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; Synopsis

This work seeks a first-principles understanding of two-stage
Ignition mechanism in high-pressure spray combustion

Experiments:
Quantitative time scales & spatial progression of ignition from
simultaneous formaldehyde PLIF & schlieren images

Theoretical-numerical modeling:
Establishing the validity of the flamelet egns & full LLNL
reference kinetics for high-pressure low-temperature combustion

Ignition mechanism in turbulent high-pressure flames A

Q “Turbulent cool-flame wave” & impact on turbulent ignition
0 Fundamental time scales in high-pressure spray ignition
O Sensitivity to fluctuations in scalar dissipation rates
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C/J}\?F (Some) Review on relevant LTC studies
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% Prior fundamental studies have investigated the impact of
- cool-flame chemistry

- Counterflow experiments/computations/asymptotics at elevated pressures

(Seshadri et al., Combust. Theory Modelling, 2016)

- Micro-gravity droplet combustion experiments at intl. space station

(Nayagam et al., Combust Flame, 2012; Farouk & Dryer, Combust. Flame, 2014)

- DNS of droplet combustion without flow or turbulence

(Borghesi et al., Combust. Flame, 2013)

- DNS has shown ignition in preferably rich mixtures
(Mukhopadhyay and Abraham, Combust. Flame, 2012; Viggiano, Combust. Flame, 2010)

- Most recent DNS & LES results indicate importance of cool-flame in ignition
(Krisman et al. Combust. Flame, 2016; Pei et al., Combust. Flame, 2016)

Imaging showed role of cool-flame-chemistry in high-pressure

spray ignition (Skeen et al., Proc. Combust. Inst., 2015; Skeen et al., SAE Int. J. Engines, 2015)
- Initiation of low-temperature reactions near radial spray periphery

- Rapid appearance of cool-flame across entire spray head prior to ignition
- Volumetric 2"d stage ignition throughout broad equivalence ratio range .
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A\ Simultaneous CH,O PLIF & high-speed schlieren

Imaging provide key insight into ignition process
Scott A. Skeen & Lyle M. Pickett (Sandia-CRF)

e High-pressure, high-temperature Nd:-YAG
vessel reaching thermodynamic LCCD
condition relevant to Cl engines |gp |enses, s
e Large optical windows providing @aperture
multiple views of spray combustion
event ?

e Single-hole Bosch fuel injector from
family of ECN injectors (s/n #370)

— Injection pressure: 150 MPa ' — .
— Fuel: n-dodecane (C;,H) -
— Chamber: 60 bar, 900 K, 21% O2

e High-speed (150 kHz) schlieren imaging
— Cool flame (low-temperature ignition)
— High-temperature ignition
— Vapor penetration
e Single-shot formaldehyde (and PAH) PLIF with 355-nm (100-mJ/pulse) excitation

— Select timings for multiple identical injection events 4
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140 ps ASOI Formaldehyde & schlieren imaging

show progression of ignition
Scott A. Skeen & Lyle M. Pickett (Sandia-CRF)

High-speed schlieren||

1190 s

0 20 A0 G0 a0
Distance from injector onfice [mm]

e Initial cool-flame activity appears =200 uys ASOI in radial
jet periphery

e Then, cool-flame rapidly appears throughout entire
spray head within At=200 ps prior to 2"d-stage ignition

e This sequence of events is amazingly repeatable!
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A\ High-speed Rayleigh-Imaging:
CRE. Fundamental relations in high-pressure sprays
Scott A. Skeen & Lyle M. Pickett (Sandia-CRF)
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High-speed Rayleigh:

Measured Fuel Mass in Ignition Region |ug|

2
“ « Lean & hot mixture in radial periphery
ol Fuel Mass at ¢ > 2: 54 % i of the Jet . .
Total Fuel Mass = 0.71 g * Fuel-rich (¢z5) & colder mixture in
0 LILTRTU L] i : coreregion 6
0 1 2 3 4 3 6

Equivalence Ratio ¢ -] @ Sandia National Laboratories



Vo<l
| CZ\\;?F Detailed kinetics-HR simulations (full LLNL) lead to
o fundamental inconsistency with experiments
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LLNL kinetics-HR simulations suggests cool flames only over (¢<1.4) until hot ignition7
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CRE First-principles analysis of turbulent ignition

High turbulence, high-pressure, complex kinetics, large domains and time span

— Revisiting Peters’ derivation for burning flamelets (1984, 2000)
(All time and diffusion length scales & chemical pathways via LLNL kinetics)

1D flamelet egs. in

3D reactive
equivalence ratio

Navier-Stokes eqs. Two-scale asymptotic

True solution (!) of Navier-Stokes eqs. while asymptotic is valid — Da=ty/t.>>1

» Assumptions: (a) Binary fuel-oxidizer-system, (b) high scalar dissipation rates
& (c) mixture fraction is determining quantity
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First-principles analysis of turbulent ignition

High turbulence, high-pressure, complex kinetics, large domains and time span
- — Revisiting Peters’ derivation for burning flamelets (1984, 2000)
(All time and diffusion length scales & chemical pathways via LLNL kinetics)

3D reactive

Navier-Stokes eqs. Two-scale asymptotic

1D flamelet egs. in
equivalence ratio

True solution (!) of Navier-Stokes eqs. while asymptotic is valid — Da=ty/t.>>1

500
» Chemical time scales t. from CEMA
(Law et al., JFM, 2010) 400
» Diffusion time scales from instantaneous solution
2y 2 - 300
tl_?’li:y%x (?922) s
Ho £ 200

A\

Complete LLNL kinetics for n-dodecane
(2755 species; 11,173 reactions) 100
Asymptotic valid for low-temperature combust.
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Ignition mechanism of high-pressure spray flames

Turbulent flame configuration

— Turbulence generates steep gradients and, hence, strong molecular diffusion fluxes
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Turbulent cool flame wave

a) Species & temperature diffusion into neighbored mixture triggers 1st-stage ignition

b) Continuous reactions & diffusion leads to cool flame wave propagation
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Ignition mechanism of high-pressure spray flames

Turbulent flame configuration

— Turbulence generates steep gradients and, hence, strong molecular diffusion fluxes
12

Turbulent cool flame wave
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a) Species & temperature diffusion into neighbored mixture triggers 1st-stage ignition
b) Continuous reactions & diffusion leads to cool flame wave propagation
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CRFE Ignition mechanism of high-pressure spray flames
1400 I I 1 I 1

Turbulent Homogeneous™ |
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— Turbulent cool flame wave significantly shortens ignition delay in rich mixtures
— At ¢$=5, ignition delay decreases from 2.2 ms to 0.37 ms!
— After hot ignition: Hot flame wave running back through pre-ignited mixture
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@F Imaging & simulations: Characteristic time scales

In high-pressure spray flame ignition

1. t, (~200 ps): 500 A _ '
-— - 4 -

Initial period of chemical activity 4
with first ignition in hot lean mixture

(4) Turbulent
Flame Propagation

400F sz -1
2. t, (=200 ps): (3) Broad Rich
Turbulent cool flame wave leads to F ':2 | 2#4-Stage Ignition
cool-flame ignition of entire mixture ? 300 5
> le-4
3. t3 (=50 ps): k= ;
Localized hot ignition in rich mixture = 2001 Ty —- i
where delay between 1st and 2"d &
1 _R
stage of ignition is minimal T i =
100+ = -
4. t, (~30 ps): [(1) Localized Lean]
Auto-igniting flame front propagation b || 1-Stage Ignition (Il le-6)
0 1Injection 1 1 ! !
0 1 2 3 4 5!

Equivalence Ratio [-]
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. CRFE Ignition mechanism of high-pressure spray flames
1.0 T T T 1.0 T T T T
Turbulent
0.8} - 0.8} Ignition -
-, 0.6 2nd Stage . > 0.6F 2nd Stage -
% % First ignition
) =) in rich mixtures
Z 04} . Z 04} o 2
Jog jor T ;
=P Shioage 2 | T 1st Stage
0.2¢ 5 2F 4
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| Ignition
0 1 2 3 4 5 0 1 2 3 4 5
Equivalence Ratio [-] Equivalence Ratio [-}]

— Turbulent ignition waves lead to deviations from homogeneous ignition delays
— Homogeneous settings (shock tubes etc.) deprived of this fundamental complexity
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C}\/;\EF Mechanism of turbulent ignition resilient to
. fluctuations in scalar dissipation

500 T
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Equivalence Ratio [-]
— Turbulent ignition delay decreases at first by increasing scalar dissipation
— Then, ignition delay retards with further increase of scalar dissipation

— But temporal evolution of turbulent ignition largely independent of turbulence level

Results published in R.N. Dahms, G.A. Paczko, S.A. Skeen, and L.M. Pickett, Proc.
Combust. Inst. 36 (2016). In press. DOI: 10.1016/j.proci.2016.08.023
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Summary and conclusions

,% O Prior imaging demonstrated significance of cool-flames in high-
pressure spray flame ignition

Neglect of turbulence (manifested as molecular diffusion)
fundamentally fails to reproduce imaged physical processes of rich
cool-flames before hot ignition

Flamelet derivation shown to also hold during cool-flame ignition

Simulation: Molecular transport results in rapidly propagating cool-
flame waves which chemically activates entire mixture

Hot ignition then occurs in rich mixture where the delay between 1st
and 2nd stage of ignition becomes minimal

Then, molecular transport & auto-ignition leads to propagating auto-
Igniting flame front

Characteristic time scales of fundamental physical processes were
consistent between experiments and simulation

Fundamental mechanism of ignition is largely independent of intensity
of scalar dissipation

O
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Thank you for
your attention!
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C/J/\E?\QF Fundamental relations in
y N high-pressure Spray “A” flame

High-speed schlleren| 140 s ASOI
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Formaldehyde imaging:
Cool-flame ignition
occurs over entire spray
head (0<¢<5) within
At=200 us after first
appearance & before hot
ignition

-
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Fuel Mass at ¢ > 2: 54 %
Total Fuel Mass = .71 mg
AREEEEN | | |
1 2 3 | 2 63

Equivalence Ratio ¢ -]

Measured Fuel Mass in Ignition Region |ug
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High-speed schlieren imaging yields spatial
progression in 2-stage spray ignition
Scott A. Skeen & Lyle M. Pickett (Sandia-CRF)

High-speed schliereni

0 200 Ar) G a0
Distance from injector ornfice [mm]

e Initial cool-flame activity appears =200 ys ASOI in radial jet periphery

e Then, cool-flame rapidly appears throughout entire spray head prior to
second stage, high-temperature ignition

e This sequence of events is amazingly repeatable!
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r CZ\\;?F Ignition mechanism of high-pressure spray flames
B Turbulent flame configuration
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Flamelet simulation
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a) Species & temperature diffusion into neighbored mixture triggers 1st-stage ignition
b) Continuous reactions & diffusion leads to cool flame wave propagation
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