
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Tempus
Time-Integration Package

Curtis Ober

Roger Pawlowski

Eric Cyr

Trilinos User-Developer Group Meeting
1:50-2:10pm October 25, 2016

SAND2016-10775PE

What is Tempus?

2

Tempus is a supervillan on the television show
Lois & Clark: The New Adventures of Superman

http://superman.wikia.com/wiki/Lois_&_Clark:_The_New_Adventures_of_Superman

What is Tempus?

 Latin for time
 “tempus fugit” → “�me flies”

 New time-integration package
 Replacement for Rythmos

 Make improvements to the design and interface

 Scavenge what we can from Rythmos

 Gathered Requirements
 Interviewed ~12 people w/ and w/o experience with Rythmos

 Tried to determine what worked and what did not

 Received good advice and contradictory advice

 e.g., “Use Thyra” and “Don’t use Thyra”

 Biggest “nugget” I learned

 We will not be able to fix all the complaints about Rythmos, because
some are related to ModelEvaluators and Thyra.

3

General Requirements

 Keep it simple and easy to use.

 Have well documented examples and usage

 Provide time integrators for “out-of-the-box” usage

 Provide components to “build-your-own” time integration

 Work with other Trilinos packages (Algebraic Numerical Algorithms)

 Basic capabilities need to include
 ODEs, DAE’s, forward and adjoint sensitivities

 First- and second-order PDE integration

 Single and multi-physics time integration

 Access to the time integration for application functions

 Time-integration computational and memory costs should be
kept to a minimum

4

ATDM Requirements

 FY16 Key Deliverables
 Deliver an initial time integration API that includes support for IMEX

and adjoint sensitivity analysis.

 Implement basic time-integration methods needed to support
ATDM Applications.

 Demonstrate temporal order of accuracy on basic physics test
problems representative of the L2 FY16 milestone on ASC testbeds.

 FY 17 Key deliverable
 Develop and demonstrate an IMEX scheme in Tempus to support

EMPIRE fluid solver.

 Demonstrate IMEX solver and document performance on problem of
interest for EMPIRE.

5

Fully Implicit DAE/ODE

 Advance the state to final time

 Achieved through a sequence of smaller time steps

6

Integrator

Stepper

State

Tempus::SolutionState

 Primary Design Consideration
 Encapsulate the state of the solution

 Should able to restart the integration from a SolutionState

 Needed for check-pointing and “undo”

 SolutionState contains
 State –

 MetaData – time, index, order, error, restartable, interpolated, …

 StepperState – data that the stepper needs to restart

 PhysicsState – any data needed for the physics

7

managed by Tempus

provided by Application

Tempus::SolutionHistory

 Storage mechanism for the solution history
 A container of SolutionStates

 Chronological and index access

 Manages various access patterns

 Adjoint sensitivities require storage of forward solution

– Need check-pointing capabilities, e.g., Griewank

 Some time integrators need past time steps, e.g., BDF methods

 Provide interpolation capabilities
 Useful for adjoint sensitivities, e.g., stages of Runge-Kutta

 Warning – interpolated solutions do not likely satisfy conservation!

 Scavenge from Rythmos::InterpolationBuffer

 Possibly use Data Warehouse?
 Storage can be in a variety locations, e.g.,

 In-core, on disk, on-processor/GPU and mixed capabilities
8

Integrator/Stepper

9

 Fully Implicit DAE/ODE

 Integrators
 Is the time “loop”

 Has a single Stepper

 Determines time step size

 Output results

 Holds the SolutionHistory

 Does not call ModelEvaluator

 Interact w/App thru Observers

 Steppers
 Take a single time step

(PASS/FAIL)

 Steppers require

 ModelEvaluator(s),

 SolutionState(s), and/or

 Solver(s)

 Can suggested dt

 Can have sub-Steppers

Tempus Integrators

 Tempus::IntegratorSimple
 Just a simple time “loop”

 Tempus::IntegratorBasic
 Demonstrates all the basic capabilities

 Has SolutionHistory for Stepper, undo and adjoint sensitivities

 Has Observers to perform application-defined functions

 Has TimeStepControl for

 Basic bounding of time step

 Hitting output times

10

Tempus Steppers

 Forward Euler

 Backward Euler

 Explicit Runge-Kutta (ERK)
 10 Butcher Tableaus

 Diagonally Implicit Runge-Kutta (DIRK)
 5 Butcher Tableaus

 IMEX for EMPIRE

 RK and BDF2 for SPARC

 …

11

Tempus::TimeStepControl

 Determine the time step for the Integrator

 Base class has basic capabilities
 Simulation time min/max bounding

 Time index min/max bounding

 Time step size min/max bounding

 Relative/Absolute maximum error

 Order min/max bounding

 Time-step adjustments for output

 Maximum number of failures and consecutive failures

 Ensure constant time steps

 Incorporate Stepper suggested time step

 Derived classes for additional controls, e.g., ramping

 Also have application specific time-step control through Observer
12

Observer

 Observers are a means to “inject” app-defined functions
within a process.

 Integrators and Steppers will have observers after every
major component, e.g.,
 Integrators

 observeStartIntegrator()

 observeStartTimeStep()

 observeNextTimeStep()

 observeBeforeTimeStep()

 observeAfterTimeStep()

 observeAcceptTimeStep()

 observeEndIntegrator()

 If Observer is not sufficient, application can “build their own”
Integrator or Stepper.

13

 Stepper

 observeStartStepper()

 …

 observeAcceptStep()

 observeEndStepper()

Interface Design

14

Optional Input

Required Input

Time Step Control

Integrator Stepper

Physics (ME)

Observer

SolutionState

Solver

ParameterList

Error Control

Ramping Control

App. Spec. Control

1..Ns

0..NS

1..Ni

1..Np

1

0..No

0..NS

Example
Tempus::StepperForwardEuler

15

SinCosModel ->
Implicit model formulation = 0
Accept model parameters = 0
Provide nominal values = 1
Coeff a = 0
Coeff f = 1
Coeff L = 1
IC x_0 = 0
IC x_1 = 1
IC t_0 = 0

ModelEvaluator::SinCosModel (scavenged from Rythmos)

Governing Equation

Reduced first-order system

Initial Conditions

Parameters

Exact Solution

Example
Tempus::StepperForwardEuler

16

ModelEvaluator::SinCosModel (scavenged from Rythmos)

Example
Tempus::StepperExplicitRK

17

ModelEvaluator::SinCosModel (scavenged from Rythmos)

Example
Tempus::StepperBackwardEuler

18

ModelEvaluator::SinCosModel (scavenged from Rythmos)

CDR Problem

19

 Convection-Diffusion-Reaction

Summary

 Developed new design for time integration
 Improved interface and design for usability

 Documented design and tests for new developers and users

 Provide “out-of-the-box” and “build-your-own” capabilities

 Current capabilities
 Forward and Backward Euler

 Explicit Runge-Kutta

 Implicit Runge-Kutta

 Currently accessible via stand-alone repo
 FY2017 should become a package in Trilinos

 Capabilities in FY2017
 IMEX methods

 Forward and Adjoint Sensitivities
20

