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ABSTRACT

Classical structural analysis techniques have proven time and time again to be remarkably accurate for sys-
tems consisting of a single, continuous piece of material. Unfortunately, nearly all real engineering structures are
assembled from multiple parts, joined by bolts, rivets, or other fasteners, and these joints introduce nonlinearities
and uncertainties into systems’ structural stiffness and damping. Nonlinear damping due to jointed connections in
particular is critical to limiting the resonant response of a structure, yet it remains poorly understood. This work
seeks to understand the degree to which joint properties are dependent on the rest of the structure. The testable
hypothesis is that the boundary conditions and the far-field structure itself (i.e. distribution of the stiffness and mass)
change the way in which the interface is loaded, thus altering the perceived or deduced nonlinear properties of
the mechanical joint. This hypothesis is investigated using experimental impact hammer testing methods in order
to understand the extent to which alteration in the boundary conditions and far-field structure change the interface
properties as well as the underlying mechanics during loading. Numerical tools are also employed to investigate
and compliment the experimental results, focusing on two fronts: replicating the experimental results with discrete

joint models, and investigating joint loading for different modes using numerical modal analysis.



1 INTRODUCTION

Most real-world structures do not consist of a single piece of engineering material; instead, they are built-up structures containing
several individual pieces constrained by mechanical connections. Despite their prevalent use, distributed contact connections
such as joints, have long been difficult to characterize and model due to their nonlinear, stochastic nature. To compound matters,
estimation of damping due to friction in mechanicals joints is often extremely important in high-performance applications such
aerospace. As a result, many works have studied mechanical joints using analytical, numerical, and experimental methods in an

effort to derive quantitative descriptions for these complex engineering systems.

Perhaps one of the most well-known works in the academic community is that of Segalman [9], where he proposes and derives
a physically-based joint model using discrete arrangements of Jenkins elements, with the arrangements sometimes called lwan
elements in this context. His so-called four-parameter lwan element is oft cited and utilized by the joints research community,
as it has demonstrated the ability to qualitatively and quantitatively match certain experimental data. Extensions of this work
using arrangements of these four-parameter Iwan elements have been pursued by Allen et al. |1], and further success has been
shown in extending this work to a modal framework by Roettgen et al. [8]. Other reduced-order models are proposed by authors
such as Quinn [7], which utilize continuum representations of both the monolithic structure and joint to derive computationally
inexpensive models. Relatedly, authors have also explored the presence, or absence, of energy transfer through mode coupling,
an important physical phenomenon when discussing joint characterization [4, 18]. Regardless of method or characterization
technique, the literature recognizes that energy dissipation versus forcing amplitude in these systems is generally governed by

a power-law, with hysteresis playing an important role.

Each of these modeling and characterization approaches has its own set of advantages and limitations; however, these works
all, cumulatively focus on describing the joint itself with less regard for the surrounding, or far-field, structure. Comparatively
little work has been done to assess the impact that the individual components of the built-up structure have on the nonlinear
characteristics of the joint. Put another way, there is opportunity to explore the degree to which a joint's excitation, or activation,
is affected by the far-field structure in a built-up system. To address that question, this work utilizes experimental methods,
data-processing techniques, and numerical simulations that are current to the literature in order to characterize the nonlinear

properties of nominally identical joints in structures with different far-fields.

For the experimental portion of this work, several structures with nominally identical joints and different far-field structures were
excited using impact hammer testing, and the responses of those structures were identified and characterized using the afore-
mentioned methods currently available in the literature. The basic structure of interest to this work is the Brake-Reul3 Beam
(BRB), and to address the effect of the far-field structure, several variations of the structure were also created with the hope of
altering the response while the joint setup remained constant. These variations include an elongated BRB (LBRB) as well as
a stiffness modified BRB (SBRB); details and diagrams of these structures are given in Section This beam-structure was
chosen due to the plethora of data available for comparison and its consistent use by authors in the field [2]. For the nonlinear

characterization, the Hilbert transform method outlined in Kerschen’s work [5] as well as Roettgen et al. [8] was employed. These



modal results are drastically different among the different beams, but the experimental data alone does not give an understanding

as to why these modal results are so different.

To compliment the experimental studies for this work, numerical methods were also employed in order to better understand the
underlying physics of the system. A quasi-static finite element model using discrete, physical four-parameter lwan elements was
generated and tuned to match the experimental nonlinear, modal results of the nominal structure (the classic Brake-Reul3 beam),
based on the work of Roettgen et al. |8]. These same physical joint parameters were then used in a model for the LBRB and the
numerical modal nonlinear characterizations match remarkably well. This result implies that despite the structural modifications,

the underlying representative joint properties remain identical.

2 EXPERIMENTAL INVESTIGATION

The core of this work is the experimental investigation of three different structures with nominally identical joints. First, the design
of those structures is discussed, followed by the linear then nonlinear experimental analyses. The linear experimental analysis
was designed to identify the appropriate modal filter for the nonlinear characterization, and further details of the characterization
method are discussed. Experimental results are shown for the first several modes of the systems, with an emphasis on the

lowest three bending modes.

2.1 EXPERIMENTAL SETUP

Three different structures were designed for this investigation in order to understand the effect of changing the geometrical
properties around a mechanical joint. The first structure is known as the Brake-Reuss beam (BRB) (see [2]); it consists of two
identical steel beams bolted together to form a lap-joint connection, assembled using three M8 bolts tightened to a torque of 20
Nm.
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Figure 1: The different beam assemblies



The second test structure is similar to the first lap-joint configuration, with the same bolts and torque, however each identical
steel beam in this assembly has a spring shaped cut out for stiffness modification. The last test structure also consists of the
same lap-joint configuration, but the length of the two parts is larger to provide mass/length modifications. Fig[dl shows the three
tested beam assemblies configurations and Table [I] presents their dimensions. For simplicity, for each beam was assigned an
acronym that will be used throughout this paper: BRB for the nominal Brake-Reuss Beam, LBRB for the mass/length modified

beam and SBRB for the stiffness modified beam.

Figure [2 shows the experimental configuration for the BRB structure. The structure is supported by two bungee cords, and 10
accelerometers were distributed in a symmetrically proportional way on the beam. The chosen source of excitation is the impact
hammer: this is commonly used in vibration testing, as it applies a broadband excitation signal to the test structure. The excited
band spans within 0-3200Hz to encompass as many modes as possible. The chosen impact point, or driving point (DP), is
shown in Figl2l The SBRB was instrumented in the same way due to the fact that it has similar dimensions to the BRB; however
because LBRB is longer than the other two, the accelerometers were attached at positions proportionally consistent with the

other two systems. The data acquisition was performed using the Spectral Test module in LMS Test Lab 13.
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Figure 2: Experimental setup.

TABLE 1: Dimensions of tested beams.

| LxHxW][mm]

BRB - Nominal Brake Reus Beam 720x 25.4x25.4
SBRB - Stiffness Modified Beam 720x 25.4x25.4
LBRB - Mass/Length Modified Beam | 1080 x 25.4 x 25.4

2.2 LINEAR EXPERIMENTAL ANALYSIS

In order to derive the modal filter used in the nonlinear characterization of these systems, a linear modal test was performed for
all three configurations of the beam assemblies. A low level excitation test (F=50N) was carried out for each beam. The linear
natural frequencies and damping ratios were estimated from the frequency response functions (FRFs), using the frequency-

domain subspace identification algorithm presented in |6]. Results are shown in Table[2l Fig.[3 shows the FRFs obtained from



node 8 of each beam in the range 0-1400Hz. It is possible to observe that the responses of the three beams are very different
between each other as a result of the far-field structure modifications. For example, the first bending mode of the BRB is at
168.3Hz, for the LBRB is at 80.5Hz, while for the SBRB is at 92.14Hz. Furthermore, the steep resonance peaks of the FRFs
indicates that the structure is lightly damped across the selected bandwidths. The authors have selected the first three bending

modes for each beam assembly to be investigated further in this paper.

TABLE 2: Natural frequencies and damping from linear modal analysis

| BRB | LBRB | SBRB

MODE | fn [HZ] ¢ | fnlHZ] ¢ | fnlHz] ¢

168.3  0.24% 80.5 0.17% 92.1 0.12%
584.3 0.16% | 291.6 0.05% | 194.6 0.05%
1183.8 0.14% | 5212 0.07% | 504.6 0.16%
1618.3 0.20% | 857.9 0.19% | 958.9 0.09%
1656.3 0.20% | 11429 0.11% | 1240.2 0.11%
28259 0.15% | 1339.5 0.05% | 1623.7 0.16%
3022.6 0.15% | 1583.6 0.23% | 2088.6 0.12%

~NOoO o~ WNPE

The mode shapes for the first three bending modes of interest are obtained from the linear modal analysis for each beam, and
they are shown in Figldl Comparing these mode shapes, it is clear that the far-field structure modifications have a large impact
on the curvature of the linear modes, as expected. For all three modes, the LBRB appears to have a qualitatively similar overall
shape to the original BRB. For the first mode, this can be identified more specifically as by noting the generally larger radii of
curvature in both the BRB and LBRB. By contrast, the SBRB mode shapes exhibit fundamental differences from the other two.
Again, in the case of the first mode, the SBRB exhibits lower curvature near the joint area and higher curvature near the ends

than the BRB and LBRB.
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Figure 3: FRF comparison at node 8.



2.3 NONLINEAR EXPERIMENTAL ANALYSIS

In order to develop a nonlinear characterization for each beam assembly, a three-step procedure was carried out to identify the
frequency and damping behavior at several excitation levels. The first step was a homogeneity check on the FRFs at different
excitation levels to detect potential nonlinearities. The second step was a transformation of measured physical data into modal
coordinates, performed by applying first a modal filter and then a bandpass one, in order to isolate the contribution of a single
mode. The third step consisted of the nonlinear identification and characterization of nonlinearities using the Hilbert Transform

(HT). The HT method was used to deduce frequency and damping ratio trends against modal displacement amplitude (see

[8]-13)).

2.3.1 IMPACT TEST CHARACTERIZATION

After the linear modal analysis, the second type of investigation performed was a series of impact tests at increasing force levels.
Each beam was excited at the same impact point DP (see Fig[2), and several impact excitation levels ranging from 50N to 750N
were performed. Time response signals and frequency response functions (FRFs) were obtained from each test; Fig[5a shows
the time response at several excitation forces of the BRB at node 8. As an initial and simplified method to detect nonlinearities in
the system, the collected FRFs at increasing impact forces were superposed and compared for each beam: Figs[Bbi5Ea{5dl show

the results of this process at node 8 for the first bending mode and for each beam.
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Figure 4: Mode shapes for the three beams.
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Figure 5: (a) Time responses of the BRB at node 8 at different impact forces,
and Mode 1 FRFs for (b) the BRB, (c) the LBRB, and (d) the SBRB.

The first observation that can be made is evident in Figl5a, where an absence of proportionality is noticed between the time re-
sponses at low (50N) and high (700N) excitation forces. This indicates the breakdown of superposition principle which serves as
a cornerstone for linear theory. Beyond time series inspection, another meaningful method of detecting nonlinear behavior from
measured data is the check for homogeneity in the frequency response functions over different excitation levels. In particular,
Figs[BblEc5d show a shift in the natural frequencies and response amplitude as the impact force increases. The characteristics
observed from the extracted FRFs show that each beam assembly has a softening behavior within the frequency range and the
impact excitation levels, with the natural frequency decreasing as the impact force increases. For the first mode, for the BRB,
LBRB and SBRB, frequency shifts between the lowest and highest impact force are respectively -2%, -1.6% and -0.15%. Thus

the BRB has the most nonlinear softening behaviour compared to the other beams.

2.3.2 DATA FILTERING

Prior to the nonlinear characterization of the beams, each measured data was modally filtered, i.e. the data were transformed

from physical coordinates into modal coordinates. The modal filter was performed using the physical time series data and the
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Figure 6: BRB modal filtered and bandpass filtered signal comparison in (a) time and (b) frequency

mode shapes matrix obtained previously from the linear modal analysis. After the application of the modal filter, a bandpass
filter with an order specified between 4 and 8 was performed on each selected mode of each beam, in order to isolate a single
mode in the response. An example of a transformed response after the modal and bandpass filters for the first mode of the
BRB is presented in Figl6l respectively in the time (6a) and frequency (6b), domains. Modally filtered data was used for the
BRB characterization; however, for the LBRB and the SBRB, the bandpass filter performed better, hence it was used in the

characterization section.

2.3.3 NONLINEAR CHARACTERIZATION

The next step in the experimental investigation was to quantify the change in natural frequency and damping with amplitude.
First the Hilbert Transform was applied to the previously obtained modal acceleration data for several modes of each beam
system. Then, a 4th order spline fit was applied to the Hilbert amplitude and phase over a selected time window, in order to get
the instantaneous damping and frequency, respectively (see B ). The spline fit serves as a smoothing mechanism in order
to estimate the instantaneous damping and frequency; however, because the Hilbert Transform is susceptible to noise at the
extremes of the fit, the time window must be carefully selected. Fig[7] shows how well the blue filtered modal acceleration is
reproduced by the green reconstructed time signal from the fitted Hilbert Transform for the first bending mode of the BRB. The

modal velocity and displacement amplitudes Vy;; and X, were calculated as,

Ag; Afit
Viie = e KL Xypit = 2fl ; (1)
Wd, fit Wa, it

where Ay;; and wq, ¢+ are the modal acceleration amplitude fit and the instantaneous damped natural frequency obtained from

the Hilbert Transform spline fit, respectively.

Fig[8 shows the instantaneous frequency and damping curves against modal displacement amplitude X, for the first bending

mode of the three beams. All three beams show the same softening behavior, with higher impact forces generating higher
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Figure 7: Bandpass filtered modal acceleration and Hilbert Fit - BRB Mode 1

TABLE 3: Measures of nonlinearities

MODE fn[HZ] fn,min [HZ] CL Cmam

1 169,4 165,6 0,17% 0,58%
BRB 2 585,7 582,05 0,08% 0,23%
3 11855 1178,2 0,08% 0,22%
1 80,7 79,4 0,12% 0,46%
LBRB 2 2917 290,9 0,04% 0,11%
3 521,5 519,8 0,06% 0,16%
1 91,5 91,3 0,10% 0,15%
SBRB 2 194,3 194,3 0,03% 0,04%
3 496,1 494,7 0,20% 0,44%

frequency shifts. The damping behavior exhibited by all three beams shows a power-law relationship, which is dependent on the
excitation amplitude. The same analysis was repeated for the second and third modes, for which the damping curves showed
the same increasing trend. For mode 3, the Hilbert transform only produced useful results over a range of small amplitudes;
however a similar power-law relationship was observed. It is important to point out the fact that the impact point DP is very close
to a node of the third mode, especially for the SBRB. As a result of this, the third mode may not have been properly excited and

results for this specific mode may be inaccurate.

Comparing the results from the three beams, it is possible to say that the BRB and LBRB graphs show smooth curves and
consistent trends at several impact forces, while for the SBRB, the curves are noisier and scattered. This can be due to the fact
that, compared to the BRB and LBRB, SBRB shows smaller frequency and damping shifts and to the previously cited Hilbert
Trasform flaws. A summary of the observed nonlinearities for the three structures is given in Table[3} f,. and ¢z, are, respectively,
the linear natural frequency and linear damping ratio measured from the flat parts of the frequency-amplitude and damping-
amplitude plots, while f, min and (ma. are the minimum frequency and maximum damping ratio measured from the same plots

at the highest impact force.
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Figure 8: Frequency and damping against modal displacement amplitude for BRB (a-b), LBRB (c-d), and SBRB (e-f).

Further, comparing the damping curves for all three beams directly leads to some interesting conclusions regarding the effect
of the far-field structure on the response. Fig. [9 plots the damping curves for each of the three beams at all forcing levels
for the first two bending modes, i.e. all of the nonlinear damping characterizations for the BRB are shown in blue, LBRB in red,
SBRB in green. The key observation from these figures is that the three beams, each with a different far-field structure, have very
different modal responses. In particular, while the BRB and LBRB exhibit the typical power-law nonlinearity that is consistent with
literature, the SBRB shows a roughly linear response. While directly comparing the modal responses for these beams is useful
and illuminating, one must keep in mind that the mode shapes for each of these beams are markedly different, as illustrated in

Fig.[l At first, this may seem to be an unfair comparison; however, the dependence of the modal response on the mode shape
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Figure 9: Comparison of the damping ratios as functions of response amplitude for all three beams across all force levels tested
for both (a) mode 1 and (b) mode 2.

is explored later in the numerical section of this paper in order to draw meaningful conclusions regarding the root-cause of the

experimental observations show here.

2.4 Damping Shift Comparison

Since the amount of energy dissipated in the lap joint configuration depends on the amount of load it carries, it is important
to measure and quantify the change in the damping and stiffness properties of the beam caused by the increase in load. In
this section of the paper, the percentage shifts in natural frequency and damping ratio are used to quantify the changes in the

properties of each beam. The frequency and damping shift are in a percentage form and they are obtained as,

n

fs 100 [%], CS:MJOO (%] 2)
¢L

The percentage frequency and damping shifts were calculated for the first three modes of each beam as the impact force
changes: Figs[10al10b|present the frequency and damping percentage shift for all three beams against the impact force level for
the first two bending modes. It can be noticed that, for the first mode, BRB shows a high shift in frequency compared to the other

beams, while the LBRB shows a larger shift in the damping. Similarly, for the second mode, the shift in frequency and damping
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Figure 10: Frequency and damping shift against impact force for Mode 1 (a) and Mode 2 (b)

is larger for the BRB and LBRB. Turning to the SBRB, this has a very low shift in frequency and damping for the first mode
and practically no shift for the second mode, as demonstrated by the constant straight line in Fig[I0bl From these observations
it's possible to say that the BRB and LBRB structures experience the highest level of nonlinearity as a result of the increase in

impact load, while the SBRB shows little or no nonlinear behavior for both modes.

In Fig.[IIaland Fig.[11hl the frequency and damping shifts for the first three modes are compared against each other for the BRB
and LBRB. It can be noticed that, for both beams, the frequency shift experienced by the first mode is significantly higher than
the other two modes. The frequency shift for the first mode of the BRB lies between 0.8% and 2.1% while the frequency shifts for
the second and third modes fall within 0.2% and 0.5%, hence the shift observed in the first mode is a factor of 4 higher than the
shift observed in the other modes. A similar behavior was also observed in the LBRB configuration where the frequency shift for
the first mode lies within 0.38% and 1.63%, while the shift experienced by the other modes are within 0.1% and 0.35%. Again,
the first mode has a frequency shift of a factor of 4 higher than the other modes. One of the reasons for very high frequency
shift observed for the first mode of both beams might be the method used to excite the beams during the test, since the energy

transferred by the impact hammer to the test structure is not always constant and it can quickly fade out without activating each
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Figure 11: Frequency and damping shift against impact force for BRB (a) and LBRB (b)

mode of the structure equally. Hence the higher frequency shift observed on the first mode of each beam can be associated to
this effect. However, a different behavior is observed in the damping shift for both beam configurations: in Fig[I1athe percentage
damping shift for the first two modes are approximately within the same range, while it is slightly lower for mode three. In Fig[T1h
for the LBRB, it's possible to see the same behavior, only this time the damping shift is higher for the first mode, while it lies
almost on the same range for the other modes. The increase in damping shift with the increase in impact force confirms the high
level of nonlinear damping in both beams. The results show the typical behavior found in jointed structures, where the damping

nonlinearity can be very high concurrently with a limited frequency nonlinearity.

3 NUMERICAL INVESTIGATION

From the experimental findings of this work, it is clear that different far-field structures elicit vastly different modal responses;
however, this observation alone does not directly confirm or deny the hypothesis that altering the far-field structure changes the

way in which the joint is excited or activated. In order to firmly and rigorously arrive at a scientific conclusion, one must “close



the loop” by returning to the physical domain and identify a root cause for the experimental observation. The numerical study for

this project does just that through validation of the experimental findings.

3.1 Nonlinear Amplitude Dependent Properties from Quasi-static Finite Element

In this numerical study, discrete, physical four-parameter lwan elements were implemented into quasi-static finite element mod-
els. It was found that a single set of physical Iwvan model parameters can be implemented into two of the different beam structures
to match experimental, modal findings. This result lends credibility to the underlying assumption that the joints in the structures

are nominally similar, as they can be physically represented by the same set of modeling parameters.

3.1.1 MODELING PROCEDURE

To begin, solid finite element model was created in a finite element program, and this model was extracted as a Craig-Bampton
reduced-order model into MATLAB. In the finite element program, the two beams were modeled separately and connected with
weak springs; Fig.[12] shows and example of the mesh used for the beams. Then, in MATLAB, stiffness elements were added
between the spidered-joints between the beams; four-parameter lwan elements were also added along the length of the beam

to the 5 spider patches. Fig.[I3lillustrates the symmetric arrangement of these spider elements.

Figure 12: Finite element model with discrete, physical lwan elements.

The parameters of these elements were fine-tuned to match the amplitude dependent information using standard Brake-Reuss

beam information provided by the experimental results for the first two modes. The parameters for the four-parameter lwan



Figure 13: Distribution of spider elements.

TABLE 4: Tuned lwan parameters for quasi-static FEM.

JointID  F, K, X B
1 35000 1.5e5 -0.60 0.25
2 35000 2.2e5 -0.90 0.35
3 1750 2.2e5 -0.15 0.05

models are given in Table[4l To do this, rather than completing numerical integration, a quasi-static loading was applied in the
shape of the structure to the FEM model. The loadings were applied at various amplitudes in order to generate the expected
amplitude-dependent curves. Next, the same tuned physical parameters were applied to a model of the LBRB. Using the same

quasi-static loading technique based on its mode shapes, modal data for the LBRB model was also recovered.

3.1.2 COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS

Comparisons between the experimental and tuned numerical modal results for the BRB are given in Fig.[14] The tuned physical
parameters are remarkably effective at capturing the modal responses for the first two modes. Then, using those same identified
physical parameters, the comparison of the experimental and numerical results for the LBRB is presented in Fig.[I8l Without
any retuning, the numerical model is still able to recover the experimentally-derived modal results. This result heavily suggests
that the joints for these systems are nominally identical, and that it is indeed the far-field structure that is responsible for changing
the modal responses for these systems. This work thus serves to validate the experimental findings. Put another way, these
data show that the joint model’'s parameters were not significantly influenced by the far-field structure; however, because the

total dynamics of the system are, figuratively, the sum of the joint, that evidently behaves the same regardless of the far-field



structure, and the linear dynamics of the surrounding structure, the modal responses observed experimentally exhibit different

characteristics.

Mode 1 Damping vs. Velocity Amplitude
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Figure 14: Comparison of numerical and experimental frequency damping curves for the BRB.
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Figure 15: Comparison of numerical and experimental frequency damping curves for the LBRB.

4 CONCLUSIONS

While this work comprises a multitude of techniques, approaches and ideas, it ultimately reduces to a single result. First, it
was experimentally observed that the far-field structures of the considered Brake-Reu3 beams had significant effects on the
modal nonlinear stiffness and damping characteristics of each beam. Then, it was numerically shown that identical physical joint
properties can be implemented into the different beam structures to match these experimental modal results without retuning,

illustrating that the physical joint properties of these systems are nominally identical. Naturally then, one way to think of each of



these systems is the sum of two parts, the nonlinear dynamics of the joint and the linear dynamics of the far-field structure. The
ramifications of these results are that physical models of joints can be accurately constructed; however, the parameters must be

deduced in the context of the surrounding structure. Thus, to characterize a joint, the Surrogate System Hypothesis is proposed:

The Surrogate System Hypothesis states that a surrogate structure, which is easy to model and machine, that contains the
same joint as the system of interest can be used to deduce the properties of the joint. These properties, once accounting for
the properties of the surrogate structure, can then be substituted directly into the system of interest as a spatially discrete joint

model (as opposed to a modal model).

From the modal perspective, relocating the same joint to a new system necessitates the development of a new set of modal joint
parameters. That is, a modal modeling approach for joints can work well on a case-by-case basis, but it cannot be generalized
to multiple systems. A spatially discrete joint model, on the other hand, can be generalized to apply to multiple systems that all

use the same joint.
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