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Abstract 18 

The mapping of electrostatic potentials and magnetic fields in liquids using electron holography has 19 

been considered to be unrealistic. Here, we show that hydrated cells of Magnetospirillum 20 

magneticum strain AMB-1 and assemblies of magnetic nanoparticles can be studied using off-axis 21 

electron holography in a fluid-cell specimen holder within the transmission electron microscope. 22 

Considering the holographic object and reference wave both pass through liquid, the recorded 23 

electron holograms show sufficient interference fringe contrast to permit reconstruction of the phase 24 

shift of the electron wave and mapping of the magnetic induction from bacterial magnetite 25 

nanocrystals. We assess the challenges of performing in situ magnetization reversal experiments 26 

using a fluid cell specimen holder, discuss approaches for improving spatial resolution and 27 

specimen stability, and outline future perspectives for studying scientific phenomena, ranging from 28 

interparticle interactions in liquids and electrical double layers at solid-liquid interfaces to 29 

biomineralization and the mapping of electrostatic potentials associated with protein aggregation 30 

and folding. 31 

Keywords 32 

Off-axis electron holography, liquid cell TEM, magnetic nanoparticles, magnetotactic bacteria  33 
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Introduction 35 

The localized study of electromagnetic fields in biological systems has been largely 36 

unexplored, largely due to a lack of suitable characterization techniques across a wide range of 37 

length scales. Medical applications include the use of pulsed electric or magnetic fields to treat 38 

pain relief, musculoskeletal trauma and vascular and endocrine disorders 1,2. Electric and magnetic 39 

fields have been shown to play a significant role at the cellular and subcellular level, for example 40 

in plasma membranes and actin filaments 3,4, as well as in processes such as biomineralization, 41 

magnetotaxis 5,6 and magnetoreception 7. A key example is the influence of electric fields on 42 

protein conformation, which has been described using theoretical models 8-10 and observed 43 

experimentally 11-14. Charge redistribution and localization in proteins, which can be inferred using 44 

spectroscopic and computational approaches, is crucial to understanding the dynamics of protein 45 

self-assembly, aggregation and folding 3,8,15-18. The development of an experimental technique that 46 

is capable of visualizing electromagnetic fields and measuring experimental maps of charge 47 

density and magnetization in biological organisms in liquids with sub-micron spatial resolution 48 

would advance many fields of science, from nanotechnology to bioimaging.  49 

The ability to map electrostatic potentials and magnetic fields on the nanoscale is provided 50 

by the advanced transmission electron microscope (TEM) technique of off-axis electron 51 

holography. This method involves the use of an electrostatic biprism to facilitate the overlap of an 52 

electron wave passed through an electron-transparent specimen with a reference wave that has 53 

passed through vacuum alone. Analysis of the resulting interference fringe pattern provides access 54 

to both low and high spatial frequencies of the phase shift of the electron wave that has passed 55 

through the specimen. The phase shift is, in turn, sensitive to electrostatic potentials and magnetic 56 

fields within and around the specimen, projected in the electron beam direction. The electrostatic 57 

contribution to the phase shift includes contributions from both longer-range charge redistribution 58 

and the electrostatic potentials of the constituent atoms, whose spatial average is referred to as the 59 

mean inner potential (MIP). 60 

The phase shift can be represented as a sum of electrostatic and magnetic contributions in 61 

the form 62 

         ϕ(x,y) = ϕe + ϕm = CE ∫ V(x,y,z)dz – CB ∫ AZ (x,y,z)dz,                                           (1)   63 

where CE= πγ/λU* is an interaction constant that depends on the accelerating voltage of the 64 

electron microscope (CE = 6.53 V-1 µm-1 for 300 kV electrons), λ is the electron wavelength, γ is 65 

the relativistic Lorentz factor and U* is the relativistically corrected accelerating potential 191, 66 

while the constant CB = π/φ0, where φ0 is the magnetic flux quantum h/2e= 2.07×103 T nm2, is 67 

independent of the electron energy 19. When examining magnetic fields in materials, the 68 

electrostatic contribution to the phase is almost always regarded as an unwanted perturbation. 69 

However, it usually cannot be neglected because of the MIP of the material.  70 

Off-axis electron holography has primarily been used by physicists and materials 71 

scientists, with only a small number of reports of the application of the technique to biological 72 

objects 20-22. Measurements of the MIP contribution to the phase shift of biological samples using 73 

off-axis electron holography can in principle be used to study weakly scattering materials, 74 

providing the possibility to enhance contrast by implementing phase plates in software after 75 
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hologram acquisition and reconstruction, thereby eliminating the need for defocusing or staining 76 

techniques or hardware phase plates 3,23-25. However, experimental reports are scarce, in part 77 

because of difficulties associated with preparing an optimal specimen geometry and electron-78 

beam-induced damage, charging and contamination 38,41-43. As the phase shift of the electron wave 79 

is small for biological specimens, the examination of biological objects using off-axis electron 80 

holography can also require a higher electron dose than for inorganic materials 24,27,29. Moreover, 81 

in order to accumulate an adequate phase shift, the specimen generally has to be thicker, leading to 82 

increased inelastic scattering and background noise, which can be detrimental to specimen 83 

integrity and can result in the need to use an energy filter in addition to an electrostatic biprism 84 
24,27.  85 

Despite being susceptible to radiation damage, a number of unstained biological specimens 86 

have been studied successfully using off-axis electron holography in the TEM, including ferritin, 87 

tobacco mosaic virus and protein S-layers 23,24,30. In-line low-energy electron holography has also 88 

been used to study DNA, bacteriorhodopsin, tobacco mosaic virus and collagen with nanometer 89 

spatial resolution 29,31,32. However, at low electron energies the MIP contribution to the phase shift 90 

increases relative to the magnetic contribution, complicating measurements of nanoscale magnetic 91 

fields significantly. It should be noted that, in addition to off-axis and in-line electron holography, 92 

other phase contrast techniques such as ptychography 33-37, diffractive imaging 38-40 and 93 

differential phase contrast imaging 41-43 are also potentially applicable to studies of soft and 94 

biological materials. The majority of studies of biological materials in the TEM are currently 95 

carried out in the absence of a liquid environment. Although the high vacuum of the electron 96 

microscope makes standard imaging of such specimens in their native hydrated state impossible 28, 97 

recent advances in fluid cell TEM specimen holder technology are providing new opportunities for 98 

the in situ characterization of dynamic processes in liquids with sub-nanometer spatial resolution 99 
44, with recent reports describing studies of inorganic nanoparticles, biomimetic structures, protein 100 

molecules 45-48, eukaryotic cells 44,49,50 and bacteria 51. Whilst experimental approaches for the 101 

high-resolution in situ characterization of specimens in liquid are becoming capable of imaging 102 

structures and monitoring their dynamic properties, measurements of electromagnetic fields in 103 

such specimens have not yet been performed, in part because electron holography in liquid as an 104 

experimental technique has been assumed to be difficult and impractical 52. With the exception of 105 

a recent report on the application of electron holography to ionic liquids 53, no other applications 106 

of electron holography to liquid samples or using a fluid cell specimen holder are yet available.  107 

Here, we present a proof-of-principle off-axis electron holography study of both intact and 108 

fragmented cells of magnetotactic bacterial strain Magnetospirillum magneticum AMB-1 in liquid. 109 

Magnetotactic bacteria biomineralize ordered chains of magnetite or greigite nanocrystals with 110 

nearly perfect crystal structures and strain-specific morphologies. These microorganisms have 111 

been established as one of the best model systems for investigating the mechanisms of 112 

biomineralization. The biogenic magnetite crystals that they form have crystal habits and 113 

properties that have been studied in great detail. Furthermore, the magnetic fields that are 114 

associated with ferrimagnetic nanocrystal chains biomineralized by magnetotactic bacteria have 115 

been visualized using off-axis electron holography 6,21,54-56. We selected this specimen based on 116 

extensive reports of the characterization of the chemistry and magnetism of magnetotactic bacteria 117 

by a variety of methods 57-59, as well as on our own report on imaging viable bacterial cells in 118 

liquid using an in situ fluid cell TEM specimen holder 51. We begin by measuring the remanent 119 
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saturation magnetization of magnetite nanoparticles located both within and outside hydrated 120 

bacterial cells. We also estimate the MIP of the liquid in the fluid cell holder. 121 

Results  122 

Figure 1 shows schematic diagrams of the experimental setup for TEM imaging using a 123 

fluid cell (Fig. 1A) and off-axis electron holography (Fig. 1B). Upon assembly of the fluid cell, a 124 

small amount of liquid is sandwiched between two electron-transparent SiN membranes. When 125 

examining bacterial cells, the microorganisms and surrounding growth medium are trapped by the 126 

windows, resulting in a mechanical stress on the bacterial cell walls. In the present study, the 127 

holographic reference wave was usually obtained through a layer of liquid, in addition to passing 128 

through two 50-nm-thick layers of SiN. The chemical composition of the liquid present, its 129 

estimated thickness and the hologram acquisition parameters are given in the Materials and 130 

Methods. 131 

Figure 2A shows an off-axis electron hologram of a bacterial specimen in a liquid cell, 132 

while Fig. 2B shows a corresponding reconstructed (wrapped) phase image. Since the phase shift 133 

is dominated by the MIP contribution to the phase, it represents the thickness profile of the 134 

specimen in a confined geometry, with the bacterial cell located between the SiN membranes and 135 

the liquid present on both sides of it. It should be noted, however, that the phase image contains 136 

features arising from the holographic reference wave, which was also acquired from a liquid-137 

containing region of the sample. The reconstructed amplitude image is shown in Fig. 2C and is 138 

consistent with the presence of an enclosed bacterial cell. Figures 2D-F show a region extracted 139 

from the off-axis electron holograms of the hydrated bacterial cell recorded in its initial state 140 

(Fig. 2D), after tilting by +75° and applying a magnetic field in the direction of the electron beam 141 

(Fig. 2E) and after tilting by -75° and applying a magnetic field of the same magnitude and 142 

direction (Fig. 2F). The left side of the image changes between Fig. 2D and Fig. 2F as a result of 143 

electron-beam-induced changes to the liquid, which are indicated in the form of a progression of 144 

voids, become more pronounced with cumulative exposure time and can be used to verify the 145 

presence of liquid. Significantly, the bacterial cell wall does not appear to have ruptured, as 146 

evidenced by the bacterial body maintaining its integrity and shape, as well as its relatively 147 

constant density during imaging. The cell wall may correspond to the bright band that is visible 148 

around the periphery of the cell in the phase image shown in Fig. 2B. Figure 2G shows a relevant 149 

part of a magnetic induction map recorded from the magnetite nanocrystal chain in the bacterial 150 

cell. The individual magnetite nanocrystals are outlined in white, while the direction of the 151 

projected in-plane magnetic induction is indicated using arrows and colors. For clarity, the phase 152 

contours have been obscured on the left side of the image, which contains artifacts associated with 153 

the electron-beam-induced bubbling of the liquid. The magnetic induction map in Fig. 2G, which 154 

was determined from the magnetic contribution to the phase shift reconstructed from the electron 155 

holograms shown in in Figs 2E and 2F, provides a quantitative representation of the magnetic 156 

field in the magnetite nanocrystals, which each contain a single magnetic domain, as well as the 157 

stray magnetic field around them. Fig. 2H shows a profile of the magnetic contribution to the 158 

phase image that was used to create Fig. 2G, taken along the red dashed line passing through the 159 

center of the crystal, perpendicular to the phase contours. The phase profile was then used to 160 

estimate the in-plane magnetic induction across the particle, using a previously described method 161 
62. To achieve this, the particle was treated as a sphere and the difference between the maximum 162 
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and minimum values of the magnetic contribution to the phase shift were substituted into the 163 

equation: ∆φmag = 2.044(e/h)B⊥a
2, where e is the magnitude of electronic charge, ħ is reduced 164 

Planck’s constant, a is the particle’s radius and B⊥ is the in-plane magnetic induction. In the case 165 

for spherical particles, the measured B⊥ is only 2/3 of the saturated magnetic induction and after 166 

including this correction, the latter was estimated as 0.58 ± 0.1 T, which is consistent with the 167 

room temperature saturation induction of magnetite 62. 168 

Figure 3 shows an off-axis electron hologram and a corresponding magnetic induction 169 

map recorded from a magnetite nanocrystal chain that had been released from a ruptured 170 

bacterium inside the fluid cell. When compared to the hydrated bacterium shown in Fig. 2, the 171 

Michelson contrast ratio increases from ~ 15% to ~ 30% and the spatial resolution is improved, 172 

presumably due to the absence of the protoplasm and cellular compartments seen in Fig. 2. The 173 

magnetic induction map shown in Fig. 3B again provides a quantitative representation of the 174 

magnetic field in the magnetite grains and their magnetostatic interactions. In a similar fashion to 175 

Fig. 2H, Fig. 3C shows a profile of the magnetic contribution to the phase image, taken along the 176 

red dashed line passing through the center of the crystal in Fig 3B. A saturated magnetic induction 177 

of 0.63 ± 0.1 T was estimated for the particle, which is again consistent with the room temperature 178 

saturation induction of magnetite 62. The blurring of the contour lines in the lower-most crystal in 179 

Fig. 3B could result from the presence of a magnetic vortex domain state or a crystallographic 180 

twin, as seen in Fig. 3A 61. These possibilities make the magnetic signal in this crystal difficult to 181 

interpret. The large magnetite crystal adjacent to the twinned crystal is surrounded by biological 182 

cellular material that is likely to be a remnant membrane and the liquid appears to cover only the 183 

left part of the chain. 184 

Figures 4A and 4B show representative off-axis electron holograms recorded from 185 

different regions of the fluid cell. Figure 4A was recorded from the middle of the cell, while 186 

Fig. 4B shows a liquid front that only partially covers the SiN window. Each electron hologram 187 

contains clear, well-resolved holographic interference fringes. Figure 4C shows an off-axis 188 

electron hologram of a droplet of liquid that has a diameter of ~1200 nm and is resting on the SiN 189 

window. Based on an estimate of the thickness of the liquid in a fluid cell reported elsewhere, the 190 

droplet of liquid is assumed to be somewhat compressed with a height of ~800 nm 51. Figure 4D 191 

shows a radial average of the intensity of the droplet, while Figure 4E displays the reconstructed 192 

amplitude image of the droplet. The dark contrast of the droplet in the amplitude image confirms 193 

that it is not a bubble. The t/λ profile across the droplet was estimated from the amplitude image, 194 

using the equation t / λ = - 2 ln (Azl / A0) = - 2 ln An, where Azl is the holographically 195 

reconstructed (zero-loss) amplitude, A0 is the reconstructed amplitude from an area of no liquid 196 

and An is treated as the normalized amplitude. Using the maximum plotted value of t/λ = 3.26 and 197 

on the assumption that the droplet has a height of ~ 800 nm, based on the previously estimated 198 

thickness of a fluid cell with the enclosed bacterium 51, we calculated a λ value of 245 nm. Figure 199 

4G shows the reconstructed phase shift across the droplet and again on the assumption of a droplet 200 

thickness of ~800 nm, the expression V0 = Øc(x,y)/(CEt(x,y) for an accelerating voltage of 300 kV 201 
62 was used to estimate the value for the MIP of the droplet as 3.5±0.5 V.  202 

Figure 5 shows a comparison of off-axis electron holograms recorded using a 203 

conventional charge-couple device (CCD) camera and a Gatan K2 direct detection camera. The 204 

interference fringe contrast is improved significantly when using the K2 camera, from a Michelson 205 

contrast ratio of ~ 25% to 65 %. 206 
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Discussion  207 

A significant challenge associated with the use of off-axis electron holography in 208 

combination with a fluid cell is the acquisition of a reference electron wave through liquid instead 209 

of vacuum. It is also challenging to obtaining a reference electron hologram from an area that is 210 

close to the region of interest. In our experiments, the reference hologram was typically acquired 211 

from the aqueous medium in a suitable area of the fluid cell that was absent of cell debris. Rapid 212 

movement of the liquid front is often reported to have been followed by the formation of voids, 213 

vapor-filled bubbles and residual hydrated islands on SiN membranes 63-65. Due to the relatively 214 

large size of the bacteria, bright-field imaging of entire cells was typically carried out at low 215 

magnification (7000 – 15000×) 5,54,66-68. Off-axis electron holograms were recorded at higher 216 

magnification using a reduced electron dose rate compared to that used for bright-field imaging, 217 

requiring longer acquisition times. Bacterial cells were most easily detectable near to the corner or 218 

the edge of the SiN window, where the liquid layer was thinnest because the bulging of the SiN 219 

membrane is less pronounced in these parts of the cell, resulting in the highest relative signal-to-220 

noise ratio. 221 

Cells of Magnetospirillum magneticum, strain AMB-1, are helical in shape and typically 1-222 

3 µm in length and 400-600 nm in diameter, with the magnetite nanocrystal chains inside the 223 

cytoplasmic membrane and held together by actin-like filaments 69. Based on our previous 224 

experiments on magnetotactic bacteria in a fluid cell using scanning TEM, the liquid layer 225 

thickness was typically 500–750 nm at the edges and corners of the SiN windows for the used 226 

spacer configuration instead of the nominal thickness of 200 nm, with the magnetite chains acting 227 

as natural high-contrast labels denoting the positions of the individual cells of M. magneticum (see 228 

Experimental Details) 51. Furthermore, the arrangement of the magnetite nanocrystals in chains 229 

was indicative that the cell membrane and vesicles had remained intact 5. 230 

In the present experiment, the alignment of the magnetite nanocrystals in chains served an 231 

indicator of the integrity of the bacterial cellular structure, as shown in Fig. 2. Despite electron-232 

beam-induced displacement and partial evaporation of the liquid surrounding the bacterial cells, 233 

we observed no signs of cell wall rupture or release of the magnetite chains, suggesting that the 234 

bacteria remained in a hydrated state. However, continuous imaging at high magnification in other 235 

regions resulted in damage, as evidenced by the collapse of internal cellular structures, rupture of 236 

bacterial cell wall membranes and the release of magnetite nanocrystal chains into the surrounding 237 

liquid, followed by amorphization of individual magnetite nanocrystals (Fig. S1). When compared 238 

to images obtained from dried specimens, the distance between individual magnetite nanocrystals 239 

in the fluid cell was observed to have increased slightly 54,70-72. This result is consistent with 240 

images obtained using cryo-EM 66,73 and can be attributed to the magnetosome membranes and 241 

other sub-cellular compartments remaining in a hydrated state, without the distortions that are 242 

typically introduced by the drying of biological matter. 243 

Initial magnetic states and magnetization reversal in the fluid cell 244 

After magnetizing the hydrated sample in opposite directions in situ in the electron 245 

microscope and recording electron holograms of oppositely magnetized regions of the same 246 

magnetite nanocrystals, the resulting phase images were subtracted from each other to eliminate 247 

the contribution of the MIP and hence isolate the magnetic contribution to the phase shift. In such 248 

an experiment, the MIP contribution to the phase must be identical in each pair of electron 249 
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holograms. However, prolonged exposure to the electron beam resulted in evaporation of liquid, 250 

void formation and evolution, resulting in the presence of artefacts after calculating differences 251 

between each phase image associated with the specimen being magnetized in opposing directions. 252 

In the present study, the artifacts associated with the displacement of liquid and void evolution had 253 

no apparent effect on the recorded magnetic signal in the magnetite nanocrystals and the magnetic 254 

induction map shown in Fig. 2G is in good agreement with previous reports of electron 255 

holographic imaging of dried bacterial specimens, with the exception of a somewhat larger 256 

distance between individual magnetite nanocrystals, which we attribute to the bacterial cell and its 257 

subcellular components remaining in a hydrated state 21,54-56,74,75. The continuous displacement of 258 

liquid in the left part of the image can be used to gauge the residual presence of liquid in the fluid 259 

cell, whilst the bacterial cell wall does not appear to have ruptured during imaging, leaving the 260 

bacterium hydrated. For comparison, lysed bacterial cells displayed collapsed chains and shorter 261 

fragments of magnetite chain, as shown in Fig. 3. Although the signal-to-noise ratio is somewhat 262 

improved in the fragmented chains when compared to that recorded from an intact bacterial cell 263 

(Fig. 2 D-F), the magnetic induction map is consistent with that shown in Fig. 2G. 264 

Despite beam-induced displacement and bubbling of the liquid, we recorded off-axis 265 

electron holograms with well-resolved interference fringes from different regions of the fluid cell, 266 

as shown in Fig. 4. We could then reconstruct phase images, such as that shown for a droplet in 267 

Figs 4C-F, even in the presence of two layers of SiN encasing the liquid in the fluid cell. Similar 268 

phase images could be used in future studies of the formation of electrical double layers at solid-269 

liquid interfaces. From the phase image, we estimated the MIP of the liquid at 3.5±0.5V based on 270 

the assumption of a droplet height of ~800 nm, in agreement with a value predicted theoretically 271 

by Kathmann and co-workers 76-79 for the liquid-vapor interface of water, as well as with that 272 

measured experimentally for vitrified ice 80. 273 

Electron-beam-induced damage 274 

Whereas the use of a cumulative electron dose on the order of ~0.1 e/Å2 has been shown to 275 

induce only small changes in cellular structure during a single scanning TEM exposure 51, the 276 

imaging conditions for off-axis electron holography typically require a higher electron dose. It has 277 

long been postulated that the ultimate resolution for biological materials will be determined by the 278 

tolerable electron dose on the specimen 24,81 and hence that mitigating radiation damage is critical 279 

for fluid cell TEM imaging, which has been shown to suffer from electron-beam-induced artifacts 280 
63-65.  Although electron beam damage in liquids poses a serious challenge, our results demonstrate 281 

that off-axis electron holography in a fluid cell is feasible. In a separate experiment, we imaged 282 

using spot size 4 in an attempt to reduce electron beam damage to bacterial cells. This led to a 283 

decrease in the overall contrast. However, the interference fringe contrast remained sufficient for 284 

data analysis. Several bacterial cells appeared intact and showed no indications of electron beam 285 

damage (Fig. S3). In the future, direct detection cameras promise to allow image acquisition using 286 

shorter exposure times, thereby lowering electron beam damage to both the liquid and the 287 

hydrated specimen, as demonstrated in Figure 5. More systematic studies aimed at establishing 288 

the tolerable electron dose utilized in electron holographic imaging of specimens in liquid will be 289 

required. In this regard, the future use of less electron beam sensitive liquids will be beneficial.  290 

 291 
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Conclusions 292 

We have demonstrated that off-axis electron holography can be carried out in a 293 

commercially available fluid cell TEM specimen holder through a study of hydrated bacterial cells 294 

of M. magneticum strain AMB-1 in a ~800-nm-thick layer of liquid. Although the liquid 295 

surrounding the bacterial cells exhibited signs of electron-beam-induced changes, which 296 

contributed to artefacts and noise, the recorded electron holograms showed sufficient interference 297 

fringe contrast to permit reconstruction of the phase shift of the electron wave and mapping of the 298 

magnetic induction of the bacterial magnetite nanocrystals. We also estimated the mean inner 299 

potential of a droplet of liquid at 3.5±0.5V, based on the assumption that the droplet height was 300 

~800 nm. 301 

Although the choice of liquid and the protocols for data acquisition and processing will 302 

need to be refined in the future, in the present study magnetic induction mapping of intracellular 303 

magnetite nanocrystals and shorter magnetite chain fragments in liquid was successful. We expect 304 

that this approach will be applicable to a wide variety of liquid specimens that contain 305 

nanoparticles in their native environment, free of the artefacts that are associated with common 306 

preparatory methods. 307 

Off-axis electron holography in liquid offers great promise for studying interactions 308 

between magnetic nanoparticles, as well as for the visualization of nanoparticle response to 309 

external magnetic stimuli with nanometer spatial resolution. Prospects for other applications of 310 

in situ off-axis electron holography in a liquid cell include research into magnetic resonance 311 

imaging, tissue repair and targeted drug delivery. The method also promises to be applicable to 312 

other interfacial phenomena in liquids, including the direct imaging of electrochemical double 313 

layers at solid-liquid interfaces, which is of relevance to colloidal suspensions, catalysis, 314 

nanofluidic devices, batteries and tribology. Other potential applications include studies of 315 

biomineralization and the mapping of electrostatic potentials associated with protein aggregation 316 

and folding. The technique promises to open a new era in the physics of liquids by revealing what 317 

role magnetostatic and electrostatic interactions play in phase transformations, the physics of 318 

coalescence, the effects of confinement and other complex phenomena. 319 

Materials and Methods 320 

Fluid cell assembly: Aqueous solutions were prepared using deionized water passed through a 321 

Millipore Milli-Q Plus water purification system (ρ = 18.2 MΩ cm). In situ liquid cell (S)TEM 322 

experiments were carried out using a commercial fluid cell holder platform (Hummingbird 323 

Scientific, Lacey, WA, USA). The experimental setup consists of a microfluidic chamber, which 324 

takes the form of two Si chips with electron-transparent SiN windows in a hermetically-sealed 325 

TEM specimen holder89. Unless noted otherwise, the SiN chips were plasma-cleaned for 5 minutes 326 

prior to use to hydrophilize the surfaces and ensure contaminant removal. A thin liquid layer 327 

(typically 200-800 nm thick) was formed by sandwiching two SiN-coated Si chips with a 50 × 200 328 

µm electron-transparent 50-nm-thick SiN opening etched from the center, thereby forming an 329 

imaging window. Both SiN windows had a 100 nm SU-8 spacer. We drop-casted 1 µL of liquid 330 

onto the top SiN window, removed the excess liquid using filter paper and topped it with the 331 

second chip to form the liquid layer. The fluid cell was hermetically sealed to prevent evaporation 332 
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of the liquid. Following cell assembly, we checked the integrity of the sealed fluid cell in vacuum, 333 

inserted the holder into the electron microscope and allowed it to equilibrate for 20 minutes before 334 

imaging. 335 

Bacterial culture growth: Cells of Magnetospirillium magneticum AMB-1 (ATCC 700264) used 336 

for the in situ fluid cell electron holography imaging experiments were grown at room temperature 337 

under microaerobic conditions in 5 ml flasks containing the modified flask standard medium 338 

(FSM) lacking the major source of iron (ferric citrate) and only containing a small amount of iron 339 

(0.36 µM) present in the mineral solution 82-84.   We aimed at using bacterial cells with only 340 

freshly formed magnetite magnetosome nanocrystals. The non-magnetic bacterial cultures were 341 

then subcultured and FSM medium containing 50 µM ferric citrate was added to the cells grown 342 

under a low iron condition to induce magnetite biomineralization 84. The microorganisms were 343 

sampled 60 minutes after biomineralization induction. They exhibited a somewhat lower number 344 

of magnetite nanocrystals, when compared to the use of a regular bacterial growth protocol 84. 345 

Fluid cell TEM imaging of magnetotactic bacteria: A thin liquid layer containing the specimen 346 

was maintained between the SiN windows. As mentioned above, bacterial cells were attached to a 347 

(3-Aminopropyl)triethoxysilane (APTES) coated SiN window with a 100 nm SU-8 spacer to 348 

render it hydrophilic and positively charged 51, and paired with another 100 nm SU-8 spacer 349 

window. Previous low-loss electron energy loss spectroscopy (EELS) revealed that for the used 350 

spacer configuration the liquid layer thickness was typically 500–750 nm at the edges and corners 351 

of the SiN windows, significantly higher than the nominal thickness of 200 nm 51. The APTES-352 

functionalized window chips encouraged consistent attachment of cells, as described previously 51. 353 

The cells were strongly attached and imaged at magnifications of up to 200,000 x without 354 

detachment of the bacteria from the SiN window. Preliminary imaging and characterization of the 355 

specimens using the fluid cell holder platform was carried out in an FEI Tecnai G2 F20 (scanning) 356 

TEM operated at an accelerating voltage of 200 kV. This microscope was equipped with a Tridiem 357 

Gatan Imaging Filter, a high-angle annular dark-field detector and energy-dispersive X-ray 358 

spectroscopy, as reported elsewhere 51. 359 

Off-axis electron holography:  Off-axis electron holography experiments were carried out in an 360 

FEI Titan 80–300 (scanning) TEM operated at an accelerating voltage of 300 kV. Off-axis 361 

electron holograms were acquired in Lorentz mode on a charge-coupled device camera or Gatan 362 

K2 direct detection camera using an electron biprism operated at 90–100 V. The experiments were 363 

performed at room temperature using magnification ranging from 77,000 × to 225,000 × and an 364 

acquisition time of 6-8 s.  Depending on the magnification of the electron holograms acquired, the 365 

Michelson contrast ratios of the reference wave holograms ranged from ~8% to ~30%. Similarly, 366 

the average electron count for both 6 and 8 second acquisitions ranged from 1,500 to 10,000 367 

across the magnification range. The estimated dose rate on the specimen is given in 368 

Supplementary Material, Table 1.   369 

Initial magnetic states and magnetization reversal experiments using the fluid cell: Initial magnetic 370 

states were recorded after loading the fluid cell holder into the TEM in close-to-magnetic-field-371 

free conditions. The direction of magnetization of each magnetite nanocrystal chain was 372 

subsequently reversed in situ in the TEM by tilting the sample by 75° and turning on the 373 

conventional microscope objective lens to apply a magnetic field of > 1.5 T parallel to the electron 374 

beam direction. The objective lens was then turned off and the sample tilted back to 0° for 375 
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hologram acquisition in magnetic-field-free conditions. In this way, holograms were recorded with 376 

the chains magnetized in opposite directions. The approach that was used to separate the magnetic 377 

from the MIP contribution to the recorded phase shift is described elsewhere 54. Hence, the 378 

subsequent magnetic induction maps present the remanent saturation magnetization of the 379 

magnetite chains. For reconstruction of magnetic induction maps, a chosen multiple of the cosine 380 

of the magnetic contribution to the phase shift was evaluated to produce magnetic phase contours. 381 

Colors were generated from the gradient of the magnetic contribution to the phase shift and added 382 

to the contours to show the direction of the projected induction. 383 
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1 Figure Legends 619 

Figure 1. Schematic diagrams showing the experimental setup in the present study.  (A) TEM 620 

imaging with a fluid cell (not to scale). The microfluidic chamber consists of two silicon 621 

microchips supporting two 50-nm-thick electron-transparent SiN membranes.  Cells of M. 622 

Magneticum are attached to the top SiN window and imaged using an incident electron beam in a 623 

thin liquid layer. (B) Off-axis electron holography using a fluid cell (adapted from 60). 624 

Figure 2. Electron holography and associated analysis of a hydrated bacterial cell. (A) Off-625 

axis electron hologram of a hydrated bacterial cell between two SiN membranes. The scale bar is 626 

200 nm. The magnified region in the inset shows well-resolved interference fringes with a spacing 627 

of ~5.6 nm.  (B) Wrapped phase image showing a 0 − 2π range of phase values presented in the 628 

image and (C) amplitude image of the bacterial cell in (A). (D-F) Off-axis electron holograms 629 

acquired in (D) the initial state, (E) after tilting by +75° and applying a magnetic field in the 630 

electron beam direction and (F) after tilting by -75° and applying a magnetic field in the electron 631 

beam direction. The scale bars are 100 nm. The spacing of the holographic interference fringes is 632 

~5.7 nm. Examples of electron-beam-induced changes to the specimen include the progression of 633 

voids outlined in yellow and red. (G) Magnetic induction map of the magnetite chain in the 634 

bacterial cell reconstructed from the dashed area in (F). The black phase contours were formed 635 

from the magnetic contribution to the recorded phase shift and have a spacing of 0.098±0.001 636 

radians. The outlines of the individual magnetite nanocrystals are marked in white. The direction 637 

of the measured projected in-plane magnetic induction is shown using arrows and colors, 638 

according to the color wheel shown in the inset. The in-plane component of the magnetic field 639 

applied to the specimen before recording the holograms in (E) and (F) is labelled FD and marked 640 

by blue and red arrows. (H) Profile of the magnetic contribution to the phase shift across the 641 

magnetite particle shown in (G) denoted by a red dashed line, yielding a saturation magnetic 642 

induction of 0.58 ± 0.1 T. 643 

Figure 3. Electron holography and visualized magnetization of a magnetite nanocrystal 644 

chain. (A) Off-axis electron hologram of a magnetite nanocrystal chain that had been released 645 

from a ruptured bacterium, showing well-resolved holographic interference fringes with a spacing 646 

of ~6.2 nm. The scale bar is 100 nm. (B) Corresponding magnetic induction map. The phase 647 

contour spacing is 0.31 ±0.001 radians. The in-plane component of the magnetic field applied to 648 

the specimen before recording the holograms is labelled FD and marked by blue and red arrows. 649 

(C) Profile of the magnetic contribution to the phase shift across the magnetite particle shown in 650 

(B) denoted by a red dashed line, yielding a saturation magnetic induction of 0.63 ± 0.1 T. 651 

Figure 4. Electron holography and associated analysis of regions of liquid. (A, B) Off-axis 652 

electron holograms recorded from the middle of the fluid cell and from a liquid front that partially 653 

covers the SiN window, respectively. The scale bars are 200 nm in (A) and 300 nm in (B). The 654 

magnified regions in the insets show well-resolved interference fringes with a spacing of ~6.2 nm. 655 

(C) Off-axis electron hologram recorded from a droplet of liquid in the fluid cell (~1200 nm in 656 

diameter and assumed to be ~800 nm in height) with a holographic interference fringe spacing of 657 

~5.7 nm. The scale bar is 200 nm. (D) Radial average of intensity of the droplet shown in (C). (E) 658 

Amplitude image, (F) t/λ profile across the droplet, and (G) phase profile across the droplet 659 

reconstructed using off-axis electron holography. The scale bar in (E) is 200 nm.  660 
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Figure 5. Comparison of off-axis electron holograms recorded using two cameras. Off-axis 661 

electron holograms recorded from the fluid cell using (A) a conventional CCD camera and (B) a 662 

K2 direct electron detector. A 6 s acquisition time was used in each case.  663 
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Figure 1. Schematic diagrams showing the experimental setup in the present study.  (A) TEM imaging with a 
fluid cell (not to scale). The microfluidic chamber consists of two silicon microchips supporting two 50-nm-
thick electron-transparent SiN membranes.  Cells of M. Magneticum are attached to the top SiN window and 

imaged using an incident electron beam in a thin liquid layer. (B) Off-axis electron holography using a fluid 
cell (adapted from 60).  
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Figure 2. Electron holography and associated analysis of a hydrated bacterial cell. (A) Off-axis electron 
hologram of a hydrated bacterial cell between two SiN membranes. The scale bar is 200 nm. The magnified 
region in the inset shows well-resolved interference fringes with a spacing of ~5.6 nm.  (B) Wrapped phase 
image showing a 0 − 2π range of phase values presented in the image and (C) amplitude image of the 

bacterial cell in (A). (D-F) Off-axis electron holograms acquired in (D) the initial state, (E) after tilting by 
+75° and applying a magnetic field in the electron beam direction and (F) after tilting by -75° and applying 
a magnetic field in the electron beam direction. The scale bars are 100 nm. The spacing of the holographic 
interference fringes is ~5.7 nm. Examples of electron-beam-induced changes to the specimen include the 
progression of voids outlined in yellow and red. (G) Magnetic induction map of the magnetite chain in the 
bacterial cell reconstructed from the dashed area in (F). The black phase contours were formed from the 

magnetic contribution to the recorded phase shift and have a spacing of 0.098±0.001 radians. The outlines 
of the individual magnetite nanocrystals are marked in white. The direction of the measured projected in-

plane magnetic induction is shown using arrows and colors, according to the color wheel shown in the inset. 
The in-plane component of the magnetic field applied to the specimen before recording the holograms in (E) 
and (F) is labelled FD and marked by blue and red arrows. (H) Profile of the magnetic contribution to the 
phase shift across the magnetite particle shown in (G) denoted by a red dashed line, yielding a saturation 

magnetic induction of 0.58 ± 0.1 T.  
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Figure 3. Electron holography and visualized magnetization of a magnetite nanocrystal chain. (A) Off-axis 
electron hologram of a magnetite nanocrystal chain that had been released from a ruptured bacterium, 

showing well-resolved holographic interference fringes with a spacing of ~6.2 nm. The scale bar is 100 nm. 

(B) Corresponding magnetic induction map. The phase contour spacing is 0.31 ±0.001 radians. The in-plane 
component of the magnetic field applied to the specimen before recording the holograms is labelled FD and 

marked by blue and red arrows. (C) Profile of the magnetic contribution to the phase shift across the 
magnetite particle shown in (B) denoted by a red dashed line, yielding a saturation magnetic induction of 

0.63 ± 0.1 T.  
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Figure 4. Electron holography and associated analysis of regions of liquid. (A, B) Off-axis electron holograms 
recorded from the middle of the fluid cell and from a liquid front that partially covers the SiN window, 

respectively. The scale bars are 200 nm in (A) and 300 nm in (B). The magnified regions in the insets show 

well-resolved interference fringes with a spacing of ~6.2 nm. (C) Off-axis electron hologram recorded from a 
droplet of liquid in the fluid cell (~1200 nm in diameter and assumed to be ~800 nm in height) with a 

holographic interference fringe spacing of ~5.7 nm. The scale bar is 200 nm. (D) Radial average of intensity 
of the droplet shown in (C). (E) Amplitude image, (F) t/λ profile across the droplet, and (G) phase profile 

across the droplet reconstructed using off-axis electron holography. The scale bar in (E) is 200 nm.  
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Figure 5. Comparison of off-axis electron holograms recorded using two cameras. Off-axis electron 
holograms recorded from the fluid cell using (A) a conventional CCD camera and (B) a K2 direct electron 

detector. A 6 s acquisition time was used in each case.  
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