is represented on a grid in velocity space, and is allowed to evolve

6



slowly to represent the macroscopic evolution of the system.
The XGC1 code [32, 13] incorporates realistic flux geometries up to the first wall, as well as a

number of particle species.

2 Critical Gradient Surrogates

Present-day tokamak experiments indicate that modern reactor designs contain plasma that is par-
ticularly resilient to common global MHD instabilities. More clearly, when the instabilities in
fusion plasma are not suppressed they can easily destroy confinement altogether, but modern reac-
tors are designed to suppress these instabilities. The resulting global MHD stability, however, is in
a state of delicate quasi-equilibrium with an abundance of energy available to drive more localized,
and thus – as generally assumed – more benign instabilities.

These localized instabilities are prevalent in many fusion plasmas, and lead to turbulence that
often reduces confinement times through convective transport. Experimentally this micro-turbulent
transport can also be suppressed resulting in the high confinement mode, or H-mode – an opera-
tional regime of great importance in tokamak reactors. Of additional importance in the edge plasma
is the drift-wave turbulence thought to be responsible for the anomalous heat losses observed in
many tokamaks.

A dominant feature of classical fluid turbulence is the nonlinear interaction of fluctuations
at different scales. These fluctuations generally reach a dynamic equilibrium in which turbulent
energy is produced or injected at some (large) scale, and transferred by the nonlinear interactions
to much smaller scales where it is dissipated. Recent progress in drift-wave plasma turbulence,
however, suggests that turbulent saturation can also occur through interaction with damped modes
at the injection scale, thus complicating the classical fluid picture [60].

In addition to setting up a cascade by which energy in the fluctuations is ultimately damped,
turbulence affects transport, which modifies the large-scale flow. The result can be the inhibition
of large-scale instabilities; a behavior observed in tokamak plasmas [14, 53]. In particular, the
break-down of the turbulent equilibrium is characterized by a large increase in the ion heat flux,
and the ion temperature gradient at which this occurs is larger than the critical gradient for linear
stability [14].

The linear instability threshold discussed above is obtained by solving for the dispersion rela-
tion for infinitesimal perturbations in the reactive fluid model for quasilinear scaling of turbulent
drift-wave transport, as discussed by B. Coppi and further detailed by [67]. The base flow is de-
termined by a Braginskii closure obtained by expanding the kinetic theory in an orthogonal basis
(Sonine polynomials) and deriving first-order corrections [23]. In addition to other linear scaling
formulations, this model for the linear instability is used in transport codes such as TRANSP or
JINTRAC for analysis of experimental results. Linear gyrokinetics is one of the more advanced
approaches to quasi-linear transport models [7].

Experimentally it is generally observed that the confinement time increases with the magnetic
field and plasma current, and decreases with increasing heating power [69]. Transport models
describe the phenomenon in terms of a stability threshold, analogous to the onset of linear insta-
bility described above. It is important to note that, as discussed at length in [39], experimental
scaling studies have traditionally been performed using dimensional scalings such as the ITER98
scalings, in contrast to, for example, the theoretically more compelling dimensionless parameters
of Kadomtsev. The reasons for this are multifaceted, and include the infeasibility of performing
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experimental scans in the Kadomtsev parameters. That said, it should be understood that the sur-
rogate models discussed in this paper are designed with an eye towards experimental validation,
and thus certain choices are made that align more closely with the experimental scalings than with
those of the more theoretical dimensionless ones.

Here and below, we use the term “critical threshold” to indicate the boundary between the
stable stationary state and the unstable state. That is, there is an approximate threshold value in the
parameter ηi = Ln/LT (the ratio of the scaled ion gyrocentered density gradient Ln = −∇ lnni to
the scaled ion temperature gradient LT as defined below) above which turbulent transport occurs.

This critical threshold is generally not the same as the critical threshold for linear instabili-
ties. In the nonlinear regime the linearly unstable perturbations saturate creating a new stationary
state in a process often referred to as “self-organized criticality.” The transition to this state with
enhanced transport and therefore reduced confinement times is therefore more involved than in
simple linear instability theory. As a consequence, in addition to transport and confinement scal-
ing based on linear theory, it is important to characterize this critical threshold for transition to
enhanced transport in terms of experimentally accessible plasma parameters.

The principle aim of this work is to establish surrogate models that can be used to predict
instability driven loss of confinement to allow determination of admissible machine configura-
tions for current and future reactors. Sensitivity studies and parameters sweeps using high-fidelity
computational models capable of representing the phenomenon (e.g. gyrokinetic models) can be
prohibitively expensive. This makes it challenging to identify problems that are both pertinent to
fusion and amenable to generating low-fidelity surrogates. As a result, many of the sensitivity stud-
ies that have been performed were done using reduced models, such as gyrofluid and Hasegawa-
Wakatani models [30, 31, 55], or even surrogates in the linear case in the form of derived algebraic
relations [27].

Gyrokinetic studies on the other hand have been constrained by their computational expense,
but have nonetheless investigated dependence on the plasma β (i.e. the ratio of plasma pressure to
magnetic pressure) parameter [51], and sensitivities to corrections for collisionality, nonadiabatic
electron dynamics, and impurity effects [41, 63]. Most transport models such as JINTRAC [46],
TGLF [56], the one used in European Transport Solver (ETS) [12], and others incorporate some
data obtained from gyrokinetic simulations into their models.

Here we identify a number of problems exhibiting the upshift in the critical threshold of the
ion temperature gradient (ITG) transition point due to ITG turbulence. We first provide the gen-
eral context of the study and a characterization of the solution strategy. Next we provide a set of
diagnostic quantities, along with an explanation of the stationary state of interest. By judiciously
selecting surrogate training scenarios, we are then able to determine low-cost surrogates for the
temperature gradient (R/LT ), as a function of the toroidal magnetic field (B0) and the major ra-
dius (R0) of the tokamak. Finally, after arriving at surrogate models for the onset of the stationary
regime, we closely examine the possibility of deriving more informative features from the surro-
gates, including rates of departure and attraction in

In this effort, we use XGC1’s total-f formulation, which is able to evolve to a self-organized
dynamic equilibrium characteristic of turbulence, and is therefore appropriate for the study pursued
here, i.e. the inhibition of large-scale instabilities due to turbulence. Here, we restrict attention to
electrostatic ITG simulations in low-β (β here is the plasma beta, or the plasma pressure over the
magnetic pressure). We target the low-β limit here because our focus is on circular geometries,
which means that the Shafranov shift is negligible.
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Figure 1: Coordinate system for the torus. Here ψp is an isocontour of the poloidal flux surface.

The simulations described below are global full-radius and self-determined – that is, back-
ground profiles are co-evolved, including the inhomogeneous terms in the magnetic field. Here
we use linearized responses of Maxwell-Boltzmann distributions to the electric field to model
the electrons, e.g. ne = n0

(
1 + e(φ−〈φ〉)

Te

)
, and the ion distribution f0 is initialized as a centered

Maxwell-Boltzmann distribution. Magnetic equilibria for the simulations described here were gen-
erated using gengrid2 (as described below), and the meshes are subsequently produced using the
Simmetrix library [72]. The simulated plasma is collisionless, and the particles satisfy the stan-
dard “bounce condition” at the boundaries. The Poisson solver uses the standard XGC multiscale
Dirichlet conditions on the potential at the outer boundary [32].

2.1 Preliminary Considerations

To characterize the dependence of the ion temperature gradient on B0 and R0, a series of plasma
simulations in idealized tokamak configurations have been performed. These simulation scenarios
are defined in the following subsections.

2.1.1 Geometry and Coordinate Systems

A simple toroidal geometry with circular cross-section is considered, with major radius R0 and
minor radius a < R0. The aspect ratio is defined as ε = a/R0. There are two convenient co-
ordinate systems for the interior of the torus. The first are cylindrical coordinates (R,ϕ,z), with
axis coincident with the axis of the torus, as shown in figure 1. The second coordinate system is a
scaled toroidal system (r̂,ϕ,ϑ), with r̂ = r/R0. The relationship between cylindrical and toroidal
coordinates is given by:

R = R0(1 + r̂ cosϑ), z = R0r̂ sinϑ. (2)

Vectors defining the coordinate directions in r, ϕ and ϑ will be denoted ~∇r, ~∇ϕ and ~∇ϑ, respec-
tively, with magnitudes 1, 1/R and 1/r.

In the remainder of this paper, quantities that are averaged over the toroidal volume, and over
surfaces of constant r will be computed. For an arbitrary scalar quantity A, they will be denoted
{A} and 〈A〉, respectively

2.1.2 Magnetic Field

The magnetic field for each simulation case must be defined so that as R0 and B0 vary, the field is
otherwise consistent from case to case. Consider first the toroidal component of the magnetic field
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BT . It is defined to vary as 1/R, and be independent of z and ϕ. Consistency from case to case
requires that the toroidal component of the magnetic field at R = R0 scale with B0, and as such
BT is defined by BT = B0R0/R.

The poloidal component Bp is defined in terms of the poloidal magnetic flux function ψ, which
depends only on r, through the relation Bp = ψ′/R, where ψ′ is the derivative of ψ with respect
to r. As B0 and therefore BT are varied, Bp should also vary to maintain the same magnetic
configuration. The relevant measure of the magnetic configuration is the safety factor q(r, ϑ):

q =
~B · ∇ϕ
~B · ∇ϑ

=
rBT

RBp

(3)

While q can be kept the same with varying B0, it cannot remain exactly the same while R0 varies.
Instead we insist that the ϑ-averaged q (i.e. 〈q〉) remain the same, where

〈q〉 =
1

2π

∮ ~B · ∇ϕ
~B · ∇ϑ

dϑ =
B0R0r

2πψ′

∮
1

R
dϑ. (4)

Making use of (2), rewriting to give ψ′ as a function of 〈q〉 and evaluating the integral yields

ψ′ =

(
B0R0r̂

〈q〉
√

1− r̂2

)
. (5)

The average safety factor 〈q〉 is then specified to be quadratic in r:

〈q〉 = β + αr2/a2, (6)

where α and β are free parameters used to define 〈q〉 at r = a and r = 0 respectively. To obtain
ψ(r), (5) is integrated while setting ψ(0) = 0 to yield

ψ = B0R
2
0(c1 − c2 tanh−1(c3

√
1− r̂2)), (7)

where

c1 = c2 tanh−1(c3) (8)

c2 =
R0√

αa(βR0 + αa)
(9)

c3 =

√
αa

βR0 + αa
. (10)

With these definitions the magnetic field used in the simulations is completely defined by

~B = B0R0∇ϕ+ rψ′(r)∇ϑ. (11)

Here ~B is specified with five parameters: R0, B0, a, α and β, of which a, α and β remain fixed as
R0 and B0 are varied.
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Figure 2: Initial profiles of T and n for the nominal case.

2.1.3 Initial Conditions

An initial condition must be specified for each simulation, in particular, profiles of the initial ion
temperature T and ion gyrocentered density n need to be specified as a function of r̂ in each case.
The profiles are taken as

T = T0 exp {γ1 tanh((δ − ψn)γ2)} , (12)
n = n0 exp {σ1 tanh((δ − ψn)σ2)} . (13)

where ψn is the normalized ψ. As shown in Fig. 2, these profiles take on values T0 and n0 where
ψn(r̂) = δ. The profiles transition from a high value at r̂ = 0 to a lower value at the boundary
r̂ = a. Of particular interest are the derivatives with respect to r̂ of these profiles (Fig. 3), since
it is the derivatives that define the stability parameter ηi = Ln/LT . The scale lengths LT and Ln
are defined in terms of the logarithmic gradient of T and n by L−1T = |∇T (ψ)|/T and L−1n =
|∇n(ψ)|/n.

These profiles were chosen to introduce specified gradients (LT and Ln) in n and T over most
of the domain of r, while ensuring that the gradients were smaller near boundaries. The intent is
to introduce instability and turbulence over much of the domain. In simulations performed here, δ
is kept constant while B0 and R0 are varied. The remaining variables γ and σ were varied to keep
R0/Ln constant. Initial guesses for R0/LT were taken from the linear theory for ηi, though it was
found that keepingR0/LT constant did not always result in an instability leading to turbulence, and
so the value of the initial R0/LT , and therefore γ1 were adjusted to ensure the onset of turbulence.
Finally, rather than holding the reference temperature T0 constant, the ratio ρ∗ of the ion gyroradius
ρ to the minor radius a is held constant. Because the gyroradius scales like

√
T0/B0 and a is being

kept constant, this requires that T0 ∝ B2
0 .
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Figure 3: Initial profiles of the gradients for the nominal case.

As a comment, it turned out that extrapolating the threshold (or sufficient) γ1 for the initial
instability that induced the onset of turbulence was unsuccessful, though a number of hypothesis
were tested. For example scaling R0/LT linearly with respect to B did not lead to the onset of
turbulent states. This choice could be partially motivated by historical scale invariance approaches
that suggest linear (or Bohm) scaling of χi in ρ∗ (and therefore in ∼ 1/B) (similarly gyro-Bohm
and Goldston scalings were not observed). Ultimately the choice of γ1 for scaling the initialR0/LT
showed no notable scaling.

2.1.4 Simulation Parameters

To set the parameters defined in the previous subsections, a common cyclone test case was used.
The values of the parameters that do not vary from case to case in this study are provided in
Table 1. As discussed in Section 1, simulations scenarios are set by varying the major radius
R0 and magnetic field strength B0. A plausible range of these parameters for a cyclone case
was selected so that the aspect ratio ε ∈ [0.17, 0.85] which with a as given in Table 1 places
R0 ∈ [0.716m, 3.58m] and B0 ∈ [1T, 5T].

The objective is to develop response surfaces over these intervals in R0 and B0 for several
scalar-valued quantities (quantities of interest or QoIs). Sparse grid Smolyak interpolants are used
here to limit the number of model evaluations required to obtain interpolants of a given order [54].
In particular, a univariate nested scheme of Kronrod-Patterson sequences is used to determine the
evaluation points for the response surface [49]. This has two advantages, first these sequences
are designed to limit the growth of the Lebesgue constant of the interpolation with increasing
polynomial order g. Second, because the sequences are nested, points used for interpolation at a
specified order can be reused (i.e. recycled) at higher order.

This is illustrated in figure 4. As is clear from the diagram, the second order accurate response
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Table 1: Simulation Parameters Kept Constant in all Cases
Parameters Values
α (6) 2.184
β (6) 0.8540
a (minor radius) 0.6086 m
δ (12-13) 0.3536
R0/Ln(rδ) 2.2
T0/B

2
0 550.76 K/T2

1 2 3 4
1

2

3

4

5

Figure 4: Univariate nested Kronrod-Patterson points. In green the g = 2 case, green and blue
(G+B) the g = 3 points, and in green, blue, and red (G+B+R) the g = 4 points.

surface g = 2 requires 5 evaluation points, while the cubic response surface recycles those 5 points
and requires only 4 additional evaluations. In contrast, for example, a tensor product Gaussian
quadrature rule, which would require the evaluation of 13 additional points at g = 3. Here poly-
nomial response surfaces of order up to g = 3 are considered, so 9 evaluations of the model using
the gyrokinetics code XGC1 are required, labeled case 1-9 in table 2. In addition, the cyclone
base case (i.e. the “nominal case,” and case 0) is evaluated to be used as a test of the accuracy
of the interpolant (case 0). In table 2, the values of R0 and B0 are listed along with several other
parameters that are determined as in Section 2.1.2.

Finally, to define the numerical simulation in XGC1, several numerical parameters and a grid
are required. First the number of marker particles is kept the same in all simulations at 307.2
M. The XGC1 grid is generated for the circular toroidal cross section, and 32 cross sections are
equally spaced in ϕ. The grid in the cross sections are different in each simulation case because the
grid is generated using gengrid2/simmetrix in the magnetic coordinate defined by ψ, rather than
r. However, in each case, the grid is tuned to preserve mesh-conditioning. Finally, the simulation
time step is set to scale with R0, with dt/R0 = 3.1508× 10−3 s/m.
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Table 2: Values of Parameters that Vary from Case to Case

Case R0 [m] B0 [T] R0/LT ψ(a) [Wb] r̂δ
0 1.7 1.9056 1.19457 0.21063 0.17056
1 1.0388 3.0 2.56117 0.34913 0.28603
2 2.1480 1.4508 1.15528 0.15870 0.13435
3 2.1480 3.0 4.15400 0.32816 0.13435
4 2.1480 4.5492 10.57824 0.49763 0.13435
5 3.2572 3.0 5.25519 0.32510 0.08821
6 1.0388 1.4508 1.02740 0.34913 0.28603
7 1.0388 4.5492 13.32519 0.52942 0.28603
8 3.2572 1.4508 1.03984 0.15721 0.08821
9 3.2572 4.5492 12.75090 0.49297 0.08821

Note that only R0 and B0 are independently varied. The remaining quantities are derived as in
Sections 2.1.2 and 2.1.3
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Figure 5: Basic analytics at the first support point. The critical point marks the transition to the
stationary state, given in volume-averaged characteristic quantities.

2.1.5 Diagnostics

To evaluate and analyze the Dimits shift we will use a characteristic measure of the ion thermal
conductivity {χi} and ion temperature gradient {R0/LT}, defined by:

{R0/LT} =R0|{∇T}/{T}|−1,
{χi} ={qD}/{n∇T}.

(14)

To obtain these we need the surface-averaged dissipative heat flux: qD = 〈Qe〉 − qc. The local
~E × ~B energy flux is defined as

Qe =

∫
|~v − ~u|2~v ~E× ~B · ~nf(~x,~v)d3v,

with ~v the velocity, ~n = ∇ψ
|∇ψ| the surface normal, ~u the mean velocity (or the first moment in ~v),

and ~vE×B =
~E× ~B
|B|2 . The value is then surface-averaged in the usual way.
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Figure 6: A phase space diagram of the quantities from Figure 5: {χi} as a function of {R0/LT}.

Similarly, the convective flux is defined by

qc = γ〈p〉〈~v ~E× ~B · ~n〉 = γ〈T 〉〈~Γ ~E× ~B · n〉,

with γ = 3/2 [57], and the ~E × ~B particle flux defined by ~Γ ~E× ~B =
∫
~v ~E× ~Bf(~x,~v)d~v.

2.2 Characteristics of the Stationary State

The experimentally identified “marginal stability” equilibrium is reached after an initial transient
relaxes to a statistically stationary state. It is important to clarify the language here. The stationary
state of the system is demonstrably stable in the sense of dynamical systems in that the system
evolves toward it; that is, it is an attractor (see Section 2.3.1 for more discussion of the stationary
state). It is referred to as a “marginally stability” not to indicate that, for example, the basin
of attraction is particularly shallow, or to that anything particular about the attractor is known a
shallow, or that anything particular about the attractor is known a priori. Rather “marginal stability”
is a term used in the experimental literature to describe the observation that characteristics of the
stationary state are delicate; that is, they depend sensitively on the values of system parameters.

The profiles of surface-averaged temperature 〈T/T0〉 and gyrocentered density 〈n/n0〉 change
relatively little as the system evolves from the initial condition to a stationary state, as seen in
Figs. 7. Shown are two examples, the nominal case (case 0 in Table 2) and case 4, which, among
the cases used to inform the second order surrogate, produces the largest value of {R0/LT} (see
Table 3). Note that there is very little change in either the temperature or density profile in case 0,
while in case 4 there is a much larger change near the center line (r = 0) of the torus.

Studies of the critical threshold for enhanced transport commonly examine the volume-averaged
temperature gradient {R0/LT} and effective thermal conductivity {χi} as functions of time. These
quantities are defined in Section 2.1.5 and have been found to be good diagnostics characterizing
this stationary state (marginal stability equilibrium). The upshift, or sometimes ”Dimits shift,”
of the onset of turbulent transport relative to the onset of linear instability is often depicted in
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Figure 7: The numerical temperature and gyrocentered density profile evolution.

a phase space representation as in Fig. 6. In this picture the upshift corresponds to viewing the
critical threshold as function of {χi}({R0/LT}). For example, in Fig. 6 the critical threshold oc-
curs around {R0/LT} ≈ 4, which is upshifted from the linear value, which we can infer as < 4.
Alternatively the upshift is merely a translation along the vertical axis in {r0/LT} of Fig. 5

Here Fig. 5 shows the time evolution, where the onset of the stationary state is approximated
at a threshold value of d{R0/LT}/dt = εs for εs small. We characterize this approximate value
as the ”critical threshold.” The dependence of the onset of the stationary state (i.e. of the critical
threshold) on the magnetic field ~B can be approximated by understanding the scaling dependence
of {χi} on ~B. As mentioned above, there are several different well-established scaling regimes
that characterize this dependence. The scale invariance models suggest that χi ∝ (ρ∗)αρ , so that
there is the Bohm αρ = 0, the gyro-Bohm αρ = 1, and the Goldston αρ = −1 scalings. Due to the
fact that our parameter scan sweeps over multiple R0 and B0 regimes, it is perhaps not surprising
that none of these scalings are strictly observed in our results. Even more so, these scalings are
really indicative of local scaling in r̂, and thus the global quantities are not necessarily anticipated
to be a good indicator of the systems state. This can be emphasized by looking at experimental
shots, such as those in DIII-D [65], where ρ∗ scalings differ (transitioning locally between Bohm
and gyro-Bohm) merely as a function of r̂.

In this work we observe strong sensitivities to both the onset of the initial transient, as well
as relaxation to the appropriate stationary state, on the magnetic field B0. This dependence is
encoded in our choice of the γ1 parameter, and we find that this parameter choice demonstrates
strong sensitivities. In contrast, the sensitivity of γ1 as a function of the major radiusR0 is observed
to have a much weaker effect on transport. It should however be noted that since in our tests we
hold the 〈q〉 profile constant in each simulation, from the scaling law perspective, the observed
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Figure 8: Departure rates as approximated from from the modal coefficients of the linear fit near
the critical point in the gradient.

sensitivities are really a result of increasing both B0 and the plasma current I simultaneously.

2.3 Low-fidelity surrogates in the critical threshold of the gradient

The response surface interpolated from the calibration data is plotted in Figure 9. Here we use
second order accurate support points to recreate an interpolatory response surface in {R0/LT}.
For the second order accurate curve six support points are taken Fig. 3, with five being the second
order Kronrod-Patterson points, and the sixth being an asymptotic point easily inferred from the
physics. The second order fitted surface f = f(R0, B0) = f(x̂, ŷ) in this case takes the form:

f = c0 + c10x̂+ c01ŷ + c20x̂
2 + c11x̂ŷ + c02ŷ

2,

where the fitting procedure feature scales the values of x̂ = (x− x0)/σx and ŷ = (y − y0)/σy, by
the mean and standard deviations, respectively, such that x0 = 1.790, σx = 1.123, y0 = 2.5, and
σy = 1.568.. The second order accurate surface is reported in table 4.

The response surface 9 shows a global polynomial fit of the calibration data. The nominal point
is then plotted in red, and as is clear from visual inspection, the nominal point has a moderately
small residual, with 5.64% relative error. Here this is an indicator that the model is fairly predictive
to second order for the co-validation point.

To test the convergence behavior in g we run the third order accurate Kronrod-Patterson points.
This requires the evaluation of four additional data points in {R0/LT}. To further resolve this
surface we also choose additional points that obey the asymptotics of the solution. These additional
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Table 3: Second order data
R0 B0 {R0/LT}

1.0388 3 5.4214
2.1480 1.4508 4.0325
2.1480 3 9.1700
2.1480 4.5492 18.73279
3.2572 3 11.5422

0 0 0
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1.009

1.321630.75
1.009

1.32163

1.69299
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Figure 9: On the left is the second order response surface with relative error 5.64%. On the right
is the contour plot

Table 4: Fitted Second Order coefficients
c0 c10 c01 c20 c11 c02

6.115 3.089 5.536 -0.7054 1.441 2.268
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Table 5: Third order data
R0 B0 {R0/LT}

1.0388 1.4508 3.0274
3.2572 1.4508 4.5729
3.2572 4.5492 23.0767
1.0388 4.5492 19.4155
3.2572 3 11.5422

0 i 0
i 0 0

Table 6: Fitted Fourth Order coefficients
c0 c10 c01 c20 c11 c02

4.637 0.4007 5.329 -2.664 -0.1466 4.423
c30 c21 c12 c03 c40 c31

1.68 -2.418 0.7643 1.4515 0.8394 2.377
c22 c13 c04

-1.196 0.1799 -1.022

points are listed in Table 5, where i = 1, . . . , 5. Because of the addition of these asymptotic points,
it is now possible to fit a fourth order surface to the g = 3 Kronrod-Patterson points. The fourth
order surface f = f(R0, B0) = f(x̂, ŷ) that is fitted is:

f = c0 + c10x̂+ c01ŷ + c20x̂
2 + c11x̂ŷ + c02ŷ

2

+ c30x̂
3 + c21x̂

2ŷ + c12x̂ŷ
2 + c03ŷ

3 + c40x̂
4

+ c31x̂
3ŷ + c22x̂

2ŷ2 + c13x̂ŷ
3 + c04ŷ

4,

where the fitted coefficients are reported in table 6. Here x0 = 1.504, σx = 1.295, y0 = 2.1, and
σy = 1.809.

As shown in Figure 10, the third order fit shows almost the exact same relative error as the
second order fit, here being 5.79%. This again suggests convergence behavior, particularly as we
have used 10 asymptotic points to fit a fourth order surface to the third order data. It is worth
noting here that the response surface {R0/LT} is nonlinear both as a function of B0 as well as R0,
showing substantial rippling as B0 increases. This may indicate that as the magnetic field strength
increases, the surrogate model becomes more nonlinear, and therefore possibly less predictive.

2.3.1 Derived features

The states of marginal stability of interest to experimentalists are characterized mathematically
by the stationary states observed in our simulations with an approximate onset at and beyond the
critical threshold. These stationary states are attractors in the classical sense of dynamical systems.

Ideally one would like to be able to infer from the simulation runs further model behavior of the
turbulent regime that is amenable to representation by global surrogates. An appealing candidate
here is what we refer to as the ”attractor rate,” which is in principal associated to the onset of
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Figure 10: Third order response surface with relative error 5.79% on left; on right the correspond-
ing contour plot.

Figure 11: Left: third order response surface in δ{R0/LT }, with relative error 39.47%; right: third
order response surface in δ{χi}, with relative error 231.94%

the stationary state. Broadly, the attractor rate here will be defined as the rate of approach to the
stationary state.

There are a number of ways of defining an attractor rate relative to the data from the simulation
runs in Section 2.3. For example, we can define the attractor rate in {R0/LT} as a function of
time, such that the attractor rate δ{R0/LT } indicates the rate at which the gradient approaches the
stationary state. Since simple inspection of the behavior of the gradient (e.g. Fig. 5) indicates pos-
sible exponential decay, we simply plot a log-linear plot and regress a line of best fit. Clearly from
Fig. 12 this gives a relatively good estimate of the decay rate approaching the critical threshold.
Similarly we can define the attractor rate of {χi} using the same approach, and denote it by δ{χi}.

Notice here also that the confinement times of energy and density in the tokamak – and in
other magnetic confinement schemes – scales roughly as τE ∼ La/{χi}, where La = Ca2 is the
characteristic scale length of the device given C a constant. In practice, all experimental discharges
are assumed to be effectively close to a stationary state (i.e. marginal stability) due to the very
strong transport created by deviating from the nonlinear stability condition. As a consequence, it
would be very advantageous to be able to estimate χi as a measure of the deviation away from
marginal stability [3] .
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Figure 12: Log-linear plot of {R0/LT} where the attractor rate is given by the slope of the best fit
line, δ{R0/LT } = −1.2e+03.

Another way to achieve this estimate in χi is to use the phase space relation of {R/LT} to
{χi} in Figure 6. In other words, we can infer the linear perturbation {χi(R0/LT )} = δ0{R/LT}.
Notice that both definitions above have essentially relied on the fact that visually it appears that
{χi} = e−cx, and likewise {R0/LT} = e−bx (e.g. from the simulation runs in Section 2.3). But
since {χi}({R0/LT}) = δ0{R0/LT}, we get that d{χi}/d{R0/LT} = δ0. From above we have
that d{χi}/dt = −ce−cx and d{R0/LT}/dt = −be−bx, so with standard smoothness assumptions
we can infer that d{χi}/d{R0/LT} = −δ0e(c−b)x, which shows that all δ0 is really measuring is
the relationship between c and b. Since ln(−ce−cx) = ln(−c) − cx implies that δ{χi} = −c, and
likewise that δ{χi} = −b, this really does imply that up to the (c− b) in the exponent δ0 is primarily
a measure of the ratio between the two.

To establish these variational relations, we construct surrogates for each of these quantities us-
ing similar methods to those in Section 2.3. For the gradient δ{R0/LT }, the third order surrogate for
the attractor rate is shown in Fig. 11. Notice that the substantial nonlinearity shown here leads to a
very poor predictor of the surface, giving only∼40% relative error for the nominal point. Similarly
for δ{χi} the nonlinearity is even more severe. As a consequence of this extreme nonlinearity in
these two surrogates, it is not surprising that the ratio of these two, which is essentially captured in
the surrogate for δ0, is in fact globally unstable leading to a non-informative surrogate (not shown).

Clearly increasing the order g of the surrogate may be effective in capturing some of these
nonlinearities, and in that context asking the question: “how high might g need to go before one
can capture this behavior?,” becomes interesting. However, in the present context the nonlinearity
is not very surprising, and in fact, the surrogate itself, even if fit to high order and given to within
sharp relative error, might very well be less informative that would be preferred. The reason for
this is multifaceted.

In the case of turbulence, we are presented with a stationary state that represents a stable at-
tractor in a dynamical system. This attractor can be viewed as a stable level set (also the ”section
of attraction”) that nearby solutions evolve to. The first difficulty arising in this picture, is that the
attractor rate can only be interpreted as meaningful in a statistical sense, because the local high di-
mensional manifold that the attractor is embedded within looks different from every direction. As
a consequence, the attractor, as a meaningful quantity, can only make sense when averaging over
all nearby routes to the attractor; that is all trajectories through the basin of attraction. In our case,
however, we cannot afford to compute ensemble averages (e.g. > 10, 000 runs), and are ultimately
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trying to infer a statistical quantity from a single sample, knowing that the turbulent state positions
us randomly somewhere near the basin of attraction.

Moreover, it is plausible that because the relaxation occurs mostly during the initial transient,
another type of hysteresis may be responsible for dampening oscillations close to the stable point.
As transport is largest on the outboard side of the torus, a parallel pressure gradient develops
there in the presence of strong turbulence, and the parallel pressure gradient might respond by a
geodesic acoustic oscillation (i.e. from the GAM) known to modulate transport. Such a dynamical
mechanism would not necessarily influence the stationary state or even the critical threshold, but
could still contaminate the attraction rate. We conjecture that it might be possible to start the
simulations closer to the stability point to avoid the contaminating relaxation dynamics, but such
an analysis is beyond the current scope of this paper.

Finally, one of the base assumptions we made in correlating the attractor rate to the confinement
time τE was that the attractor rate is fundamentally correlated to the departure rate. The departure
rate would be the rate that local perturbations depart from the stationary attractor. But this is not
rigorously correct. The reason is, the attractor rate is the rate an unperturbed state statistically
and passively moves through the basin of attraction into the stationary regime. The departure
rate, in contrast, is the rate at which a state moves away from the stable attractor, which can
happen due to external perturbations. It is clear then that it can more likely be the type and form
of the perturbation, not the stability regime the perturbation is acting upon, that almost entirely
determines this rate. In fact, this is the case so much so that it is probably more accurate to call the
departure rate the ”rate of external perturbation.”

Because of these reasons, it is important to take great care in trying to associate local variation
in the upshift of the critical gradient to infer global, or even local, properties of the turbulent regime.
The general experience appears to be that while present transport models are often successful in
predicting devices that they have been developed to model, they are less successful across a wide
range of experiments/machine configurations. If the goal is to obtain a model with predictive
capability across a large range of machine parameters, even for those not yet completed, we feel
that additional effort may need to be expended exploring the vicinity (and hence the statistics) of
the stable attractor.

3 Scenario Extrapolation

Prediction under uncertainty is often an expensive and complicated process[44, 45]. The trade off
between the computational cost of complex models and the loss of predictive accuracy associated
with simpler models may be addressed by emerging multifidelity UQ approaches[43, 48].

In magnetic confinement fusion, there is a clearly defined set of prediction scenarios, cor-
responding to predicting ITER or DEMO performance. Even a “high-fidelity”, extreme-scale
model such as XGC, still has a parameter space of large enough dimension to make a brute-force,
sampling-based predictive process impossible. The traditional “solution” to this problem is to
employ a combination of dimension reduction and surrogate modeling. To achieve dimension re-
duction, we will need gradients of the prediction scenario P with respect to scenario paramters θi.
Even if modest dimension reduction is achievable, the resulting cost of even “low-fidelity” kinetic
ITER simulations is sufficient to seriously limit the number of training points for the surrogate
model. The resulting predictive error will be sufficiently large to reject the surrogate approach. We
outline our workaround, an approach we will broadly label as predictive extrapolation.

22



Figure 13: Numerical cartoon depicting a simple example of an augmented surrogate

A surrogate model is already a form of predictive extrapolation-an inexpensive model is fit to
training data, and other samples of the prediction scenario are extrapolated from the inexpensive
surrogate. In our approach, this is taken a step further-we extrapolate the prediction scenario from
other nearby prediction scenarios. One way of performing this process is the construction of an
augmented, or “telescoping” surrogate.

3.1 Scenario Extrapolation Methods

There are two fundamental assumptions in the construction of an augmented surrogate of a n-
dimensional predictive scenario P (θ1, θ2, . . . , θn).

1. There exists small number m of (usually deterministic) parameters d1, d2, . . . , dm that char-
acterize nearby n-dimensional predictive scenarios P̃i(θ1, θ2, . . . , θn).

2. The cost of a sample from the nearby scenario, CP̃i , is much less than the costCP of a sample
from the desired prediction scenario.

The augmented surrogate is a surrogate model S(θ, d) constructed on training data {(θ, d), P̂ (θ, d)}
in the m + n-dimensional parameter space. We briefly illustrate this approach via the following
numerical cartoon.

Given a two point boundary value problem

−(f(x, α)u′)′ + βu′ = g(x, α), u(0) = u(1) = 0. (15)

where α is an uncertain parameter (θ) and β is a known parameter (d), with a prediction scenario
P (θ) equal to the average of u in an subinterval of [0,1]. The (naive) simulation cost depends
on both α and β, with simulation cost increasing as β is increased. In Figure 13, we take eight
samples(blue *) of P (β = 600), three samples of P (β = 1000), and one sample at P (β = 1400).
A polynomial interpolant is constructed from the training data (S(α, β) and is compared against
the true value of P (α, β)(the red +).

We may employ any of the sparse grid designs discussed in Section 2. But the very nature of
the augmented surrogate suggests two strategies: adaptive sparse grids, or unstructured surrogates
based on radial basis function approaches.
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An adaptive sparse grid method

The classical sparse grid method is dimension agnostic[8]. All interactions of the same order are
treated equally. Often, a small subset of variables and interactions contributes significantly to the
variability of the function P (θ, d). If the variability in the theta-dimensions is greater than the
variability in the scenario parameters({di} then the overall cost of constructing of constructing the
larger dimensional surrogate due to the cheaper computational cost of P̃i.

We modify the greedy algorithm for constructing h-adaptive generalized sparse grid (h-GSG)
in [26]. The hierarchical surpluses for the current sparse grid are modified with a cost weight
WC(d1, d2, . . . , dm) that approximates the relative cost of simulating the added sparse grid point,
and a m-dimensional distance metric that penalizes sparse grid samples that are too far away from
the prediction scenario P (θ). This encourages parameter exploration in θi-dimensions at inexpen-
sive simulation levels, while rewarding coarse grid points that reduce the local surrogate error near
the prediction scenario P (θ).

Radial basis function surrogates

Radial basis function surrogates [52] offer attractive features for the augmented surrogate ap-
proach. The built-in support for unstructured interpolation of sparse data allows the direct inte-
gration of simulations (or experiments) from relevant nearby prediction scenarios P̃i.

In prediction scenarios relevant to ITER[16], there are a well described set of deterministic,
dimensionless plasma scaling parameters (ρ∗, β, ν∗) used in scaling studies for confinement and
transport. There are additional dimensionless parameters to describe reactor geometry that could
provide additional “scaling” (d) parameters. With the setup, the augmented surrogate S(θ, d) can
be trained using existing simulations and experimental data (for the same response surface) from
JET, DIII-D, C-Mod, etc. In the sense, we are generating additional surrogate training data “for
free” at the cost of a few deterministic parameters.

3.2 Scenario Extrapolation Results

In many ITER prediction scenarios where an electrostatic gyrokinetic simulation is valid, the dom-
inant dimensionless scaling parameter is ρ∗ = ρi/a, the ratio of the ion gyroradius to the tokamak
minor radius. As a preliminary test of extrapolative prediction using an augmented surrogate, we
augment our prediction scenario with one scaling parameter, a/ρi = 1/rho∗. As the gyrokinetic
PIC grid must resolve the ion gyroradius with a moderate particle density per simulation cell,
the cost C ˜P (θ) scales at least quadratically in ρ−1∗ . An illustration of the proposed scaling from
CYCLONE-like base case(1x) simulations to ITER relevant ρ∗ is given in Figure 14.

Description of Prototype Surrogate

We have one simulation parameter for the applied external heating(P0), with a prediction sce-
nario of estimating the averaged (.3 < ψn < .7) steady-state normalized ion temperature gradient
(R/LT ). This is more an example of the use of a surrogate for parameter space exploration, opti-
mization, or extrapolation as the R/LT variation to measurement inaccuracies in P0 is negligible.

We scale ρ∗ by scaling the background magnetic field, rather than the tokamak minor radius a.
The “base case”, corresponding to a normalized a/ρi value of 1, is described in Table 7.
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Figure 14: Illustration of prototype augmented surrogate for electrostatic extrapolation

Ion temperature at magnetic axis Ti 14keV
Magnetic field B0 1.91 T
Simulation range ψN ∈ [0, .9]
Tokamak major radius 1.75 M
adiabatic electrons
simulation δt 3.85× 10−8s

Table 7: Cyclone-like “Base Case” simulation parameters

We use four training samples at the base case, two training samples at 1.5B0, and one training
sample at 2B0. The resulting surrogate response surface is plotted, and SR/LT (P0 = 200MW, 2B0)
is compared against R/LT (P0 = 200MW, 2B0) in Figure 15. The prediction value for R/LT is
reasonable, with excellent agreement between ∂S/∂P0 and ∂(R/LT )/∂P0. The excellent param-
eter gradient motivates another common use of surrogates: estimating parameter derivatives for
dimension reduction via gradient-based methods such as active subspaces[11].

4 Resampling Algorithms

Particle-in-cell (PIC) methods are well-established and widely used numerical methods for the so-
lution and evolution of differential equations [6, 24, 22]. In such methods a set of marker particles
is used to represent a distribution in some phase space, and its evolution in time. The distribution
being represented could be that of physical particles (e.g. atomic scale particles or particulates in
a multiphase flow), or a probability distribution. In either case, in PIC methods, the evolution of
the distribution and therefore of the marker particles is governed by interaction with field variables
that are represented on a grid (thus the name).

A common requirement of PIC simulations, is to have enough marker particles in each cell for
good statistical accuracy. Computational efficiency also requires a uniform distribution of marker
particles over the phase space across the simulation cells. A well formulated resampling procedure,
which is just a way by which the number of marker particles can be decreased or increased (down-
or up-sampling), or redistributed, can be helpful in achieving these requirements. In fact, as it
turns out, simply resampling periodically can address a surprisingly large number of common
deficiencies in raw PIC implementations.

Even when a PIC simulation begins with an ideal number and distribution of marker particles,
the evolution of particles has a tendency to degrade the quality of the sampled distribution over
time. This can first occur because particles evolve away from the desired importance-sampled
target distribution, and thus the relative distribution of particles can accumulate into regions of less
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Figure 15: R/LT surrogate as a versus input power P0

importance, along with particle weights becoming distributed throughout the domain in inefficient
ways. For example, in gyrokinetic PIC tokamak simulations, low weight particles are frequently
loaded at the foot of the plasma pedestal, which overlaps with the scrape-off layer (SOL). The
plasma pedestal region describes the transition zone in the plasma density, from high density in
the core to low density in the SOL. Time-evolving the simulation, the low-weight particles, though
initially loaded in correct proportions, mix with higher weight particles in the core, effectively
spreading the marker particle weights and lowering the simulation efficiency in the critical pedestal
and scrape-off layer regions. This has the effect of degrading the numerical representation of the
distribution, and leads to a gross loss of resolution in the critical region of interest. This so-called
’weight spread’ can however be substantially reduced by periodic resampling.

A related issue also arises with the application of the collision operator in a PIC simulation. In
this context, for example, high energy atomic particles — often arising from non-Maxwellian pro-
cesses — may be represented by a small number of marker particles in the region of interest. This
clearly results in noisy approximations of the collision operator at high energy. By sampling the
high energy part of the distribution with many lower-weight particles, however, and by maintaining
this local state by periodically resampling the distribution, this problem can be alleviated.

A third setting in which resampling in PIC simulations arises, is when using the control variate
technique as is done in δf simulators. In these methods, the particle weights evolve leading to
sample degeneration wherein the weights become concentrated on fewer and fewer particles as
the simulation proceeds; resulting in a poor representation of the distribution. This phenomena
is similar to the sample degeneracy observed in particle filtering methods [19, 28, 29]. Again,
periodic resampling to rebalance the particle weights can address this problem.
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For these reasons, preserving the salient features of the distribution in a PIC simulation is
more than just beneficial, it is in many ways essential in order to recover solutions that faithfully
reproduce the continuum behavior. It is however also the case that just preserving the statistical
properties of the distribution is not always enough to ensure correct solution behavior. For example,
in resampling a particle distribution in a plasma PIC simulation, it can be equally important to
preserve the low-order moments of the particle distribution function such as energy, mass, and
momentum, etc. In this context these moments represent physical conservation laws, that further
serve as sources for recovering electrostatic fields and transport phenomena. In addition, it is also
crucial to conserve these corresponding grid quantities (such as current and charge density) after
particle resampling. Since these too are integral quantities, we refer to these as ‘grid moments.’

A large number of methods for particle resampling that preserve various moments or distribu-
tional features of the solution have been explored. Many of these methods are focused on splitting
and merging original particles and are capable of preserving derived features (e..g moments) to
some degree of accuracy. For example, Lapenta [38, 37] proposed a scheme in which the number
of particles is increased by splitting a single particle into various particles displaced over the sys-
tem space. The number of particles is decreased by coalescence of two particles close to each other
in phase space, i.e. “particle coalescence”). This algorithm can be easily extended to PIC simula-
tions with two-dimensional and three-dimensional Cartesian grids and enables preservation of the
overall charge, momentum, and energy. However, this algorithm is incapable of conserving the
velocity distribution function both locally and globally, and the scheme is not directly extendable
to 2D and 3D unstructured grids. Teunissen and Ebert [61] improved Lapenta’s particle merging
algorithm using the k–d tree method to search for the nearest neighbor. Following a similar pro-
cedure, Vranic et al. [64] divided the the momentum space into smaller cells for sorting particles
that resulted in better local preservation of the energy, momentum, and charge.

A different two-dimensional method of coalescing particles in PIC codes is presented by As-
sous [2] that conserves the particle and cell charge and current densities as well as the particle
energy. However, the method is limited to two-dimensional triangular cells only and its extension
to other cell geometries as well as to three-dimensional analyses is not straight forward. Moreover,
in this method only specific numbers of particles per cell after coalescence are possible depending
on the integration points employed in the solution. Welch et al. [68] provided an extension of As-
sous method [2] to coalescing particles on 2D and 3D cells. This method is limited to orthogonal
grids and similar to the method of Assous, in that coalescence might not be possible in some cases.

Luu et al. [40] presented a particle merging algorithm in which the phase space of a simulation
is partitioned into smaller subsets. The algorithm merges particles that are close to each other and
provides direct control over errors introduced by a merging event. Examining the performance
of this algorithm indicates that momentum is conserved perfectly while there are discrepancies in
energy conservation.

Pfeiffer et al. [50] proposed two algorithms for particle splitting and merging that use a 3D
unstructured hexahedral mesh and are expandable to any cell geometry. The first method is com-
putationally feasible and enables preserving particle charges, currents, and energies exactly, while
the grid quantities of charge and current are only preserved approximately. The second method
makes fewer assumptions in the velocity distribution function resulting in better conservation of
the grid quantities (i.e. current and charge density), but requires higher numerical effort compared
with the first method.

In this work, we develop a general algorithm for resampling particles that conserves any desired
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features of the distribution, called Moment Preserving Constrained Resampling (MPCR). It differs
from the techniques described above by using the fact that the marker particles are a sampling
representation of an underlying distribution, and that this distribution can therefore be resampled
when convenient. To accomplish this, MPCR uses a binning strategy based on any convenient dis-
cretization of phase space, making it suitable for general geometries and mesh/grid representations.
MPCR uses constrained optimization techniques to produce a new set of particle positions and ve-
locities, and to readjust the particle weights while accurately preserving necessary particle and cell
information. In particular, MPCR: (1) enables preservation of any number of derived quantities
(e.g. energy, mass, momentum, current density, charge density, etc.) up to roundoff error, (2) can
be applied to any discretization geometry and is easily integrated into any PIC code, (3) can use a
codes native discretization for particle binning, and (4) is computationally efficient.

The resampling algorithm developed here can be applied to any problem in which PIC methods
are used to represent the evolution of distributions. But, in this project, the target is obviously PIC
representations of collisional plasmas, particularly for the simulation of edge physics in tokamak
plasmas. The target in this case is the gyrokinetic representation used in the XGC tokamak simu-
lation codes [32, 13]. Details of the MPCR algorithm and its implementation in XGC is described
in sections 4.1–4.3. A number of example problems demonstrating the capabilities of MPCR are
presented in section 4.4.

4.1 Conserved quantities for particle resampling

While resampling the particles in a PIC code it is important to preserve key quantities of the
particle distribution function f as well as specified grid quantities in order to maintain the physical
properties of the plasma system. The general resampling strategy proposed here enables preserving
derived particle and grid quantities with a high degree of accuracy. In this section we summarize
the significant features and quantities that are preserved after resampling the particles.

The moments of f coincide with physically relevant quantities, and preserving them during
resampling can reduce resampling error. For example, one might be concerned about preserving
the following quantities,

n(x, t) =

∫
f(x,v, t)dv, (16)

m(x, t) = m

∫
vf(x,v, t)dv, (17)

K(x, t) =
1

2
m

∫
|v|2f(x,v, t)dv, (18)

Tkl(x, t) = m

∫
vkvlf(x,v, t)dv, (19)

where n is number density, m momentum density, K kinetic energy density, and Tkl the stress
density.

These in no way exhaust the number of important, and/or physically relevant moments how-
ever. Depending on the specific application, any number of different quantities might also be of
interest. For example, due to gauge transforms that lead to different coordinate frames in gyroki-
netic tokamak plasma simulations, it is often the canonical angular momentum that is of particular
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interest, rather than m. Similarity, it might also be beneficial to preserve the moments taken with
respect to configuration space x

x̄(v, t) =

∫
xf(x,v, t)dx, (20)

Rkl(v, t) =

∫
xkxlf(x,v, t)dx. (21)

In PIC algorithms, field solvers are frequently and necessary coupled to particle tracking algo-
rithms. As an example, in gyrokinetic PIC solvers, the charge density ρ and the current density J,
defined by

ρ(x, t) =

∫
qf(x,v, t)dv, (22)

J(x, t) =

∫
qvf(x,v, t)dv, (23)

are used as the forcing functions that drive the solution of the electrostatic potential φ. Thus ρ and J
have to be defined on the interpolation points of the solver, resulting in the so-called grid variables.
In this context, it is essential that the operator that maps the particle configuration onto the grid
for use in the global solver be consistent before and after particle resampling, so that underlying
electromagnetic fields are unaffected by the resampling strategy.

4.2 The resampling algorithm

The MPCR method generates a collection of Mp macro-particles relative to the collection of Np

original particles representing f(x,v, t). The new particle set can be either smaller Mp < Np or
larger Mp > Np than the original set, but the focus of the algorithm becomes the preservation of
the required moments and any additional salient features, which will be viewed as constraints in a
constrained optimization problem.

4.2.1 Discretizing the phase-space.

In a general and spatially three-dimensional kinetic PIC solver, each particle carries with it seven
attributes: (1) its weight w, (2)-(4) the three spatial coordinates x, and (5)-(7) the three velocity
coordinates v. The first step of the particle resampling process is to divide the six-dimensional
phase space ζ = (x,v) into bins and sort the particles into those bins. There are then a total of
Np particles sorted into N b bins, with bin i containing Np

i particles. Depending on the application,
it may be convenient to use the spatial discretization of the grid solver to demarcate the bins.
However, MPCR is designed to handle any cell geometry.

4.2.2 Setting the number of new particles in each bin.

The target number of particles in each bin Mp
i must be determined. In general, a particle number

density function g(ζ) can be defined,
∫
ζ
g dζ = Mp to allow importance sampling, so that in bin i:

Mp
i =

∫
ζi
g dζ, (24)
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where ζi is the phase space domain of bin i, i.e. range of position and velocity coordinates in each
bin.

4.2.3 Determining new particle positions and velocities.

The algorithm is designed to address both down-sampling and up-sampling. The objective of
down-sampling is to reduce the number of particles in each bin, while up-sampling aims to in-
crease particle numbers. Some applications requires the global number of particles to remain
approximately unchanged , i.e. Mp ≈ Np. In these cases the goal of resampling is to adjust the
distribution in a way that reduces error and/or mitigates noise in the particle simulation.Clearly, to
accomplish this resampling when particle number is held relatively constant, requires up-sampling
in some bins and down-sampling in others.

The bin-wise particle down-sampling can be performed by drawing Mp
i samples from the f

distribution restricted to ζi. Assuming that Mp
i < Np

i , this can be easily accomplished by draw-
ing samples of the original particles with probability proportional to their weights, using weighted
sampling without replacement [70]. This way the original particles with higher weights are sam-
pled more often. However, In the up-sampling case, Mp

i > Np
i , one can draw Mp

i samples from
uniform distribution restricted to ζi, i.e. uniformly sample the range of position and velocity coor-
dinates in each bin.

4.2.4 Weight readjustment and conserving quantities.

All that remains is to set the new weights w̃ij of each new particle. In doing so, the particle and
grid quantities discussed previously will be preserved in each bin. The requirements of the particle
flow are then that for each bin i:

Mp
i∑

j=1

w̃ij =

Np
i∑

j=1

wij, (25)

Mp
i∑

j=1

ζ̃
i

jw̃
i
j =

Np
i∑

j=1

ζijw
i
j, (26)

Mp
i∑

j=1

(x̃kx̃m)ijw̃
i
j =

Np
i∑

j=1

(xkxm)ijw
i
j, (27)

Mp
i∑

j=1

(ṽkṽm)ijw̃
i
j =

Np
i∑

j=1

(vkvm)ijw
i
j, (28)

where k,m ∈ {1, 2}, variables with an over-tilde ·̃ represent resampled particle quantities, and the
particles have been renumbered by bin (superscript i) to be sequentially numbered within each
bin (by subscript j) for both the original and resampled particles. It can be easily inferred from
these relations that (25) ensures particle number density conservation, (26) indicates preservation
of momentum and first order configurational moments, and (27) and (28) denote conservation of
energy and other second order and off-diagonal moments of the particle distribution function.

Moreover, by conserving grid quantities (charge and current densities) we will require that,
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∑
k

xk∈V
i
x

Λ̃kw̃
i
k =

∑
k

xh∈V
i
x

Λhw
i
h, (29)

∑
k

xk∈V
i
x

ṽikΛ̃kw̃
i
k =

∑
k

xh∈V
i
x

vikΛhw
i
h, (30)

where V i
x denotes the spatial volume of bin i and Λ(x) represents a general shape function that

accounts for the distance information between the interpolation point and particle position. A
special case of this shape function for a specific PIC code with triangular mesh will be discussed
in section 3.3.

Since the resampling of the particles was weighted by the wij of the original particles, weights
of the new particles w̃ij would ideally be uniform within each bin. However, enforcing this would
over-constrain the system. Instead, the weights are made as close to uniform over the bin as
possible while satisfying the constraints (25-30). In particular, the new weights w̃ij are set as

{w̃ij}(j∈1,2,...Mp
i )

= arg min
w̃ij∈Ci, w̃ij>0

Mp
i∑

j=1

(w̃
i − w̃ij)2, (31)

where

w̃
i

=
1

Mp
i

Np
i∑

j=1

wij, (32)

and Ci is the set of w̃i satisfying the constraints (25-30). Notice that with a quadratic objective func-
tion (31) and linear equality constraints in w̃ij (25-30), this becomes a straight-forward quadratic
programming optimization problem.

4.2.5 Comments, Remarks, and Discussion

In order to preserve the physics of the system, it is quite important to reproduce the original ve-
locity and position distribution functions within each bin in order to preserve particle distribution
functions globally. The methods described above for setting new particle positions and velocities
in each bin, i.e. weighted sampling of original particles for down-sampling and uniform sampling
of phase space within each bin for up-sampling, is a highly computationally efficient approach.
However, extreme spatial gradients in the position and velocity distribution functions cannot be re-
produced identically with these methods. For example, if the number of new particles is much less
than the number of original particles Mp

i � Np
i (i.e. in the down-sampling case) or the bin sizes

are not sufficiently small compared to the global range of ζ (i.e. in the up-sampling case), then one
part of a particle distribution in a bin can have a specific flow and/or distribution that substantially
differs from another part of bin – primarily due to unbounded variation at the bin-wise level. In
such scenarios, it is possible to discretize the bins into sub-bins and perform resampling algorithm
for each sub-bin.

An alternative technique is to use a kernel density estimation (KDE) of the original particle
positions and velocities in the reference bin. KDE is a method to estimate a probability distribution
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function of a finite data sample. After constructing the KDE of the particles in the phase space
within each bin, various classes of importance sampling and Markov chain Monte Carlo (MCMC)
algorithms can be employed to set new particles positions and velocities while replicating the
original velocity and position distribution functions. However, the computational cost required
to perform KDE and MCMC sampling in six-dimensional phase space is high. Considering the
usual grid resolutions of PIC codes, such approaches are often over-kill and unnecessary. More
often than not, it is more efficient to build sub-binning capabilities into the resampling routine
conducted adaptively on bins with spatial gradients above a critical tolerance in both the position
and/or velocity distribution functions.

It is also important to note that in some particle evolution models, the dynamics of the system
require the weights to evolve. This can lead to sample degeneration in which weights become con-
centrated on fewer and fewer particles as the simulation proceeds, resulting in a poor distributional
representation. In this regard, using the cost function (31) in the optimization step of the resam-
pling strategy results in keeping the global markers weight relatively uniform. Similar to particle
filtering methods, maintaining relative uniformity in particle weights improves the representation
of the distribution over time, reducing the need for frequent resampling and improving particle
diversity, see e.g. [4].

MPCR has three notable features compared to recently developed particle splitting/merging
algorithms within the PIC simulation context:

1. The stochastic approach for calculating new particle positions and velocities allows appli-
cation to spatial decompositions with irregular geometries, including, for example, unstruc-
tured meshes. This enables straight forward integration of the resampling method to any
available PIC code with various coordinate systems and different implementations. More-
over, since the optimization problems for each bin are independent, the computations at the
bin level can easily be solved in parallel (i.e. embarrassingly parallel) or built into the parallel
solver of the PIC code.

2. As it will be shown in the numerical results section, the constrained optimization technique is
able to conserve any number of particle and grid quantities to near machine precision regard-
less of the method employed in the PIC code for particle evolution and deposition. Some of
the previously developed algorithms in the literature [37, 62, 42] are successful in preserving
some of the particles quantities but fail in conserving grid values or the distribution function.
The particle merging algorithm developed by Luu et al. [40] shows accuracy of preserving
phase space evolution and total energy error to only 10−3 and 10−5 respectively. In addition,
the statistical particle split and merge methods recently proposed by Pfeiffer et al. [50], show
exact conservation of grid variables (to machine precision, or as reported 10−19) for the cell
mean value current and charge density deposition method, i.e. every point of the field solver
gains equal current and charge density independent of the positions of the particles. How-
ever, the same approach results in much less accuracy in preserving grid quantities to only
10−2) when taking into account a more complex deposition method, i.e. in which the depen-
dency on the distance between the interpolation points and the particle positions is included
in deposition.

3. The reliance on constrained optimization leads to an efficient particle resampling algorithm,
but introduces a subtle parallel computing inefficiency. The complication that arises relates
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to sorting the particles into bins. In a special case the target number of new particles in
a bin becomes too small to allow the constraints to be imposed, and the resulting system
is over-constrained. In this case, neighboring bins in the velocity space directions can be
easily merged to form larger bins with more particles, until it exceeds a specified minimum
particles to match the number of constraints. However, solving the optimization problem
with bin merging in parallel results in a less computationally efficient algorithm. Even so,
it turns out that this is not really reason for concern. Since the frequency of resampling is
generally much lower than that of, e.g. pure timestepping, the additional numerical effort
devoted to bin-merging are negligible compared to the computational work of the full PIC
simulation. It is further worth noting that for a particular problem, global particle distribution
and/or computational load balance criteria can be used to adaptively determine the period of
resampling during PIC simulation.

4.3 Implementation of the resampling into XGC gyrokinetic PIC code

MPCR can be applied to resample any distribution function, but as an example application we
apply this method to a gyrokinetic plasma PIC simulation. In this section, we describe the XGC
PIC gyrokinetic codes for solving fusion reactor simulations [10, 9] along with the specific imple-
mentation required for integrating MPCR.

The time evolution of plasma systems is described by the six dimensional Maxwell-Boltzmann
system in phase space [69]. In strongly magnetized plasmas, such as fusion plasmas, these equa-
tions can be averaged over the gyrophase (viz. the cyclotron frequency) leading to a gyrocenter
tracking equation for a charged ring over the relatively slow motion of particle gyrocenters, thus
treating rapid particle orbits about magnetic field lines perturbatively. Transforming to the gyrocen-
ter coordinate then results in a phase space reduction from six to five dimensions, and the resulting
system of equations is referred to as the gyrokinetic equations. While a significant simplifica-
tion is achieved through the reduction of the full six-dimensional equations to five-dimensional
gyrokinetic equations [22], simulating this five-dimensional system over full-scale fusion reactor
geometries is still a formidable task that requires carefully formulated numerical approximation
within PIC simulation.

The Lagrangian evolution equations for the marker particle positions, velocities and weights
depend on exactly how f is sampled. In a straight-forward approach (called full-f ), the distribution
is simply sampled. However, this requires the largest number of particles to accurately represent
f , and is therefore computationally most expensive. Other algorithms use a control-variate (δf )
approach in which the difference between f and an ideal or simple distribution f0 is sampled. There
are a number of such δf approaches that differ in the details; see for example [34]. In the full-f
representation, the particle weights do not evolve, but in the δf approaches, they do. The details of
a resampling algorithm for a full-f and δf sampling scheme may differ, because of the difference
in representation. In the algorithm described here, we consider a full-f sampling representation of
f .

XGC provides a large collection of PIC solution strategies, allowing for full-f , delta-f , and
total-f (or equivalently, hybrid-Lagrangian [34]) simulations, where in each case the XGC PIC al-
gorithms support electrostatic turbulence over a plasma volume parameterized in a toroidal reactor
geometry, following the magnetic axis across the magnetic separatrix and scrape-off layer (SOL),
to just outside the sheath interfacing material boundary. The XGC PIC model uses a cylindrical
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coordinate system, in which the components of the particle position vector are x = (r, z, φ), and
the velocity vector decomposes into into parallel and perpendicular components of the magnetic
field v = (v‖, v⊥). The code propagates marker particles using Lagrangian motion and the cor-
responding electrostatic field is solved on a finite element mesh. Due to the need for field-line
following parameterizations along the magnetic separatrix, scrape-off layer region, etc., XGC uses
a 2D unstructured triangular mesh [1].

One of the challenges in the simulation of a tokamak plasma is the multiscale nature of the
problem, both in space and time. For example, a simulation that resolves both plasma turbulence
and axisymmetric neoclassical dynamics, tracking slowly evolving large-scale phenomena is ex-
tremely expensive due to the shorter time-scale small-scale phenomena that can drive them. One
approach that attempts to mitigate this computational expense, takes a spatially 3D particle dis-
tribution function distorted from Maxwellian and down-samples it to a spatially 2D axisymmetric
particle distribution to evaluate the neoclassical transport arising from the turbulence distortion. In
this low-fidelity representation, the lower dimensionality and reduced number of particles required
to represent f significantly reduces the computational cost of the simulation.

Integrating MPCR into the XGC PIC code begins by identifying the spatial discretization used
by XGC (i.e. unstructured triangular meshes). In XGC the element vertices on each plane are
ordered on a space filling curve starting on the magnetic axis. During parallel processing com-
putation, the curve is divided into number of patches and each computing node manages a finite
numbers of vertices depending on how many particles are assigned to each vertex. Particles are
then assigned to vertices by projecting their position along the magnetic field to the midplane of
the toroidal section. On the midplane, a nearest neighbor weighting (i.e. the vertex with the largest
linear finite element interpolation weight) determines to which vertex a particle belongs. This re-
sults in 3D spatial discretization of the domain, or Voronoi cell, that is the volume in the vicinity
of a field line that projects to the same vertex. Each Voronoi cell associated with a site (vertex) k
contains a set of particles, such that the distance from them to k is not greater than the distance
to any other vertices [15]. Each Voronoi cell in XGC is assigned to a particular MPI process, and
these cells are characterized as spatial bins along x = (r, z, φ) in order to avoid additional commu-
nications between processors. In contrast, in velocity space v = (v‖, v⊥) uniform binning is used
over each Voronoi cell.

The particle preservation can be directly implemented in each bin for (25)-(28). The constrain-
ing grid quantities (29)-(30), on the other hand, utilize the spatial discretization, where the patch
of vertex i is the smallest 2D triangular mesh (Figure 16) in the φ-midplane containing Vor(i)|φJ .
The corresponding constraints then become:∑

pk∈Vor(i)

βkλjwk =
∑

pk∈Vor(i)

β̃kλ̃jw̃k ∀vj ∈ Patch(i), (33)

and ∑
pk∈Vor(i)

(1− βk)λjwk =
∑

pk∈Vor(i)

1− β̃kλ̃jw̃k ∀v′j ∈ Patch(i′), (34)

as well as, ∑
pk∈Vor(i)

βkλjvkwk =
∑

pk∈Vor(i)

β̃kλ̃jṽkw̃k ∀vj ∈ Patch(i), (35)
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Vor(i)

Figure 16: Illustration of a 2D unstructured mesh and Voronoi cell associated with the vertex
(node) i.

and ∑
pk∈Vor(i)

(1− βk)λjvkwk =
∑

pk∈Vor(i)

(1− β̃k)ṽkλ̃jw̃k ∀v′j ∈ Patch(i′), (36)

where βk is the coordinate with respect to the field line between the φ-midplanes, and λj is the
barycentric coordinate with respect to vertex j in the triangle in Patch(i), and (̃·) represents the
resampled particle quantities.

4.4 Particle Resampling Results

In this section we demonstrate and analyze numerical examples from coupling MPCR through
the XGC full-f Fortran code via constrained quadratic programming (31), where the algorithm of
Goldfarb & Idnani [17] is implemented using the quadprog Fortran library [5].

In the first set of test problems, we demonstrate the quality of MPCR in conserving features of
the distribution function using global down-sampling of particles from an XGC plasma turbulence
solution. Finally we show the benefits of periodic particle resampling using MPCR on a neo-
classical plasma fusion simulation.

4.4.1 Global particle downsampling

In current XGC implementations, the particle down-sampling process for multi-fidelity simulations
is performed by randomly choosing particles over the entire domain of f , without preserving any
features, or moments, of the system. Subsequently, one might anticipate that MPCR would provide
a significant improvement in the accuracy of the kinetics representation. Using this as motivation,
we provide two examples where the global number of particles are reduced/increased and the
ability of the resampling algorithm to preserve features of the distribution is assessed.

For the first example, consider the one-dimensional probability distribution shown in Figure 17.
It might, for example, be considered to be the distorted marginal (reduced dimensional) distribution
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Figure 17: Initial particle distribution function with local features. In this case, total number of
particles Np is 50000. The solid red curve is a Gaussian.

of one of the velocity components, in which case Maxwell-Boltzmann statistics would yield a
Gaussian distribution, and the given distribution is clearly far from Gaussian. This distribution
is represented with Np = 50000 samples, and down-sampled to Mp = 1000 and Mp = 250:
down-sampling factors (DSF) of 50 and 200, respectively.

Down-sampling was performed using MPCR in one-dimension, given M b = 50 bins in which
the sample density, and first and second moments are preserved. For comparison, global random
down-sampling was also used. The results are shown in Figures 18 and 19. By construction the
histogram formed on the 50 down-sampling bins is identical to that of the original sample (com-
pare Figures 18a and c with Figure 17), but the randomly down-sampled histograms show large
variations from the original. Indeed, the sampling noise obscures the structure of the distribution;
so much so that in the DSF=200 case, the underlying structure of the distribution is not visible at
all. By construction, the low- order moments of the distribution are preserved in the proposed ap-
proach, as shown in Figure 19, whereas relative errors in the moments with random down-sampling
range from 2% to 10%.

MPCR up-sampling of the distribution function from Figure 17 was also performed and com-
pared with the simple particle reproduction method widely employed in PIC codes. Such particle
reproduction consists of duplicating original particles several times until the up-sampling factor
is satisfied. Both methods are capable of preserving detailed features of the distribution function,
and as it is shown in Figure 20, the relative error associated with moments in both approaches are
within range of machine epsilon accumulation. However, simple particle reproduction methods
can result in unrealistic/unphysical PIC simulations, since duplicate particles with the exact same
phase space representation have the exact same physical responses in the PIC dynamics. One com-
mon way to avoid this unrealistic particle duplication is to tweak the new particles with small (e.g.
phase space) variations. However, again, such artificial particle manipulation introduces large error
and results in much higher relative errors than those shown in Figure 20.
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(a) (b)

(c) (d)

Figure 18: Local features preservation after particle down-sampling of the distribution in Fig-
ure 17 (number of bins = 50): (a) feature-based resampling method (DSF = 50); (b) random
down-sampling (DSF = 50); (c) feature-based resampling method (DSF= 200); (d) random down-
sampling (DSF = 200).
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Figure 19: Relative error in global 0th and 1st moments due to feature-based/random down-
sampling for different down-sampling factors (error in random down-sampling is the mean of 104

realizations).

Figure 20: Relative error in global 0th and 1st moments due to feature-based up-sampling and
particle reproduction for different up-sampling factors.
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The second example application considered in the section examines the resampling algorithm
on a particle distribution taken from a tokamak plasma simulation performed with the gyrokinetic
PIC code XGC1. In a spatially three-dimensional gyrokinetic PIC code, each particle carries with it
six attributes, its weight w, spatial coordinates x = (r; z;φ), and velocity coordinate v = (v‖; v⊥).
In both up-sampling and down-sampling considered in this example, the distribution f is projected
on a spatially two-dimensional configuration space, which assumes the solution is statistically ho-
mogeneous in the φ direction. This illustrates the particle resampling required to perform spatially
two dimensional neoclasical simulations that utilizes a spatially three-dimensional simulation of
the turbulence as input. The data set consists of Np = 106 particles, initially weighted to effect im-
portance sampling. The particles have since been mixed through their evolution, so their weights
no longer accomplish the desired importance sampling.

The first step of the particle resampling process is to divide the four-dimensional phase space
ζ into bins and sort the particles into those bins. In the gyrocentered XGC1 code, the particle
velocity space is parameterized in terms of the normalized parallel velocity ρ = v‖/B and magnetic
moment µ = v2⊥/2B, where B is the magnitude of the magnetic field. For this case then, the four-
dimensional down-sampled phase space is ζ = (r, z, ρ, µ). The ζ domain is divided into bins, with
50 bins in each of the four phase-space directions.

To demonstrate the adjustment of weights as part of the resampling process the importance
weighting is eliminated by making g ∝ f , where g is the marker particle distribution function in
(24). The target number of particles Mp

i in each bin is then simply proportional to the sum of the
weights of the original particles in the bin. Specifically,

Mp
i = Mp

(∑Np
i

j=1w
i
j∑Np

j=1wj

)
. (37)

One complication that arises in sorting the particles into bins is that in some cases the target
number of down-sampled particles Mp

i in a bin becomes too small to allow the constraints to be
imposed. In this case, neighboring bins in the velocity space directions (ρ, µ) are merged to form
larger bins with more particles, until Mp

i exceeds a specified minimum, which was set here to
Mp

i ≥ 25.
The distribution of weights is shown in Figure 21 for the original, down-, and up-sampled parti-

cles. Note that the original distribution is broad, while the resampled distributions are significantly
more peaked; a result of the improved uniformity in the weights after resampling. Also note that
the down-sampled particle weights are several times larger in magnitude than the original weights,
while the up-sampled weights are about an order of magnitiude smaller — a behavior that is the
result of the respective resampling factors. It is important to further observe here that the marginal
distributions of the original and down-sampled particle and velocity variables, shown in Figure 22,
are, as expected, effectively indistinguishable.

The accuracy of the moment preservation in the resampling approach is tested by down-
sampling while testing combinations of moments preservation. That is, while preserving 1) only
the zeroth moment, 2) the zeroth and first moments, 3) and the zeroth, first and second moments
as described in Section 4.1. This was done for a range of down-sampling factors, and the results
are shown in Figures 23 and 24, along with those for a random down-sampling. The moment
error for the random down-sampling are averaged over 104 sampling realizations. In all cases
shown in Figures 23 and 24 the relative error of random down-sampling increases as a function
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(a) (b)
Figure 21: Histograms of particle weights from the original weights and the proposed resampling
algorithm. In this case Np = 106 and the number of bins in the ρ, µ, r and z directions is
50: (a) original particles and downsampled particles with down-sampling factor (DSF) = 20, (b)
upsampled particles with up-sampling factor (USF) = 10.

of the down-sampling factor. In all cases, when the moments are constrained, the relative errors
in the down-sampled moments are of order 10−10. As expected, when only some moments are
constrained, the errors in those that are not are significantly larger than in the random case, etc.,
showing that the MPCR algorithm is effectively preserving moments.

Similarly we analyze the upsampling case over a range of bin numbers. The results are shown
in Figure 25. Here the figure indicates that, when the moments are constrained the relative errors
in the up-sampled moments remain below 10−10. When only the 0th moment is constrained, the
errors in the first moment decreases with increasing resolution in the up-sampling algorithm, i.e.
using more, and thus smaller, bins. This dependency to bin size is the result of uniform sampling
of phase space within each bins and can be greatly improved by the strategies discusses in Section
4.2.

4.4.2 Periodic particle resampling of a neo-classical PIC simulation

XGCa [20, 35, 33] is a global gyrokinetic particle-in-cell (PIC) code with axisymmetric electro-
static potential solver specialized in the simulation of neoclassical transport physics in the edge
plasma of toroidal magnetic confinement devices. These simulations are capable of evolving the
full five-dimensional gyrocenter distribution function from the magnetic axis to the inner wall of
the device by using either conventional full-f (constant particle weight) [33] or semi-Lagrangian
total-f (variable particle weights) [35] methods. A logical sheath boundary condition [47] is used
to prevent net currents to the material wall. Plasma lost to the material wall is replenished self-
consistently by a neutral particle recycling module according to the local loss rates. Collisional
physics are evaluated either by a fully nonlinear, Eulerian Fokker-Planck-Landau collision opera-
tor [71, 21] (total-f ) or a linearized Monte-Carlo collision operator [66] (full-f ).
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(a) (b)

(c) (d)

Figure 22: Marginal 2D bar plots of distribution functions before and after particle down-sampling
(a and b) along ρ and µ; (c and d) along r and z. In this case, Np = 106, DSF = 20, and the number
of bins in the ρ, µ, r and z directions is 50.
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Figure 23: Relative error in global 0th and first moments due to feature-based/random down-
sampling for different down-sampling factors. In this case, Np = 106 and the number of bins in
the ρ, µ, r and z directions is 10.
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Figure 24: Relative error in global first and second moments due to feature-based/random down-
sampling for different down-sampling factors. In this case, Np = 106 and the number of bins in
the ρ, µ, r and z directions is 10.
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Figure 25: Relative error in global 0th and first moments due to particle up-sampling for different
number of bins. In this case, Np = 106, up-sampling factor=10, and the number of bins are equal
in the ρ, µ, r and z directions.

As a proof-of-principle test of the MPCR method, we investigate the most basic problem a
full-f gyrokinetic code has to solve — the formation of the background radial electric field that is
needed to maintain quasi-neutrality, the divergence-free equilibrium plasma flows, and to conserve
toroidal angular momentum. We use the conventional full-f method with a single ion species
(deuterium) and the adiabatic electron model.

The magnetic equilibrium field is that of a generic, up-down symmetric, low-aspect ratio toka-
mak with a circular boundary surface and Shafranov shift. Since no material wall is included in
the simulation, particles that leave the simulation region at the outer boundary are re-inserted into
the simulation on the same flux-surface but at the poloidal angle, at which they would have re-
entered the simulation domain had they been allowed to continue their orbit. Marker particles are
loaded with a uniform distribution in configuration and velocity space and perpendicular and paral-
lel velocities of up to approximately 3.5vth, where vth is the thermal velocity. The marker particle
weights w are determined such that the initial plasma distribution function is a local Maxwellian
with density ni(ψ) and temperature Ti(ψ) that depend only on the flux-label (generalized minor
radial coordinate) ψ, i.e. each particle’s initial weight is a function of its initial flux-label and veloc-
ity. The electrostatic potential is zero initially. A local Maxwellian is, however, not the neoclassical
equilibrium distribution function in the presence of a pressure gradient due to the magnetic inho-
mogeneity drift, which causes charged particles in tokamaks to move on so-called banana-orbits
with finite width ∆ψb. Starting with a local Maxwellian distribution and vanishing radial elec-
tric field, the orbit motion of the ions together with the background pressure gradient leads to the
growth of an up-down anti-symmetric pressure perturbation and a net toroidal flow, which vio-
lates the divergence-free condition of the equilibrium flow and the conservation of toroidal angular
momentum. To make the equilibrium flow divergence free and cancel the net toroidal flow from
the magnetic inhomogeneity drift, the plasma reacts by generating a radial electric field (guiding
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Figure 26: Spatial distribution of magnetic field components. The computed values at vertices are
interpolated in these plots.
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center polarization) with its corresponding E×B flow.
The challenging problem in the calculation of the radial electric field with a full-f PIC code, is

that the orbit motion of the markers leads to mixing of particles with disparate weights. This is a
considerable source of sampling noise, especially in regions with small pressure gradient and low
amplitude of the electrostatic potential. The purpose of periodic particle-resampling is to reduce
the sampling noise by homogenizing the particle weights in appropriately defined bins and by
optimizing the phase space coverage of the particle population. We demonstrate this capability by
comparing the time evolution of the radial electric field and the radial electric field profile in quasi-
steady state between simulations with a total of 5 million, 50 million, and 500 million marker
particles without particle re-sampling, and a simulation with 50 million particles with periodic
resampling.

In all cases, the PIC simulations are run over 6000 time steps of 0.002 of the toroidal transit
time. The spatio-temporal evolution of the radial electric field of the simulations without periodic
particle resampling are shown in Figure 27. In all three cases, we observe increased noise in the
self-consistent radial electric fields in the edge region, 0.8 < ψ < 1. This is due to the low marker
particle density in these regions.

Figures 27 and 28 show the evolution of the marker density and particle weight distribution
at initial loading and after the 6000 time steps. These figures indicate that mixing low-weight
particles with higher weight particles during the simulation leads to spreading of the marker par-
ticle weights and lowering the simulation efficiency in the critical edge regions. Such phenomena
degrades the quality of the Monte Carlo sampling over time since particles evolve away from the
desired importance-sampled distribution and results in large simulation error.

To investigate the effect of resampling in reducing simulation error while saving compute time,
the 50 million particle case is subjected to periodic particle resampling. Of course, to fully optimize
the efficiency of the algorithm, the resampling period must ultimately be determined adaptively us-
ing the global particle distribution along with the frequency of the dynamic load balancing. How-
ever, to illustrate the feasibility of the resampling technique in the current numerical experiment,
three stages of resampling are examined, i.e. after 1500, 3000, and 4500 time steps. In the resam-
pling algorithm, the 2D unstructured mesh in XGC is used for the spatial bins along x = (r, z)
while velocity space v = (v‖, v⊥) is uniformly discretized. At each resampling stage, the total
number of resampled particles are enforced to be the same as the number of the original particles
i.e. Mp = Np, while the target number of resampled particles in each bin Mp

i is determined from
the initially loaded particles at the beginning of the simulation.

In Figures 30 and 31 we show the evolution of the neo-classical radial electric field, marker
density, and weights for the 50 million particle case with three stages of particle resampling. The
noise reduction effect of particle resampling from MPCR, immediately after each stage, is due to
attenuation in spreading of the particle weight and restoration along regions with low amplitude of
the electrostatic potential. These favorable effects gradually disperse as the simulation continues,
owing to loss in phase space resolution and simulation efficiency in the critical regions. This
indicates that these features could be easily recovered with moderate increase in the frequency of
resampling.

Figure 32 compares the radial electric field in the 50 million particle case with and without
resampling. The corresponding high-fidelity simulation here is run using 500 million particles.
Remarkably, MPCR does extremely well capturing the averaged radial electric field profile over
4000-6000 time steps as well as the time evolution of Er in the edge and core regions. It is notable
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Figure 27: Spatio-temporal evolution of Er without resampling for (a) 5 million particles, (b) 500
million particles, and (c,d) 50 million particles.
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Figure 28: Spatial distribution of particle density for the simulation with 50 million particles and
without resampling: (a) initial loaded particles, (b) after 6000 time steps. The computed values at
vertices are interpolated in these plots.

that even with the fairly low resampling frequency of 1500 timesteps, the resampling significantly
reduces the simulation error and improves the accuracy of the results obtained from the reduced
order model.

5 Conclusions

The application of uncertainty quantification to high fidelity simulations of tokamak plasmas is
particularly challenging because of the great computational costs of a single simulation. Also
challenging is the fact that there are many uncertain inputs to the simulations, that have poorly
characterized uncertainties. This latter, however, just increases the importance of UQ in the val-
idation of the simulation models, which is the most immediate application of UQ techniques in
tokamak simulations. A multi-fidelity sampling approach has been identified as the most promis-
ing to minimizing the number of high fidelity simulations that need to be run as part of such a
UQ study. In this approach lower fidelity and lower cost surrogates are needed, and in this work
two such have been investigated: a polynomial response surface representation (section 2) and a
scenario extrapolation approach (section 3). In addition, to reduce costs of an XGC forward simu-
lation, UQ techniques were used to optimize marker particle distributions in a particle resampling
algorithm (section 4). This algorithm is currently being integrated into the XGC code base.

To explore the utility of response surface surrogates, we developed a prototype application
to collisionless plasmas, and generated global surrogates from a minimal set of calibration data.
These preliminary results demonstrate moderate variation in the critical gradient as a function
of R0 and B0, and in a cross validation, the global surrogate agreed well with a nominal base
case chosen within the parameter space. We see improvement of the response surface accuracy
as a function of g, the order of the polynomial response surface, indicating both a well-behaved
surrogate and the potential for increased accuracy with higher g. It remains unclear however, if this
surrogate can be extrapolated to outside the limits of the parameter scan. In contrast to the well-
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Figure 29: Spatial distribution of mean and variance of particle weights for the simulation with 50
million particles and without resampling: (a,c) initial loaded particles, (b,d) after 6000 time steps.
The computed values at vertices are interpolated in these plots.

behaved response surface in the ion temperature gradient, the linear departure rates were not as
well behaved. Additional calibration data would be required to hope to arrive at a usable surrogate.
A paper reporting on the findings reported here on global surrogates for collisionless plasmas is in
the final stages of preparation.

To address the massive computational requirements for predictive simulation and uncertainty
quantification of fusion plasmas, we have developed a hybrid method for constructing surrogate
models for predictive extrapolation that we have named an augmented surrogate. By combining
(potentially uncertain) scenario parameters with the dimensionless plasma scaling parameter ρ∗,
we are able to construct reasonable response surface approximations, yielding extrapolative pre-
dictions as well as parameter space gradients at a reduced cost. Additional testing of our predictive
extrapolation methodology is part of an ongoing power scaling study based on a set of numerical
experiments outlined in [25].
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Figure 30: Spatio-temporal evolution of Er for the 50 million particle case with three stages of
resampling: after 1500, 3000, and 4500 time steps.

The MPCR algorithm presented here (section 4) is designed to reduce the sampling noise in
PIC codes while preserving important features of the distribution being represented by the parti-
cles. The algorithm itself functions by first partitioning the distribution phase space into smaller
subdomains, wherein binning can be performed. The general method uses sampling techniques for
producing new particle positions and velocities, and employs constrained optimization techniques
to adjust particle weights to accurately preserve essential characteristics of the distribution.

In addition, MPCR enables the preservation of any number of derived particle and grid quanti-
ties (e.g. energy, mass, momentum, current density, charge density), with the only limitation being
the bin volume, and hence number of particles per bin. By performing this particle resampling
in bins and constraining the low-order moments computed in each bin, the algorithm is able to
preserves essential features of the particle distribution that are important to the physical consis-
tency and dynamics of the system. The binning also enables the introduction and/or adjustment of
importance sampling.

The quality and utility of the MPCR method was demonstrated through several examples, in-
cluding application to a neoclassical plasma simulation. The tests demonstrate the ability of MPCR
to significantly reduce computational cost and increase solution accuracy, while the resampling
does not introduce any change in the Lagrangian and Eulerian PIC solution through local conser-
vation of particle and grid quantities. A paper reporting on the MPCR algorithm and its utility in
plasma PIC simulations is in the final stages of preparation.
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Figure 32: (a) Er profile at 6000 time steps. Time evolution of Er at (b) ψ = 0.5, (b) ψ = 0.2, (b)
ψ = 0.8
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