SANDIA REPORT

SAND2017-11595
Unlimited Release
Printed October, 2017

Local Varability of the Peierls Barrier
of Screw Dislocations in Ta-10W

Stephen M. Foiles

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories




Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2017-11595
Unlimited Release
Printed October, 2017

Local Varability of the Peierls Barrier of Screw
Dislocations in Ta-10W

Stephen M. Foiles
Computational Materials and Data Science Department
Sandia National Laboratories
Albuquerque, nm 87185

Abstract

It is well know that the addition of substitutional elements changes the mechanical behavior
of metals, a effect referred to solid solution hardening. For body-centered-cubic (BCC)
metals, screw dislocation play a key role in the mechanical properties. Here the detailed
modification of the Peierls barrier for screw dislocation motion in Ta with W substitutional
atoms is computing using density functional theory (DFT). A reduced order model (ROM) of
the influence of W substitution on the Peierls barrier is developed. The mean field change in
the Peierls barrier for a Tal0W alloy is determined and shown to be larger than anticipated
based on simple elasticity considerations. The ROM could be used in future calculations
to determine the local variability of the Peierls barrier and the resultant influence on the
motion of screw dislocation in this alloy.
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Chapter 1

Introduction

The deformation of metals is dominated by the motion of dislocaitons. For the case of
body-centered-cubic (BCC) structured metals, the deformation is strongly influenced by the
motion of £ (111) screw dislocaitons [2, 1] and the nature of the slip systems has been reviewed
by Weinberger, et al [18]. The motion of the screw dislocations is thermally activated and
rate dependent due to the Peierls barriers that the screw dislocations need to overcome and
which results from the non-planar core of the screw dislocation [3]. These properties of the
screw dislocation impart the characteristic temperature and strain rate dependent behavior
of the flow stress. The incorporation of the temperature and straiin rate dependencies is
critical to the development of crystal plasticity models of the deformation of BCC metals.

The structure of the screw dislocation core in various elemental BCC metals has been the
subject of multiple studies over the years as reported in multiple reviews including a recent
review by Vitek and Paidar [17]. In these studies the dislocation core is observed to spread
into three {1 1 0} planes for the % < 111 > screw dislocaiton. Groger and Vitek completed an
extensive analysis of the motion of the screw dislocations based on a sophisticated interatomic
potential model [3, 4, 5]. The Peierls barriers for various elemental BCC metals has recently
been calculated by density functional theory (DFT) electronic structure calculations|19].

The focus of this study is the influence of alloying on the resultant mechanical proper-
ties, in particular the temperature and strain rate dependent flow stress of the alloying. The
influence of solid solutions on the mechanical properties of metal and the motion of disloca-
tion in particular has a long history as summarized by, for example, Haasen [6]. The classic
theory of solid-solution hardening in a concentrated solid solution is credited to Mott and
Labusch [12, 11]. This theory posits a distance dependent interaction between the substitu-
tional atoms and the dislocation core and also an average distribution of substitutional atoms
around the dislocation. These assumptions lead to an average interaction of the dislocations
with the alloy additions.

One of the current focuses of materials research is the variability of materials properties.
That has led to the question to be address here, what is the local variability of the inter-
action of the dislocation with the statistical distribution of impurities. To that end, this
report presents the development of a reduced order model (ROM) that allows for the ready
evaluation of the local Peierls barrier from a particular local arrangement of W atoms in
the TalOW alloy. Future work would determine the influence of this local variation on the
mechanical properties.
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In considering the interaction of dislocations with a solute field, there are two kinetic
limits that one can consider, sessile and mobile dislocations. For sessile dislocations, one
would expect the distribution of solutes to equilibrate to the strain field of the dislocation
and create a Cottrell atmosphere [7]. For mobile dislocations, the solute distribution would
not be in equilibrium with the dislocation position, but rather would be distributed statis-
tically consistent with the inherent short-range ordering in the alloy. In this report, mobile
dislocations are considered, though the extension to sessile dislocations is possible.

12



Chapter 2

Elasticity Predictions

Since the dominant aspects of dislocation structure and energetics are strongly influ-
enced by elasticity considerations, the influence of alloying on the elastic constants has been
computed. These calculations are based on the standard density functional theory (DFT)
electronic structure approach. The speciffic implementation used here is described in Ap-
pendix A.

DFT calculaitons of elastic constants are reported in Table 2.1 for Ta, Ta; W and a random
Ta,sWg alloy. For pure Ta, the experimentally observed bulk modulus, B, and shear moduli,
C44 and C’; are 196 GPa, 83 GPa and 53 GPa, respectively [7]. These values agree well with
the computed values obtained here. Two alloy configurations with compositions close to
Tal0%W are considered. These model systems were chosen for computational convenience.
The Ta;W structure is an ordered arrangement obtained by a 2x2x2 repeat of the primitive
BCC unit cell with one of the sites in this eight atom cell replaced by W. The Ta ;sWg
structure is based on a 3x3x3 repeat of the cubic BCC cell with W located at 6 randomly
selected sites in this 54 atom cell. The similar elastic constants obtained for these two alloy
structures (same values within the uncertainty of the DFT calculations) indicate that the
influence of the W additions on overall elastic constants is not strongly dependent on the
precise locations of the W solutes. Overall, the influence of the W alloying on the elastic
moduli is modest. The main effect is a reduction in the anisotropy of the shear elastic
constants. This is not surprising since the shear elastic constants of W are nearly isotropic.

Table 2.1: Bulk moduli (B), and shear moduli (Cy and C” = $(Cy;-Cy2)) and lattice con-
stants calculated by DFT for pure Ta, ordered Ta;W and a random Ta,;sWg configuration.

Ta Ta7W T&48W6
B 200 GPa 209 GPa 205 GPa
Cu 84 GPa 77 GPa 77 GPa
C 55 GPa 60 GPa 61 GPa
a 0.332 nm 0.330 nm 0.330 nm

The elastic energy of a dislocation is dictated by the relevant shear modulus of the
dislocation. For the case of a screw dislocation, the relevant moduli are in the coordinate
system where the z’-direction aligns with the screw dislocation line, < 111 > [7]. The
relevant moduli in this frame, denoted by a prime, are C'yy, C’s5 and C'y5, and are related
to the elastic moduli in the standard cubic orientation by equations 2.1 and 2.2. The pre-
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logarithmic energy factor is given by 2.3. It was noted by Weinberger, et al. [19] that for
a set of elemental BCC metals the magnitude of the Peierls barrier for the motion of the
screw dislocation scaled with the pre-logarithmic energy factor. The prelogarithmic energy
factors are 4.25, 4.27 and 4.31 107°J/m for Ta, Ta;W and Ta;sWg, respectively. These
values agree within the typical errors associated with DF'T predictions of lattice constants
and elastic constants. Thus, if this correlation persists for the case of alloys, one expects
only a modest change in the magnitude of the Peierls barrier for the alloy compared to pure
Ta.

1
= Chs = 5(011 —Cip + Cy) (2.1)
15 =0 (2.2)
O — Y
K = o (2.3)

Standard elasticity arguments also predict that the interaction of W substitutional atoms
with screw dislocation will be small outside of the core. (The strain fields at the dislocation
core are large, so it is unlikely that elasticity predictions will be realistic.) The first term
in the elastic interaction is the interaction of the hydrostatic stress field with the misfitting
sphere of the substitutional. For W in Ta, the change in lattice constants with alloying
suggest that the volume misfit is -3 A®. In addition, for isotropic elasticity, there is no
hydrostatic stress field around a screw dislocation. While Ta is anisotripic, the hydrostatic
stress should be small. The next level of interaction is the modulus interaction [7] given by
equation 2.4.

1
AFE = §€ij€leACijkl (24)

In this equation, € is the strain tensor, €2 is the atomic volume and Ac is the local change
in elastic constants. For the screw dislocation, the elastic constants that couple to the strain
field are the ones given in equation 2.1 which do not change significantly with the addition of
W. Thus, simple elasticity ideas suggest that the long-range interaction of W substitutions
in Ta with the screw dislocations should be small.

14



Chapter 3

Development and Testing of Reduced
Order Model

We will employ density functional theory (DFT) calculations to determine the interaction
of W substitutional atoms with the screw dislocation in Ta and to determine the change in
the local Peierls barrier due to the substitutional atoms. The DFT calculations employed
use standard techniques as described in Appendix A. These DFT calculations require the
use of periodic boundary conditions. It is topologically not possible to simulate a single
dislocation with periodic boundary conditions in all three dimensions. The net Burgers
vector content of each periodic unit cell must be zero. One option is to simulate a dislocation
dipole as indicated schematically in Figure 3.1a. This geometry has been used in various
computational studies. A potential issue with this geometry is that due to the periodic
boundary conditions, one is actually simulating a set of repeating dislocations that form
low-angle grain boundaries. Thus there is a repeating pattern of grain rotations due to the
presence of the alternating low-angle grain boundaries. An alternative simulation geometry is
to form a dislocation quadrapole as in shown schematically in Figure 3.1b. This arrangement
avoids the creation of grain boundaries. The use of non-orthogonal periodic vectors also
allows this geometry to be created with only two dislocations in the periodic cell.

The details of the construction of this primitive unit cell have been presented previously
and so will not be repeated here [13, 19]. Initial DFT computational cell is shown in Fig. 3.2.
In this figure the shading reflects the local crystal structure as determined using common
neighbor analysis. The blue atoms are BCC while the white atoms are classified as other.
In this case, the white atoms are located at the core of the screw dislocation. Note that as
discussed in ref. [13] there is a uniform shift of half a Burgers vector of the atom positions
in the direction normal to the figure as one moves from the lower right hand corner to the
upper left corner. Further note that this basic unit cell has a periodic length of a Burgers
vector, or equivalently a nearest neighbor distance, in the direction normal to the plane of
the figure.

The calculaition of the Peierls barrier is performed using nudged elastic band (NEB)
simulations[15, 8]. These simulations require the specification of an initial and final state.
Here the final state has the dislocation core shifted to the left in Fig. 3.2 by one atomic
site. A set of intermediate states of the system are then generated and the energy of these
intermediate states are minimized while also minimizing the displacements between the im-
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(a) dipole geometry (b) quadrapole geometry

Figure 3.1: Schematic illustration of the (a) dipole and (b) quadrapole arrangement of
dislocations in the computational cell.

Figure 3.2: Atomic structure for the DFT calculations. Note that the cell is periodic and
there is a overall displacement normal to the figure as discussed in the text. The shading is
based on common neighbor analysis with the blue atoms being BCC environments and the
white atoms being other.
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Figure 3.3: Atomic structure for the DF'T calculations. The numbers identify the sites where
W substitution will be considered with W substitutions being performed simultaneously at
both dislocation cores. The shading is based on common neighbor analysis with the blue
atoms being BCC environments and the white atoms being other.

ages. These calculations employ nine intermediate states. The barrier for the case of pure
Ta is shown as the bottom curve in Fig. 3.4. This barrier is in good agreement with the one
calculated earlier using the same techniques[19].

Fig. 3.3 shows the initial structure with the sites where W substitution will be considered
idenitified by number. This numbering system will be used here to identify the different loca-
tions. Note that W substitutions are added symmetrically to the cores of both dislocations in
the computational cell. These sites represent all the locations which are in the core triangle
or the sites adjacent to the core triangle for either the initial or the final dislocation position.
This is the reason for the inclusion of sites further to the left of the initial dislocation region.

The Peierls barrier for both pure Ta and with a W substitutional at 5 of the sites is shown
in Fig. 3.4. The barrier for the other sites were also calculated but are not shown here for
simplicity. Note that the calculations for some of the sites can be related to the barriers
for other sites via symmetry arguments. For example, the reaction path for the barrier
associated with W placement at site 12 is the just the reverse direction of the reaction path
for the barrier calculation at site 1.

The data in Fig. 3.4 shows the interaction energy of the W substitutional with the
dislocation core which is the value of the energy change for a reaction coordinate of 0. The
reaction coordinate is a measure of the fraction of the distance from the initial state to the
final state. This indicates that the W substitutional has a significant interaction with the
screw dislocation core of about 0.22-0.23 eV. Due to the symmetric structure of the core, one
would expect the impurity energy to be the same for sites 1, 2 and 3 for an infinite system.
The difference between these values reflects the fact that the computational cell employed
here does not have the same three-fold symmetry as the ideal dislocation core. Thus the
computed energy for these three sites differs. This difference can have two sources. The first
would be potential interactions, either electronic or elastic, between the W substitutional
atoms in the array of cores. This array does not have the three-fold symmetry. The second
possible origin is numerical differences in the DFT calculations due to the differences between

17



W Impurity Effect on Screw Dislocation Peierl's Barrier
0.3
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Figure 3.4: Peierls barrier computed using DFT energies and NEB method for both pure
Ta and for systems with a W substitutional atom at 5 sites in or near the dislocation cores
as defined in Fig. 3.3. The energy is in electron volts per Burgers vector of length. These
energies represent a single impurity since the raw energy changes have been devided by two
to reflect the symmetrical placement of W at the two dislocation cores in the computational
cell.
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Figure 3.5: Energy change associated with adding a single W impurity at site 1 of each
dislocation core as a function of the inverse length of the computational cell along the
dislocation line.

the symmetry of the computational cell and that of the core. The observed difference is on the
order of 0.01 eV. This gives a qualitative sense of the scale of the computational uncertainties.
These differences are smaller than the effects of importance here. The interactions of the W
substitutional atoms at sites 4 and 5 adjacent to the core is substantially reduced compared
to the interaction with the core, but is still significant at about 0.06 eV. Similar results have
been obtained for W substitutions in all of the 16 sites identified in Fig. 3.3.

The results presented in Figure 3.4 were obtained for a computational cell which is 1
Burgers vector or equivalently one nearest neighbor distance thick. This means that these
calculations are actually for the dislocation interacting with a infinite column of W substi-
tutional atoms located in nearest neighbor sites. This is not consistent with a dislocation
moving through a statistical distribution of substitutional atoms. In particular, the short-
range order in Ta-W disfavors W nearest neighbors. For this reason, it is crucial to establish
the relationship between these calculations and isolated W substitutional atoms. To this
end, the calculation of the energy of a W substitutional at site 1 was repeated for cells
whose length along the dislocation line is two and three times the Burgers vector. For these
calculation, there is still only W atom per dislocation core. The resulting change in energy
for the system with the W substitutional compared to the system of the same size without
the W is presented in Figure 3.5. The main result is that the interaction between the W
substitutional and the dislocation core is weakly dependent on the separation of the W atoms
along the dislocation core. The decrease in interaction energy as the separation between the

19
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Figure 3.6: Peierls barrier for W substitutional at site 1 for different lengths along the
dislocation line. Note that for 3x (length of 3 Burgers vectors along the dislocation line)
only the endpoints are given.

W atoms increases is also consistent with the short-range order tendency of the alloy.

Figure 3.6 shows the calculation of the Peierls barrier for a computational cell that is
2 Burgers vector thick compared to the prior calculation of the barrier for a single layer
thickness. Note that this is an energy per unit length. Qualitatively, the position of the
maiximum in the barrier for the twice thickness calculation is closer to a reaction coordinate
of 0.5 and the magnitude of the increase in the barrier from the starting point to the maxi-
mum is larger than for the case of the cell with a single layer thickness. This suggests that
the barrier in the case of the 2 layer thickness is approximately the average of the barrier
for the case of the 1 layer thickness and the barrier with no W substitutional.

This observation suggests a very simple reduced order model of the barrier. To compute
the barrier for n-layer system with W substitutional atoms at locations j where the sum is
over all locations j where there are W substitutional atoms. In this equation, the superscript
n-layer refers to a cell which is n Burger vector thick and single superscript refers to the
calculation for the cell that is a single Burgers vector thick. The subscript pure means the
calculation for no substitutional atoms and the subscript j refers to a system with the W
substitution at location j and the subscript {j} refers to the system with the substitutions
at the set of sites {j}. The numerical data required for the implementation of Equation 3.1
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Figure 3.7: Comparison of the the computed Peierls barrier for a cell 2 Burgers vector long
along the dislocation line compared to the prediction of the reduced order model (see text)
for W substitutional at (1) site 1 and (b) site 3.

is presented in Appendix B.

dE{™ (x) = dEp v (x) + Y_[dE;™" () — dE;2°(x)] (3.1)

J

The applicability of Equation 3.1 is tested for two simple cases in Figure 3.7. The
full calculation in Figure 3.7a shown by the solid line is the same as that in Figure 3.6.
The dashed line shows the prediction of Equation 3.1. The results in Figure 3.7b are the
same except for the placement of the W substitutional atom at site 3. In both cases, the
agreement between the full calculation and the reduced order model (ROM) is quite good. A
more demanding test of the ROM is summarized in Figure 3.8 and Figure 3.9. Two random
placements of W substitutional atoms where generated at 10% concentration of W. In this
generation, nearest neighbor W were avoided but otherwise the placement of the W atoms
was at random. Both of the cell in Figure 3.8 are 2 layers thick and W atoms are placed in
both layers. The Peierls barrier was then computed by a full DFT calculation for each of
these configurations. These results in the solid lines are compared with the prediction of the
ROM in dashed lines in Figure 3.9. Given the complexity of the arrangement, the agreement
between the full calculation and the ROM are reasonably good. In particular, note that the
ROM only considers the infuence of the W substitutional atoms in the immediate vicinity
of the the initial or final location of the dislocation core, the 16 sites identified in Figure 3.3.
The remaining substitutional atoms are not considered. While they are not expected to have
a large effect, neglecting them is clearly a simplification. This establishes that the ROM can
be reliably used to estimate the local Peierls barrier even for W concentrations as high as
10%.

In evaluating the accuracy of the ROM, it is important to keep the computational effi-
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Figure 3.8: Two structures with random substituion of W in the computational cell. The
cell contains two periods along the dislocation line (normal to the plane of the figure). The
shading is based on common neighbor analysis, the size reflects the species with W drawn
larger.

ciency in mind. The brute force barrier calculations presented in Figure 3.9 each required
substantial computing resources. These calculations used 128 cores for the DF'T calculations
associated with each of the 11 replicas in the NEB calculation for a total of 1,408 cores.
These calculations ran for approximately three wall-clock days each. Thus each of these
curves represents about 11.5 cpu-years of computing. While this is feasible for a small num-
ber of calculations on a large computer cluster, it is prohibitive to perform such brute-force
calculations for a sufficiently large number of arrangement to obtain statistical averages.
By comparison, the calculations required to calibrate the ROM required about a quarter
of the computer resources of a 2-layer brute-force calculation. The computational effort for
the evaluation of the barrier based on the ROM is negligible. This enables the statistical
sampling of barriers that may be encountered as discussed in the next chapter.
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Figure 3.9: Peierls barrier calculation (solid line) for the two random arrangements of W
substitutional atoms shown in Fig. 3.8 compared with the predictions of the ROM (dashed
lines). The upper curves are for Fig. 3.8a and the lower curves are for Fig. 3.8b.
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Chapter 4

Predictions of Reduced Order Model

The value of the ROM is that it can be used to predict the energy landscape for a variety
of potentials local configurations of the substitutional atoms. This feature can either be used
to quickly estimate the average influence of the substitutional atoms or it could be used to
look at the range of local barriers that the dislocation might encounter.

The simplest statistical sampling for Ta-10W of the W distribution is a mean field model
in which the each site in Equation 3.1 is assumed to be one tenth occupied by W. Physically,
this can also be thought of as the energy per unit length of an infinite straight dislocation
moving through a random distribution of W substitutionals. The mean field barrier is
shown in Figure 4.1 compared to the Peierls barrier for pure Ta. Note that the mean field
barrier is predicted to be approximately 40% higher in Ta-10W than in pure Ta. Recall
that the correlation between Peierls barrier and the pre-logarithmic energy factor observed
by Weinberger, et al. [19] for elemental materials predicted that the Peierls barrier would
be largely unchanged based on the variation of the elastic constants. This indicates that
this simple correlation between Peierls barriers and elastic constants does not extend to the
additional local behavior that is obtained for alloy systems.

Figure 4.2 presents two illustrations related to the local variation of the Peierls barrier.
The mean field barrier in Figure 4.1 can be intuitively thought of as the barrier per unit
length of encountered by a perfectly rigid straight dislocation. Figure 4.2a presents the
range of local barriers that would be encountered in the opposite limit where one computes
the local barrier for each Burger’s vector length segment of the dislocation. This limit is
unphysical since it completely ignores the dislocation line energy which tends to straighten
the dislocation in order to minimize the line energy. It does give a sense, though, of the
local variations in the energy landscape. As can be seen, the local variations are much larger
than the average barrier. A more realistic view of the local variation of the Peierl’s barrier is
shown in Figure 4.2b where the local barrier is averaged over 5 Burger’s vectors lengths for a
random distribution of substitutional atoms. This shows the reduction in the variability due
to the local straightening of the dislocation due to the dislocation line length. The variation
is substantially reduced compared to Figure 4.2a but is still on the order of the average
barrier. These results suggest that the inclusion of the local barrier variability may have a
significant influence on the dynamics of the screw dislocation motion.
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Figure 4.1: Peierls barriers computed for pure Ta [19] and obtained for Tal0W based on the
reduced order model and a mean field treatment of the W locations.
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Figure 4.2: Local Peierls barrier obtained for various random distributions of W averaged
over (a) a single Burgers vector along the dislocation line and (b) five Burgers vector along
the dislocation line. The thick red line is the Peierls barrier for pure Ta.
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Chapter 5

Future Directions

The present work reveals that the local energy landscape through which a dislocation in
Ta-10W moves is far from smooth. This raises questions about whether the motion of the
screw dislocation will behave in a manner that is qualitatively different from that in pure Ta.
For the pure BCC metals, there are two regimes of dislocation motion depending on both
the temperature and strain rate, the kink-pair regime and line tension regime [14]. Each of
these regimes has a distinct temperature dependence of the thermal part of the flow stress.

The logical next step for this work is to develop a simple model for the motion and equi-
librium configurations for a screw dislocation in a statistical distribution of W substitutional
atoms. This model would incorporate local barriers along the dislocation line based on the
ROM developed in this report. This energy would be supplemented by the line energy of
the dislocation which as discussed above would tend to locally straighten the dislocation.
Such a model could then be employed to determine of the response of screw dislocation
to an applied stress is more in line with the kink-pair picture, the line tension picture or
possible a different mesoscale description. Such insight would facilitate the development of
temperature, strain-rate and pressure dependent crystal plasticity models such as has been
done for elemental Ta [14].
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Appendix A

DFT Calculations

The electronic structure calculations are performed using the Vienna Ab Initio Sim-
ulation Package (VASP) [9]. This is a widely-used plane-wave basis set implementation
of density functional theory (DFT) approximation to quantum mechanics. These calcu-
lations employed the generalized gradient approximation (GGA) with psuedopotentials of
the projector-augmented-wave form (PAW) [10]. The pseudopotentials are taken from the
VASP library version 5.2. The numbers of valence electrons treated are 11 and 12 for Ta
and W respectively. The calculations were non-spin-polarized so assumed a paramagnetic
state. For calculations involving multiple elements, it is important to use the same energy
cut-off for the plane-wave basis. The energy cut-off employed in these calculations is 280
eV which is greater than the recommended high prescision cut-off for both elements. The
k-space integrations are performed using the automatic mesh generation. The length (see
VASP documentation) employed to generate this mesh was 40A which was determined by
convergence tests on a single W impurity in bulk Ta. For the dislocation cell with a single
Burgers vector along the z-axis this led to a mesh with 16 irreducible points. The nudged
elastic band (NEB) calculations[15, 8] were performed using the algorithm implemented in
the VASP code with 9 intermediate configurations and the default spring setting.
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Appendix B

Barrier Data

Table B.1 presents the computed values of the Peierls barrier for both pure Ta and
Ta with a single W impurity located at each of the 16 sites identified in Figure 3.3. The
reaction coordinate are listed in scaled units where 0 and 1 correspond to the initial and
final configuration. The energies represent total computational cell energies in electron volts
(eV). As discussed in the text, this data can be used in conjunction with Equation 3.1 to
estimate the Peierls barrier for an arbitrary arrangement of W substitutional atoms.
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reaction coord pure site 1 site 2 site 3 site 4

0 -2723.0359 -2725.2044 -2725.2176 -2725.2175 -2725.549
0.1 -2723.0318 -2725.1974 -2725.2181 -2725.1982 -2725.5469
0.2 -2723.0128 -2725.1749 -2725.2056 -2725.1576 -2725.5396
0.3 -2722.9901 -2725.1636 -2725.1965 -2725.1158 -2725.5314
0.4 -2722.9733 -2725.1753 -2725.2078 -2725.0881 -2725.5253
0.5 -2722.9674 -2725.212 -2725.2502 -2725.0787 -2725.5229
0.6 -2722.9732 -2725.2793 -2725.3257 -2725.0879 -2725.5245
0.7 -2722.9899 -2725.3774 -2725.4184 -2725.1154 -2725.5299
0.8 -2723.0127 -2725.4777 -2725.4938 -2725.1572 -2725.5378
0.9 -2723.0318 -2725.5324 -2725.5335 -2725.198 -2725.5454

1 -2723.036 -2725.5458 -2725.5452 -2725.2177 -2725.547

site 5 site 6 site 7 site 8 site 9 site 10
-2725.534 -2725.5367 -2725.5468 -2725.5454 -2725.5471 -2725.547
-2725.5268 -2725.5365 -2725.5444 -2725.5371 -2725.5388 -2725.5454
-2725.5098 -2725.529 -2725.5352 -2725.5183 -2725.5192 -2725.5378
-2725.4988 -2725.5234 -2725.5299 -2725.5048 -2725.4997 -2725.5299
-2725.4969 -2725.5253  -2725.534 -2725.504 -2725.4883 -2725.5245
-2725.4978 -2725.5373 -2725.5478 -2725.5164 -2725.4886 -2725.5229
-2725.4968 -2725.559 -2725.5694 -2725.5402 -2725.5016 -2725.5253
-2725.4986 -2725.5887 -2725.5967 -2725.5731 -2725.5262 -2725.5314
-2725.5097 -2725.6217 -2725.6266 -2725.6103 -2725.5572 -2725.5396
-2725.5267 -2725.6506 -2725.6539 -2725.6422 -2725.5843 -2725.5469
-2725.534 -2725.6644 -2725.6673 -2725.6563 -2725.5954 -2725.549

site 11 site 12 site 13 site 14 site 15 site 16

-2725.5452 -2725.5458 -2725.5954 -2725.6563 -2725.6673 -2725.6644
-2725.5335 -2725.5324 -2725.5843 -2725.6422 -2725.6539 -2725.6506
-2725.4938 -2725.4777 -2725.5572 -2725.6103 -2725.6266 -2725.6217
-2725.4184 -2725.3774 -2725.5262 -2725.5731 -2725.5967 -2725.5887
-2725.3257 -2725.2793 -2725.5016 -2725.5402 -2725.5694 -2725.559
-2725.2502  -2725.212 -2725.4886 -2725.5164 -2725.5478 -2725.5373
-2725.2078 -2725.1753 -2725.4883 -2725.504 -2725.534 -2725.5253
-2725.1965 -2725.1636 -2725.4997 -2725.5048 -2725.5299 -2725.5234
-2725.2056 -2725.1749 -2725.5192 -2725.5183 -2725.5352 -2725.529
-2725.2181 -2725.1974 -2725.5388 -2725.5371 -2725.5444 -2725.5365
-2725.2176 -2725.2044 -2725.5471 -2725.5454 -2725.5468 -2725.5367

Table B.1: Tabulation of the barriers as a function of the reaction coordinate for a single W
impurity at the indicated site. The energy values are in units of electron volts (eV).
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