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Cure Shrinkage Induced Bending in

Epoxy/Metal Bilayer Material

* Thin layer of metal coated with thermoset epoxy

= During cure, epoxy shrinks causing bilayer to bend

= Can cause component failure, interface cracking, etc.
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Timoshenko’s Formulae for Eigen Strain@
Induced Beam Bending
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= (Classic 1925 paper focuses on bilayer metallic beams bending

due to thermal expansion mismatch .
@) b

= Same concept applicable to other
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[ | Formul a for radlus Of CuI'V ature ( p) Fic. 1. Deflection of a M-mefali strip while uniformly heated.
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= Where, &, 1s the eigen strain mismatch, m = E—l 1s the ratio of elastic moduli,
2

n= % is the ratio of thicknesses, and h = a; + a, is the total thickness
2




Predicting Strain at Bottom of Bilayer = e
Beam
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* The strain at the bottom of a beam 1n bending,

F, a;
Epottom = A2AT + E,a, + 20

where,

= F, 1s the axial force placed on the second layer by the first

L . 2(Eq 11 +E;1 .
Simplified using, F, = £y ;l; 2!2) 2nd the bilayer
ratios, m = ﬂ,n =2

E2 ar

a, [mn3 + 3n + 4
Epottom = A2AT +

p 6(n+1)




Dependence of Bending on Geometric
and Material Properties during Cure
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* Timoshenko’s formula depends on properties that are not
constant during the curing process

= m = m(T, x), modulus of epoxy varies with temperature and reaction
extent (x)

= n =A(T,x),h = h(T, x), geometry can vary with temperature and
reaction extent - likely negligible

» gy = é5(T, x), eigen strain mismatch (cure shrinkage) varies with
temperature and reaction extent — Important!

= Variation of moduli and cure shrinkage with temperature and
reaction extent captured by experiments
= SAND2013-8681




Evolution of Epoxy Shear Modulus
during Cure

= Modeled as,
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Figure 3-13. Parameterization of Equation 17 to measurements of equilibrium shear modulus as a
function of reaction extent.

Source: SAND2013-8681




Modulus Ratio Function of Temperature
and Reaction Extent

= The modulus ratio function m is,

A~ Elref =
m(T,x) = = G(T,x),

2
where Ei,.c= ZGoo,,,ef(l + V)




Variation of Cure Shrinkage over e
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Reaction Extent with Temperature
= (Cure shrinkage represented by
volumetric strain is approximately m— S
. . —50C .sfope=%
linear after the gel point ora [ Z00C | o -
--80C-2 i e |
_ ﬁ 012 —qpc-1 i - mnx
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= (Open questions Y)Y -
= Should S be a function of 0.00 M= Ml - Y
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Figure 3-9. The volume strain associated with cure shrinkage versus the reaction extent. Volume
shrinkage is determined based on the extrapolated polymer densities in Figure 3-7 using Equation
15. Reaction extent is determined from Equation 7 with fitting parameters described in Table 3-1
and w=0. This does not account for (1) non-isothermal conditions at early times or (2} vitrification
during reaction. The 1% derivative beyond the gel point is evaluated for some datasets.

Source: SAND2013-8681




Expression of the Eigen Strain Mismatch Wlﬂ’{: st
Cure Shrinkage and Thermomechanical Strain
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= The eigen strain mismatch 1s the combination of the strains
associated with curing and temperature
EA = Ecyre T A AT — (cxlAT — eref)
Boo

Er(T,x) = —(x xgel) + a,AT — (alAT eref),
when x = x4
= The cure strain represents a volumetric shrinkage, 1.e. € = —&,ye1

= Asitis fit as a positive magnitude, signs cancel leading to above form
= AT represents the temperature change from the gel point

" &y represents the change in stress free configuration — can vary
through the thickness!




Tracking the Change 1n Stress Free ) i,
Configuration During Epoxy Cure
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= The stress free configuration of the epoxy changes during the cure
process due to the addition of cross links. Thus, the typical
expression for thermal strain has an error.

= The offset from the original configuration is tracked through a
reference strain such that,

Eref = tztnGoo () “dey dt — €gey(tn)
T Goo () i dt

= We specifically care about the in-plane mechanical strain,
P h[| mn3+1
mn(n + 1)2

E — —
PP FE.a;, 6p

ZSPPA
260+’

Erp = A 1s the lame constant

1
€pp,dev = €pp — 3 (ngp + gtt)




Reaction Extent dependence on
Temperature
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= Rate of Reaction is dependent on current reaction extent (x)
and temperature

% =k(b+x™(1 —x)"

dt
toesp (~54)

k =
(1+ wa)P

where,

= b,m,n,w,[, kg are fitted constants related to various aspects of the
reaction process (See SAND2013-8681)

= E, is the activation energy
= a represents a shift factor due to vitrification
= [ 1s set to 0 to ignore the shift effects.
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Strain 1n Bilayer Beam due to Cure
Shrinkage Induced Bending
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* Formulae for each different aspect have been discussed

= Dependence of eigen strain mismatch on temperature and reaction
extent

= Dependence of epoxy shear modulus on reaction extent and
temperature

= Evolution of Stress Free Configuration with Modulus and Strain

= Variation of rate of reaction (and reaction extent) on temperature

= The full solution requires:

= Numerical integration of the rate of reaction to determine the reaction
extent from the temperature data

= Solution of evolving reference configuration and curvature
= (Calculation of strain at desired location

= Comparison to experimental data
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Rate of Reaction Equation Solution
Parameters

= Solution done 1n python

= Scipy: odeint integrator

= Rate of Reaction parameter list (SAND2013-8681)

m 0.33

WLF Shift
Parameters are
unused
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Higher Cure Temperature Results 1n
Higher Rate of Reaction

Sandia
m National
Laboratories

1.00 S S N ' 440
0.95 o 3.’. ...................................................... e ssssameasasas feeremeaseseeneme s enesenpa s anaen L 430
i* N . --- 80°C Sample Extent
0.904d 4 WS N oo 100°C Sample Bxtent 420
I - — 80°C Sample Temperature
— 100°C Sample Temperature

0.85 : -410
w 9
3 2,
= 0.80 -400
i 2
5 ©
£ 0.751 13008
] £
< &

0.70+ -380

0.65 -370

0.60+ -360

0.55 S : ; : . 350

Time [hrs]

15
-



Temperature of Experimental
Samples throughout Reaction Extent
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Shear Modulus Evolution = e
Parameters
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= The shear modulus is calculated using the proposed model and
the calculated reaction extent for each data point

= The model uses the following parameters (SAND2013-8681)




Higher Cure Temperature results 1n
Higher Modulus during Cure
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— 80°C sample Modulus decreases

e—e 100°C Sample

— 80°C Isothermal at end because Of
X M b s temperature drop

Equilibrium Shear Modulus [MPa]

0_
0.55
Reaction Extent

18




Solution to the Evolving
Configuration Model
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= The evolution of the stress free configuration depends on the
history of the deviatoric strain

= Solve for other values
= Curvature
= In-plane Strain at boundary
= Qut-of-plane Strain at boundary

= Assuming in-plane directions are equal, solve for deviatoric in-plane

strain _
Epp O 0
e=10 &, 0

0 0 &)

19
-



Model Suggests a Small Change 1n

Configuration Offset Strain
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Model Closely Predicts Strain in~ e,
Experiments
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Sensitivity of Strain Output to S
Epoxy Thickness

0.00014

0.000124

0.00010+

n

0.000084

0.00006 -

Beam Stra

0.00004 -

0.00002 -

0.00000 . ; i i ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Epoxy Layer Thickness [in]

22
-



Sensitivity of Strain Output on Cure gz
Shrinkage Rate
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Sensitivity of Beam Strain on Cure e
Temperature
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FEA VALIDATION
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Finite Element Model Setup ) o,

= Geometries of various
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FEA Mesh at 3 Densities

= (Coarse, Medium, Fine meshes to prove mesh convergence

= ~5K elements 0.00005
= ~38K elements
= ~300K elements 0.00004 .
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c
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Material Models ) e,

= Linear Elastic Aluminum

= Small strains, good assumption

= Universal Curing Model




Comparison of FEA and Theory for g
Isothermal Case
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FEA, Theory, and Experiment )
Comparison
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Preliminary DEA Results
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Conclusions )

= For 828/T403:

= Analytical model captures major strain behaviors from the
bilayer beam experiment.

* FEA and Analytical models show a discrepancy for
changing temperatures — possibly points to a difference in
treatment of thermal strain

= For 828/DEA:

= FEA and Analytical models agree fairly well for isothermal
case

* Experimental data 1s inadequate for comparison, still
additional understanding needed of the 828/ DEA Epoxy
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