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Highlights
TGA-IRIS system enables fast and precise §°H and 680 measurements of liquid samples

and mineral hydration waters.

TGA-IRIS approach does not require laborious and hazardous sample processing.

TGA-IRIS enables the determination of Fe-OH 620 values and fractionation factors that

have not been accessible until now

Abstract
The hydrogen and oxygen stable isotope composition (§°H and 520 values) of mineral
hydration waters can give information on the environment of mineral formation. Here we

present and validate an approach for the stable isotope analysis of mineral hydration waters
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based on coupling a thermogravimetric analyzer with a laser-based isotope ratio infrared
spectroscopy instrument (Picarro L-2130i), which we abbreviate as TGA-IRIS. TGA-IRIS
generates 8°H and 80 values of liquid water samples with precision for 8°H of + 1.2%o, and for
880 of + 0.17%o. For hydration waters in goethite, precision for 8°H ranges from + 0.3%o to
1.6%o, and for 620 ranges from + 0.17%o to 0.27%.. The ability of TGA-IRIS to generate detailed
water yield data and 8H and 80 values of water at varying temperatures allows for the
differentiation of water in varying states of binding on mineral surfaces and within the mineral
matrix. TGA-IRIS analyses of hydrogen isotopes in goethite yields §°H values that reflect the
hydrogen of the OH™ phase in the mineral and are comparable to that made by IRMS and found
in the literature. In contrast, §'30 values on goethite reflect the oxygen in OH groups bound to
Fe (Fe-OH group), and not the oxygen bound only to Fe (Fe-O group) in the mineral crystal
lattice, and may not be comparable to literature §*30 values made by IRMS that reflect the total
O in the mineral. TGA-IRIS presents the possibility to isotopically differentiate the various
oxygen reservoirs in goethite, which may allow the mineral to be used as a single mineral
geothermometer. TGA-IRIS measurements of hydration waters are likely to open new avenues

and possibilities for research on hydrated minerals.

1. Introduction

The geochemistry of Earth’s terrestrial environment is dominated by weathering
reactions driven principally by the abundant presence of water and oxygen (e.g. Garrels and
Christ, 1965; Maher and Chamberlain, 2014). This corrosive and oxidative environment results
in the significant presence of hydrated mineral weathering products such as Fe oxide and
phyllosilicate minerals across nearly all of Earth’s surface (e.g. Cornell and Schwertmann, 2003;
Nesbitt and Young, 1989; Yapp, 2001; and others). Hydrated mineral phases have also been
observed on Mars, which suggests the presence of liquid water at the surface during Mars’ past
(Mustard et al., 2008).

Hydrated minerals may retain a signal of the environmental conditions under which they

formed because their parent waters can be of meteoric origin and therefore have
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climatologically distinct hydrogen and oxygen stable isotope compositions (e.g. Dansgaard,
1964; Lawrence and Taylor, 1971, 1972; Bowen, 2010), while their temperature of formation
imparts systematic fractionation from the parent waters to the incorporated mineral-hydration
water (Friedman and Oneil, 1977). Therefore, if the hydrogen and oxygen stable isotope
compositions of the mineral-bound waters can be measured, information about the mineral
formation environment can be understood (e.g. Savin and Epstein, 1970; Shepard and Gilg,
1996; Savin and Hsieh, 1998). Interpretations of paleoclimate conditions during Earth’s history
have been made based on analyses of hydrogen and oxygen stable isotopes of hydrated
minerals found in the rock record, including that of phyllosilicates (e.g. Savin and Epstein, 1970;
Shepard and Gilg, 1996; Savin and Hsieh, 1998; Feng and Yapp 2009) and Fe oxides (e.g. Yapp
and Pedley, 1985; Yapp, 1987; Girard et al., 2000; Yapp, 2001; Yapp and Shuster, 2011).

An impediment to the more widespread application of hydrogen and oxygen stable
isotope analyses of mineral hydration waters has been the complexity of liberating hydration
water from the mineral matrix and analyzing it by mass spectrometry. Several approaches have
been used, including thermal breakdown of goethite to hematite followed by quantitative
conversion of the water to H, for isotopic analysis (Yapp and Pedley, 1985), chemical extraction
of the total oxygen in hydrated minerals by fluorination (e.g. Clayton and Mayeda, 1963; Yapp,
1987), high-temperature (1450 °C) thermal decomposition to release mineral hydration water
(Sharp et al., 2001; Rohrssen et al., 2008), and the use of incremental vacuum dehydration at
varying temperatures (Yapp, 2015). Each requires subsequent conversion of hydrogen and
oxygen to gaseous H, or CO, followed with analysis by gas-source isotope ratio mass
spectrometry (IRMS). These methods are labor- and time-intensive, and require complex
laboratory apparatus for off-line sample preparation.

The advent of laser-based isotope ratio infrared spectroscopy (IRIS) (Kerstel et al., 1999;
Kerstel and Gianfrani, 2008) offers several advantages to IRMS analyses, most significantly that
hydrogen and oxygen stable isotope values, and water vapor concentrations are measured
simultaneously on the same sample of water vapor with no need to convert water to other
gases. IRIS instruments are also lower cost and have reduced complexity compared to IRMS.

IRIS instruments do require that a water sample be converted to vapor for sample induction,



88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LLNL-JRNL-736485

and techniques to sample liquid water include quantitative vaporization (Gupta et al., 2009),
direct liquid-vapor equilibration (Wassenaar et al., 2008; Koehler et al., 2013; Hendry et al.,
2015), and membrane-inlet vapor equilibration (Munksgaard et al., 2011; Volkmann and
Weiler, 2014; Rothfuss et al., 2013; Oerter et al., 2017a; Oerter et al., 2017b, Oerter and
Bowen, 2017). For samples where water is incorporated into, or surrounded by a solid matrix
(such as mineral hydration waters), the traditional approach is to first liberate the water from
the sample using distillation by heat under vacuum (Araguas-Araguas et al., 1995; Orlowski et
al., 2016). After water liberation, it is collected and introduced into the IRIS instrument by
subsequent quantitative vaporization (Gupta et al., 2009). More recently, on-line techniques
that produce water vapor from the sample by heating (Koehler and Wassenaar, 2012; Johnson
et al., 2017; Cui et al., 2017) or microwave radiation (Munksgaard et al., 2014) have been
developed, after which the water vapor is inducted directly into the IRIS instrument. A
disadvantage of the currently available heat-based water liberation methods is that the sample
is heated to a single high temperature and all of the sample’s water is released in a single pulse.
For samples that contain water in various states of binding strength (i.e. hydrated minerals)
these water types will be mixed and analyzed together.

Thermogravimetric analysis (TGA) offers an attractive approach to the liberation of
mineral-bound waters because the sample can be step-heated very precisely to isolate the
release of waters of different binding strengths (i.e. lower temperatures for weakly-bound,
higher temperature for strongly-bound), and the corresponding mass loss of water at each
heating step can be precisely measured. In addition, the sample size required is very small
(approximately 5-30 mg) and sample preparation is usually minimal. Recently, TGA has been
utilized to liberate water vapor from hydrated clay minerals, which was collected by cryogenic
trapping, and subsequently manually transferred and analyzed by IRIS (Yang et al., 2016).

Here we develop an on-line method utilizing a TGA instrument to liberate water vapor
from liquid water samples and hydrated mineral samples, and transfer the vapor directly to an
IRIS instrument where the hydrogen and oxygen stable isotope values of the water vapor are
analyzed. We first show that the thermogravimetric analysis — isotope ratio infrared

spectroscopy method (TGA-IRIS) can yield accurate and precise hydrogen and oxygen stable
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isotope values from ~ sub plL-sized liquid water samples. We then apply the TGA-IRIS technique
to synthetic and natural goethite samples to illustrate the novel applications of TGA-IRIS. We

conclude that TGA-IRIS can contribute unique insights to the study of mineral hydration waters.

2. Experimental Methods

2.1 TGA-IRIS analytical system

A TA Discovery thermogravimetric analyzer (TGA) (TA Instruments, New Castle, DE, USA)
with infrared-heated furnace and 25 position sample changer was connected to a Picarro L-
2130i cavity ring down isotope ratio infrared spectroscopy (IRIS) water isotope analyzer (Picarro
Inc., Santa Clara, CA, USA) by a heated sample transfer line. The IRIS inlet side of the sample
transfer line is stainless steel tubing (1.6 mm O.D. x 0.6 mm |.D.) that is inserted 15 cm into
stainless steel tubing (3.2 mm 0O.D. x 2.2 mm I.D.) attached to the TGA furnace outlet, thus
forming an open split. The TGA-IRIS system is configured with this open-split interface between
the TGA and the IRIS instrument to accommodate the greater N, carrier gas flow rates from the
TGA compared to the induction flow rate of the IRIS instrument. The sample transfer line and
open split is wrapped with resistance heating tape and temperature controlled to 80 °C.

Water vapor generated by sample heating in the TGA is carried through the system by
N, carrier gas. Carrier N, flow rate was 25 mL min'l, determined as the minimum flow rate that
would prevent ambient atmospheric vapor from entering the open split, while minimizing

dilution and travel time of the water vapor pulse carried from the TGA to the IRIS instrument.

2.2 TGA-IRIS analytical methods

Samples were loaded into pre-weighed (for tare correction in the TGA) sample holder
pans (see Section 3.2 for details on encapsulating liquid water or wet samples), then loaded
into the auto sampler. An initial weight loss with increasing heating temperature curve for
unknown sample types was determined by heating at 10 °C min™ from 35 to 600 °C, thus

identifying water release temperature ranges of interest for subsequent TGA-IRIS analyses. In
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order to generate sufficient H,O vapor levels ([H,O] values in parts per million by volume,
ppmV) in the IRIS instrument ([H,0] peak values > 5000 ppmV) for reliable measurement of &
values, water needs to be released from the sample quickly. Heating at a very fast rate of >5 °C
sec’! (“flash heating”) to a temperature just higher than that needed to release the water from
the sample is necessary. After flash heating, isothermal conditions are maintained at the
desired temperature for 10 minutes to fully release the sample water available at that
temperature so that there is no mixing between water yielded at subsequent temperatures. All
heating schemes used in this study begin with an initial TGA furnace temperature of 35 °C for 5
minutes after sample loading and furnace closure to flush the system of ambient water vapor
and return [H,0] values in the IRIS instrument to < 250 ppmV before the rest of the heating
scheme commences.

The IRIS instrument makes measurements of [H,0], and 8°H and &0 values (in %o
notation, see below) at approximately 1 Hz. Integration of the measured 8°H and 620 values
over the entire sample signal duration will yield quantitative §°H and 620 values of the water
sample. The integrated 6°H and 620 values were calculated with a weighted average of
measured 8°H and 820 values, with weighting factors for individual & value measurements
calculated as the ratio of the measured H,0 vapor concentration ([H,O]measured) Of €ach 1 Hz
measurement to the maximum H,O vapor concentration ([H,0]max) for the sample. The start of
the integration interval for each sample was initiated at the point that [H,0]measured Values
increased above background (> 250 ppmV) and continued until [H,O]measured Values at the end of
the H,0 vapor peak were < 2000 ppmV (Figure 1). Tests of varying the peak-end [H,0] cutoff
value between 800 and 3000 ppmV did not yield large differences in §°H and 620 values, and
thus 2000 ppmV was chosen as the value applied to all samples. However, we recommend that
the peak-end [H,0] cutoff value by evaluated for the specific TGA-IRIS analytical system in use.

The presence of organic compounds in H,0 vapor has been shown to exert spectral
interference and result in spurious & values in IRIS analyses (West et al., 2010). To evaluate the
potential presence of organics, several spectral parameters that the IRIS instrument records
were evaluated for every analysis. The ‘slope shift’ and ‘baseline shift’ values reflect parameters

in the spectral signal of the empty cavity during factory calibration, and ‘residuals’ reflects the
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goodness of fit in that relationship (Munksgaard et al., 2014). Values of these three spectral
parameters during sample analyses were compared to that resulting from standard waters. No

organic contamination was detected in any of the samples in this study.
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2.3 Standards and samples

Hydrogen and oxygen stable isotope values are reported in & notation: 6 =
(Rsample/Rstandard — 1), Where Rsample and Rstandarg are the 2H/ H or 0/*0 ratios for the sample
and standards respectively, and values are reported in per mille (%o). Mineral-water
fractionation factors («,,,_,,) are calculated as: o = (Rmineral/Rwater)-

Water used as standards (Table 1) were previously calibrated in our laboratory against
the VSMOW?2, SLAP2, and GISP primary standard reference materials using IRMS analysis.
Measured TGA-IRIS 6H and §'%0 values were calibrated to the Vienna Standard Mean Ocean
Water (VSMOW) standard (Coplen, 1994) by using run-specific linear correlations of known &
values to measured & values from CHC, GTW, and NVW water standards (one of each) at the
beginning and end of each analytical run (details in Section 2.3 below). Liquid water standards
were also included at regular intervals through the runs to monitor for instrumental drift,
though none was typically observed.

Synthetic goethite (“SynGoethite2”) was prepared at room temperature (23 °C) by
dissolving 1 molar Fe(lll) from FeCls in 2 molar HNOs and diluted with DI H,O. NaOH was added
to neutralize pH to between 7 and 9, iron-oxy-hydroxide precipitate was settled overnight,
followed by centrifugation, decanting and dialysis until external water was <100 microSiemens,
followed by air drying. SynGoethite2 was confirmed as goethite by x-ray diffraction (details
below). The final 62H and 620 values of the water used to synthesize SynGoethite2 were -
71.0%0 and -7.8%o respectively. An aliquot of a natural sample of pure goethite (FCol-3) was
provided by Dr. Crayton Yapp. FCol-3 is sourced from near Florissant, Colorado, USA and was
confirmed as goethite by x-ray diffraction. Mineral samples were ground to a fine powder in a
synthetic sapphire mortar and pestle with isopropyl alcohol, then treated with 0.5 M HCl at 23
°C and rinsed at least four times with deionized water. The samples were then treated with
30% H,0, solution four times, after which the samples were rinsed several times with deionized
water, and dried overnight at 40 °C.

Mineral compositions of the solid samples were determined by x-ray diffraction on a

Bruker D8 Advance instrument (Bruker Corp., Billerica, MA, USA) using Cu-Ko. radiation
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generated at 40 kV and 40 mA. Diffraction scans were performed from 10-80° 26, with 0.02° 20

step size with 2 sec collection time per step, with variable divergence slits.

3. Results and Discussion

To evaluate the accuracy, precision and utility of TGA-IRIS, we performed a series of
experiments designed to test and constrain the performance of various aspects of the TGA-IRIS
system. To facilitate the presentation of these activities and their results, in the following
sections we describe each of the tests and discuss their results in sequence. We first show
results on liquid water samples that demonstrate accuracy and precision limits of liquid water

analyses. We then follow with results from synthetic and natural mineral samples of goethite.

3.1 Quantitative TGA-IRIS sample induction

To reliably analyze 6*H and 680 values of the water vapor generated by the TGA, the
sample vapor induction system must consistently capture the water vapor stream during every
analysis. Figure 2 shows the relationship between the integrated sum of water vapor for each
sample received at the IRIS instrument (in ppmV) and the liquid volume of 81 water samples
ranging in volume from 400 to 1200 nL (volume calculated from sample mass loss measured by
TGA; 1 mg = 1000 nL H,0 at 25 °C) for samples loaded in tin capsules (see Section 3.2 below)
and flash heated to 150, 300, 450, and 600 °C (on separate aliquots). The strong correlations
and similar slopes of the relationships between water vapor volume and liquid water volume
for samples heated at 150 and 300 °C, (150 °C: slope = 2503, R = 0.97, n = 31; 300 °C slope =
2200, R? = 0.97, n = 50) shown in Fig. 2 (data in Supp. Table 1) indicates that the TGA-IRIS
system is consistently inducting the vapor generated from each sample flash heated to 150 and
300 °C in the TGA furnace. Therefore, calculating 8°H and 80 values by a weighted average of
each & value weighted by its [H,0] value as a proportion of the maximum [H,O] value for each
sample peak (as described in Section 2.2 above) is repeatable for samples heated at 150 and

300 °C. Liquid water samples heated to 450 and 600 °C show weaker vapor to liquid volume
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relationships with lower slopes (450 °C: slope = 1463, R* = 0.12, n = 6; 600 °C: slope = 1638, R =
0.90, n = 12) (Fig. 2), indicating more variability in vapor induction from liquid samples at those

temperatures.

3.2 Effects of sample capsule material and heating temperature

The use of liquid water calibration standards introduced into the TGA furnace and
therefore treated identically to the unknown samples presents some challenges for developing
the proper procedure. Wet samples must be encapsulated to prevent evaporation of the
sample (and thus alteration of §°H and 620 values), during sample loading and N flushing of
the TGA furnace before the analysis is begun. Tin or silver sample capsules are commonly
available due to their use in various mass spectrometry techniques. Silver is often chosen for
the high temperature (>1000 °C) thermal conversion analysis of water because it will not form
oxides by reaction with H,O under inert atmospheres. The degree to which silver’s inert
advantage is applicable to the lower temperatures of TGA-IRIS analysis is discussed below.
Silver’s disadvantages include reduced workability due to material hardness, higher cost, and
reduced availability in the smallest capsule sizes. Tin capsules are easier to work with, available
in very small size (1 mm diameter) that is suitable for sub-microliter liquid sample volumes, and
are less costly.

Tin capsules (1.5 mm diam. x 5 mm length, Costech # 41064, n = 7) and silver capsules (2
mm diam. x 41075 5 mm length, EA # 41075, n = 7) were loaded with 600 (+ 150) nL of either
CHC or ATW liquid water by syringe injection, and sealed by crimping the top of the capsule
closed with pliers, folding the crimp over itself and crimping again with pliers, forming a double-
crimp seal. The isotopic effect of the water in the preexisting air headspace inside the capsule
can be neglected because the liquid water added is ~1000x larger mass than that in the
headspace air. These samples were analyzed by the TGA-IRIS method with a heating rate of 5 °C
sec’! (“flash-heated”) from 35 to 300 °C, culminating in 10 minutes of isothermal conditions at
300 °C. Tin capsules yielded §°H values with a precision of +0.76%o and 820 values of +
0.13%o (+ 1o (1 standard deviation) reproducibility, n=7), whereas silver capsules gave precision

of + 1.09%o for §°H and + 0.46%. for §*20 values (+ 1o, n=7). The silver capsules were

10
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considerably more difficult to load and crimp, and these results do not include several silver
capsule samples that gave null or dramatically high 6 values, presumably because the water
was not sufficiently contained in the capsule and either leaked out or evaporated before
analysis. These problems were absent with the tin capsules.

After establishing that tin capsules were easier to work with and gave more
reproducible results, it was necessary to assess whether tin capsule material reacts with water
at TGA-IRIS temperatures to give spurious 8°H or 620 values. Tin capsules (1.5 mm diam. x 5
mm length) were loaded with 800 (+ 180) nL of CHC liquid water, and double-crimp sealed.
These samples were analyzed by TGA-IRIS and flash heated, culminating in 10 minutes of
isothermal conditions at either 150, 300, 450, or 600 °C. This fast rate of heating was designed
to match the heating rate needed to release adsorbed and structural water from solid samples
(discussed in Section 3.6 below), thus satisfying the principle of identical treatment between
samples and calibration standards.

Results of the heating experiments in measured §°H, §*20 values (factory calibrated
data) are shown in Fig. 3. No temperature dependence on measured 8°H or 6'20 values was
found (R? < 0.2 for both). We interpret the precision of measured & values of liquid water
samples at various temperatures to be as follows, based on + 16 of n measurements. For 62H,
at 150 °C+£1.23%0n =9, 300 °C £ 0.68%0 n = 8, 450 °C + 0.62%0 n = 6, 600 °C + 3.16%0 n = 9;
and for 6'°0, at 150 °C +0.17%o n = 9, 300 °C + 0.52%o n = 8, 450 °C + 0.87%o n = 6, 600 °C *
0.83%o n = 9. Precision for §°H measurements is best in the 300 to 450 °C range, whereas 620
measurements are most precise at 150 °C, and decrease with increasing temperature (Fig. 3B).
A possible reason for reduced precision for liquid water analyses at the highest temperatures is
the reduction in quantitative sample induction in the 450 to 600 °C range (Fig. 2, Section 3.1).

If hydrogen or oxygen is differentially affected by reactions occurring at high
temperatures in the TGA furnace such as oxide formation with the tin capsule material, or by H-
or O-exchange reactions in the TGA furnace, the ratio of the measured §°H to §'®0 values
should also change, reflecting the sequestration of oxygen into formation of oxide material. To
assess any change in the ratio of measured 6 values, we use the deuterium excess parameter of

Dansgaard (1964), calculated as d-excess = 6°H — 8 x §™0, to evaluate the degree to which a

11
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pair of measured 8°H and 60 values deviates from the 8:1 relationship predicted by
equilibrium fractionation, and observed in meteoric waters worldwide (Craig, 1961, Rozanski et
al., 1993). Importantly, we are not using d-excess to infer any specific fractionation mechanism
because the specific value of d-excess depends on the sample water and the calibration of 8°H
and 80 values (we present factory-calibrated data here). Since we are using factory calibrated
8%H and 60 values to calculate and compare d-excess values, we only use it as a convenient
and familiar metric to assess relative changes in 6°H and 620 values from sample to sample. If
different analysis temperatures were affecting §°H and 620 values differently, d-excess values
would reflect this.

Figure 3C shows d-excess values as a function of heating temperature for liquid water
samples in tin capsules, and there is no relationship between d-excess and temperature (R* <
0.2 in Fig. 3C). The increase in the range of d-excess values at higher temperatures is due to a
decrease in analytical precision for both 6°H and 620 values at higher temperatures, as
discussed earlier. The lack of systematic bias in 8°H, 6'0 and d-excess values with heating
temperature suggests that there are not temperature-dependent H- or O-exchange reactions
with the tin capsule material or in the TGA furnace, and we determine tin capsules to be a

suitable material to encapsulate liquid water samples during TGA-IRIS analysis.

3.3 Sample size effect

The sensitivity of the TGA-IRIS technique to sample size was evaluated by measuring 81
samples of different amounts (331 nL to 1160 nL) of liquid water (CHC, GTW, NVW) in tin
capsules at 150 °C or 300 °C heating temperature. The results using factory calibrated data (to
avoid any bias introduced by calibration correction) are shown in Figure 4 as the offset in
measured 6 values from the known & values (calculated as A = Smeasured - Otrue) tO allow
comparison between waters with differing hydrogen and oxygen isotopic composition. For
hydrogen, there is no systematic relationship between measured 6°H values and sample
amount for samples heated at 150 °C (R>=0, n = 31, p = 0.36) or 300 °C (R* =0, n = 50, p = 0.68)

(Fig. 4A). For O, there is a weak correlation between measured 620 values and sample amount

12
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for samples heated at both 150 °C (R*=0.36, n = 31, p < 0.001) and 300 °C (R*=0.43, n =50, p <
0.001) (Fig. 4B).

The lack of a sample size effect for §°H values suggests that no correction is needed
when applying calibration relationships to measured 8°H values. The similar slopes of the weak
sample size effect that may be present for §*20 values at 150 °C (-0.0023 %o nL*) and at 300 °C
(-0.0021 %o nL*) suggests that the effect may be intrinsic to the TGA-IRIS method at other
temperatures. However, the weak correlation between measured 620 values and sample size
may be due to the small volumes of water resulting from TGA analysis. In a study utilizing
induction heating sample introduction, sample size effects large enough to necessitate
correction were not found until sample size was 3000 nL or greater (Cui et al., 2017). In
addition, any size effect correction may be obviated if the range in size of the unknown samples
(in H,0 mass or volume) is relatively small, and if calibration standards can be size matched to
the unknowns. Based on these results that do not show a significant size effect, we do not apply
a size correction to the results from this study. However, we recommend that sample size

effects be evaluated in any study using TGA-IRIS.

13
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3.4 Memory effect

The so-called Memory Effect refers to the hydrogen and oxygen stable isotope
compositions of preceding samples having an influence on the results of a water sample (Olsen
et al., 2006; Gupta et al., 2009; Munksgaard et al., 2014; Cui et al., 2017). To assess the memory
effect in TGA-IRIS, consecutive analyses of sets of samples of each water standard with
contrasting 8°H and 680 values (CHC, GTW, and NVW) were made at 150 °C (n = 6 per set) and
300 °C (n =5 per set). The Memory Coefficient (M) was used to quantify the carry-over from
sample to sample (Van Geldern and Barth, 2012; Uemura et al., 2016), calculated as: M (%) =
(6cm — 6¢7)/(6p7 — bc7) X 100, where &¢wv is the current isotopic measurement, 8¢t is the true
isotopic value of the current sample, &pt is the true isotopic value of the previous water sample.
To avoid introduced uncertainty from any calibration correction, factory calibrated measured
values are used, and 8¢t and 8p7 are calculated as the average of the last three measurements
of a sample set.

Memory coefficient (M) results at 150 °C and 300 °C are shown in Figure 5 (data in
Supp. Table 2). If there was a memory effect present in this set of analyses from sets of water
samples with progressively higher 6 values, M values would be consistently negative in sign due
to the influence of preceding samples with lower 6 values. M values in Fig. 5 do not show such
an influence in the initial analysis that follow a change in & values that would indicate influence
from previous analyses. M values in Fig. 5 are also generally similar to the range of M values
that would be indistinguishable from analytical precision (grey bars in Fig. 5). We interpret the
lack of M value trends, and the similarity between the magnitude of observed M values to that
expected from analytical uncertainty at both 150 °C and 300 °C heating temperature to indicate
that there is little or no sample memory effect for the TGA-IRIS system.

The lack of memory effect for TGA-IRIS contrasts with studies that found memory
effects in both liquid water samples (Gupta et al., 2009; Munksgaard et al., 2014; Uemura et al
2016), and induction heating IRIS on waters bound into solid matrices (Cui et al., 2017). We
attribute the lack of memory in TGA-IRIS to several aspects intrinsic to the technique itself.
First, the water volumes measured in the TGA-IRIS technique are very small (typically < 1000

nL). Secondly, the high temperatures in the TGA furnace are higher than the vaporization point
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of H,0 and isothermal times of 10 minutes at these elevated temperatures effectively “bake
out” water that adsorbs to the internal system surfaces. Thirdly, all parts of the TGA-IRIS system
in contact with water vapor are maintained at >80 °C thus preventing water adsorption and
condensation. Finally, the TGA furnace flushes after every sample during cool down for > 10
minutes, while N5 carrier gas flow rates remain at 25 mL min™* thus maintaining dry internal
TGA-IRIS system surfaces. At every step of the analysis, > 5 min of N, carrier gas flushes residual
water from the system between water vapor pulses (the flush time depends on the heating

scheme and isothermal durations).

3.6 TGA-IRIS analyses of mineral hydration waters

In the following, we describe activities to demonstrate and validate measurements of
8%H and 80 values by TGA-IRIS on hydration waters in synthetic and natural goethite samples.
The choice of goethite to demonstrate the potential novel applications of TGA-IRIS was made
due to goethite’s widespread occurrence at Earth’s surface and in the geologic rock record, and
the well-established use of their isotopic compositions as records of paleoclimate conditions
(e.g. Savin and Epstein, 1970; Yapp and Pedley, 1985; Yapp, 1987; Shepard and Gilg, 1996; Savin
and Hsieh, 1998; Girard et al., 2000; Yapp, 2001; Feng and Yapp 2009; Yapp and Shuster, 2011).

3.6.1 TGA-IRIS analysis of goethite hydration waters
Heating of goethite yields H,0 by dehydration and dehydroxylation as illustrated by the
schematic dehydroxylation reaction as it transforms to hematite (Deer et al., 1962; Boily et al.,

2006):

ZFGO(OH) > Fe,O3 + H,0 (1)

The thermal conversion of goethite to hematite is thought to be a solid-state topotactic

reaction that occurs as a reaction front starting at grain boundaries which migrate into the
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interior of grains, developing a transition state volume that moves with the reaction front as
the reaction proceeds through the mineral grain (Hancock and Sharp, 1972; Goss, 1987; Yapp,
2003). As the reaction front progresses, microfractures develop in the product hematite,
through which H,0 vapor escapes (Goss, 1987; Yapp, 2003).

To assess the H,0 release curves and determine the appropriate flash-heating
temperatures for subsequent IRIS isotope analysis for goethites, we heated samples of
SynGoethite2 and FCol-3 in the TGA at 10 °C min™, which allows the analyst to determine the
specific temperature(s) at which mass loss occurs for each material, and therefore define the
appropriate flash-heating scheme for each material. The slow heating scheme yielded mass loss
from SynGoethite2 (starting sample mass of 8.116 mg) between 35 °C and 105 °C of 0.133 mg;
(1.6%); and between 105 °C and 280 °C of 0.855 mg (10.5%) (Fig. 6). We note that for
SynGoethite2, the slow heating resulted in a continuum of mass loss up to ~150 °C, and the
water available at those temperatures was not fully released because not enough time was
spent in this temperature range. This is a good illustration of the need to define both the
temperature of each step for subsequent isotope analysis, as well as the isothermal duration of
each temperature step to ensure complete water yield at that temperature. If there is
incomplete water recovery at a temperature step, the isotope values of the water yielded at
the subsequent temperature step will be biased by mixing. Slow heating of FCol-3 (starting
sample mass of 6.519 mg) yielded mass loss between 250 °C and 370 °C of 0.59 mg (9.1%) (Fig.
6), and mass between 370 and 600 °C of 0.044 mg (0.8%), the total of which is 9.9%. This mass
loss is the same (within analytical uncertainty) as the 9.8% (£ 0.2%) H,0 yielded by thermal
decomposition for IRMS analyses for 6§°H values of FCol-3 material (Yapp and Poths, 1995). H,0
yields from both goethites were close to that predicted (10.14%) to be yielded from removal of
OH  species from stoichiometric goethite by thermal conversion to hematite (Eqn 1). Deviations
in water yield may be due to a small amount of impurities in each sample, or non-
stoichiometric mineral composition.

Mass lost at the 35 to 105 °C interval represents dehydration of weakly-adsorbed water
on goethite mineral surfaces (Ford and Bertsch, 1999), and represents the atmospheric

moisture the sample has most recently been exposed to. Mass lost between 105 °C and 280 °C
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or 380 °C (SynGoethite2 and FCol-3, respectively) results from progressive dehydroxylation of
OH’ from singly- through triply-coordinated hydroxo groups in the transition volume as goethite
transforms to hematite (Boily et al., 2006; Song and Boily, 2016). The specific temperature at
which the goethite to hematite transition occurs is primarily related to mineral crystallinity (e.g.
Schwertmann, 1984; Ford and Bertsch, 1999; Song and Boily, 2016). The H,O release from
SynGoethite2 at 280 °C is likely due to low crystallinity corresponding to laboratory synthesis,
whereas FCol-3 is a well-crystallized natural goethite (Yapp and Pedley, 1985; Yapp and Poths,
1995), resulting in higher H,0 release temperatures.

Based on the H,O mass loss-temperature curve of SynGoethite2 (Fig. 6), we flash heated
size-matched samples of SynGoethite2 (n = 5, average starting mass of 6.05 mg (+ 0.69 mg)) to
105 °C and then to 280 °C (in separate successive steps) to rapidly release all of the water in
each “pool” as a single pulse of sufficient peak size for reliable IRIS analysis. For FCol-3, we used
larger samples (n = 4, average starting mass of 19.00 mg (+ 2.36 mg)) because of lower H,0
yields than SynGoethite2 (Fig. 6), and flash-heated the samples to 105 °C and 370 °C. Heating
beyond the major water-yielding points of 280 °C and 370 °C up to 600 °C did not release
sufficient H,0 from either goethite to generate a sample peak large enough to reliably analyze.

The reproducibility (+ 1 S.D.) of TGA-IRIS measurements on SynGoethite2 was 1.63%. for
8%H and 0.27%o for §*20 values at 105 °C, and was 1.21%o for 8*H and 0.17%. for §*20 values at
280 °C, and we therefore interpret these as the precision of § values for water released from
SynGoethite2 at 105 °C and 280 °C. These analytical precisions are similar or better than that of
liquid water samples at 150 °C (8%H + 1.23%o, 630 + 0.17%o) and 300 °C (8°H + 0.68%., 620 +
0.52%o, see Section 3.2), which suggests that the use of liquid water as calibration standards is
sufficient to conservatively estimate precision of mineral hydration water analyses. However, it
also suggests that if mineral standards can be prepared or obtained that are sufficiently
isotopically homogeneous, and used for calibration during analytical runs, that precision
estimates and calibrations for water released by solid samples can be further constrained. All of
the 6°H and 620 values presented here for goethite materials were calibrated using liquid

water standards included during each analytical run (Table 1).
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3.6.2 8°H values of goethite hydration waters by TGA-IRIS

Except for the H,O weakly adsorbed to mineral surfaces, hydrogen is present in goethite
only in the OH that is bonded in Fe-O groups (Ford and Bertsch, 1999; Cornell and
Schwertmann, 2003; Boily et al., 2006; Song and Boily, 2016). Measurements of the hydrogen
isotopic composition of goethite by TGA-IRIS and IRMS should be comparable as the H-bearing
reservoir in goethite is accessible to both methods via thermal dehydroxylation.

Analysis of SynGoethite2 by TGA-IRIS (n = 5) at 280 °C (after initial heating to 105 °C to
remove adsorbed water) gives an average 8H value of -158.2%o (+ 1.2%o) (Table 2). The
mineral-water fractionation factor for hydrogen (!, _ ) calculated from the average 8°H value
by TGA-IRIS analysis of SynGoethite2 and the 6°H value of the water used to synthesize the
material at 22 Cis 0.906. This value of o2 _ is the same, within analytical uncertainty, as the
generally accepted literature o/ _ , value of 0.905 (Yapp, 1987; Yapp, 2001).

Analysis of FCol-3_Goet by TGA-IRIS (n = 4) at 370 °C results in an average §°H value of -
138.2%o (+ 0.3%o0) (Fig. 7), which is similar to that of -131%e. (+ 2%0) measured by IRMS on FCol-3
material (Table 2) (Yapp and Poths, 1995). The mineral-water fractionation factor for hydrogen
(o<t _ ) calculated from the average 8°H value by TGA-IRIS analysis of FCol-3 and the &°H value
(-110%o0) of the water postulated to have been the source water during goethite formation at
the same locality as FCol-3 (FCol-1 in Yapp and Pedley, 1985) is 0.968. This value of o< _  is
similar to that calculated for FCol-1 (<, _ ,= 0.971) by Yapp and Pedley (1985), which is
expected from the similarity in measured goethite §°H values by the two methods and the
same postulated source water value. However, these ! _ , values from FCol goethite differ
from the literature ocfZ _, value 0.905 + 0.004 (Yapp, 1987; Yapp, 2001). Yapp and Pedley (1985)
note that FCol goethite has the highest o</ _  values of the 21 natural goethites they analyzed,
though neither our analyses or theirs are able to resolve the reasons for this disparity.

Based on the similarity of H,O yields during TGA-IRIS analyses to that predicted by
stoichiometry, as well as the similarity of mineral-water fractionation factors for hydrogen
(o<t _ ) derived from both TGA-IRIS and IRMS on a synthetic and a natural goethite material,

we conclude that that TGA-IRIS analyses of hydrogen isotopes in goethite produces 8°H values
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that reflect the total hydrogen of the goethite. TGA-IRIS §°H values from goethite should be

comparable to those made by IRMS and found in the literature.

3.6.3 60 values of goethite hydration waters by TGA-IRIS

Oxygen is present in goethite in two bonded groups: Fe-O and Fe-OH (Ford and Bertsch,
1999; Cornell and Schwertmann, 2003; Boily et al., 2006; Song and Boily, 2016). The oxygen in
the water evolved by thermal dehydroxylation of goethite and its transition to hematite during
TGA-IRIS analysis (and resulting 5200y values) is only 50% of the oxygen in the Fe-OH  groups,
while the remaining 50% is incorporated into the resulting hematite (Eqn. 1). In contrast,
oxygen recovered from goethite by fluorination and IRMS analysis will be all of the O in
goethite, from both Fe-O and Fe-OH" groups (6180Tota|). Thus, values of 50, made by TGA-IRIS
on goethite should not be not directly comparable to 80101 Measurements made by
fluorination and IRMS.

The absence of oxygen isotope exchange between the Fe-O and Fe-OH groups as
goethite undergoes the topotactic transformation to hematite, as represented by Eqn 1,
underpins the interpretation of 6200y values yielded by TGA-IRIS analysis. Previous work shows
that neither goethite nor hematite readily exchange structural oxygen isotopes with water
(Becker and Clayton, 1976; Yapp, 1991). In a study comparing open- and closed-system thermal
dehydration of goethite conversion to hematite, Yapp (1990) showed that in open-systems
under vacuum, minimal reversible mineral-vapor oxygen isotope exchange was likely, though its
complete absence was not demonstrated conclusively. The TGA-IRIS system is open as the
released H,0 vapor is continually removed by N, carrier gas, and as such it is likely that back-
exchange of oxygen either does not occur in the H,O vapor-mineral system, or that it is
minimal. The short timescales of H,O vapor release during TGA flash heating during TGA-IRIS
analysis (thermal conversion complete within < 300 seconds) also does not favor solid-state
oxygen diffusion and exchange.

Analysis of SynGoethite2 by TGA-IRIS (n = 5) at 280 °C (after initial heating to 105 °C to

remove adsorbed water) gives an average §"®0oy value of -10.64%o (+ 0.17%o) (Table 2). The
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mineral-water fractionation factor for oxygen in SynGoethite2 between Ogy and the source

0,0H

water (,,_,,) calculated from the average 5800y value by TGA-IRIS analysis of SynGoethite2

and the 80,0 value of the water used to synthesize the material at 22 °C is oc,on’gﬁ, =0.9972

(Table 2). As noted, goethite oxygen mineral-hydration water fractionation factors (oco OH

values) derived from TGA-IRIS analyses are not directly comparable to total oxygen mineral-

0,Total
water fractionation factors (o, %, ¢

values) because each oxygen reservoir in the original
goethite may differ in isotopic composition, and a comparison between the two fractionation

factors may indicate whether the two oxygen reservoirs do differ isotopically. Indeed, the

0,0H

SynGoet2 « %% value of 0.9972 is significantly different than literature oc3;" Toml

values of 0.985

for goethite synthesized at 22 °C and at high pH by Bao and Koch (1999) (conditions which

match that used to synthesize SynGoet2). This difference in «;°% and ocfnT?Afal values for

goethite suggests that the oxygen in the Fe-OH and Fe-O bound groups do not have the same
isotopic composition, and thus an internal oxygen isotope fractionation relationship may exist
for goethite.

Analysis of FCol-3 by TGA-IRIS (n = 4) at 370 °C (after initial heating to 105 °C) gives an
average 800y value of -4.72%o (+ 0.32%o) (Fig. 7, Table 2). For FCol-3, the value of ocO OH

1.0103, using TGA-IRIS measurements of 500y values and 88040 values of the postulated

source water for FCol-3 (Yapp and Pedley, 1985; Yapp, 1987). We are not able to rigorously

0,0H 0, Total

compare FCol-3 «,,;~, values to o, values because the source water for FCol-3 formation
is not exactly known, and instead is postulated based on measured 8 Hrora values (Yapp and
Pedley, 1985, Yapp, 1987) combined with the modern globally averaged relationship of 6°H to

580 in precipitation (Rozanski, et al., 1993). However, a tentative comparison between FCol-3
oc,onoﬁ, =1.0103 and oco T"tal = 1.0168, again reveals possible differences in the oxygen isotope
composition of the Fe-OH and Fe-O groups.

Complicating interpretations and comparison of the oxygen isotope composition of the
Fe-OH and Fe-O groups in goethite, is the recovery of only 50% of the Fe-OH™ oxygen by TGA-
IRIS, as the remaining 50% is incorporated into the residual hematite. Whether the residual
hematite oxygen preserves the initial goethite Fe-OH §"0oy values, or if it is affected by a

possible kinetic fraction as water vapor is evolved under open system conditions, as suggested
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by Yapp (2003), remains to be investigated further. The relationship between the goethite

oc,on'gld, values determined by TGA-IRIS and the factors of source water and mineral formation

temperature are not interpretable without further studies to constrain how goethite oc,on’gfv

values vary with these factors, as has been done for goethite oc,?;i‘;f“l values (e.g. Yapp, 2001).

We are also not able to determine why the x%:°!l value for SynGoethite2 is < 1, and «%;°
value for FCol-3 is > 1, but it may be related to the pH of mineral formation, the degree of
crystallinity for each material, as well as the presence of high-temperature nonstoichiometric
water in SynGoethite2. However, the indication that an oxygen isotope distinction exists for Fe-
OH and Fe-0 in goethite adds to the evidence of the possibility that goethite can serve as a
single-mineral geothermometer (Yapp, 1987). Further research is needed to confirm these

initial results, and to further evaluate the meaning of the §'0 values of the water derived from

goethite during TGA-IRIS analysis.

3.7 Appraisal of the TGA-IRIS method

The TGA-IRIS method presents some advantages over currently available techniques to
liberate water from solid samples for hydrogen and oxygen stable isotope analysis. The range of
temperature and heating duration available allows TGA-IRIS to be applied more flexibly than
methods using a single temperature (often very high) and single duration such as by microwave
or induction heating. Quantifying mass loss at specific temperatures in succession is also useful
information itself, which is not readily available by other methods. TGA-IRIS is likely to be
applicable to nearly any hydrated material, including hydrous minerals such as clays, or
hydrated glass. Because hydrated minerals have specific temperatures of water yield, it may be
possible to analyze mineral-specific hydration waters in multi-mineral materials (such as soils)
in the same sample aliquot. It seems possible to miniaturize TGA-IRIS systems for transport to
remote locations, and the presence of goethite and hydrated Fe oxide minerals on the surface
of Mars, presents the opportunity for possible future application of TGA-IRIS to extraplanetary
settings.

TGA-IRIS is not without its limitations, some of which may be resolvable with continued

development. The cost of the TGA instrument is significant, especially compared to microwave
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heating equipment. Only small samples (~ <100 mg) can be analyzed, depending on the TGA
instrument, which may be a limitation in heterogeneous materials. Samples with high humidity
or moisture content may present difficulties for sample handling to avoid pre-analysis
evaporation or reduced precision due to incomplete TGA furnace pre-flushing (see discussion

regarding liquid water samples). Any pre-evaporation effect will be largest in small samples.

4. Conclusions

We have presented an approach for the stable isotope analysis of liquid and mineral-
hydration waters based on coupling of thermogravimetric analysis with isotope ratio infrared
spectroscopy (TGA-IRIS). TGA-IRIS presents an approach to the analysis of mineral hydration
waters that is versatile and requires almost no preparation of mineral samples, other than to
clean them. TGA-IRIS analyses of hydrogen stable isotopes in goethite hydration water yields
8°H values that reflect the hydrogen of the OH™ phase in the mineral and are comparable to that
made by IRMS and found in the literature. In contrast, 60 values reflect the oxygen in the Fe-
OH bonded group, and not the oxygen bound in the Fe-O group in the mineral crystal lattice.
Therefore, 6'20 values of goethite hydration water by TGA-IRIS are not directly comparable to
literature 6*%0 values that reflect the total O. However, because TGA-IRIS can yield only the Fe-
OH bonded oxygen, it may be possible to combine these results with measurements of the Fe-O
bonded oxygen in the resulting hematite by fluorination and IRMS to determine if the
fractionation factors for oxygen in the Fe-OH and Fe-O groups differ.

The ability of TGA-IRIS to generate detailed mineral hydration water yield data and 6°H
and 80 values of yielded water at varying temperatures, allows for the differentiation of
water in varying states of binding on and within the mineral matrix. TGA-IRIS analysis also yields
8%H and &0 values on the same sample, which presents advantages in materials with limited
sample size or availability. In addition, the ease with which TGA-IRIS measurements of
hydration waters can be made opens new avenues and possibilities for research on hydrated

minerals.
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FIGURE CAPTIONS

Figure 1. TGA-IRIS liquid water analysis time trace example. [H,0], 6°H and 620 values
collected at approximately 1 Hz frequency throughout the analysis. Black circles ([H,0]), blue
triangles (6°H), and red squares (6'%0) denote interval of water sample peak and duration of
signal integration, beginning when [H,0] values increase above background, ending at [H,0] =
2000 ppmV. Factory-calibrated data are shown. For color symbols, readers are referred to the

online version of this paper.

Figure 2. Relationship between the integrated sum of water vapor for each sample received at
the IRIS instrument and the liquid volume of each water sample for samples loaded in tin
capsules and flash heated at 150, 300, 450, and 600 °C. Sample volume calculated from sample
mass measured in the TGA, using 1 mg = 1000 nL H,0 at 25 °C.

Figure 3. Relationship between heating temperature in TGA-IRIS and measured (A) §H values,
(B) 8*0 values, and (C) deuterium excess (d-excess) values of CHC liquid water samples in tin

capsules (factory calibrated data).

Figure 4. Plots showing relationships between sample size and offset in measured (A) 6°H
values and (B) 6*80 values of liquid water samples in tin capsules measured by TGA-IRIS at 150
°C and 300 °C heating temperature. Offset in measured & values are shown as A& = 8measured -
Otree (calculated with factory calibrated data) to allow comparison between waters with

differing hydrogen and oxygen isotopic composition.

Figure 5. Memory coefficients (M values) for successive samples of liquid water at (A and B) at
150 °C, and (C and D) at 300 °C. Grey regions in the plots represent range of memory
indistinguishable from analytical precision. Analysis # refers to the number of analyses
following a change in sample sets with differing & values. Sample set sequence was: NVW (8%H =
-119.4%0 and 80 = -15.11%o), followed by GTW (8%H = -70.1%0 and 820 = -9.40%o), followed
by CHC (8%H = -24.4%0 and 860 = -2.51%o).
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Figure 6. Weight loss (%) during thermogravimetric analysis of SynGoet2 (medium-dash blue
line) and FCol-3 (short-dash red line) samples in this study, and the derivative weight loss with
respect to time (SynGoet2: solid blue line, FCol-3: dash-dot red line). Samples were heated at

10 °C min™. For color symbols, readers are referred to the online version of this paper.

Figure 7. TGA-IRIS analysis time trace of a FCol-3 goethite sample. [H,0], 6°H and 620 values
collected at approximately 1 Hz frequency throughout the analysis. Black circles ([H,0]), blue
triangles (6°H), and red squares (6'20) denote interval of water sample peak and duration of
signal integration, beginning when [H,0] values increase above background, ending at [H,0] =
2000 ppmV. Factory-calibrated data are shown. For color symbols, readers are referred to the

online version of this paper.

TABLE CAPTIONS

Table 1. 8°H and 680 values of the water used as TGA-IRIS calibration standards

Table 2. Data for samples analyzed by TGA-IRIS in this study. Water yields, mineral hydration &
values, and mineral-hydration water fractionation factors in (oc,o,{glfv) are averages of n analyses

(+ 1 standard deviation).
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Figure 6
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Table 1
&°H )
water | (%o VSMOW) | (%0 VSMOW)
CHC -24.4 -2.51
GTW -70.1 9.4
NVW -119.4 -15.11
ATW -164.3 -20.9
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Table 2

Mineral Hydration Water
Source Water Water 6ZH0H 61300H
5°H 50 Analysis | Yield (%) |(%o VSMOW) (%o VSMOW)
Sample Locality Mineral Type n | (% VSMOW) (%o VSMOW)| Temp (C) | (+15.D.)| (¢1S.D)  «i0% #1SD)  Fmow
SynGoethite2 Livermore,  synthetic goethite 5 -71.0° -7.8° 280 10.5 -158.2 0.9062 -10.64 0.9972
California (0.04) (1.2) (0.17)
FCol-3_Goet Florissant,  natural goethite 4 -110.0° -14.9°¢ 370 9.1 -138.2 0.9683 -4.72 1.0103
Colorado (0.03) (0.3) (0.32)

? Source water & values measured by TGA-IRIS on liquid water samples
® Source water & values from Yapp and Pedley, 1985
“Source water & value calculated from 8°H value (b) using GMWL of Rozanski et al., 1993
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