
1

Epetra & Tpetra (Sparse
linear algebra) overview

Mark Hoemmen & Alicia Klinvex
Sandia National Laboratories

24 Oct 2016

Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2016-10687C

2

1Petra (πέτρα) is Greek for “foundation.”

Trilinos’ Common Language: Petra

 “Common language” for distributed sparse linear algebra

 Petra1 provides parallel…

 Sparse graphs & matrices

 Dense vectors & multivectors

 Data distributions & redistribution

 “Petra Object Model”:

 Describes objects & their
relationships abstractly, independent
of language or implementation

 Explains how to construct, use, &
redistribute parallel graphs, matrices,
& vectors

 We maintain 2 implementations

Al Khazneh (“The Treasury”), in the ancient
city of Petra, in modern Jordan.

3

Petra Implementations

 Epetra (Essential Petra):
 Earliest & most heavily used

 C++ <= 1998 (“C+/- compilers” OK)

 Real, double-precision arithmetic

 C & Fortran interfaces

 MPI only (very little OpenMP support)

 Some support for problems with over two
billion unknowns (“Epetra64”)

 Tpetra (Templated Petra):
 Supports & requires C++11 (as of 11.14)

 Real, complex, extended-precision,
automatic differentiation, etc. types

 Can solve problems with > 2B unknowns

 “MPI+X” (shared-memory parallel)

Package leads: Mike Heroux, Mark Hoemmen (many developers & contributors)

Al Deir (“The Monastery”) at Petra.

Two “software stacks”:
Epetra & Tpetra

 Many packages were built on Epetra’s interface

 Users want features that break interfaces

 Support for solving huge problems (> 2B entities)

 Arbitrary & mixed precision

 Hybrid (MPI+X) parallelism ( most radical interface changes)

 Users also value backwards compatibility

 We decided to build a (partly) new stack using Tpetra

 Some packages can work with either Epetra or Tpetra

 Iterative linear solvers & eigensolvers (Belos, Anasazi)

 Multilevel preconditioners (MueLu), sparse direct (Amesos2)

 Which do I use?

 Epetra is more stable; Tpetra is more forward-looking

 For MPI only, their performance is comparable

 For MPI+X, Tpetra will be the only path forward

5

Kokkos: Thread-parallel
programming model & more

 Performance-portable abstraction over many different thread-
parallel programming models: OpenMP, CUDA, Pthreads, …
 Avoid risk of committing code to hardware or programming model

 C++ library: Widely used, portable language with good compilers

 Abstract away physical data layout & target it to the hardware
 Solve “array of structs” vs. “struct of arrays” problem

 Expose different memory & execution spaces

 Data structures & idioms for thread-scalable parallel code
 Multi-dimensional arrays, hash table, sparse graph & matrix

 Automatic memory management, atomic updates, vectorization, ...

 Stand-alone; does not require other Trilinos packages
 Used in LAMMPS molecular dynamics code

 Growing use in Trilinos; other apps starting too

Carter Edwards, Christian Trott, Dan Sunderland, Jim Foucar, Mark Hoemmen

6

Petra distributed object model

Solving Ax = b:
Typical Petra Object Construction Sequence

Construct Comm

Construct Map

Construct x Construct b Construct A

• Comm: Assigns ranks to processes
• Any number of Comm objects can exist
• Comms can be nested (e.g., serial within MPI)

• Maps describe a parallel layout
• Multiple objects can share the same Map
• Two Maps (source & target) define a
communication pattern (Export or Import)

• Computational objects
• Compatibility assured via common Map

// Header files omitted…
int main(int argc, char *argv[]) {

MPI_Init(&argc,&argv); // Initialize MPI, MpiComm
Epetra_MpiComm Comm(MPI_COMM_WORLD);

A Simple Epetra/AztecOO Program

// ***** Create x and b vectors *****
Epetra_Vector x(Map);
Epetra_Vector b(Map);
b.Random(); // Fill RHS with random #s

// ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);
double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i);
int RowLess1 = GlobalRow - 1;
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
if (RowPlus1!=NumGlobalElements)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

}
A.FillComplete(); // Transform from GIDs to LIDs

// ***** Map puts same number of equations on each pe *****

int NumMyElements = 1000 ;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

// ***** Report results, finish ***********************
cout << "Solver performed " << solver.NumIters()

<< " iterations." << endl
<< "Norm of true residual = "
<< solver.TrueResidual()
<< endl;

MPI_Finalize() ;
return 0;

}

// ***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.Iterate(1000, 1.0E-8);

// ***** Create Linear Problem *****
Epetra_LinearProblem problem(&A, &x, &b);

// Header files omitted…
int main(int argc, char *argv[]) {
Epetra_SerialComm Comm();

Perform redistribution of distributed objects:
• Parallel permutations.
• “Ghosting” of values for local computations.
• Collection of partial results from remote processors.

Petra Object
Model

Abstract Interface to Parallel Machine
• Shameless mimic of MPI interface.
• Keeps MPI dependence to a single class (through all of Trilinos!).
• Allow trivial serial implementation.
• Opens door to novel parallel libraries (shmem, UPC, etc…)

Abstract Interface for Sparse All-to-All Communication
• Supports construction of pre-recorded “plan” for data-driven communications.
• Examples:

• Supports gathering/scatter of off-processor x/y values when computing y = Ax.
• Gathering overlap rows for Overlapping Schwarz.
• Redistribution of matrices, vectors, etc…

Describes layout of distributed objects:
• Vectors: Number of vector entries on each processor and global ID
• Matrices/graphs: Rows/Columns managed by a processor.
• Called “Maps” in Epetra.

Dense Distributed Vector and Matrices:
• Simple local data structure.
• BLAS-able, LAPACK-able.
• Ghostable, redistributable.
• RTOp-able.

Base Class for All Distributed Objects:
• Performs all communication.
• Requires Check, Pack, Unpack methods from derived class.

Graph class for structure-only computations:
• Reusable matrix structure.
• Pattern-based preconditioners.
• Pattern-based load balancing tools. Basic sparse matrix class:

• Flexible construction process.
• Arbitrary entry placement on parallel machine.

A Map describes a data distribution

 A Map…
 has a Comm(unicator)

 is like a vector space

 assigns entries of a data structure to (MPI) processes

 Global vs. local indices
 You care about global indices (independent of # processes)

 Computational kernels care about local indices

 A Map “maps” between them

 Parallel data redistribution = function betw. 2 Maps
 That function is a “communication pattern”

 {E,T}petra let you precompute (expensive) & apply (cheaper)
that pattern repeatedly to different vectors, matrices, etc.

1-to-1 Maps

 A Map is 1-to-1 if…
 Each global index appears only once in the Map

 (and is thus associated with only a single process)

 For data redistribution, {E,T}petra cares whether
source or target Map is 1-to-1
 “Import”: source is 1-to-1

 “Export”: target is 1-to-1

 This (slightly) constraints Maps of a matrix:
 Domain Map must be 1-to-1

 Range Map must be 1-to-1

2D Objects: Four Maps

 Epetra 2D objects: graphs and matrices

 Have four maps:
 Row Map: On each process, the global IDs of the rows that

process will “manage.”

 Column Map: On each processor, the global IDs of the
columns that process will “manage.”

 Domain Map: The layout of domain objects
(the x (multi)vector in y = Ax).

 Range Map: The layout of range objects
(the y (multi)vector in y = Ax).

Must be 1-to-1
maps!!!

Typically a 1-to-1 map

Typically NOT a 1-to-1 map

Sample Problem

2 1 0

1 2 1

0 1 2

 
   
  

1

2

3

x

x

x

 
 
 
  

=

1

2

3

y

y

y

 
 
 
  

y A x

Case 1: Standard Approach

 Row Map = {0, 1}

 Column Map = {0, 1, 2}

 Domain Map = {0, 1}

 Range Map = {0, 1}

1 1

22

2 1 0
,... ,...

1 2 1

y x
y A x

xy

    
           

 First 2 rows of A, elements of y and elements of x, kept on PE 0.

 Last row of A, element of y and element of x, kept on PE 1.

PE 0 Contents

     3 3,... 0 1 2 ,...y y A x x   

PE 1 Contents

 Row Map = {2}

 Column Map = {1, 2}

 Domain Map = {2}

 Range Map = {2}

Notes:

 Rows are wholly owned.

 Row Map = Domain = Range (all 1-to-1).

 Column Map is NOT 1-to-1.

 Call to fillComplete: A.fillComplete(); // Assumes
2 1 0

1 2 1

0 1 2

 
   
  

1

2

3

x

x

x

 
 
 
  

=
1

2

3

y

y

y

 
 
 
  

y A x
Original Problem

1

2

3

x

x

x

 
 
 
  

1

2

3

y

y

y

 
 
 
  

Case 2: Twist 1

 Row Map = {0, 1}

 Column Map = {0, 1, 2}

 Domain Map = {1, 2}

 Range Map = {0}

  2

1

3

2 1 0
,... ,...

1 2 1

x
y y A x

x

   
         

 First 2 rows of A, first element of y and last 2 elements of x, kept on PE 0.

 Last row of A, last 2 element of y and first element of x, kept on PE 1.

PE 0 Contents

   2

1

3

,... 0 1 2 ,...
y

y A x x
y

 
    
 

PE 1 Contents

 Row Map = {2}

 Column Map = {1, 2}

 Domain Map = {0}

 Range Map = {1, 2}
Notes:

 Rows are wholly owned.

 Row Map NOT = Domain Map
NOT = Range Map (all 1-to-1).

 Column Map NOT 1-to-1.

 Call to fillComplete:
A.fillComplete(domainMap, rangeMap);

2 1 0

1 2 1

0 1 2

 
   
  

=

y A x
Original Problem

Case 2: Twist 2

 Row Map = {0, 1}

 Column Map = {0, 1}

 Domain Map = {1, 2}

 Range Map = {0}

  2

1

3

2 1 0
,... ,...

1 1 0

x
y y A x

x

   
        

 First row of A, part of second row of A, first element of y and last 2 elements of x,
kept on PE 0.

 Last row, part of second row of A, last 2 element of y and first element of x, kept on
PE 1.

PE 0 Contents

 2

1

3

0 1 1
,... ,...

0 1 2

y
y A x x

y

   
       

PE 1 Contents

 Row Map = {1, 2}

 Column Map = {1, 2}

 Domain Map = {0}

 Range Map = {1, 2}

Notes:

 Rows are NOT wholly owned.

 Row Map NOT = Domain Map
NOT = Range Map (all 1-to-1).

 Row Map and Column Map NOT 1-to-1.

 Call to fillComplete:
A.fillComplete(domainMap, rangeMap);

2 1 0

1 2 1

0 1 2

 
   
  

=

y A x
Original Problem

1

2

3

x

x

x

 
 
 
  

1

2

3

y

y

y

 
 
 
  

What does fillComplete do?

 Signals you’re done

 Defining graph structure of the matrix

 Modifying the matrix’s values

 Creates communication patterns for
distributed sparse matrix-vector multiply:

 If Column Map ≠ Domain Map, create Import

 If Row Map ≠ Range Map, create Export

 A few rules:

 Non-square matrices will always require:
A.fillComplete(domainMap,rangeMap);

 Domain Map & Range Map must be 1-to-1

18

Data Classes Stacks

Kokkos sparse graph & matrix
data structures & kernels

Kokkos multi-D arrays
& parallel patterns

Teuchos & user
array types

Manycore

BLAS

Tpetra

Native C & C++
array types

Epetra

Xpetra

Classic Stack New Stack

19

Questions?

