SAND2016- 10687C

Epetra & Tpetra (Sparse
linear algebra) overview

Mark Hoemmen & Alicia Klinvex
Sandia National Laboratories
24 Oct 2016

Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly Sandla
owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy’s National
National Nuclear Security Administration under contract DE-AC04-94AL85000. Laboratories

A
} Trilinos’ Common Language: Petra

= “Common language” for distributed sparse linear algebra

= Petra® provides parallel...
¢ Sparse graphs & matrices

+ Dense vectors & multivectors
+ Data distributions & redistribution

= “Petra Object Model”:
+ Describes objects & their

relationships abstractly, independent
of language or implementation

¢ Explains how to construct, use, &
redistribute parallel graphs, matrices

& vectors

* We maintain 2 implementations

Petra (mérpa) is Greek for “foundation.”

Al Khazneh (“The Treasury”), in the ancient
y city of Petra, in modern Jordan.

[

Sandia
National
Laboratories

\

Petra Implementations

= Epetra (Essential Petra):
+ Earliest & most heavily used
¢ C++ <=1998 (“C+/- compilers” OK)
+ Real, double-precision arithmetic
¢ C & Fortran interfaces
+ MPI only (very little OpenMP support)
+ Some support for problems with over two
billion unknowns (“Epetra64”)
* Tpetra (Templated Petra):
¢ Supports & requires C++11 (as of 11.14)

+ Real, complex, extended-precision,
automatic differentiation, etc. types

+ Can solve problems with > 2B unknowns
+ “‘MPI+X" (shared-memory parallel)

Package leads: Mike Heroux, Mark Hoemmen (many developers & contributors)

Al Deir (“The Monastery”) at Petra.

Sandia
National
Laboratories

_
ol 'Two “software stacks’:
Epetra & Tpetra

Many packages were built on Epetra’s interface

Users want features that break interfaces

+ Support for solving huge problems (> 2B entities)

+ Arbitrary & mixed precision

+ Hybrid (MPI+X) parallelism (< most radical interface changes)
Users also value backwards compatibility
We decided to build a (partly) new stack using Tpetra

Some packages can work with either Epetra or Tpetra
+ |terative linear solvers & eigensolvers (Belos, Anasazi)
+ Multilevel preconditioners (MuelLu), sparse direct (Amesos2)

Which do | use?
+ Epetra is more stable; Tpetra is more forward-looking
+ For MPI only, their performance is comparable
* For MPI+X, Tpetra will be the only path forward @ Sandia

National
Laboratories

Kokkos: Thread-parallel
programming model & more

» Performance-portable abstraction over many different thread-
parallel programming models: OpenMP, CUDA, Pthreads, ...

+ Avoid risk of committing code to hardware or programming model

¢+ C++ library: Widely used, portable language with good compilers

= Abstract away physical data layout & target it to the hardware
+ Solve “array of structs” vs. “struct of arrays” problem

» Expose different memory & execution spaces

» Data structures & idioms for thread-scalable parallel code
+ Multi-dimensional arrays, hash table, sparse graph & matrix
+ Automatic memory management, atomic updates, vectorization, ...
» Stand-alone; does not require other Trilinos packages

¢ Used in LAMMPS molecular dynamics code
+ Growing use in Trilinos; other apps starting too

Carter Edwards, Christian Trott, Dan Sunderland, Jim Foucar, Mark Hoemmen @

Sandia
National
Laboratories

o

Petra distributed object model

Sandia
National
Laboratories

Solving Ax = b:

Typical Petra Object Construction Sequence

« Comm: Assigns ranks to processes

* Any number of Comm objects can exist
« Comms can be nested (e.qg., serial within MPI)

* Maps describe a parallel layout

* Multiple objects can share the same Map
* Two Maps (source & target) define a
communication pattern (Export or Import)

« Computational objects
« Compatibility assured via common Map

Sandia
National
Laboratories

A Simple Epetra/AztecOO Program

/I Header files omitted...
int main(int argc, char *argv[]) {
Epetra_Serial Comm Comm();

/[***** Map puts same number of equations on each pe *****

int NumMyElements = 1000 ;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

/[***** Create x and b vectors *****
Epetra_Vector x(Map);

Epetra_Vector b(Map);

b.Random(); // Fill RHS with random #s

/[***** Create Linear Problem *****
Epetra_LinearProblem problem(&A, &x, &b);

/| ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);

double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i);
int RowLess1 = GlobalRow - 1;
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowlLess1);

if (RowPlus1!=NumGlobalElements)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

}
A FillComplete(); // Transform from GIDs to LIDs

/[***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.lterate(1000, 1.0E-8);

// *kkkk Report results, flnISh kkhkkkkkhkkhhkhkkhkkkhkkkhkkhkkkk
cout << "Solver performed " << solver.Numlters()
<< " iterations." << endl|
<< "Norm of true residual ="
<< solver.TrueResidual()
<< endl;

return O;

} @ Sandia |
Laboratories

winterfaces
Distributor

Petra Object
Model

+hroadcast() - int
+gatherAllf) - int
+sumAllf) - int
HmaxAllf) - int
i) int
tscansumy) it
+myimagelDy) - in
HnLimirmages() @
+orgataDistributor) @ Distnbuto
+roreatelirectoryy) | Directary

1

Import/Export
commPlan : int

+export()

+checkCompatibility()
FeopyAndPermute()
+packAndPrepars()
+unpackandCombine]

wextandss

sint
E=() :int
IValues() : int
ues() :int
aluas() : int
ues() @ int
+HillComplete() : int

I+ oballndicaé{j cint
+replacebylndices() Int
HHllCompletel) : int

A Map describes a data distribution

= A Map...
¢+ has a Comm(unicator)
+ |s like a vector space
¢ assigns entries of a data structure to (MPI) processes

» Global vs. local indices
* You care about global indices (independent of # processes)
+ Computational kernels care about local indices
+ A Map “maps” between them

= Parallel data redistribution = function betw. 2 Maps

+ That function is a “communication pattern”

+ {E,T}petra let you precompute (expensive) & apply (cheaper)
that pattern repeatedly to different vectors, matrices, etc.

Sandia
National
Laboratories

1-to-1 Maps

= A Map is 1-to-1 if...
+ Each global index appears only once in the Map
+ (and is thus associated with only a single process)
» For data redistribution, {E,T}petra cares whether
source or target Map is 1-to-1
+ “Import”: source is 1-to-1
¢ “Export”: target is 1-to-1
* This (slightly) constraints Maps of a matrix:

¢ Domain Map must be 1-to-1
¢+ Range Map must be 1-to-1

Sandia
National
Laboratories

2D Objects: Four Maps

= Epetra 2D objects: graphs and matrices

Typically a 1-to-1 map

Typically NOT a 1-to-1 map

= Have four ma

+ Row Map: On each pro
process will “ma

¢+ Column Map: On each processor, the global IDs of the

S, the global IDs of the rows that

columns that process will “manage.” —~
¢+ Domain Map: The layout of domain objects
(the x (multi)vector in y = Ax). | Must be 1-to-1
+ Range Map: The layout of range objects maps!!
(the y (multi)vector in y = Ax).)

Sandia
National
Laboratories

M
Vo
V3

Sample Problem

A
2 -1
-1 2
0 -1

X

[

Sandia
National
Laboratories

Case 1: Standard Approach

+ First 2 rows of 4, elements of y and elements of x, kept on PE 0.
+ Last row of 4, element of y and element of x, kept on PE 1.

PE 0 Contents PE 1 Contents
A2 2 -1 0 X,
= oA = yeX = = ,.A=10 =1 2|,.x=|x
g L’j {_1 2 _J Lz g [ys] [] [3]
= Row Map = {0, 1} = Row Map = {2}
= ColumnMap =1{0,1,2} = Column Map ={l,2}
= Domain Map = {0, 1} * Domain Map = {2}
= Range Map = {0, 1} = Range Map = {2}
Original Problem Notes:
y = Rows are wholly owned.
Y X = Row Map = Domain = Range (all 1-to-1).
)2 2 —1 0 X, * Column Map is NOT 1-to-1. ;
= (Call to fillComplete: A.fillComplete(); // Assumes

v |1=l-1 2 -1 |x

0 -1 2| |x () i
Vil L J A3 laboratories

Case 2: Twist 1

* First 2 rows of 4, first element of y and last 2 elements of x, kept on PE 0.
¢ Last row of 4, last 2 element of y and first element of x, kept on PE 1.

™

PE 0 Contents
_[] - 2 -1 0
yv=|y|,..4A= 1 9 yereX

= Row Map = {0, 1}

= ColumnMap =1{0,1,2}

* Domain Map = {1, 2}

= Range Map = {0}

Original Problem
y A X

vl 2 -1 0] [x

yl=l-1 2 -1 |x
¥ 0 -1 2 X,

PE 1 Contents

y:{yz},...A:[O 1 2] =[]
Vs

= Row Map = {2}

= Column Map ={l,2}

* Domain Map = {0}

= Range Map = {1, 2}

Notes:

Rows are wholly owned.

Row Map NOT = Domain Map
NOT = Range Map (all 1-to-1).

Column Map NOT 1-to-1.

Call to fillComplete:
A.fillComplete(domainMap, rangeMap);

Sandia
National
Laboratories

Case 2: Twist 2

* First row of A, part of second row of A4, first element of y and last 2 elements of x,
kept on PE 0.
+ Last row, part of second row of 4, last 2 element of y and first element of x, kept on
PE 1.
PE 0 Contents PE 1 Contents
2 -1 0 X ¥, 0 1 -1
= o d = x=| = A= o X=X
g [yl] {_1 1 O} Lj g L’j {O -1 2} [1]
= Row Map = {0, 1} = Row Map = {1, 2}
= ColumnMap =1{0, 1} = Column Map ={l,2}
* Domain Map = {1, 2} * Domain Map = {0}
= Range Map = {0} = Range Map = {1, 2}
Notes:
Original Problem = Rows are NOT wholly owned.
y A X = Row Map NOT = Domain Map
_ o - - - — NOT = Range Map (all 1-to-1).
Vi 2 —1 0 X = Row Map and Column Map NOT 1-to-1.
= (all to fillComplete:
Vo |= —1 2 —1 X5 A.fillComplete(domainMap, rangeMap);
0 -1 2| |x) i
— y3 - = d L73_ [‘a%[:ﬂg?(llries

What does fillComplete do?

= Signals you're done
+ Defining graph structure of the matrix
+ Modifying the matrix’s values

= Creates communication patterns for
distributed sparse matrix-vector multiply:

¢ |[f Column Map # Domain Map, create Import
+ |f Row Map # Range Map, create Export

= A few rules:

+ Non-square matrices will always require:
A.fillComplete (domainMap, rangeMap) ;

+ Domain Map & Range Map must be 1-to-1

Sandia
National
Laboratories

} Data Classes Stacks

Classic Stack

New Stack

18

Sandia
National
Laboratories

Questions?

Sandia
National
Laboratories

