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Cure Shrinkage Induced Bending in 
Epoxy/Metal Bilayer Material

 Thin layer of metal coated with thermoset epoxy

 During cure, epoxy shrinks causing bilayer to bend

 Can cause component failure, interface cracking, etc.



SEMI-ANALYTIC MECHANICS 
THEORY
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Timoshenko’s Formulae for Eigen Strain 
Induced Beam Bending

 Classic 1925 paper focuses on bilayer metallic beams bending 
due to thermal expansion mismatch

 Same concept applicable to other

eigen strains
 Cure shrinkage

 Formula for radius of curvature (�)
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Predicting Strain at Bottom of Bilayer 
Beam

 The strain at the bottom of a beam in bending,
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Dependence of Bending on Geometric 
and Material Properties during Cure

 Timoshenko’s formula depends on properties that are not 
constant during the curing process
 � = �� �, � ,	modulus of epoxy varies with temperature and reaction 

extent (�)

 � = �� �, � , ℎ = ℎ� �, � , geometry	can	vary	with	temperature	and	
reaction	extent	– likely	negligible

 �� = ��̂ �, � , eigen strain mismatch (cure shrinkage) varies with 
temperature and reaction extent – Important!

 Variation of moduli and cure shrinkage with temperature and 
reaction extent captured by experiments
 SAND2013-8681



Evolution of Epoxy Shear Modulus 
during Cure

 Modeled as,
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, and ���� is the 

reaction extent at gel, and ���� = 1

Source: SAND2013-8681



Modulus Ratio Function of Temperature 
and Reaction Extent

 The modulus ratio function �� is,

�� �, � =
�����
��
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where ����� = 2�����
(1 + ��)



Variation of Cure Shrinkage over 
Reaction Extent with Temperature

 Cure shrinkage represented by  
volumetric strain is approximately 
linear after the gel point

 ����� =
��

�
� − ���� 	|	� > ����

 0.060 < �� < 0.082

 Open questions
 Should �� be a function of 

temperature also?

Source: SAND2013-8681



Expression of the Eigen Strain Mismatch with 
Cure Shrinkage and Thermomechanical Strain

 The eigen strain mismatch is the combination of the strains 
associated with curing and temperature

�� = ����� + ��Δ� − ��Δ� − ����

��̂ �, � =
��
3

� − ���� + ��Δ� − ��Δ� − ���� ,

when � ≥ ����

 The cure strain represents a volumetric shrinkage, i.e. � = −������

 As it is fit as a positive magnitude, signs cancel leading to above form

 Δ� represents the temperature change from the gel point

 ���� represents the change in stress free configuration – can vary 

through the thickness!



Tracking the Change in Stress Free 
Configuration During Epoxy Cure

 The stress free configuration of the epoxy changes during the cure 
process due to the addition of cross links. Thus, the typical 
expression for thermal strain has an error.

 The offset from the original configuration is tracked through a 
reference strain such that,
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 We specifically care about the in-plane mechanical strain, 
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Reaction Extent dependence on 
Temperature
 Rate of Reaction is dependent on current reaction extent (�) 

and temperature
��

��
= �� � + �� 1 − � �

�� =
�� exp −

��
��

1 + �� �

where, 
 �,�, �, �, �, �� are fitted constants related to various aspects of the 

reaction process (See SAND2013-8681)

 �� is the activation energy

 � represents a shift factor due to vitrification

 � is set to 0 to ignore the shift effects.
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Strain in Bilayer Beam due to Cure 
Shrinkage Induced Bending
 Formulae for each different aspect have been discussed

 Dependence of eigen strain mismatch on temperature and reaction 
extent

 Dependence of epoxy shear modulus on reaction extent and 
temperature

 Evolution of Stress Free Configuration with Modulus and Strain

 Variation of rate of reaction (and reaction extent) on temperature

 The full solution requires:
 Numerical integration of the rate of reaction to determine the reaction 

extent from the temperature data

 Solution of evolving reference configuration and curvature

 Calculation of strain at desired location

 Comparison to experimental data
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Rate of Reaction Equation Solution 
Parameters
 Solution done in python 

 Scipy: odeint integrator

 Rate of Reaction parameter list (SAND2013-8681)
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Parameter Value

�� 13.8 [kcal/mole]

�� 217e+03 [���]

� 0.17

� 0.33

� 1.37

� -

� -

� 0

WLF Shift 
Parameters are 
unused



Higher Cure Temperature Results in 
Higher Rate of Reaction
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Temperature of Experimental 
Samples throughout Reaction Extent
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Shear Modulus Evolution 
Parameters
 The shear modulus is calculated using the proposed model and 

the calculated reaction extent for each data point

 The model uses the following parameters (SAND2013-8681)
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Parameter Value

���� 0.55

���� 1

���� 90 [deg C]

��̅/�� 0.0039 deg���



Higher Cure Temperature results in 
Higher Modulus during Cure
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Modulus decreases 
at end because of 
temperature drop



Solution to the Evolving 
Configuration Model
 The evolution of the stress free configuration depends on the 

history of the deviatoric strain

 Solve for other values 
 Curvature

 In-plane Strain at boundary

 Out-of-plane Strain at boundary

 Assuming in-plane directions are equal, solve for deviatoric in-plane 
strain

� =

��� 0 0

0 ��� 0

0 0 ���
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Model Suggests a Small Change in 
Stress Free Configuration
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Model Closely Predicts Strain in 
Experiments
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Sensitivity of Strain Output to 
Epoxy Thickness
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Sensitivity of Strain Output on Cure 
Shrinkage Rate
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Sensitivity on cure 
shrinkage rate scales 
proportionally with beam 
strain with change in 
thickness



Sensitivity of Beam Strain on Cure 
Temperature
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FEA VALIDATION
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Finite Element Model Setup

 Geometries of various 
lengths – 1”, 2”, 4”

 Quarter symmetry 
exercised

 Final Geometry: 1” x 4” 
with quarter symmetry 
(Mesh: 0.5” x 2”)
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FEA Mesh at 3 Densities

 Coarse, Medium, Fine meshes to prove mesh convergence
 ~5K elements

 ~38K elements

 ~300K elements
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Material Models

 Linear Elastic Aluminum
 Small strains, good assumption

 Universal Curing Model
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Comparison of FEA and Theory for 
Isothermal Case
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FEA, Theory, and Experiment 
Comparison
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Preliminary DEA Results
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Conclusions

 For 828/T403:

 Analytical model captures major strain behaviors from the 
bilayer beam experiment.

 FEA and Analytical models show a discrepancy for 
changing temperatures – possibly points to a difference in 
treatment of thermal strain

 For 828/DEA:

 FEA and Analytical models agree fairly well for isothermal 
case

 Experimental data is inadequate for comparison, still 
additional understanding needed of the 828/DEA Epoxy

32


